KW2 CFLNM1.TG

OSLON® Compact PL

Compact light source with isolated thermal pad for improved heat dissipation and small z-tolerance (+/- $35 \mu m$).

Applications

- Headlamps, LED & Laser & Night Vision

Features:

- Package: Ceramic package
- Chip technology: UX:3
- Typ. Radiation: 120° (Lambertian emitter)
- Color: Cx = 0.32, Cy = 0.33 acc. to CIE 1931 (• white)
- Corrosion Robustness Class: 3A
- Qualifications: AEC-Q102 Qualified with RV-level 1
- ESD: 8 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)

Ordering Information

Туре	Luminous Flux ¹⁾ I _F = 1000 mA Φ_V	Ordering Code
KW2 CFLNM1.TG-Z8P6-ebvFfcbB46-PAB6	630 949 lm	Q65112A9409

Maximum Ratings

Parameter	Symbol		Values
Operating Temperature	T _{op}	min.	-40 °C
	69	max.	125 °C
Storage Temperature	T _{stg}	min.	-40 °C
	5	max.	125 °C
Junction Temperature	T _j	max.	150 °C
Junction Temperature for short time applications*	Tj	max.	175 °C
Forward Current	I _F	min.	50 mA
T _s = 25 °C		max.	1500 mA
Surge Current t ≤ 10 µs; D = 0.005 ; T _s = 25 °C	I _{FS}	max.	4000 mA
ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)	V_{ESD}		8 kV
Reverse current ²⁾	I _R	max.	200 mA

* The median lifetime (L70/B50) for Tj = 175° C is 100h.

Characteristics

 $I_{_{\rm F}}$ = 1000 mA; $T_{_{
m S}}$ = 25 °C

Parameter	Symbol		Values
Chromaticity Coordinate 3)	Сх	typ.	0.32
	Су	typ.	0.33
Viewing angle at 50% ${\rm I_v}$	2φ	typ.	120 °
Forward Voltage 4)	V _F	min.	5.45 V
I _F = 1000 mA		typ.	6.05 V
		max.	6.75 V
Reverse voltage (ESD device)	V _{r esd}	min.	45 V
Reverse voltage ²⁾ I _R = 20 mA	V _R	max.	1.2 V
Real thermal resistance junction/solderpoint ⁵⁾	$R_{thJS real}$	typ.	3.3 K / W
	1100 1641	max.	3.9 K / W
Electrical thermal resistance junction/solderpoint ⁵⁾	R _{thJS elec.}	typ.	2.4 K / W
with efficiency η_e = 25 %		max.	2.9 K / W

Brightness Groups

Group	Luminous Flux ¹⁾ I _F = 1000 mA min. Φ_v	Luminous Flux ¹⁾ I _F = 1000 mA max. Φ_V	
8P	630 lm	710 lm	
8PF	669 lm	754 lm	
5Q	710 lm	800 lm	
5QF	754 lm	849 lm	
6Q	800 lm	900 lm	
6QF	849 lm	949 lm	

Forward Voltage Groups

Group Forward Voltage ⁴⁾ $I_F = 1000 \text{ mA}$ min. V_F		Forward Voltage ⁴⁾ I _F = 1000 mA max. V _F	
PA	5.45 V	5.95 V	
1A	5.95 V	6.45 V	
B6	6.45 V	6.75 V	

Chromaticity Coordinate Groups ³⁾

Chromaticity Coordinate Groups ³⁾

Group	Сх	Су	Group	Сх	Су
ebvF46	0.3127	0.3093	ebzB46	0.3203	0.3274
	0.3212	0.3175		0.3299	0.3361
	0.3199	0.3325		0.3298	0.3526
	0.3104	0.3234		0.3190	0.3430
ebxD46	0.3163	0.3181	fcbB46	0.3248	0.3370
	0.3253	0.3266		0.3350	0.3460
	0.3246	0.3424		0.3355	0.3633
	0.3145	0.3330		0.3241	0.3534

Group Name on Label			
Example: 5Q-ebvF46-1A Brightness	Color Chromaticity	Forward Voltage	
5Q	ebvF46	1A	

Relative Spectral Emission⁶⁾

 $\Phi_{rel} = f(\lambda); I_F = 1000 \text{ mA}; T_S = 25 \text{ °C}$

Radiation Characteristics⁶⁾

 $I_{rel} = f(\phi); T_{s} = 25 \ ^{\circ}C$

Forward current ^{6), 7)}

 $I_{_{\rm F}} = f(V_{_{\rm F}}); T_{_{\rm S}} = 25 \ ^{\circ}{\rm C}$

Relative Luminous Flux ^{6), 7)}

 $\Phi_{v}/\Phi_{v}(1000 \text{ mA}) = f(I_{F}); T_{S} = 25 \text{ °C}$

Chromaticity Coordinate Shift ⁶⁾

 ΔCx , $\Delta Cy = f(I_F)$; $T_S = 25 \ ^{\circ}C$

Forward Voltage ⁶⁾

 $\Delta V_{_{\rm F}} = V_{_{\rm F}} - V_{_{\rm F}}(25 \ ^{\circ}{\rm C}) = f(T_{_{\rm J}}); I_{_{\rm F}} = 1000 \ {\rm mA}$

Relative Luminous Flux⁶⁾

 $\Phi_v/\Phi_v(25 \text{ °C}) = f(T_i); I_F = 1000 \text{ mA}$

Chromaticity Coordinate Shift ⁶⁾

 ΔCx , $\Delta Cy = f(T_j)$; $I_F = 1000 \text{ mA}$

Max. Permissible Forward Current

 $I_{F} = f(T)$

Permissible Pulse Handling Capability

 $I_{_{P}} = f(t_{_{p}}); D: Duty cycle$

Permissible Pulse Handling Capability

 $I_{_{F}} = f(t_{_{D}}); D: Duty cycle$

Permissible F. Handling Capability

I_F=f(D) f: Frequency

Permissible F. Handling Capability

 $I_F = f(D) f$: Frequency

Dimensional Drawing ⁸⁾

lead finish Au general tolerance ± 0.05

C63062-A4316-A1-01

Further Information:

Approximate Weight:	19.4 mg
Corrosion test:	Class: 3A Test condition: 40°C / 90 % RH / 15 ppm H ₂ S / 14 days (stricter than IEC 60068-2-43)
ESD advice:	The device is protected by ESD device which is connected in parallel to the Chip.

Electrical Internal Circuit

Recommended Solder Pad⁸⁾

For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere. Package not suitable for ultra sonic cleaning. To ensure a high solder joint reliability and to minimize the risk of solder joint cracks, the customer is responsible to evaluate the combination of PCB board and solder paste material for his application.

Reflow Soldering Profile

Product complies to MSL Level 2 acc. to JEDEC J-STD-020E

Profile Feature	Symbol		-Free (SnAgCu) Ass	-	Unit
		Minimum	Recommendation	Maximum	
Ramp-up rate to preheat ^{•)} 25 °C to 150 °C			2	3	K/s
Time t _s T _{smin} to T _{smax}	t _s	60	100	120	S
Ramp-up rate to peak $^{*)}$ T $_{\rm Smax}$ to T $_{\rm P}$			2	3	K/s
Liquidus temperature	TL		217		°C
Time above liquidus temperature	t		80	100	S
Peak temperature	Τ _Ρ		245	260	°C
Time within 5 °C of the specified peak temperature T_p - 5 K	t _P	10	20	30	S
Ramp-down rate* T _P to 100 °C			3	6	K/s
Time 25 °C to T _P				480	S

All temperatures refer to the center of the package, measured on the top of the component * slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

KW2 CFLNM1.TG

Taping⁸⁾

C63062-A4316-B9-03

Tape and Reel ⁹⁾

Reel Dimensions

А	W	N _{min}	W ₁	$W_{2\text{max}}$	Pieces per PU
180 mm	12 + 0.3 / - 0.1 mm	60 mm	12.4 + 2 mm	18.4 mm	4000

Barcode-Product-Label (BPL)

Dry Packing Process and Materials⁸⁾

Type Designation System

Notes

The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet fall into the class **moderate risk (exposure time 0.25 s)**. Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.

Subcomponents of this device contain, in addition to other substances, metal filled materials. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers avoid device exposure to aggressive substances during storage, production, and use.

For further application related information please visit www.osram-os.com/appnotes

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version on the OSRAM OS website.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications

OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

OSRAM OS products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using OSRAM OS components in product safety devices/applications or medical devices/applications, buyer and/or customer has to inform the local sales partner of OSRAM OS immediately and OSRAM OS and buyer and /or customer will analyze and coordinate the customer-specific request between OSRAM OS and buyer and/or customer.

Glossary

- ¹⁾ **Brightness:** Brightness values are measured during a current pulse of typically 25 ms, with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 % (acc. to GUM with a coverage factor of k = 3).
- ²⁾ **Reverse Operation:** This product is intended to be operated applying a forward current within the specified range. Applying any continuous reverse bias or forward bias below the voltage range of light emission shall be avoided because it may cause migration which can change the electro-optical characteristics or damage the LED.
- ³⁾ **Chromaticity coordinate groups:** Chromaticity coordinates are measured during a current pulse of typically 25 ms, with an internal reproducibility of ± 0.005 and an expanded uncertainty of ± 0.01 (acc. to GUM with a coverage factor of k = 3).
- ⁴⁾ **Forward Voltage:** The forward voltage is measured during a current pulse of typically 8 ms, with an internal reproducibility of ± 0.05 V and an expanded uncertainty of ± 0.1 V (acc. to GUM with a coverage factor of k = 3).
- ⁵⁾ **Thermal Resistance:** Rth max is based on statistic values (6σ).
- ⁶⁾ **Typical Values:** Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- ⁷⁾ **Characteristic curve:** In the range where the line of the graph is broken, you must expect higher differences between single devices within one packing unit.
- ⁸⁾ **Tolerance of Measure:** Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.
- ⁹⁾ **Tape and Reel:** All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm.

Revision History			
Version	Date	Change	
1.5	2019-06-28	Further Information Recommended Solder Pad	
1.6	2019-09-24	Features Ordering Information	
1.7	2020-09-15	Schematic Transportation Box Dimensions of Transportation Box Notes Glossary	
1.8	2021-02-26	Not for new design	

Published by OSRAM Opto Semiconductors GmbHEU RoHS and China RoHS compliant productLeibnizstraße 4, D-93055 Regensburg此产品符合欧盟 RoHS 指令的要求;

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

