

Z8051 Series 8-Bit Microcontrollers

Z51F3220

Product Specification

PS029902-0212

PRELIMINARY

Copyright ©2012 Zilog[®], Inc. All rights reserved. www.zilog.com

Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2012 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8051 is a trademark or registered trademark of Zilog, Inc. All other product or service names are the property of their respective owners.

Revision History

Each instance in this document's revision history reflects a change from its previous edition. For more details, refer to the corresponding page(s) or appropriate links furnished in the table below.

	Revision		
Date	Level	Description	Page
Feb 2012	02	Removed references to 28-pin SOP package.	All
Jan 2012	01	Original Zilog issue.	All

Table of Contents

1. Overview	10
1.1 Description	10
1.2 Features	11
1.3 Ordering Information	12
1.4 Development Tools	13
2. Block Diagram	
3. Pin Assignment	17
4. Package Diagram	19
5. Pin Description	
6. Port Structures	
6.1 General Purpose I/O Port	
6.2 External Interrupt I/O Port	27
7. Electrical Characteristics	
7.1 Absolute Maximum Ratings	
7.2 Recommended Operating Conditions	
7.3 A/D Converter Characteristics	29
7.4 Power-On Reset Characteristics	29
7.5 Low Voltage Reset and Low Voltage Indicator Characteristics	
7.6 High Internal RC Oscillator Characteristics	
7.7 Internal Watch-Dog Timer RC Oscillator Characteristics	
7.8 LCD Voltage Characteristics	32
7.9 DC Characteristics	33
7.10 AC Characteristics	35
7.11 SPI0/1/2 Characteristics	36
7.12 UART0/1 Characteristics	37
7.13 I2C0/1 Characteristics	
7.14 Data Retention Voltage in Stop Mode	
7.15 Internal Flash Rom Characteristics	40
7.16 Input/Output Capacitance	40
7.17 Main Clock Oscillator Characteristics	
7.18 Sub Clock Oscillator Characteristics	
7.19 Main Oscillation Stabilization Characteristics	
7.20 Sub Oscillation Characteristics	
7.21 Operating Voltage Range	
7.22 Recommended Circuit and Layout	45
7.23 Typical Characteristics	
8. Memory	
8.1 Program Memory	
8.2 Data Memory	
8.3 XRAM Memory	
8.4 SFR Map	
9. I/O Ports	
9.1 I/O Ports	
9.2 Port Register	
9.3 P0 Port	
9.4 P1 Port	
9.5 P2 Port	69

9.6 P3 Port	
9.7 P4 Port	
9.8 P5 Port	
9.9 Port Function	
10. Interrupt Controller	82
10.1 Overview	
10.2 External Interrupt	83
10.3 Block Diagram	84
10.4 Interrupt Vector Table	85
10.5 Interrupt Sequence	85
10.6 Effective Timing after Controlling Interrupt Bit	87
10.7 Multi Interrupt	
10.8 Interrupt Enable Accept Timing	89
10.9 Interrupt Service Routine Address	89
10.10 Saving/Restore General-Purpose Registers	
10.11 Interrupt Timing	
10.12 Interrupt Register Overview	
10.13 Interrupt Register Description	
11. Peripheral Hardware	
11.1 Clock Generator	
11.2 Basic Interval Timer	102
11.3 Watch Dog Timer	105
11.4 Watch Timer	108
11.5 Timer 0	111
11.6 Timer 1	120
11.7 Timer 2	130
11.8 Timer 3, 4	141
11.9 Buzzer Driver	170
11.10 SPI 2	172
11.11 12-Bit A/D Converter	178
11.12 USI0 (UART + SPI + I2C)	185
11.13 USI1 (UART + SPI + I2C)	222
11.15 LCD Driver	
12. Power Down Operation	272
12.1 Overview	272
12.2 Peripheral Operation in IDLE/STOP Mode	272
12.3 IDLE Mode	
12.4 STOP Mode	
12.5 Release Operation of STOP Mode	275
13. RESET	
13.1 Overview	
13.2 Reset Source	
13.3 RESET Block Diagram	
13.4 RESET Noise Canceller	
13.5 Power on RESET	
13.6 External RESETB Input	
13.7 Brown Out Detector Processor	
13.8 LVI Block Diagram	
14. On-chip Debug System	
14.1 Overview	
14.2 Two-Pin External Interface	
15. Flash Memory	

15.1 Overview	293
16. Configure Option	
16.1 Configure Option Control	304
17. APPENDIX	305

List of Figures

Figure 1.4 StandAlone Gang8 (for Mass Production)	15
Figure 2.1 Block Diagram	16
Figure 3.1 Z51F3220 44MQFP-1010 Pin Assignment	17
Figure 3.2 Z51F3220 32SOP Pin Assignment	18
Figure 4.1 44-Pin MQFP Package	19
Figure 4.2 32-Pin SOP Package	20
Figure 6.1 General Purpose I/O Port	26
Figure 6.2 External Interrupt I/O Port	27
Figure 7.1 AC Timing	35
Figure 7.2 SPI0/1/2 Timing	36
Figure 7.3 Waveform for UART0/1 Timing Characteristics	37
Figure 7.4 Timing Waveform for the UART0/1 Module	37
Figure 7.5 I2C0/1 Timing	38
Figure 7.6 Stop Mode Release Timing when Initiated by an Interrupt	39
Figure 7.7 Stop Mode Release Timing when Initiated by RESETB	39
Figure 7.8 Crystal/Ceramic Oscillator	41
Figure 7.9 External Clock	41
Figure 7.10 Crystal Oscillator	42
Figure 7.11 External Clock	42
Figure 7.12 Clock Timing Measurement at XIN	43
Figure 7.13 Clock Timing Measurement at SXIN	43
Figure 7.14 Operating Voltage Range	44
Figure 7.15 Recommended Circuit and Layout	45
Figure 7.16 RUN (IDD1) Current	46
Figure 7.17 IDLE (IDD2) Current	46
Figure 7.18 SUB RUN (IDD3) Current	47
Figure 7.19 SUB IDLE (IDD4) Current	47
Figure 7.20 STOP (IDD5) Current	48
Figure 8.1 Program Memory	50
Figure 8.2 Data Memory Map	51
Figure 8.3 Lower 128 Bytes RAM	52
Figure 8.4 XDATA Memory Area	53
Figure 10.1 External Interrupt Description	83
Figure 10.2 Block Diagram of Interrupt	84
Figure 10.3 Interrupt Vector Address Table	86
Figure 10.4 Effective Timing of Interrupt Enable Register	87
Figure 10.5 Effective Timing of Interrupt Flag Register	87
Figure 10.6 Effective Timing of Interrupt	88
Figure 10.7 Interrupt Response Timing Diagram	89
Figure 10.8 Correspondence between Vector Table Address and the Entry Address of ISP	89
Figure 10.9 Saving/Restore Process Diagram and Sample Source	89
Figure 10.10 Timing Chart of Interrupt Acceptance and Interrupt Return Instruction	90
Figure 11.1 Clock Generator Block Diagram	99
Figure 11.2 Basic Interval Timer Block Diagram	102

Figure 11	3 Watch Dog Timer Interrupt Timing Waveform	105
Figure 11	4 Watch Dog Timer Block Diagram	106
Figure 11	5 Watch Timer Block Diagram	108
Figure 11	6 8-Bit Timer/Counter Mode for Timer 0	112
Figure 11	7 8-Bit Timer/Counter 0 Example	112
-	8 8-Bit PWM Mode for Timer 0	
Figure 11	9 PWM Output Waveforms in PWM Mode for Timer 0	114
Figure 11	10 8-Bit Capture Mode for Timer 0	115
Figure 11	11 Input Capture Mode Operation for Timer 0	116
Figure 11	12 Express Timer Overflow in Capture Mode	116
Figure 11	13 8-Bit Timer 0 Block Diagram	117
Figure 11	14 16-Bit Timer/Counter Mode for Timer 1	121
Figure 11	15 16-Bit Timer/Counter 1 Example	121
Figure 11	16 16-Bit Capture Mode for Timer 1	122
Figure 11	17 Input Capture Mode Operation for Timer 1	123
Figure 11	18 Express Timer Overflow in Capture Mode	
Figure 11	19 16-Bit PPG Mode for Timer 1	124
Figure 11	20 16-Bit PPG Mode Timming chart for Timer 1	
Figure 11	21 16-Bit Timer/Counter Mode for Timer 1 and Block Diagram	
Figure 11	22 16-Bit Timer/Counter Mode for Timer 2	131
Figure 11	23 16-Bit Timer/Counter 2 Example	132
Figure 11	24 16-Bit Capture Mode for Timer 2	133
Figure 11	25 Input Capture Mode Operation for Timer 2	
Figure 11	26 Express Timer Overflow in Capture Mode	
Figure 11	27 16-Bit PPG Mode for Timer 2	135
Figure 11	28 16-Bit PPG Mode Timming chart for Timer 2	
Figure 11	29 16-Bit Timer/Counter Mode for Timer 2 and Block Diagram	
Figure 11	30 8-Bit Timer/Counter Mode for Timer 3, 4	142
Figure 11	31 16-Bit Timer/Counter Mode for Timer 3	143
Figure 11	32 8-Bit Capture Mode for Timer 3, 4	145
Figure 11	33 16-Bit Capture Mode for Timer 3	146
Figure 11	34 10-Bit PWM Mode (Force 6-ch)	148
Figure 11	35 10-Bit PWM Mode (Force All-ch)	149
Figure 11	36 Example of PWM at 4 MHz	150
Figure 11	37 Example of Changing the Period in Absolute Duty Cycle at 4 MHz	150
Figure 11	38 Example of PWM Output Waveform	151
Figure 11	39 Example of PWM waveform in Back-to-Back mode at 4 MHz	151
Figure 11	40 Example of Phase Correction and Frequency correction of PWM	152
Figure 11	41 Example of PWM External Synchronization with BLNK Input	152
Figure 11	42 Example of Force Drive All Channel with A-ch	153
Figure 11	43 Example of Force Drive 6-ch Mode	154
Figure 11	44 Example of PWM Delay	157
Figure 11	45 Two 8-Bit Timer 3, 4 Block Diagram	157
Figure 11	46 16-Bit Timer 3 Block Diagram	158
Figure 11	47 10-Bit PWM Timer 4 Block Diagram	158
Figure 11	48 Buzzer Driver Block Diagram	170
Figure 11	49 SPI 2 Block Diagram	172
Figure 11	50 SPI 2 Transmit/Receive Timing Diagram at CPHA = 0	174
Figure 11	51 SPI 2 Transmit/Receive Timing Diagram at CPHA = 1	174
PS029902-0212	PRELIMINARY	5

Figure 11.52 12-bit	ADC Block Diagram	179
Figure 11.53 A/D Ar	nalog Input Pin with Capacitor	179
Figure 11.54 A/D Po	ower (AVREF) Pin with Capacitor	179
Figure 11.55 ADC C	Dperation for Align Bit	180
Figure 11.56 A/D Co	onverter Operation Flow	182
Figure 11.57 USI0 L	JART Block Diagram	187
Figure 11.58 Clock	Generation Block Diagram (USI0)	
Figure 11.59 Synch	ronous Mode SCK0 Timing (USI0)	
Figure 11.60 Frame	e Format (USI0)	190
Figure 11.61 Asyncl	hronous Start Bit Sampling (USI0)	194
Figure 11.62 Async	hronous Sampling of Data and Parity Bit (USI0)	194
Figure 11.63 Stop B	Bit Sampling and Next Start Bit Sampling (USI0)	
Figure 11.64 USI0 S	SPI Clock Formats when CPHA0=0	
Figure 11.65 USI0 S	SPI Clock Formats when CPHA0=1	
Figure 11.66 USI0 S	SPI Block Diagram	
Figure 11.67 Bit Tra	ansfer on the I2C-Bus (USI0)	200
	T and STOP Condition (USI0)	
Figure 11.69 Data T	Transfer on the I2C-Bus (USI0)	201
Figure 11.70 Ackno	wledge on the I2C-Bus (USI0)	202
	Synchronization during Arbitration Procedure (USI0)	
-	ation Procedure of Two Masters (USI0)	
-	ts and States in the Master Transmitter Mode (USI0)	
-	ts and States in the Master Receiver Mode (USI0)	
-	ts and States in the Slave Transmitter Mode (USI0)	
	its and States in the Slave Receiver Mode (USI0)	
	2C Block Diagram	
-	JART Block Diagram	
-	Generation Block Diagram (USI1)	
	ronous Mode SCK1 Timing (USI1)	
	Pormat (USI1)	
•	hronous Start Bit Sampling (USI1)	
• •	hronous Sampling of Data and Parity Bit (USI1)	
	Bit Sampling and Next Start Bit Sampling (USI1)	
	SPI Clock Formats when CPHA1=0	
-	SPI Clock Formats when CPHA1=1	
	SPI Block Diagram	
-	ansfer on the I2C-Bus (USI1)	
-	T and STOP Condition (USI1)	
-	Fransfer on the I2C-Bus (USI1)	
•	wledge on the I2C-Bus (USI1)	
-	Synchronization during Arbitration Procedure (USI1)	
-	ation Procedure of Two Masters (USI1)	
-	and States in the Master Transmitter Mode (USI1)	
-	and States in the Master Receiver Mode (USI1)	
-	ats and States in the Slave Transmitter Mode (USI1)	
-	ts and States in the Slave Receiver Mode (USI1)	
-	2C Block Diagram	
	Circuit Block Diagram	
-	Signal Waveforms (1/2Duty, 1/2Bias)	
-	PRELIMINARY	
9902-0212	FRELIMINARI	6

Figure 11.101 LCD Signal Waveforms (1/3Duty, 1/3Bias)	
Figure 11.102 LCD Signal Waveforms (1/4Duty, 1/3Bias)	
Figure 11.103 LCD Signal Waveforms (1/8Duty, 1/4Bias)	
Figure 11.104 Internal Resistor Bias Connection	
Figure 11.105 External Resistor Bias Connection	
Figure 11.106 LCD Circuit Block Diagram	
Figure 12.1 IDLE Mode Release Timing by External Interrupt	273
Figure 12.2 STOP Mode Release Timing by External Interrupt	
Figure 12.3 STOP Mode Release Flow	
Figure 13.1 RESET Block Diagram	
Figure 13.2 Reset noise canceller timer diagram	
Figure 13.3 Fast VDD Rising Time	
Figure 13.4 Internal RESET Release Timing On Power-Up	278
Figure 13.5 Configuration Timing when Power-on	
Figure 13.6 Boot Process WaveForm	
Figure 13.7 Timing Diagram after RESET	
Figure 13.8 Oscillator generating waveform example	
Figure 13.9 Block Diagram of BOD	
Figure 13.10 Internal Reset at the power fail situation	
Figure 13.11 Configuration timing when BOD RESET	
Figure 13.12 LVI Diagram	
Figure 14.1 Block Diagram of On-Chip Debug System	
Figure 14.2 10-bit Transmission Packet	
Figure 14.3 Data Transfer on the Twin Bus	
Figure 14.4 Bit Transfer on the Serial Bus	
Figure 14.5 Start and Stop Condition	
Figure 14.6 Acknowledge on the Serial Bus	
Figure 14.7 Clock Synchronization during Wait Procedure	
Figure 14.8 Connection of Transmission	292
Figure 15.1 Flash Program ROM Structure	294

List of Tables

Table 1-1 Ordering Information of Z51F3220	12
Table 5-1 Normal Pin Description	21
Table 7-1 Absolute Maximum Ratings	28
Table 7-2 Recommended Operating Conditions	28
Table 7-3 A/D Converter Characteristics	29
Table 7-4 Power-on Reset Characteristics	29
Table 7-5 LVR and LVI Characteristics	30
Table 7-6 High Internal RC Oscillator Characteristics	31
Table 7-7 Internal WDTRC Oscillator Characteristics	31
Table 7-8 LCD Voltage Characteristics	32
Table 7-9 DC Characteristics	33
Table 7-10 AC Characteristics	35
Table 7-11 SPI0/1/2 Characteristics	36
Table 7-12 UART0/1 Characteristics	37
Table 7-13 I2C0/1 Characteristics	38
Table 7-14 Data Retention Voltage in Stop Mode	39
Table 7-15 Internal Flash Rom Characteristics	40
Table 7-16 Input/Output Capacitance	40
Table 7-17 Main Clock Oscillator Characteristics	41
Table 7-18 Sub Clock Oscillator Characteristics	42
Table 7-19 Main Oscillation Stabilization Characteristics	43
Table 7-20 Sub Oscillation Stabilization Characteristics	
Table 8-1 SFR Map Summary	
Table 8-2 SFR Map Summary	55
Table 8-3 SFR Map	56
Table 9-1 Port Register Map	64
Table 10-1 Interrupt Group Priority Level	82
Table 10-2 Interrupt Vector Address Table	85
Table 10-3 Interrupt Register Map	
Table 11-1 Clock Generator Register Map	
Table 11-2 Basic Interval Timer Register Map	
Table 11-3 Watch Dog Timer Register Map	106
Table 11-4 Watch Timer Register Map	
Table 11-5 Timer 0 Operating Modes	111
Table 11-6 Timer 0 Register Map	118
Table 11-7 Timer 1 Operating Modes	120
Table 11-8 Timer 2 Register Map	126
Table 11-9 Timer 2 Operating Modes	130
Table 11-10 Timer 3 Register Map	
Table 11-11 Timer 3, 4 Operating Modes	
Table 11-12 PWM Frequency vs. Resolution at 8 MHz	
Table 11-13 PWM Channel Polarity	
Table 11-14 Timer 3, 4 Register Map	159

Table 11-15 Buzzer Frequency at 8 MHz	170
Table 11-16 Buzzer Driver Register Map	171
Table 11-17 SPI 2 Register Map	175
Table 11-18 ADC Register Map	182
Table 11-19 Equations for Calculating USI0 Baud Rate Register Setting	188
Table 11-20 CPOL0 Functionality	196
Table 11-21 USI0 Register Map	213
Table 11-22 Equations for Calculating USI1 Baud Rate Register Setting	225
Table 11-23 CPOL1 Functionality	233
Table 11-24 USI1 Register Map	250
Table 11-25 Examples of USI0BD and USI1BD Settings for Commonly Used Oscillator Frequencies	259
Table 11-26 LCD Register Map	268
Table 12-1 Peripheral Operation during Power Down Mode	272
Table 12-2 Power Down Operation Register Map	276
Table 13-1 Reset State	277
Table 13-2 Boot Process Description	280
Table 13-3 Reset Operation Register Map	284
Table 15-1Flash Memory Register Map	295

Z51F3220

CMOS SINGLE-CHIP 8-BIT MICROCONTROLLER WITH 12-BIT A/D CONVERTER

1. Overview

1.1 Description

The Z51F3220 is advanced CMOS 8-bit microcontroller with 32k bytes of Flash. This is powerful microcontroller which provides a highly flexible and cost effective solution to many embedded control applications. This provides the following features : 32k bytes of Flash, 256 bytes of IRAM, 768 bytes of XRAM, general purpose I/O, basic interval timer, watchdog timer, 8/16-bit timer/counter, 16-bit PPG output, 8-bit PWM output, 10-bit PWM output, watch timer, buzzer driving port, SPI, USI, 12-bit A/D converter, LCD driver, on-chip POR, LVR, LVI, on-chip oscillator and clock circuitry. The Z51F3220 also supports power saving modes to reduce power consumption.

Device Name	Flash	XRAM	IRAM	ADC	I/O PORT	Package
Z51F3220FNX	32k bytes	768 bytes	256 bytes	16 channel	42	44-pin MQFP
Z51F3220SKX				12 channel	30	32-pin SOP

1.2 Features

- CPU
- 8 Bit CISC Core (8051 Compatible)
- ROM (Flash) Capacity
- 32k Bytes
- Flash with self read/write capability
- On chip debug and In-system programming (ISP)
- Endurance : 100,000 times
- 256 Bytes IRAM
- 768 Bytes XRAM
- (27 Bytes including LCD display RAM)
- General Purpose I/O (GPIO)
- Normal I/O : 9 Ports
- (P0[2:0], P5[5:0])
- LCD shared I/O : 33 Ports (P0[7:3], P1, P2, P3, P4)
- Basic Interval Timer (BIT)
- 8Bit × 1ch
- Watch Dog Timer (WDT)
- 8Bit × 1ch
- 5kHz internal RC oscillator
- Timer/ Counter
- 8Bit × 1ch (T0), 16Bit × 2ch (T1/T2)
- 8Bit × 2ch (T3/T4) or 16 Bit × 1ch (T3)
- Programmable Pulse Generation
- Pulse generation (by T1/T2)
- 8Bit PWM (by T0)
- 6-ch 10Bit PWM for Motor (by T4)
- Watch Timer (WT)
- 3.91mS/0.25S/0.5S/1S/1M interval at 32.768kHz
- Buzzer
- 8Bit × 1ch
- SPI 2
- 8Bit × 1ch
- USI0/1 (UART + SPI + I2C)
- 8Bit UART × 2ch, 8Bit SPI × 2ch and I2C × 2ch
- 12 Bit A/D Converter
- 16 Input channels
- LCD Driver
- 21 Segments and 8 Common terminals
- Internal or external resistor bias
- 1/2, 1/3, 1/4, 1/5, 1/6 and 1/8 duty selectable
- Resistor Bias and 16-step contrast control
- Power On Reset
- Reset release level (1.4V)

- Low Voltage Reset
 - 14 level detect (1.60V/ 2.00V/ 2.10V/ 2.20V/ 2.32V/ 2.44V/ 2.59V/ 2.75V/ 2.93V/ 3.14V/ 3.38V/ 3.67V/ 4.00V/ 4.40V)
- Low Voltage Indicator
- 13 level detect (2.00V/ 2.10V/ 2.20V/ 2.32V/ 2.44V/ 2.59V/ 2.75V/ 2.93V/ 3.14V/ 3.38V/ 3.67V/ 4.00V/ 4.40V)
- Interrupt Sources
- External Interrupts
 - (EXINT0~7, EINT8, EINT10, EINT11, EINT12) (12)
- Timer(0/1/2/3/4) (5)
- WDT (1)
- BIT (1)
- WT (1)
- SPI 2 (1)
- USI0/1 (6)
- ADC (1)
- Internal RC Oscillator
- Inernal RC frequency: 16MHz ±0.5% (T_A= 25°C)
- Power Down Mode
- STOP, IDLE mode
- Operating Voltage and Frequency
- 1.8V ~ 5.5V (@32 ~ 38kHz with X-tal)
- 1.8V ~ 5.5V (@0.4 ~ 4.2MHz with X-tal)
- 2.7V ~ 5.5V (@0.4 ~ 10.0MHz with X-tal)
- 3.0V ~ 5.5V (@0.4 ~ 12.0MHz with X-tal)
- 1.8V ~ 5.5V (@0.5 ~ 8.0MHz with Internal RC)
- 2.0V ~ 5.5V (@0.5 ~ 16.0MHz with Internal RC)
- Voltage dropout converter included for core
- Minimum Instruction Execution Time
- 125nS (@ 16MHz main clock)
- 61µS (@t 32.768kHz sub clock)
- Operating Temperature: -40 ~ + 85℃
- Oscillator Type
- 0.4-12MHz Crystal or Ceramic for main clock
- 32.768kHz Crystal for sub clock
- Package Type
- 44 MQFP-1010
- 32 SOP
- Pb-free package

1.3 Ordering Information

Table 1-1 Ordering Information of Z51F3220

Device Name	ROM Size	IRAM Size	XRAM Size	Package
Z51F3220FNX	32k bytes Flash	256 bytes	768 bytes	44-pin MQFP
Z51F3220SKX				32-pin SOP

1.3.1 Part Number Suffix Designation

Zilog part numbers consist of a number of components, as indicated in the following example.

Example: Part number Z51F3220FNX is an 8-bit MCU with 32 KB of Flash memory and 1 KB of RAM in a 44-pin MQFP package and operating within a –40°C to +85°C temperature range. In accordance with RoHS standards, this device has been built using lead-free solder.

1.4 Development Tools

1.4.1 Compiler

We do not provide the compiler. Please contact the third parties.

The core of Z51F3220 is Mentor 8051. And, device ROM size is smaller than 32k bytes. Developer can use all kinds of third party's standard 8051 compiler.

1.4.2 OCD Emulator and Debugger

The OCD (On Chip Debug) emulator supports Zilog's 8051 series MCU emulation.

The OCD interface uses two-wire interfacing between PC and MCU which is attached to user's system. The OCD can read or change the value of MCU internal memory and I/O peripherals. And the OCD also controls MCU internal debugging logic, it means OCD controls emulation, step run, monitoring, etc.

The OCD Debugger program works on Microsoft-Windows NT, 2000, XP, Vista (32bit) operating system.

If you want to see more details, please refer to OCD debugger manual. You can download debugger S/W and manual from our web-site.

Connection:

- SCLK (Z51F3220 P01 port)
- SDATA (Z51F3220 P00 port)

OCD connector diagram: Connect OCD with user system

1.4.3 Programmer

Single programmer:

PGMplus USB: It programs MCU device directly.

OCD emulator: It can write code in MCU device too, because OCD debugging supports ISP (In System Programming).

It does not require additional H/W, except developer's target system.

Gang programmer:

It programs 8 MCU devices at once.

So, it is mainly used in mass production line.

Gang programmer is standalone type, it means it does not require host PC, after a program is downloaded from host PC to Gang programmer.

Figure 1.1 StandAlone Gang8 (for Mass Production)

runia:

2. Block Diagram

Figure 2.1 Block Diagram

NOTE) The P14-P17, P23-P25, P34-P37, and P43 are not in the 32-pin package.

P02/AN0/AV REF/EIN T0/T40/PWM4AA P03/SE G26/AN 1/EINT1 /PWM4AB P53/SXIN/T00/PWM00 P52/EINT8/EC0/BLNK P54/SXOUT/EINT10 P01/T30/DSCL P00/EC3/DSDA P 50/XOUT P51/XIN ≤DD SSA 4 40 38 8 37 35 36 39 P55/RESETB 1 33 P04/SEG25/AN2/EINT2/PWM4BA P40/VLC3/RXD0/SCL0/MISO0 Г 2 С 32 P05/SEG24/AN3/EINT3/PWM4BB P41/VLC2/TXD0/SDA0/MOSI0 3 31 P06/SEG23/AN4/EINT4/PWM4CA P42/VLC1/SCK0 4 30 P07/SEG22/AN5/EINT5/PWM4CB P43/VLC0/SS0 5 MC96F6432Q 29 P17/SEG21/AN6/EINT6/SS2 6 P37/COM0 [28 P16/SEG20/AN7/EINT7/SCK2 (44MQFP-1010) P36/COM1 7 27 P15/SEG19/AN8/MISO2 8 26 P35/COM2/SEG0 P14/SEG18/AN9/MOSI2 P34/COM3/SEG1 9 25 P13/SEG17/AN10/EC1/BUZO 10 24 P33/COM4/SEG2 P12/SEG16/AN11/EINT11/T10/PWM10 P32/COM5/SEG3 11 23 P11/SEG15/AN12/EINT12/T2O/PWM2O 22 21 20 19 18 12 13 14 5 16 P31/COM6/SEG4 P23/SEG10 P21/SEG12/AN15/SCK1 P26/SEG7 P25/SEG8 P24/SEG9 P22/SEG11/SS P20/SEG13/AN14/TXD1/SDA1/MOSI1 P10/SEG14/AN13/RXD1/SCL1/MISO1 P30/COM7/SEG5 P27/SEG6

Figure 3.1 Z51F3220 44MQFP-1010 Pin Assignment

NOTE) On On-Chip Debugging, ISP uses P0[1:0] pin as DSDA, DSCL.

3. Pin Assignment

NOTES) 1. On On-Chip Debugging, ISP uses P0[1:0] pin as DSDA, DSCL.

2. The P14-P17, P23-P25, P34-P37 and P43 pins should be selected as a push-pull output or an input with pull-up resistor by software control when the 32-pin package is used.

Z51F3220

Product Specification

4. Package Diagram

Figure 4.1 44-Pin MQFP Package

Figure 4.2 32-Pin SOP Package

5. Pin Description

Table 5-1	Normal Pi	n Description
	1 to mail the	Description

NameI/O Function@RESETShared withP00I/OPort 0 is a bit-programmable I/O port which can push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit.Input EC33DSDAP01APull-up resistor can be specified in 1-bit unit.NO/AVREF/EINTO/C40/PWM4AAP03SEG23/ANA/EINT3/PWM4ABP04SEG23/ANA/EINT3/PWM4ABP05be configured as a schmitt-trigger input, a push-pull output, or an open-drain output.P10I/OP11be configured as a schmitt-trigger input, a push-pull output, or an open-drain output.P12 SEG15push-pull output, or an open-drain output.P13Fine P14 - P17 are not in the 32-pin package.P14The P14 - P17 are not in the 32-pin package.P17ran open-drain output.P18SEG21/ANI/EINT1/SCL1/BUZOP19V/OP01 1 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.P14The P14 - P17 are not in the 32-pin package.P17P17P22V/OP17P17 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.P23I/OP24Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.P24P31P25I/OP26Off 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.P3	PIN		Func tion	@RESET	Shared with
P01 be configured as a schmitt-trigger input. a push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. NO/AVREF/EINT0/T4O/PWM4AA SEG26/AN1/EINT1/PWM4AB SEG26/AN1/EINT1/PWM4AB SEG26/AN1/EINT1/PWM4AB SEG26/AN1/EINT1/PWM4AB SEG22/AN5/EINT5/PWM4BB P06 P07 P07 P01 1 is a bit-programmable I/O port which can be configured as a schmitt-frigger input, a push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. The P14 = P17 are not in the 32-pin package. Input SE G14/AN13/RD1/SCL1/MISO1 AN11/EINT1/T2O/PWM2O SEG17/AN10/EC1/BUZO SEG18/AN9/MOSI2 SEG21/AN8/MISO2 P14 P15 P16 P16 Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package. Input SE G13/AN14/TXD1/SDA1/MOSI1 SEG1/AN16/IC1/BUZO SEG3/AN14/TXD1/SDA1/MOSI1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG12/AN15/SCK1 SEG3 SEG3 SEG3 SEG3 SEG3 SEG3 SEG3 SEG3				-	
P02A P02A P03 push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. P06 NO/AVREF/EINT0/T4O/PWM4AA SEG26/AN1/EINT1/PWM4AB P06 SEG26/AN1/EINT1/PWM4AB P06 SEG22/AN3/EINT3/PWM4BB P07 SEG22/AN3/EINT3/PWM4BB P10 I/O P11 Fort 1 is a bit-programmable I/O port which can push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. The P14 – P17 are not in the 32-pin package. Input SE P11 P11 SEG21/AN6/EINT6/SS2 P22 I/O Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. Input SE G13/AN1/AI/TXD1/SDA1/MOSI1 P22 I/O Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. Input SE G13/AN1/AI/TXD1/SDA1/MOSI1 P23 P24 P35 SEG6 SEG6 P33		I/O		Input E	
P03A pull-up resistor can be specified in 1-bit unit.SEG26/AN1/EINT1/PWM4ABP04P05SEG23/AN3/EINT3/PWM4BBP06SEG23/AN3/EINT3/PWM4BBP07I/OPort 1 is a bit-programmable I/O port which can pb configured as a schmitt-trigger input, a pull-pull-up resistor can be specified in 1-bit unit.Input SEP11I/OPort 1 is a bit-programmable I/O port which can pull-pull-pull-pull-pull-pull-pull-pull	P01			-	T3O/DSCL
P03 SEG28/AN1/EINT1/PWMAB P04 SEG28/AN1/EINT1/PWMAB P05 SEG28/AN1/EINT1/PWMAB P06 SEG28/AN1/EINT1/PWM4BA P07 SEG28/AN1/EINT1/PWM4CA P07 SEG28/AN1/EINT1/PWM4CA P07 SEG28/AN1/EINT1/PWM4CA P07 Input SE P10 I/O P11 SEG15 be configured as a schmitt-trigger input, a push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. The P14 – P17 are not in the 32-pin package. P16 P17 P17 SEG29/AN7/EINT7/SCK2 P18 P16 P21 Port 2 is a bit-programmable I/O port which can open-drain output. A pull-up resistor can be specified in 1-bit unit. SEG19/AN8/MISO2 P22 FO7 P24 P24 P25 P26 P26 SEG6 P27 Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. SEG6 P27 Fort 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.	P02 A			-	N0/AVREF/EINT0/T4O/PWM4AA
P05SEG24/AN3/EINT3/PWM4BBP06SEG24/AN3/EINT3/PWM4BBP07VOP07VOP07VOP07VOP07VOP08SeG22/AN5/EINT5/PWM4CBP10VOP07SeG22/AN5/EINT5/PWM4CBP11SeG14/AN13/RXD1/SCL1/MISO1P12SeG16P14P14 – P17 are not in the 32-pin package.P16SEG21/AN0/EC1/BUZOP17SeG14/AN3/MISO2P18SeG21/AN6/EINT6/SS2P19SeG21/AN6/EINT6/SS2P17SeG21/AN6/EINT6/SS2P20VOP01 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.P24VOP25SeG3P26SeG3P27SeG6P30I/OP31Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.P24P34P34P04P35I/OP34Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.P34P34P35P34P36P34P37I/OP38P04 4 is a bit-programmable I/O port which can be configu	P03		pp	-	SEG26/AN1/EINT1/PWM4AB
P06SEG23/AN4/EINT4/PWM4CAP07VCPort 1 is a bit-programmable I/O port which can be configured as a schmitt-trigger input, a push-pull output, or an open-drain output.Input SEG14/AN13/RXD1/SCL1/MISO1P11 P13 P14SEG17AN12/EINT12/T2O/PWM2OAN11/EINT11/T1O/PWM1OP14 P15Apull-up resistor can be specified in 1-bit unit. The P14 – P17 are not in the 32-pin package.Input SEG14/AN13/RXD1/SCL1/MISO1P16 P16SEG17/AN10/EC1/BUZOSEG17/AN10/EC1/BUZOSEG17/AN10/EC1/BUZOP17SEG20/AN7/EINT7/SCK2SEG21/AN6/EINT6/SS2P20 P21 P22I/O peondrain output.Input SEG13/AN14/TXD1/SDA1/MOSI1P21 P22 P23Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input SEG13/AN14/TXD1/SDA1/MOSI1P24 P25 P26I/O Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.Input SEG13/AN14/TXD1/SDA1/MOSI1P24 P25I/O Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input C COM4/SEG2OM7/SEG5P34 P35I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output. or an open-drain output.Input VL C COM3/SEG1COM4/SEG2P34 P35I/O Port 4 is a bit-programmable I/O port which can be	P04			-	SEG25/AN2/EINT2/PWM4BA
P07V0Port 1 is a bit-programmable I/O port which can push-pull output, or an open-drain output.Input SEG14/AN13/RXD1/SCL1/MISO1P13 P14 P13 P14A pull-up resistor can be specified in 1-bit unit. The P14 – P17 are not in the 32-pin package.Input SEG14/AN13/RXD1/SCL1/MISO1P14 P15 P16A pull-up resistor can be specified in 1-bit unit. The P14 – P17 are not in the 32-pin package.Input SESEG19/AN10/IEC1/BUZOP16 P17SEG20/AN7/EINT7/SCK2SEG19/AN3/MISO2SEG20/AN7/EINT7/SCK2P17 P20 P21 P21 P23 P24 P24 P24 P24Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.Input SEP26 P26 P30 P31 P31 P31Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.Input SEP30 P31 P33 P33 P34 P33 P34 P35Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input CP31 P33 P34 P35Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLQ40 	P05			-	SEG24/AN3/EINT3/PWM4BB
P10I/OPort 1 is a bit-programmable I/O port which can push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. The P14 – P17 are not in the 32-pin package.Input SEG14/AN13/RXD1/SCL1/MISO1 AN12/EINT12/T2O/PWM20 AN11/EINT11/T10/PWM10 SEG17/AN10/EC1/BUZ0P13P14P15SEG16Apull-up resistor can be specified in 1-bit unit. The P14 – P17 are not in the 32-pin package.SEG19/AN10/EC1/BUZ0P16SEG19/AN9/MOSI2SEG19/AN9/MOSI2P16SEG20/AN7/EINT7/SCK2P17Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input SEP20I/O P23Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input SEP24P25P25G13/AN14/TXD1/SDA1/MOSI1P24VO P25Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.Input SEP26P30I/O P07Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input CP33I/O P36Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLCOM4/SEG3P34I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-d	P06			-	SEG23/AN4/EINT4/PWM4CA
P11 S G15 be configured as a schmitt-trigger input, a push-pull output, or an open-drain output. AN12/EINT12/T20/PWM20 P13 S G16 A pull-up resistor can be specified in 1-bit unit. AN12/EINT12/T20/PWM20 P14 A pull-up resistor can be specified in 1-bit unit. SEG17/AN10/EC1/BUZ0 P14 The P14 – P17 are not in the 32-pin package. SEG19/AN8/MIS02 P16 SEG20/AN7/EINT7/SCK2 P17 SEG21/AN6/EINT6/SS2 P17 Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. SEG12/AN16/SCK1 P22 I/O Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. SEG10 P23 P24 SEG3 SEG3 P25 P26 SEG6 SEG3 P27 Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. Input C OM7/SEG5 P33 P34 P34 P34 P34 COM3/SEG1 COM3/SEG1 P34 P35 P34 P34 P34 P37 COM4 COM3/SEG1 COM3/SEG1 C	P07				SEG22/AN5/EINT5/PWM4CB
P12 SEG19 push-puil output, or an open-drain output. A N11/EINT11/10/PWM10 P13 SEG16 A pull-up resistor can be specified in 1-bit unit. A N11/EINT11/T10/PWM10 P14 P15 SEG17/AN10/EC1/BUZ0 SEG17/AN10/EC1/BUZ0 P15 SEG18/AN9/MOS12 SEG18/AN9/MOS12 P16 SEG19/AN8/MIS02 SEG20/AN7/EINT7/SCK2 P17 SEG21/AN6/EINT6/SS2 P20 I/O Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. Input SE G13/AN14/TXD1/SDA1/MOSI1 P21 P23 P25 SEG19/AN8/EINT6/SS2 SEG10 P24 P25 P25 are not in the 32-pin package. SEG11/SS1 SEG10 P25 P26 SEG3 SEG3 SEG3 P27 P27 SEG6 SEG6 SEG3 P30 I/O Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. Input C OM7/SEG5 P31 P34 P34 – P37 are only in the 44-pin package. COM6/SEG4 COM3/SEG1 P33 P34 P34 – P37 are only in the 44-pin package. COM4/SEG2 COM3/SEG1 P36 P3	P10	I/O		Input SE	G14/AN13/RXD1/SCL1/MISO1
P12 SEG16 P13 P14A pull-up resistor can be specified in 1-bit unit. The P14 – P17 are not in the 32-pin package.AN11/EINT1/TO/PWM10 SEG17/AN10/EC1/BUZO SEG18/AN9/MOSI2P14 P15The P14 – P17 are not in the 32-pin package.SEG19/AN8/MISO2 SEG20/AN7/EINT7/SCK2P16 P17SEG19/AN8/MISO2P17 P20I/O Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input SE SEG1/AN6/EINT6/SS2P20 P21 P22 P23I/O P23 – P25 are not in the 32-pin package.Input SE SEG1P24 P25 P26P17 P23 – P25 are not in the 32-pin package.Input SE SEG1P26 P27 P27Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.Input C SEG1 SEG1P26 P27 P27 P28Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input C COM4/SEG2 COM4/SEG2P36 P36 P36 P36I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLC3P40 P41I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLC3P40 P41I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLC3	P11 S	EG15		-	AN12/EINT12/T2O/PWM2O
P13 P14The P14 – P17 are not in the 32-pin package.SEG17/AN10/EC1/BUZOP14 P15The P14 – P17 are not in the 32-pin package.SEG18/AN9/MOS12P16SEG20/AN7/EINT7/SCK2P17SEG20/AN7/EINT7/SCK2P17SEG21/AN6/EINT6/SS2P20I/O Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input SE SEG21/AN15/SCK1P21 P22 P23I/O P24Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input SE SEG9P24 P25 P26P10SEG11/SS1P27 P27SEG6SEG9P26 P30I/O Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input C COM4/SEG3P33 P35 P36 P36 P36I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input C COM4/SEG3P31 P33 P33I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3 (RXD0/SCL0/MISO0P40 P41I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3 (RXD0/SCL0/MISO0	P12 S	EG16		-	AN11/EINT11/T10/PWM10
P14SEG18/AN9/MOSI2P15P16SEG19/AN8/MISO2P16SEG19/AN8/MISO2P17SEG19/AN8/MISO2P17SEG20/AN7/EINT7/SCK2P17SEG21/AN6/EINT6/SS2P20I/OPort 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input SEP21G13/AN14/TXD1/SDA1/MOSI1P22A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.Input SEP26SEG9P27SEG6P30I/OPort 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input CP31OM7/SEG5P33COM4/SEG2P34COM4/SEG2P35COM1P37COM6/SEG4P36I/OP37Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output. a pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.P36COM1P37COM3/SEG1P36COM1P37COM0P40I/OP40I/OP40I/OP41P41P41	P13			-	SEG17/AN10/EC1/BUZO
P16SEG20/AN7/EINT7/SCK2P17SEG21/AN6/EINT6/SS2P20I/OPort 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input SEG13/AN14/TXD1/SDA1/MOSI1P21SEG1/AN16/EINT6/SS2SEG1/AN15/SCK1SEG12/AN15/SCK1P22A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.Input SEG13/AN14/TXD1/SDA1/MOSI1P24SEG10SEG10SEG10P25FerroreSEG9SEG9P26SEG6SEG7SEG6P30I/OPort 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input COM7/SEG5P31P35COM4/SEG2COM4/SEG2COM4/SEG2P34V/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3/RXD0/SCL0/MISO0P40I/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3/RXD0/SCL0/MISO0P40I/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3/RXD0/SCL0/MISO0P40I/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3/RXD0/SCL0/MISO0	P14		The $1 + -1$ is not in the 52-pin package.		SEG18/AN9/MOSI2
P17SEG21/AN6/EINT6/SS2P20I/OPort 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input SEG13/AN14/TXD1/SDA1/MOSI1P21P22A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.SEG1/AN6/EINT6/SS2P26P26SEG9P27SEG6P30I/OPort 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input CP33P34OM7/SEG5P36COM4/SEG2P37VIOPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLP36P36VIOP40I/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLP40I/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLP40I/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLP40I/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLP40I/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL <td>P15</td> <td></td> <td></td> <td></td> <td>SEG19/AN8/MISO2</td>	P15				SEG19/AN8/MISO2
P20 P21 P21 P22 P22 P23 P23 P24 P24 P25 P25 P26I/O Port 2 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.Input SE G13/AN14/TXD1/SDA1/MOSI1 SEG12/AN15/SCK1P24 P25 P26 P26SEG10SEG9P25 P26 P27SEG6SEG9P27 P27SEG6SEG7P27 P31 P31 P33 P33 P33 P34 P35 P36 P36Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input C OM7/SEG3 COM4/SEG2 COM3/SEG1 COM1 COM0P31 P33 P33 P33 P34 P37I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3Input VL C3P40 P41 P41I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3VLC2/TXD0/SDA0/MOSI0	P16				SEG20/AN7/EINT7/SCK2
P21 P22 P22 P23be configured as an input, a push-pull output, or an open-drain output. A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.SEG12/AN15/SCK1P24 P25 P26SEG10SEG10P24 P25SEG9P25 P26SEG8P26 P30VO Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input C OM7/SEG3P31 P33 P33VO Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input C COM6/SEG3P36 P37 P37VO Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLC3 (RXD0/SCL0/MISO0P40 P41 P41I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLC3 (RXD0/SCL0/MISO0P41 P41I/O P10Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLC3 (RXD0/SCL0/MISO0	P17				SEG21/AN6/EINT6/SS2
P21 or an open-drain output. A pull-up resistor can be specified in 1-bit unit. SEG12/AINT9/SOKT P23 A pull-up resistor can be specified in 1-bit unit. SEG10 P24 The P23 – P25 are not in the 32-pin package. SEG9 P25 SEG6 SEG9 P26 SEG6 SEG7 P27 Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. Input C OM7/SEG5 P31 P34 The P34 – P37 are only in the 44-pin package. COM4/SEG2 COM3/SEG1 P35 COM1 COM1 COM1 COM1 COM1 P37 I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. Input VL C3 /RXD0/SCL0/MIS00 P41 I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. Input VL C3 /RXD0/SCL0/MIS00	P20	I/O	Port 2 is a bit-programmable I/O port which can	Input SE	G13/AN14/TXD1/SDA1/MOSI1
P22 P23 P24A pull-up resistor can be specified in 1-bit unit. The P23 – P25 are not in the 32-pin package.SEG11/SS1P24 P25 P26The P23 – P25 are not in the 32-pin package.SEG3P26 P27SEG6P30 P31 P31I/O Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input C OM7/SEG5P33 P34 P35 P36Input C COM4/SEG2OM4/SEG2P34 P37 P41I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLC3 (RXD0/SCL0/MISO0P41 P41I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLC3 (RXD0/SCL0/MISO0	P21			-	SEG12/AN15/SCK1
P23 P24The P23 – P25 are not in the 32-pin package.SEG10P24 P25The P23 – P25 are not in the 32-pin package.SEG9P25 P26SEG8P26 P27SEG6P30 P31 P31 P32I/O Port 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input C OM7/SEG3P33 P34Model as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input C COM4/SEG2P34 P35 P36COM2/SEG0P37 P41Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3P41 P41I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3P41 P41I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3P41I/O Pa1Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3	P22			-	SEG11/SS1
P24SEG9P25SEG8P26SEG7P27SEG6P30I/OPort 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output.Input CP31OPort 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output.Input CP32A pull-up resistor can be specified in 1-bit unit.COM6/SEG3P33The P34 – P37 are only in the 44-pin package.COM3/SEG1P34COM3/SEG1COM4/SEG2P35COM1P36COM1P37COM0P40I/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3P41VI C2/TXD0/SDA0/MOSI0	P23			-	SEG10
P26SEG7P27SEG6P30I/OPort 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit.Input COM7/SEG5P32A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input CCOM6/SEG4P33The P34 – P37 are only in the 44-pin package.COM4/SEG2COM4/SEG2P34COM3/SEG1COM2/SEG0COM1P35COM1COM0P36COM0COM0P40I/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3P41VLC2/TXD0/SDA0/MOSI0	P24		The fize - fize are not in the sz-pin package.		SEG9
P27SEG6P30I/OPort 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input COM7/SEG5P33P34COM6/SEG3COM5/SEG3P34FileCOM3/SEG1COM3/SEG1P35COM1COM1P37COM0COM0P40I/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VL C3P10VLC2/TXD0/SDA0/MOSI0	P25			-	SEG8
P30I/OPort 3 is a bit-programmable I/O port which can be configured as an input, a push-pull output. A pull-up resistor can be specified in 1-bit unit. The P34 – P37 are only in the 44-pin package.Input COM7/SEG5P33P34COM6/SEG4COM5/SEG3P34The P34 – P37 are only in the 44-pin package.COM3/SEG1P35COM2/SEG0P36COM1P37COM0P40I/OPort 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output.Input VLC3P10VLC2/TXD0/SDA0/MOSI0	P26			-	SEG7
P31 be configured as an input, a push-pull output. COM6/SEG4 P32 A pull-up resistor can be specified in 1-bit unit. COM5/SEG3 P33 The P34 – P37 are only in the 44-pin package. COM4/SEG2 P34 COM3/SEG1 COM2/SEG0 P36 COM1 COM0 P37 COM0 COM0 P40 I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. Input VL C3 /RXD0/SCL0/MISO0 VLC2/TXD0/SDA0/MOSI0 VLC2/TXD0/SDA0/MOSI0 VLC2/TXD0/SDA0/MOSI0	P27				SEG6
P31 A pull-up resistor can be specified in 1-bit unit. P32 A pull-up resistor can be specified in 1-bit unit. P33 The P34 – P37 are only in the 44-pin package. P34 COM4/SEG2 P35 COM3/SEG1 P36 COM1 P37 COM0 P40 I/O P41 Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. Input VLC3 P10 VLC2/TXD0/SDA0/MOSI0	P30	I/O		Input C	OM7/SEG5
P32 The P34 – P37 are only in the 44-pin package. COM3/SEG3 P33 The P34 – P37 are only in the 44-pin package. COM4/SEG2 P34 COM3/SEG1 COM2/SEG0 P36 COM1 COM0 P37 COM0 COM0 P40 I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. Input VLC3 /RXD0/SCL0/MISO0 P41 VII.021/201/0 VII.021/201/0 VII.021/201/0	P31				COM6/SEG4
P33 P34 COM4/3EG2 P34 COM3/SEG1 P35 COM2/SEG0 P36 COM1 P37 COM0 P40 I/O P41 Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. Input VLC3 /RXD0/SCL0/MISO0 P40 VLC2/TXD0/SDA0/MOSI0 VLC2/TXD0/SDA0/MOSI0 VLC2/TXD0/SDA0/MOSI0	P32				COM5/SEG3
P35 P36 P36 COM2/SEG0 P37 COM1 P40 I/O P41 Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. Input VLC3 /RXD0/SCL0/MISO0 P40 VLC2/TXD0/SDA0/MOSI0 VLC2/TXD0/SDA0/MOSI0 VLC2/TXD0/SDA0/MOSI0	P33		The P34 – P37 are only in the 44-pin package.		COM4/SEG2
P36 COM1 P37 COM0 P40 I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. Input VLC3 /RXD0/SCL0/MISO0 P41 VLC2/TXD0/SDA0/MOSI0 VLC2/TXD0/SDA0/MOSI0	P34				COM3/SEG1
P37 COM0 P40 I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. Input VLC3 /RXD0/SCL0/MISO0 VLC2/TXD0/SDA0/MOSI0 VLC2/TXD0/SDA0/MOSI0	P35			-	COM2/SEG0
P40 I/O Port 4 is a bit-programmable I/O port which can be configured as an input, a push-pull output, or an open-drain output. Input VLC3 /RXD0/SCL0/MISO0	P36				COM1
P41 be configured as an input, a push-pull output, or an open-drain output. VLC2/TXD0/SDA0/MOSI0	P37				COM0
or an open-drain output.	P40	I/O		Input VL	C3 /RXD0/SCL0/MISO0
	P41				VLC2/TXD0/SDA0/MOSI0
	P42				VLC1/SCK0
P43 The P43 is only in the 44-pin package. VLC0/SS0	P43				

Table 5-1 Normal Pin Description (Continued)

PIN Name	I/O F	unction	@RESET	Shared with
P50	I/O	Port 5 is a bit-programmable I/O port which	Input XO	UT
P51		can be configured as a schmitt-trigger input		XIN
P52		or a push-pull output.		EINT8/EC0/BLNK
P53		A pull-up resistor can be specified in 1-bit unit.		SXIN/T00/PWM00
P54				SXOUT/EINT10
P55				RESETB
EINT0	I/O	External interrupt input and Timer 3 capture input	Input P02	2/AN 0/AVREF/T4O/PWM4AA
EINT1	I/O	External interrupt input and Timer 4 capture input	Input P0	3/SEG26/AN1/PWM4AB
EINT2	I/O	External interrupt inputs	Input	P04/SEG25/AN2/PWM4BA
EINT3				P05/SEG24/AN3/PWM4BB
EINT4				P06/SEG23/AN4/PWM4CA
EINT5				P07/SEG22/AN5/PWM4CB
EINT6				P17/SEG21/AN6/SS2
EINT7				P16/SEG20/AN7/SCK2
EINT8				P52/EC0/BLNK
EINT10	I/O	External interrupt input and Timer 0 capture input	Input P	54/SXOUT
EINT11	I/O	External interrupt input and Timer 1 capture input	Input P1	2/SEG16/AN11/T10/PWM10
EINT12	I/O	External interrupt input and Timer 2 capture input	Input P1	1/SEG15/AN12/T2O/PWM2O
TOO	I/O	Timer 0 interval output	Input	P53/SXIN/PWM0O
T10	I/O	Timer 1 interval output	Input	P12/SEG16/AN11/EINT11/PWM10
T2O	I/O	Timer 2 interval output	Input	P11/SEG15/AN12/EINT12/PWM2O
T3O	I/O	Timer 3 interval output	Input	P01/DSCL
T40	I/O	Timer 4 interval output	Input	P02/AN0/AVREF/EINT0/PWM4AA
PWM00	I/O 1	i mer 0 PWM output	Input	P53/SXIN/T0O
PWM10	I/O 1	i mer 1 PWM output	Input	P12/SEG16/AN11/EINT11/T10
PWM2O	I/O 1	i mer 2 PWM output	Input	P11/SEG15/AN12/EINT12/T2O
PWM4AA	I/O 1	i mer 4 PWM outputs	Input	P02/AN0/AVREF/EINT0/T4O
PWM4AB				P03/SEG26/AN1/EINT1
PWM4BA				P04/SEG25/AN2/EINT2
PWM4BB				P05/SEG24/AN3/EINT3
PWM4CA				P06/SEG23/AN4/EINT4
PWM4CB				P07/SEG22/AN5/EINT5
BLNK	I/O	External sync signal input for 6-ch PWMs	Input	P52/EINT8/EC0
EC0	I/O	Timer 0 event count input	Input	P52/EINT8/BLNK
EC1	I/O	Timer 1 event count input	Input	P13/SEG17/AN10
EC3	I/O	Timer 3 event count input	Input	P00/DSDA

PIN Name	I/O F	unction	@RESET	Shared with
BUZO	I/O	Buzzer signal output l	nput	P13/SEG17/AN10/EC1
SCK0 I/	C	Serial 0 clock input/output	Input	P42/VLC1
SCK1 I/	C	Serial 1 clock input/output	Input	P21/SEG12/AN15
SCK2 I/	C	Serial 2 clock input/output	Input	P16/SEG20/AN7/EINT7
MOSI0	I/O	SPI 0 master output, slave input	Input	P41/VLC2/TXD0/SDA0
MOSI1	I/O	SPI 1 master output, slave input	Input	P20/SEG13/AN14/TXD1/SDA1
MOSI2	I/O	SPI 2 master output, slave input	Input	P14/SEG18/AN9
MISO0	I/O	SPI 0 master input, slave output	Input	P40/VLC3/RXD0/SCL0
MISO1	I/O	SPI 1 master input, slave output	Input	P10/SEG14/AN13/RXD1/SCL1
MISO2	I/O	SPI 2 master input, slave output	Input	P15/SEG19/AN8
SS0	I/O	SPI 0 slave select input	Input	P43/VLC0
SS1	I/O	SPI 1 slave select input	Input	P22/SEG11
SS2	I/O	SPI 2 slave select input	Input	P17/SEG21/AN6/EINT6
TXD0	I/O	UART 0 data output	Input	P41/VLC2/SDA0/MOSI0
TXD1	I/O	UART 1 data output	Input	P20/SEG13/AN14/SDA1/MOSI1
RXD0	I/O	UART 0 data input	Input	P40/VLC3/SCL0/MISO0
RXD1	I/O	UART 1 data input	Input	P10/SEG14/AN13/SCL1/MISO1
SCL0	I/O I	2C 0 clock input/output	Input	P40/VLC3/RXD0/MISO0
SCL1	I/O I	2C 1 clock input/output	Input	P10/SEG14/AN13/RXD1/MISO1
SDA0	I/O	I2C 0 data input/output	Input	P41/VLC2/TXD0/MOSI0
SDA1	I/O	I2C 1 data input/output	Input	P20/SEG13/AN14/TXD1/MOSI1
AVREF I	/O A	V D converter reference voltage	Input	P02/AN0/EINT0/T4O/PWM4AA
AN0	I/O	A/D converter analog input channels	Input	P02/AVREF/EINT0/T4O/PWM4AA
AN1				P03/SEG26/EINT1/PWM4AB
AN2				P04/SEG25/EINT2/PWM4BA
AN3				P05/SEG24/EINT3/PWM4BB
AN4				P06/SEG23/EINT4/PWM4CA
AN5				P07/SEG22/EINT5/PWM4CB
AN6				P17/SEG21/EINT6/SS2
AN7				P16/SEG20/EINT7/SCK2
AN8				P15/SEG19/MISO2
AN9				P14/SEG18/MOSI2
AN10				P13/SEG17/EC1
AN11 P	12			/SEG16/EINT11/T10/PWM10
AN12 P	11			/SEG15/EINT12/T2O/PWM2O
AN13				P10/SEG14/RXD1/SCL1/MISO1
AN14				P20/SEG13/TXD1/SDA1/MOSI1
AN15				P21/SEG12/SCK1

Table 5-1 Normal Pin Description (Continued)

PIN Name	I/O F	Func tion	@RESET	Shared with
VLC0	I/O	LCD bias voltage pins	Input	P43/SS0
VLC1				P42/SCK0
VLC2				P41/TXD0/SDA0/MOSI0
VLC3				P40/RXD0/SCL0/MISO0
COM0– COM1	I/O	LCD common signal outputs	Input	P37–P36
COM2– COM3				P35–P34/SEG0–SEG1
COM4– COM7				P33–P30/SEG2–SEG5
SEG0– SEG1	I/O	LCD segment signal outputs	Input	P35–P34/COM2–COM3
SEG2– SEG5				P33–P30/COM4–COM7
SEG6– SEG10				P27–P23
SEG11				P22/SS1
SEG12				P21/SCK1/AN15
SEG13				P20/AN14/TXD1/SDA1/MOSI1
SEG14				P10/AN13/RXD1/SCL1/MISO1
SEG15				P11/AN12/EINT12/T20/PWM20
SEG16				P12/AN11/EINT11/T10/PWM10
SEG17				P13/AN10/EC1
SEG18				P14/AN9/MOSI2
SEG19				P15/AN8/MISO2
SEG20				P16/AN7/EINT7/SCK2
SEG21				P17/AN6/EINT6/SS2
SEG22				P07/AN5/EINT5/PWM4CB
SEG23				P06/AN4/EINT4/PWM4CA
SEG24				P05/AN3/EINT3/PWM4BB
SEG25				P04/AN2/EINT2/PWM4BA
SEG26				P03/AN1/EINT1/PWM4AB

Table 5-1 Normal Pin Description (Continued)

PIN I/O Func tion @RESET Shared with Name I/O System reset pin with a pull-up resistor when it Input P 55 RESETB is selected as the RESETB by CONFIGURE OPTION On chip debugger data input/output (NOTE4,5) I I/O DSDA nput P00/EC3 On chip debugger clock input (NOTE4,5) In DSCL I/O P01/T3O put XIN P51 I/O Ma in oscillator pins Input XOUT P50 SXIN P53/T00/PWM00 I/O Sub oscillator pins Input SXOUT P54/EINT10 VDD, Power input pins VSS

Table 5-1 Normal Pin Description (Continued)

NOTES) 1. The P14–P17, P23–P25, P34–P37, and P43 are not in the 32-pin package.

2. The P55/RESETB pin is configured as one of the P55 and RESETB pin by the "CONFIGURE OPTION."

3. If the P00/EC3/DSDA and P01/T30/DSCL pins are connected to an emulator during the resetor power-on reset, the pins are automatically configured as the debugger pins.

4. The P00/EC3/DSDA and P01/T3O/DSCL pins are configured as inputs with internal pull-up resistor only during the reset or power-on reset.

5. The P50/XOUT, P51/XIN, P53/SXINT/T00/PWM0O, and P54/SXOUT/EINT10 pins are configured as a function pin by software control.

6. Port Structures

6.1 General Purpose I/O Port

Figure 6.1 General Purpose I/O Port

6.2 External Interrupt I/O Port

Figure 6.2 External Interrupt I/O Port

7. Electrical Characteristics

7.1 Absolute Maximum Ratings

Parameter S	ymbol	Rating	Unit	Note
Supply Voltage	VDD	-0.3 ~ +6.5	V	_
	VI	-0.3 ~ VDD+0.3	V	
	Vo	-0.3 ~ VDD+0.3	V	Voltage on any pin with respect to VSS
Normal Voltage Pin	I _{ОН} -10		mA	Maximum current output sourced by (I _{OH} per I/O pin)
, and the second s	∑I _{ОН} -80		mA	Maximum current (∑l _{он})
	I _{OL}	60	mA	Maximum current sunk by (I _{OL} per I/O pin)
	∑l _{oL} 120		mA	Maximum current (∑l _{OL})
Total Power Dissipation	P⊤ 600		mW	_
Storage Temperature	T _{STG}	-65 ~ +150	°C	_

Table 7-1 Absolute Maximum Ratings

NOTE) Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7.2 Recommended Operating Conditions

Table 7-2 Recommended Operating Conditions

	,				(T _A =	-40°C ~	+85°C)	
Parameter	Symbol C	on ditio	ons	MIN	TYP	MAX	Unit	
		f _X = 32 ~ 38kHz	SX-tal	1.8	_	5.5		
		f _X = 0.4 ~ 4.2MHz	_	1.8 –	5.5		J	
	VDD	f _X = 0.4 ~ 10.0MHz	X-tal	2.7 –	5.5		Ň	
Operating Voltage		f _X = 0.4 ~ 12.0MHz		3.0 –	5.5		V	
		f _X = 0.5 ~ 8.0MHz		1.8 –	5.5			
		f _X = 0.5 ~ 16.0MHz	Internal RC	2.0 –	5.5			
Operating Temperature	T _{OPR} V	DD= 1.8 ~ 5.5V		-40	_	85	°C	

7.3 A/D Converter Characteristics

	Character	ISUCS	(T _A	= -40°C ~ +8	5°C, VDD= 1.	.8V ~ 5.5V, V	SS= 0V)
Parameter Sy	mbol	Co	onditions	MIN	TYP	MAX	Unit
Resolution –			_		12	_	bit
Integral Linear Error	ILE					±3	
Differential Linearity Error	DLE –	AVREF= 2	.7V – 5.5V		-	±1	LSB
Zero Offset Error	ZOE	fx= 8MHz		_	_	±3	_
Full Scale Error	FSE			_	_	±3	
Conversion Time	t _{CON} 12	b it resol	ution, 8MHz	20	_	_	μS
Analog Input Voltage	V _{AN} –			VSS	-	AVREF	
Analog Reference Voltage	AVREF -				Ι	VDD	V
Analog Input Leakage Current	I _{AN} AVI	RE F= 5	.12V	_	_	2	μA
	_	Enable		- 1		2	mA
ADC Operating Current	I _{ADC}	Disable –	VDD= 5.12V		-	0.1	μA

Table 7-3 A/D Converter Characteristics

NOTES) 1. Zero offset error is the difference between 000000000 and the converted output for zero input voltage (VSS).

2. Full scale error is the difference between 1111111111 and the converted output for full-scale input voltage (AVREF).

7.4 Power-On Reset Characteristics

Table 7-4 Power-on Rese	et Characteristics
-------------------------	--------------------

(T _A = -40°C ~ +85°C, VDD= 1.8V ~ 5.5V, VSS						
Parameter S	ymbol	Conditions M	IN	TYP	MAX	Unit
RESET Release Level	V _{POR} –		-	1.4	_	V
VDD Voltage Rising Time	t _R	_	0.05 –		-	V/mS
POR Current	I _{POR} –		_	0.2	_	μA

7.5 Low Voltage Reset and Low Voltage Indicator Characteristics

Table 7-5 LVR and LVI Characteristics

Table 7-5 LVR and LVI	Sharacteris	1105	(T _A = -40°C ∼	~ +85°C, VI	DD= 1.8V ~	~ 5.5V, VS	S= 0V)	
Parameter S	ymbol	Condition	s	MIN	TYP	MAX	Unit	
				- 1.60		1.75		
				1.85 2.0	00	2.15		
				1.95 2.1	0	2.25	_	
				2.05 2.2	20	2.35	_	
				2.17 2.3	32	2.47		
				2.29 2.4	14	2.59	_	
Detection Level	V _{LVR} V _{LVI}	The LVR can select a	2.39 2.5	59	2.79	V		
Detection Level		LVI can select other levels except 1.60V.		2.55 2.7	75		2.95	
				2.73 2.9	93		3.13	
				2.94 3.1	14	3.34		
				3.18 3.3	38	3.58		
				3.37 3.6	67	3.97		
				3.70 4.0	00	4.30		
					4.10 4.40			
Hysteresis	△V –			_	10	100	mV	
Minimum Pulse Width	t _{LW} –		100	_	_	μS		
		Enable (Both)		- 10	.0	15.0		
LVR and LVI Current	I _{BL}	Enable (One of two)	VDD= 3V	_	8.0	12.0	μA	
		Disable (Both)		_	_	0.1		

7.6 High Internal RC Oscillator Characteristics

			(T _A = -40°C ~ +85°C, VDD= 1.8V ~ 5.5V, VSS= 0V)					
Parameter S	ymbol	Conditions	MIN	TYP	MAX	Unit		
Frequency f	IRC	V _{DD} = 2.0 – 5.5 V	_	16	_	MHz		
		T _A = 25°C			±0.5			
Telerence		$T_A = 0^{\circ}C$ to +70°C			±1	%		
Tolerance –		T _A = -20°C to +80°C			±2	%		
		T _A = -40°C to +85°C			±3			
Clock Duty Ratio	TOD	_	40	50	60	%		
Stabilization Time	T _{HFS} –		_	_	100	μS		
IRC Current		Enable	- 0.	2 –		mA		
	I _{IRC}	Disable –		_	0.1	μA		

Table 7-6 High Internal RC Oscillator Characteristics

7.7 Internal Watch-Dog Timer RC Oscillator Characteristics

Table 7-7 Internal WDTRC Oscillator Characteristics

	(T _A = -40°C ∼ +85°C, VDD= 1.8V ∼ 5.5V, VSS= 0V						
Parameter S	ymbol	Conditions MIN		TYP	MAX	Unit	
Frequency f	WDTRC -		2	5	10	kHz	
Stabilization Time	t _{WDTS} –		_	_	1	mS	
WDTRC Current	I _{WDTRC}	Enable –		1	_		
		Disable –		_	0.1	μA	

7.8 LCD Voltage Characteristics

Table 7-8 LCD Voltage Characteristics

Parameter S	ymbol	Con	ditions	MIN	TYP	MAX	Unit
LCD Voltage V _{LC0}		LCD contrast disabled, 1/4 bias		Typx0.95	VDD	Typx1.05	V
			LCDCCR=00H		VDDx16/31	- Typx1.1	V
			LCDCCR=01H		VDDx16/30		
			LCDCCR=02H		VDDx16/29		
			LCDCCR=03H		VDDx16/28		
			LCDCCR=04H		VDDx16/27		
			LCDCCR=05H		VDDx16/26		
			LCDCCR=06H		VDDx16/25		
	V _{LC0}	LCD contrast enabled,	LCDCCR=07H	Typx0.9	VDDx16/24		
		1/4 bias, No panel load	LCDCCR=08H		VDDx16/23		
			LCDCCR=09H		VDDx16/22		
			LCDCCR=0AH		VDDx16/21		
			LCDCCR=0BH		VDDx16/20		
			LCDCCR=0CH		VDDx16/19		
			LCDCCR=0DH		VDDx16/18		
			LCDCCR=0EH		VDDx16/17		
			LCDCCR=0FH		VDDx16/16		
$\begin{array}{c} \text{LCD Mid Bias} \\ \text{Voltage(note)} \end{array} \\ \hline \\ \hline \\ \hline \\ V_{LC2} \\ \hline \\ V_{LC3} \\ \hline \end{array}$	V_{LC1}	VDD=2.7V to 5.5V,		Турх0.9 3	/4xVLC0 T	ypx1.1	
	LCD clock = 0Hz, 1/4 bias, No panel load		Typx0.9	2/4xVLC0 T	ypx1.1	V	
			Typx0.9	1/4xVLC0 T	ypx1.1		
LCD Driver Output Impedance	R _{LO} VL	CD=3V, ILOAD=±10uA		- 5		10	
LCD Bias Dividing Resistor	R _{LCD}	T _A = 25°C		40 60		80	kΩ

NOTE) It is middle output voltage when the VDD and the V_{LC0} node are connected.

7.9 DC Characteristics

Table 7-9 DC Characteristics

Table 7-9 DC Charac	teristics	(T _A =	= -40°C ~ +85°(C, VDD= 1.8V	~ 5.5V, VSS	S= 0V, f _{XIN} = 12	2MHz)	
Parameter	Symbol C	o nditio	ons	MIN	TYP	MAX	Unit	
Input High Voltage	V _{IH1}	P0, P1, P5, RESE	ЕТВ	0.8VDD	_	VDD	V	
	V _{IH2}	All input pins exce	ept V _{IH1} 0.7VDD)	-	VDD	V	
Input Low Voltage	V _{IL1}	P0, P1, P5, RESE	ЕТВ	_	_	0.2VDD	V	
	V _{IL2}	All input pins exce	ept V _{IL1} –		-	0.3VDD	V	
Output High Voltage	Vон	VDD= 4.5V, I _{OH} = All output ports;	-2mA,	VDD-1.0 -		-	V	
Output Low Voltage	V _{OL1}	VDD=4.5V, I _{OL} = 10mA;				1.0		
		All output ports except VOL2						
	V_{OL2}	VDD= 4.5V, I _{OL} = ⁻ P1	15mA ;			1.0	V	
Input High Leakage Current	I _{IH}	All input ports		_	_	1	μA	
Input Low Leakage Current	IIL	All input ports		-1	-	-	μA	
Pull-Up Resistor	R _{PU}	VI=0V, T _A = 25°C All Input ports	VDD=5.0V 2	5	50	100	- kΩ	
			VDD=3.0V 50	D	100	200		
		VI=0V, T _A = 25°C RESETB	VDD=5.0V 1	5 0	250	400	- kΩ	
			VDD=3.0V 30	0 0	500	700	1132	
OSC feedback resistor	R _{X1}	XIN= VDD, XOUT= VSS T _A = 25°C, VDD= 5V		600 1	200	2000	kΩ	
	R _{x2}	SXIN=VDD, SXOUT=VSS T _A = 25 °C ,VDD=5V		2500 500	0	10000		
 	-	- 7	5					
------	-------	----------------	-----------------					
de	deald	of last dealer	should be to be					

$(T_A = -40^{\circ}C \sim +85^{\circ}C, VDD = 1.8V \sim 5.5V, VSS = 0V, f_{XIN} = 12MHz)$									
Parameter	Symbol C	onditio	n	MIN	TYP	MAX	Unit		
		f _{XIN} = 12MHz, VDD= 5V	-	3.0	6.0				
		f _{XIN} = 10MHz, VDD= 3∖	/±10%	-	2.2	4.4	mA		
	(RUN) f _{IRC} = 16MHz, VDD= 5V±		/±10%	_	3.0	6.0			
	$f_{XIN} = 12MHz, VDD = 5V;$ $f_{XIN} = 10MHz, VDD = 3V;$	/±10%	-	2.0	4.0				
		f _{XIN} = 10MHz, VDD= 3V±10%		-	1.3	2.6	mA		
Supply Current	(IDLE)	f _{IRC} = 16MHz, VDD= 5V±10%		_	1.5	3.0			
	I _{DD3}	f _{XIN} = 32.768kHz	Sub RUN	_	50.0	80.0	μA		
	I _{DD4} Sub	VDD= 3V±10% T _A = 25°C	IDLE	_	8.0	16.0	μA		
	I _{DD5}	STOP, VDD= 5V±10%	, T _A = 25°C	-	0.5	3.0	μA		

Table 7-9 DC Characteristics (Continued)

NOTES) 1. Where the f_{XIN} is an external main oscillator, f_{SUB} is an external sub oscillator, the f_{IRC} is an internal RC oscillator, and the fx is the selected system clock.

2. All supply current items don't include the current of an internal Watch-dog timer RC (WDTRC) oscillator and a peripheral block.

3. All supply current items include the current of the power-on reset (POR) block.

7.10 AC Characteristics

Table 7-10 AC Characteristics

			(T _A = -40	°C ~ +85°C	, VDD= 1.8∨	′ ~ 5.5V)
Parameter S	ymbol	Conditions	MIN	TYP	MAX	Unit
RESETB input low width	t _{RSL}	Input, VDD= 5V	10	_	_	μS
Interrupt input high, low width	t _{INTH} , t _{INTL}	All interrupt, VDD= 5V	200	-	_	
External Counter Input High, Low Pulse Width	tECWH, tECWL	ECn, VDD = 5 V (n= 0, 1, 3)	200 –		-	nS
External Counter Transition Time	tREC, tFEC	ECn, VDD = 5 V (n= 0, 1, 3)	20 –		-	

Figure 7.1 AC Timing

7.11 SPI0/1/2 Characteristics

Table 7-11 SPI0/1/2 Characteristics

	(T _A = -40°C	– +85°C, V	DD= 1.8V	– 5.5V)		
Parameter S	ymbol	Conditions	MIN	TYP	MAX	Unit
Output Clock Pulse Period	tSCK	Internal SCK source	200	_	_	
Input Clock Pulse Period	ISCK	External SCK source	200	-	-	
Output Clock High, Low Pulse Width	tSCKH,	Internal SCK source	70	_	_	
Input Clock High, Low Pulse Width	tSCKL	External SCK source	70	-	-	nS
First Output Clock Delay Time	tFOD	Internal/External SCK source	100 –		-	
Output Clock Delay Time	tDS –		-	_	50	
Input Setup Time	tDIS –		100	-	-	
Input Hold Time	tDIH –		150	-	-	

NOTE) n =0, 1 and 2

Figure 7.2 SPI0/1/2 Timing

7.12 UART0/1 Characteristics

Table 7-12 UART0/1 Characteristics

$(T_A = -40^{\circ}C \sim +85^{\circ}C, VDD = 1.8V \sim 5.5)$							
Parameter S	ymbol	MIN	TYP	MAX	Unit		
Serial port clock cycle time	t _{scк} 1	250	t _{CPU} x 16	1650	nS		
Output data setup to clock rising edge	t _{S1} 590		t _{CPU} x 13	_	nS		
Clock rising edge to input data valid	t _{S2} –		_	590	nS		
Output data hold after clock rising edge	t _{H1}	t _{сри} - 50	t _{CPU} —		nS		
Input data hold after clock rising edge	t _{H2}	0			nS		
Serial port clock High, Low level width	t _{ніGH} , t _{LOW} 470		t _{CPU} x 8	970	nS		

Figure 7.3 Waveform for UART0/1 Timing Characteristics

Figure 7.4 Timing Waveform for the UART0/1 Module

7.13 I2C0/1 Characteristics

Table 7-13 I2C0/1 Characteristics

$(T_A = -40^{\circ}C \sim +85^{\circ}C, VDD = 1.8V \sim 5.5V)$									
		Standard	d Mode	High-Spe	ed Mode	11.3			
Parameter S	ymbol	MIN M	AX MI	N M	AX	Unit			
Clock frequency	tSCL	0 100		0 400		kHz			
Clock High Pulse Width	tSCLH	4.0	- 0.	6 —					
Clock Low Pulse Width	tSCLL	4.7	- 1.	3 –					
Bus Free Time	tBF	4.7	- 1.	3 –					
Start Condition Setup Time	tSTSU	4.7	- 0.	6 –					
Start Condition Hold Time	tSTHD	4.0	- 0.	6 –		μS			
Stop Condition Setup Time	tSPSU	4.0	- 0.	6 –					
Stop Condition Hold Time	tSPHD	4.0	- 0.	6 –					
Output Valid from Clock	tVD	0 - 0		_					
Data Input Hold Time	tDIH	0 - 0			1.0				
Data Input Setup Time	tDIS	250 – 10		0	-	nS			

NOTE) n= 0, and 1

7.14 Data Retention Voltage in Stop Mode

			(T _A = -40°C	~ +85°C, `	VDD= 1.8V	~ 5.5V)
Parameter S	ymbol	Conditions	MIN	TYP	MAX	Unit
Data retention supply voltage	V _{DDDR}	_	1.8 – 5		5	V
Data retention supply current	I _{DDDR}	VDDR= 1.8V, (T_A = 25°C), Stop mode			1	μA

NOTE: tWAIT is the same as (the selected bit overflow of BIT) X 1/(BIT Clock)

Figure 7.6 Stop Mode Release Timing when Initiated by an Interrupt

NOTE : tWAIT is the same as (4096 X 4 X 1/fx) (16.4mS @ 1MHz)

runia.

7.15 Internal Flash Rom Characteristics

Table 7-15 Internal Flash Rom Characteristics

		(T _A = -40	°C ~ +85°C	, VDD= 1.8	V ~ 5.5V, V	SS= 0V)
Parameter S	ymbol	Condition	MIN	TYP M	AX	Unit
Sector Write Time	t _{FSW} –		_	2.5	2.7	
Sector Erase Time	t _{FSE} –		_	2.5	2.7	mS
Hard-Lock Time	t _{FHL} —		-	2.5	2.7	
Page Buffer Reset Time	t _{FBR} —		_	_	5	μS
Flash Programming Frequency	f _{PGM} –		0.4	_	-	MHz
Endurance of Write/Erase	NF _{WE} –		-	-	100,000	Times

NOTE) During a flash operation, SCLK[1:0] of SCCR must be set to "00" or "01" (INT-RC OSC or Main X-TAL for system clock).

7.16 Input/Output Capacitance

Table 7-16 Input/Output Capacitance

				(T _A = -40°C	~ +85°C, V	DD= 0V)
Parameter S	ymbol	Condition	MIN	TYP M	AX	Unit
Input Capacitance	C _{IN}	fx= 1MHz				
Output Capacitance	COUT	Unmeasured pins are			10	pF
I/O Capacitance	CIO	connected to VSS				

7.17 Main Clock Oscillator Characteristics

	COSCILIATOR CHARACTERISTICS		(T _A = -40°C ~	+85°C, VE	DD= 1.8V -	~ 5.5V)
Oscillator Para	meter	Condition	MIN	TYP M	AX	Unit
Crystal Main oscillation frequenc		1.8V – 5.5V	0.4	_	4.2	
	Main oscillation frequency	2.7V – 5.5V	0.4	_	10.0	MHz
		3.0V – 5.5V	0.4	-	12.0	
	Main oscillation frequency	1.8V – 5.5V	0.4	_	4.2	MHz
Ceramic Oscillator		2.7V – 5.5V	0.4	_	10.0	
		3.0V – 5.5V	0.4	_	12.0	
		1.8V – 5.5V	0.4	-	4.2	
External Clock	XIN input frequency	2.7V – 5.5V	0.4	-	10.0	MHz
		3.0V – 5.5V	0.4	_	12.0	

Table 7-17 Main Clock Oscillator Characteristics

Figure 7.8 Crystal/Ceramic Oscillator

Figure 7.9 External Clock

7.18 Sub Clock Oscillator Characteristics

Table 7-18 Sub Clock Oscillator Characteristics

		Γ)		+85°C, VI	DD= 1.8V ~	~ 5.5V)
Oscillator Para	meter	Condition	MIN	TYP M	AX	Unit
Crystal	Sub oscillation frequency	1.8V – 5.5V	32 3	2.768 3	8	kHz
External Clock	SXIN input frequency		32	-	100	kHz

Figure 7.10 Crystal Oscillator

Figure 7.11 External Clock

7.19 Main Oscillation Stabilization Characteristics

		(T _A = -40°	°C ~ +85°C,	VDD= 1.8V ~	~ 5.5V)
Oscillator Para	meter	MIN	TYP M	AX	Unit
Crystal	fx > 1MHz Oscillation stabilization occurs when VDD			60	mS
Ceramic –	is equal to the minimum oscillator voltage range.		-	10	mS
External Clock	$f_{XIN} = 0.4$ to 12MHz XIN input high and low width (t_{XH} , t_{XL})	42 –		1250	nS

Table 7-19 Main Oscillation Stabilization Characteristics

Figure 7.12 Clock Timing Measurement at XIN

7.20 Sub Oscillation Characteristics

Table 7-20 Sub Oscillation Stabilization Characteristics

		(T _A = -40°	°C ~ +85°C,	VDD= 1.8V ~	~ 5.5V)
Oscillator Para	meter	MIN	TYP M	AX	Unit
Crystal –		-	-	10	S
External Clock	SXIN input high and low width (t_{XH} , t_{XL})	5 –		15	μS

Figure 7.13 Clock Timing Measurement at SXIN

7.21 Operating Voltage Range

Figure 7.15 Recommended Circuit and Layout

7.23 Typical Characteristics

These graphs and tables provided in this section are only for design guidance and are not tested or guaranteed. In graphs or tables some data are out of specified operating range (e.g. out of specified VDD range). This is only for information and devices are guaranteed to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

Figure 7.16 RUN (IDD1) Current

Figure 7.18 SUB RUN (IDD3) Current

Figure 7.19 SUB IDLE (IDD4) Current

Figure 7.20 STOP (IDD5) Current

8. Memory

The Z51F3220 addresses two separate address memory stores: Program memory and Data memory. The logical separation of Program and Data memory allows Data memory to be accessed by 8-bit addresses, which makes the 8-bit CPU access the data memory more rapidly. Nevertheless, 16-bit Data memory addresses can also be generated through the DPTR register.

Z51F3220 provides on-chip 32k bytes of the ISP type flash program memory, which can be read and written to. Internal data memory (IRAM) is 256 bytes and it includes the stack area. External data memory (XRAM) is 768 bytes and it includes 27 bytes of LCD display RAM.

8.1 Program Memory

A 16-bit program counter is capable of addressing up to 64k bytes, but this device has just 32k bytes program memory space.

Figure 8-1 shows the map of the lower part of the program memory. After reset, the CPU begins execution from location 0000H. Each interrupt is assigned a fixed location in program memory. The interrupt causes the CPU to jump to that location, where it commences execution of the service routine. External interrupt 11, for example, is assigned to location 000BH. If external interrupt 11 is going to be used, its service routine must begin at location 000BH. If the interrupt is not going to be used, its service location is available as general purpose program memory. If an interrupt service routine is short enough (as is often the case in control applications), it can reside entirely within that 8 byte interval. Longer service routines can use a jump instruction to skip over subsequent interrupt locations, if other interrupts are in use.

Z51F3220 Product Specification

- 32k Bytes Including Interrupt Vector Region

Figure 8.1 Program Memory

8.2 Data Memory

Figure 8-2 shows the internal data memory space available.

Figure 8.2 Data Memory Map

The internal data memory space is divided into three blocks, which are generally referred to as the lower 128 bytes, upper 128 bytes, and SFR space.

Internal data memory addresses are always one byte wide, which implies an address space of only 256 bytes. However, in fact the addressing modes for internal RAM can accommodate up to 384 bytes by using a simple trick. Direct addresses higher than 7FH access one memory space and indirect addresses higher than 7FH access a different memory space. Thus Figure 8-2 shows the upper 128 bytes and SFR space occupying the same block of addresses, 80H through FFH, although they are physically separate entities.

The lower 128 bytes of RAM are present in all 8051 devices as mapped in Figure 8-3. The lowest 32 bytes are grouped into 4 banks of 8 registers. Program instructions call out these registers as R0 through R7. Two bits in the Program Status Word select which register bank is in use. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing.

The next 16 bytes above the register banks form a block of bit-addressable memory space. The 8051 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00H through 7FH.

All of the bytes in the lower 128 bytes can be accessed by either direct or indirect addressing. The upper 128 bytes RAM can only be accessed by indirect addressing. These spaces are used for data RAM and stack.

Figure 8.3 Lower 128 Bytes RAM

8.3 XRAM Memory

Z51F3220 has 768 bytes XRAM. This area has no relation with RAM/Flash. It can be read and written to through SFR with 8-bit unit.

Figure 8.4 XDATA Memory Area

Z51F3220 Product Specification

8.4 SFR Map

8.4.1 SFR Map Summary

Table 8-1 SFR Map Summary

- Reserved M8051 compatible

00	H/8H ⁽¹⁾ C)1H/9 H	02H/0AH	03H/0BH	04H/0CH	05H/0DH	06H/0EH	07H/0FH		
0F8H	IP1 –		FSADRH	FSADRM	FSADRL	FIDR	FMCR	P5FSR		
0F0H	В	USI1ST1 L	JSI1ST2	USI1BD	USI1SDHR	USI1DR	USI1SCLR	USI1SCHR		
0E8H R	STFR	USI1CR1	USI1CR2	USI1CR3	USI1CR4	USI1SAR	P3FSR	P4FSR		
0E0H	ACC U	SI0ST1	USI0ST2	USI0BD	USI0SDHR	USI0DR	USI0SCLR	USI0SCHR		
0D8H L'	VRC R	USI0CR1	USI0CR2	USI0CR3	USI0CR4	USI0SAR	P0DB	P15DB		
0D0H	PSW P5	I 0	P0FSRL	P0FSRH	P1FSRL	P1FSRH	P2FSRL	P2FSRH		
освн о	SCCR	P4IO	-	-	-	-	_	-		
ОСОН Е	IFLAG0	P3IO	T2CRL	T2CRH T2	ADRL	T2ADRH	T2BDRL	T2BDRH		
0B8H	IP P2I	0	T1CRL	T1CRH	T1ADRL T1	ADRH	T1BDRL	T1BDRH		
0B0H P	5	P1IO	T0CR	TOCNT	T0DR/ T0CDR	SPICR SF	ND R	SPISR		
0A8H	IE IE1		IE2	IE3	P0PU P1PU P2PU		P2PU	P3PU		
0A0H P	4	P0IO	EO P4Pl	J	EIPOLOL EIPOLOH EIFLAG1		EIFLAG1	EIPOL1		
98H P3	3	LCDCRL	LCDCRH	LCDCCR	ADCCRH	ADCCRH ADCDRL		ADCCRH ADCDRL		ADCDRH
90H P2	2	P0OD	P10D	P2OD	P4OD	P5PU	WTCR	BUZCR		
88H P1		WTDR/ WTCNT	SCCR BIT	CR	BITCNT	WDTCR	WDTDR/ WDTCNT	BUZDR		
80H PC)	SP	DPL	DPH	DPL1	DPH1 LV	CR	PCON		

NOTE) These registers are bit-addressable.

Reserved

Table 8-2 SFR Map Summary

-	

00H	/8H ⁽¹⁾ 0	1H/9 H	02H/0AH	03H/0BH	04H/0CH	05H/0DH	06H/0EH	07H/0FH
1078H						_	-	-
1070H						_	_	_
1068H						_	_	_
1060H						_	_	-
1058H								-
1050H						-	-	-
1048H						-	-	-
1040H						-	-	-
1038H						_	_	-
1030H						-	-	-
1028H						-	-	-
1020H						-	-	-
1018H						-	-	-
1010H T	4DLYA	T4DLYB	T4DLYC	T4DR	T4CAPR	T4CNT –		-
1008H T	4PPRL	T4PPRH	T4ADRL T4	AD RH	T4BDRL	T4BDRH T	4C DRL	T4CDRH
100H T	3CR	T3CNT/ T3DR/ T3CAPR	T4CR T4	PCR1	T4PCR2	T4PCR3 T4	ISR	T4IMSK

NOTE) These registers are bit-addressable.

8.4.2 SFR Map

Table 8-3	SFR	Мар
-----------	-----	-----

Addroop [tion tion	Cumhal	R/W				@R	eset	n	r	I
Address F	unc tion	Symbol	R/W	765	5		4	3	2	1	0
80H	P0 Data Register	P0	R/W	000)		0	0	0	0	0
81H	Stack Pointer	SP	R/W	000)		0	0	1	1	1
82H	Data Pointer Register Low	DPL	R/W	000)		0	0	0	0	0
83H	Data Pointer Register High	DPH	R/W	000)		0	0	0	0	0
84H	Data Pointer Register Low 1	DPL1	R/W	0	0	0	0	0	0	0	0
85H	Data Pointer Register High 1	DPH1	R/W	0	0	0	0	0	0	0	0
86H	Low Voltage Indicator Control Register	LVICR	R/W	_	-	0	0	0	0	0	0
87H	Power Control Register	PCON	R/W	0	-		_	0	0	0	0
88H	P1 Data Register	P1	R/W	000)		0	0	0	0	0
89H	Watch Timer Data Register	WTDR	W	011			1	1	1	1	1
89H	Watch Timer Counter Register	WTCNT	R	-	0	0	0	0	0	0	0
8AH	System and Clock Control Register	SCCR	R/W		-	_	_	_	_	0	0
8BH	Basic Interval Timer Control Register	BITCR	R/W	0	0	0	_	0	0	0	1
8CH	Basic Interval Timer Counter Register	BITCNT	R	0	0	0	0	0	0	0	0
8DH	Watch Dog Timer Control Register	WDTCR	R/W	0	0	0	_	_	_	0	0
0511	Watch Dog Timer Data Register	WDTDR	W	1	1	1	1	1	1	1	1
8EH	Watch Dog Timer Counter Register	WDTCNT	R	0	0	0	0	0	0	0	0
8FH	BUZZER Data Register	BUZDR	R/W	111			1	1	1	1	1
90H	P2 Data Register	P2	R/W	000)		0	0	0	0	0
91H	P0 Open-drain Selection Register	P0OD	R/W	0	0	0	0	0	0	0	0
92H	P1 Open-drain Selection Register	P10D	R/W	0	0	0	0	0	0	0	0
93H	P2 Open-drain Selection Register	P2OD	R/W	0	0	0	0	0	0	0	0
94H	P4 Open-drain Selection Register	P4OD	R/W	_ ·	-	_	_	0	0	0	0
95H	P5 Pull-up Resistor Selection Register	P5PU	R/W	_	-	0	0	0	0	0	0
96H	Watch Timer Control Register	WTCR	R/W	0	-	_	0	0	0	0	0
97H	BUZZER Control Register	BUZCR	R/W		-		_	_	0	0	0
98H	P3 Data Register	P3	R/W	000)		0	0	0	0	0
99H	LCD Driver Control Low Register	LCDCRL	R/W		-	0	0	0	0	0	0
9AH	LCD Driver Control High Register	LCDCRH	R/W		-	_	0	-	-	0	0
9BH	LCD Contrast Control register	LCDCCR	R/W	0	-	_	_	0	0	0	0
9CH	A/D Converter Control Low Register	ADCCRL	R/W	0	0	0	0	0	0	0	0
9DH	A/D Converter Control High Register	ADCCRH	R/W	0 – 0		0	0	0	0	0	0
9EH	A/D Converter Data Low Register	ADCDRL	R	x	x	х	х	х	х	х	x
9FH	A/D Converter Data High Register	ADCDRH	R	x	x	хх	ххх	¢			x

Table 8-2 SFR Map (Continued)

A al al aca a a		Ourseland					@R	eset			
Address	Func tion	Symbol	R/W	76	5		4	3	2	1	0
A0H	P4 Data Register	P4	R/W		-		-	0	0	0	0
A1H	P0 Direction Register	P0IO	R/W	0	0	0	0	0	0	0	0
A2H	Extended Operation Register	EO	R/W		-		0	-	0	0	0
A3H	P4 Pull-up Resistor Selection Register	P4PU	R/W	-	-	-	-	0	0	0	0
A4H	External Interrupt Polarity 0 Low Register	EIPOL0L	R/W	0	0	0	0	0	0	0	0
A5H	External Interrupt Polarity 0 High Register	EIPOL0H	R/W	0	0	0	0	0	0	0	0
A6H	External Interrupt Flag 1 Register	EIFLAG1	R/W	0	0	0	0	0	0	0	0
A7H	External Interrupt Polarity 1 Register	EIPOL1	R/W	0	0	0	0	0	0	0	0
A8H	Interrupt Enable Register	IE	R/W	0	-	0	0	0	0	0	0
A9H	Interrupt Enable Register 1	IE1	R/W	-	-	0	0	0	0	_	0
AAH	Interrupt Enable Register 2	IE2	R/W	-	-	0	0	0	0	0	0
ABH	Interrupt Enable Register 3	IE3	R/W	-	-	0	0	0	0	0	0
ACH	P0 Pull-up Resistor Selection Register	P0PU	R/W	0	0	0	0	0	0	0	0
ADH	P1 Pull-up Resistor Selection Register	P1PU	R/W	0	0	0	0	0	0	0	0
AEH	P2 Pull-up Resistor Selection Register	P2PU	R/W	0	0	0	0	0	0	0	0
AFH	P3 Pull-up Resistor Selection Register	P3PU	R/W	0	0	0	0	0	0	0	0
B0H	P5 Data Register	P5	R/W		0		0	0	0	0	0
B1H	P1 Direction Register	P1IO	R/W	0	0	0	0	0	0	0	0
B2H	Timer 0 Control Register	T0CR	R/W	0	-	0	0	0	0	0	0
B3H	Timer 0 Counter Register	T0CNT	R	0	0	0	0	0	0	0	0
DALL	Timer 0 Data Register	T0DR	R/W	1	1	1	1	1	1	1	1
B4H	Timer 0 Capture Data Register	T0CDR	R	0	0	0	0	0	0	0	0
B5H	SPI 2 Control Register	SPICR	R/W	0	0	0	0	0	0	0	0
B6H	SPI 2 Data Register	SPIDR	R/W	0	0	0	0	0	0	0	0
B7H	SPI 2 Status Register	SPISR	R/W	0	0	0	-	0	0	_	_
B8H	Interrupt Priority Register	IP	R/W		0		0	0	0	0	0
B9H	P2 Direction Register	P2IO	R/W	0	0	0	0	0	0	0	C
BAH	Timer 1 Control Low Register	T1CRL	R/W	0	0	0	0	-	0	0	0
BBH	Timer 1 Counter High Register	T1CRH	R/W	0	-	0	0	-	-	_	C
BCH	Timer 1 A Data Low Register	T1ADRL	R/W	1	1	1	1	1	1	1	1
BDH	Timer 1 A Data High Register	T1ADRH	R/W	1	1 1 1		1	1	1	1	1
BEH	Timer 1 B Data Low Register	T1BDRL	R/W	1	1	1	1	1	1	1	1
BFH	Timer 1 BData High Register	T1BDRH	R/W	1	1	1	1	1	1	1	1

Table 8-2 SFR Map (Continued)

A data	Processing and the second s	0 sub st	DAA	@Reset							
Address F	unc tion	Symbol	R/W	765 4 3			3	2	1	0	
C0H	External Interrupt Flag 0 Register	EIFLAG0	R/W	0	0	0	0	0	0	0	0
C1H	P3 Direction Register	P3IO	R/W	0	0	0	0	0	0	0	0
C2H	Timer 2 Control Low Register	T2CRL	R/W	0	0	0	0	-	0	-	0
СЗН	Timer 2 Control High Register	T2CRH	R/W	0	-	0	0	-	-	-	0
C4H	Timer 2 A Data Low Register	T2ADRL	R/W	1	1	1	1	1	1	1	1
C5H	Timer 2 A Data High Register	T2ADRH	R/W	1	1	1	1	1	1	1	1
C6H	Timer 2 B Data Low Register	T2BDRL	R/W	1	1	1	1	1	1	1	1
C7H	Timer 2 BData High Register	T2BDRH	R/W	1	1	1	1	1	1	1	1
C8H	Oscillator Control Register	OSCCR	R/W		0		0	1	0	0	0
C9H	P4 Direction Register	P4IO	R/W	-	-	-	-	0	0	0	0
CAH Re	s erved	_	-					_			
CBH Re	s erved	-	-					_			
CCH Re	s erved	-	-					_			
CDH Re	s erved	-	-					_			
CEH Re	s erved	-	-					_			
CFH Re	s erved	-	-					-			
D0H	Program Status Word Register	PSW	R/W	0	0	0	0	0	0	0	0
D1H	P5 Direction Register	P5IO	R/W	-	-	0	0	0	0	0	0
D2H	P0 Function Selection Low Register	P0FSRL	R/W	-	0	0	0	0	0	0	0
D3H	P0 Function Selection High Register	P0FSRH	R/W	-	-	0	0	0	0	0	0
D4H	P1 Function Selection Low Register	P1FSRL	R/W	0	0	0	0	0	0	0	0
D5H	P1 Function Selection High Register	P1FSRH	R/W	0	0	0	0	0	0	0	0
D6H	P2 Function Selection Low Register	P2FSRL	R/W	-	-	0	0	0	0	0	0
D7H	P2 Function Selection High Register	P2FSRH	R/W	-	-	-	-	0	0	0	0
D8H	Low Voltage Reset Control Register	LVRCR	R/W	0	-	-	0	0	0	0	0
D9H	USI0 Control Register 1	USI0CR1	R/W	0	0	0	0	0	0	0	0
DAH	USI0 Control Register 2	USI0CR2	R/W	0	0	0	0	0	0	0	0
DBH	USI0 Control Register 3	USI0CR3	R/W	0	0	0	0	0	0	0	0
DCH	USI0 Control Register 4	USI0CR4	R/W	0	-	-	0	0	-	0	0
DDH	USI0 Slave Address Register	USI0SAR	R/W	0	0	0	0	0	0	0	0
DEH	P0 Debounce Enable Register	P0DB	R/W	0	0	0	0	0	0	0	0
DFH	P1/P5 Debounce Enable Register	P15DB	R/W	-	-	0	0	0	0	0	0

Table 8-2 SFR Map (Continued)

Addrogo	uno tion	Symbol	R/W			r	@R	eset		r	r
Address F	unc tion	Symbol	R/W	76		5	43	3	2	1	0
E0H	Accumulator Register	ACC	R/W	0 0		0	0 0)	0	0	0
E1H	USI0 Status Register 1	USI0ST1	R/W	0	0	0	0	-	0	0	0
E2H	USI0 Status Register 2	USI0ST2	R	0	0	0	0	0	0	0	0
E3H	USI0 Baud Rate Generation Register	USI0BD	R/W	1	1	1	1	1	1	1	1
E4H	USI0 SDA Hold Time Register	USI0SHDR	R/W	0	0	0	0	0	0	0	1
E5H	USI0 Data Register	USI0DR	R/W	0 0		0	0 0)	0	0	0
E6H	USI0 SCL Low Period Register	USI0SCLR	R/W	0	0	1	1	1	1	1	1
E7H	USI0 SCL High Period Register	USI0SCHR	R/W	0	0	1	1	1	1	1	1
E8H	Reset Flag Register	RSTFR	R/W	1	х	0	0	х	-	_	_
E9H	USI1 Control Register 1	USI1CR1	R/W	0	0	0	0	0	0	0	0
EAH	USI1 Control Register 2	USI1CR2	R/W	0	0	0	0	0	0	0	0
EBH	USI1 Control Register 3	USI1CR3	R/W	0	0	0	0	0	0	0	0
ECH	USI1 Control Register 4	USI1CR4	R/W	0	-	_	0	0	-	0	0
EDH	USI1 Slave Address Register	USI1SAR	R/W	0	0	0	0	0	0	0	0
EEH	P3 Function Selection Register	P3FSR	R/W	0	0	0	0	0	0	0	0
EFH	P4 Function Selection Register	P4FSR	R/W	_	0	0	0	0	0	0	0
F0H	B Register	В	R/W	0 0)	0	0 0)	0	0	0
F1H	USI1 Status Register 1	USI1ST1	R/W	0	0	0	0	-	0	0	0
F2H	USI1 Status Register 2	USI1ST2	R	0	0	0	0	0	0	0	0
F3H	USI1 Baud Rate Generation Register	USI1BD	R/W	1	1	1	1	1	1	1	1
F4H	USI1 SDA Hold Time Register	USI1SHDR	R/W	0	0	0	0	0	0	0	1
F5H	USI1 Data Register	USI1DR	R/W	0 0)	0	0 0)	0	0	0
F6H	USI1 SCL Low Period Register	USI1SCLR	R/W	0	0	1	1	1	1	1	1
F7H	USI1 SCL High Period Register	USI1SCHR	R/W	0	0	1	1	1	1	1	1
F8H	Interrupt Priority Register 1	IP1	R/W	_	_	0	0	0	0	0	0
F9H Re	s erved	_	_				-	_	1		
FAH	Flash Sector Address High Register	FSADRH	R/W	_	_	_	_	0	0	0	0
FBH	Flash Sector Address Middle Register	FSADRM	R/W	0	0	0	0	0	0	0	0
FCH	Flash Sector Address Low Register	FSADRL	R/W	0	0	0	0	0	0	0	0
FDH	Flash Identification Register	FIDR	R/W	0 0)	0	00	5	0	0	0
FEH	Flash Mode Control Register	FMCR	R/W	0	_	_	_	-	0	0	0
FFH	P5 Function Selection Register	P5FSR	R/W	_	_	0	0	0	0	0	0

Table 8-2 SFR	R Map (Continued)	
---------------	-------------------	--

A daha a a T	tion tion	O: mak al	R/W				@R	eset	t		
Address F	unc tion	Symbol	R/W	76	76 5 43 2 1 0 - 0 0 0 0 0				1	0	
1000H	Timer 3 Control Register	T3CR	R/W	0	-	0	0	0	0	0	0
	Timer 3 Counter Register	T3CNT	R	0	0	0	0	0	0	0	0
1001H	Timer 3 Data Register	T3DR	W	1	1	1	1	1	1	1	1
	Timer 3 Capture Data Register	T3CAPR	R	0	0	0	0	0	0	0	0
1002H	Timer 4 Control Register	T4CR	R/W	0	0	0	0	0	0	0	0
1003H	Timer 4 PWM Control Register 1	T4PCR1	R/W	0	0	0	0	0	0	0	0
1004H	Timer 4 PWM Control Register 2	T4PCR2	R/W	0	0	0	0	0	0	0	0
1005H	Timer 4 PWM Control Register 3	T4PCR3	R/W	-	0	0	0	_	-	_	-
1006H	Timer 4 Interrupt Status Register	T4ISR	R/W	0	0	0	0	0	-	-	-
1007H	Timer 4 Interrupt Mask Register	T4MSK	R/W	0	0	0	0	0	-	_	-
1008H	Timer 4 PWM Period Low Register	T4PPRL	R/W	1	1	1	1	1	1	1	1
1009H	Timer 4 PWM Period High Register	T4PPRH	R/W	-	-	_	-	-	-	0	0
100AH	Timer 4 PWM A Duty Low Register	T4ADRL	R/W	0	1	1	1	1	1	1	1
100BH	Timer 4 PWM A Duty High Register	T4ADRH	R/W	-	-	-	-	-	-	0	0
100CH	Timer 4 PWM B Duty Low Register	T4BDRL	R/W	0	1	1	1	1	1	1	1
100DH	Timer 4 PWM B Duty High Register	T4BDRH	R/W	-	-	-	-	-	-	0	0
100EH	Timer 4 PWM C Duty Low Register	T4CDRL	R/W	0	1	1	1	1	1	1	1
100FH	Timer 4 PWM C Duty High Register	T4CDRH	R/W	-	-	-	-	-	-	0	0
1010H	Timer 4 PWM A Delay Register	T4DLYA	R/W	0	0	0	0	0	0	0	0
1011H	Timer 4 PWM B Delay Register	T4DLYB	R/W	0	0	0	0	0	0	0	0
1012H	Timer 4 PWM C Delay Register	T4DLYC	R/W	0	0	0	0	0	0	0	0
1013H	Timer 4 Data Register	T4DR	R/W	1	1	1	1	1	1	1	1
1014H	Timer 4 Capture Data Register	T4CAPR	R	0	0	0	0	0	0	0	0
1015H	Timer 4 Counter Register	T4CNT	R	0	0	0	0	0	0	0	0
107FH R	es erved	-	-					_			

8.4.3 Compiler Compatible SFR

7	6	5	4	3	2	1	0
			DF	<u>ዲ</u> 1			-
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 0
	DP	L1	Data Pointer L	.ow 1			
I1 (Data	Pointer Regis	ster High 1) :	85H				
7	6	5	4	3	2	1	0
			DF	H1			
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 0
V (Brogra	DP		Data Pointer H	ligh 1			
V (Progra 7	DP am Status Wo 6			ligh 1 3	2	1	0
	am Status Wo	ord Register)	: D0H		2 OV	1 F1	0
7	am Status Wo	ord Register) 5	: D0H 4	3			-
7 CY	am Status Wo 6 AC	ord Register) 5 F0	: D0H 4 RS1	3 RS0	OV	F1	P RW
7 CY	am Status Wo 6 AC	FO RW	: D0H 4 RS1	3 RS0	OV	F1	P RW
7 CY	am Status Wo 6 AC RW	F0 RW	: D0H 4 RS1 RW	3 RS0 RW	OV	F1	P RW
7 CY	am Status Wo 6 AC RW CY	F0 RW	: DOH 4 RS1 RW Carry Flag	3 RS0 RW	OV RW	F1	P RW
7 CY	am Status Wo 6 AC RW CY AC	FO FO RW	: DOH 4 RS1 RW Carry Flag Auxiliary Carry	3 RS0 RW / Flag ose User-Defir	OV RW	F1	P RW
7 CY	am Status Wo 6 AC RW CY AC F0	FO FO RW	: DOH 4 RS1 RW Carry Flag Auxiliary Carry General Purpo	3 RS0 RW / Flag ose User-Defir Select bit 1	OV RW	F1	P RW
7 CY	am Status Wo 6 AC RW CY AC F0 RS	FO FO RW	: DOH 4 RS1 RW Carry Flag Auxiliary Carry General Purpo Register Bank	3 RS0 RW / Flag ose User-Defir Select bit 1	OV RW	F1	Р
7 CY	am Status Wo 6 AC RW CY AC F0 RS RS	FO FO RW	: DOH 4 RS1 RW Carry Flag Auxiliary Carry General Purpo Register Bank Register Bank	3 RS0 RW / Flag ose User-Defir Select bit 1 Select bit 0	OV RW	F1	P RW

EO (Extended Operation Register) : A2H

7	6	5	4	3	2	1	0			
-	-	-	TRAP_EN	_	DPSEL2	DPSEL1	DPSEL0			
-	-	_	RW	_	RW	RW	RW			
						I	nitial value : 00			
TRAP_EN Select the Instruction (Keep always '0').										
			0 Sel	ect Software T	RAP Instructio	on				
			1 Sel	ect MOVC @((DPTR++), A					
	DP	SEL[2:0]	Select Banked	I Data Pointer	Register					
			DPSEL2 DPS	EL1 S PSEI	_0 Description					
			0 0 0	DPTR	0					
			0 01	DPTR	1					
			Reserved							

9. I/O Ports

9.1 I/O Ports

The Z51F3220 has ten groups of I/O ports (P0 ~ P5). Each port can be easily configured by software as I/O pin, internal pull up and open-drain pin to meet various system configurations and design requirements. Also P0 includes function that can generate interrupt according to change of state of the pin.

9.2 Port Register

9.2.1 Data Register (Px)

Data Register is a bidirectional I/O port. If ports are configured as output ports, data can be written to the corresponding bit of the Px. If ports are configured as input ports, the data can be read from the corresponding bit of the Px.

9.2.2 Direction Register (PxIO)

Each I/O pin can be independently used as an input or an output through the PxIO register. Bits cleared in this register will make the corresponding pin of Px to input mode. Set bits of this register will make the pin to output mode. Almost bits are cleared by a system reset, but some bits are set by a system reset.

9.2.3 Pull-up Resistor Selection Register (PxPU)

The on-chip pull-up resistor can be connected to I/O ports individually with a pull-up resistor selection register (PxPU). The pull-up register selection controls the pull-up resister enable/disable of each port. When the corresponding bit is 1, the pull-up resister of the pin is enabled. When 0, the pull-up resister is disabled. All bits are cleared by a system reset.

9.2.4 Open-drain Selection Register (PxOD)

There are internally open-drain selection registers (PxOD) for P0 ~ P4 and a bit for P5. The open-drain selection register controls the open-drain enable/disable of each port. Almost ports become push-pull by a system reset, but some ports become open-drain by a system reset.

9.2.5 Debounce Enable Register (PxDB)

P0[7:2], P1[2:1], P1[7:6], P52 and P54 support debounce function. Debounce clocks of each ports are fx/1, fx/4, and fx/4096.

9.2.6 Port Function Selection Register (PxFSR)

These r egisters de fine alternative functions of p orts. P lease remember that these r egisters should be s et properly for alternative port function. A reset clears the PxFSR register to '00H', which makes all pins to normal I/O ports.

9.2.7 Register Map

Table 9-1 Port Register Map

Name	Address	Dir	Default	Description
P0 80H		R/W	00H	P0 Data Register
P0IO	A1H	R/W	00H	P0 Direction Register
P0PU	ACH	R/W	00H	P0 Pull-up Resistor Selection Register
P0OD	91H	R/W	00H	P0 Open-drain Selection Register
P0DB	DEH	R/W	00H	P0 Debounce Enable Register
P0FSRH	D3H	R/W	00H	P0 Function Selection High Register
P0FSRL	D2H	R/W	00H	P0 Function Selection Low Register
P1	88H	R/W	00H	P1 Data Register
P1IO	B1H	R/W	00H	P1 Direction Register
P1PU	ADH	R/W	00H	P1 Pull-up Resistor Selection Register
P10D	92H	R/W	00H	P1 Open-drain Selection Register
P15DB	DFH	R/W	00H	P1/P5 Debounce Enable Register
P1FSRH	D5H	R/W	00H	P1 Function Selection High Register
P1FSRL	D4H	R/W	00H	P1 Function Selection Low Register
P2 90H		R/W	00H	P2 Data Register
P2IO	B9H	R/W	00H	P2 Direction Register
P2PU	AEH	R/W	00H	P2 Pull-up Resistor Selection Register
P2OD	93H	R/W	00H	P2 Open-drain Selection Register
P2FSRH	D7H	R/W	00H	P2 Function Selection High Register
P2FSRL	D6H	R/W	00H	P2 Function Selection Low Register
P3	98H	R/W	00H	P3 Data Register
P3IO	C1H	R/W	00H	P3 Direction Register
P3PU	AFH	R/W	00H	P3 Pull-up Resistor Selection Register
P3FSR	EEH	R/W	00H	P3 Function Selection Register
P4 A0H		R/W	00H	P4 Data Register
P4IO	C9H	R/W	00H	P4 Direction Register
P4PU	A3H	R/W	00H	P4 Pull-up Resistor Selection Register
P4OD	94H	R/W	00H	P4 Open-drain Selection Register
P4FSR	EFH	R/W	00H	P4 Function Selection Register
P5	B0H	R/W	00H	P5 Data Register
P5IO	D1H	R/W	00H	P5 Direction Register
P5PU	95H	R/W	00H	P5 Pull-up Resistor Selection Register
P5FSR	EFH	R/W	00H	P5 Function Selection Register

9.3 P0 Port

9.3.1 P0 Port Description

P0 is 8-bit I/O port. P0 control registers consist of P0 data register (P0), P0 direction register (P0IO), debounce enable register (P0DB), P0 pull-up resistor selection register (P0PU), and P0 open-drain selection register (P0OD). Refer to the port function selection registers for the P0 function selection.

9.3.2 Register description for P0

P0 (P0 Data	Register) : 80	ЭH					
7	6	5	4	3	2	1	0
P07	P06	P05	P04	P03	P02	P01	P00
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00
	P0[7:0]	I/O Data				
POIO (P0 Dire	ection Regist	er) : A1H					
7	6	5	4	3	2	1	0
P0710	P06IO	P051O	P0410	P03IO	P02IO	P011O	P00IO
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00
			0 I nput 1 O utpu NOTE: EC3/I		5 function pos	sible when in	put
P0PU (P0 Pu	II-up Resisto		10 utpu	ut EINTO ~ EINT	5 function pos	sible when in	put
20PU (P0 Pu 7	II-up Resisto 6		1 O utpu NOTE: EC3/I	ut EINTO ~ EINT	5 function pos 2	sible when in 1	put 0
=	-	r Selection R	1 O utpu NOTE: EC3/I egister) : ACF	ut EINTO ~ EINT: I			
7	6	r Selection R 5	1 O utpu NOTE: EC3/I egister) : ACH	ut EINTO ~ EINT 1 3	2	1	0
7 P07PU	6 P06PU	r Selection R 5 P05PU	1 O utpu NOTE: EC3/I egister) : ACH 4 P04PU	ut EINTO ~ EINT 1 3 P03PU	2 P02PU	1 P01PU RW	0 P00PU
7 P07PU	6 P06PU RW	r Selection R 5 P05PU RW	1 O utpu NOTE: EC3/I egister) : ACH 4 P04PU	ut EINTO ~ EINT 1 3 P03PU RW	2 P02PU RW	1 P01PU RW	0 P00PU RW
7 P07PU	6 P06PU RW	r Selection R 5 P05PU RW PU[7:0]	1 O utpu NOTE: EC3/I egister) : ACF 4 P04PU RW	ut EINTO ~ EINT I I P03PU RW -up Resistor o	2 P02PU RW	1 P01PU RW	0 P00PU RW
7 P07PU	6 P06PU RW	r Selection R 5 P05PU RW PU[7:0]	1 O utpu NOTE: EC3/I egister) : ACF 4 P04PU RW Configure Pull 0 D isab	ut EINTO ~ EINT I I P03PU RW -up Resistor o	2 P02PU RW	1 P01PU RW	0 P00PU RW
7 P07PU RW	6 P06PU RW P0F	r Selection R 5 P05PU RW PU[7:0]	1 O utpu NOTE: EC3/I egister) : ACH 4 P04PU RW Configure Pull 0 D isat 1 Enab	ut EINT0 ~ EINT 1 3 P03PU RW -up Resistor o ole	2 P02PU RW	1 P01PU RW	0 P00PU RW
7 P07PU RW P0OD (P0 Op	6 P06PU RW P0F	r Selection R 5 P05PU RW PU[7:0]	1 O utpu NOTE: EC3/I egister) : ACH 4 P04PU RW Configure Pull 0 D isat 1 Enab	ut EINT0 ~ EINT 1 3 P03PU RW -up Resistor o ole	2 P02PU RW	1 P01PU RW	0 P00PU RW Initial value : 001
7 P07PU RW	6 P06PU RW P0F pen-drain Sele	r Selection R 5 P05PU RW PU[7:0]	1 O utpu NOTE: EC3/I egister) : ACH 4 P04PU RW Configure Pull 0 D isat 1 Enab	ut EINTO ~ EINT 1 3 P03PU RW -up Resistor o ole le 3	2 P02PU RW f P0 Port	1 P01PU RW	0 P00PU RW Initial value : 00I
7 P07PU RW	6 P06PU RW P0F	r Selection R 5 P05PU RW PU[7:0]	1 O utpu NOTE: EC3/I egister) : ACH 4 P04PU RW Configure Pull 0 D isat 1 Enab	ut EINTO ~ EINT 1 3 P03PU RW -up Resistor o ole le	2 P02PU RW f P0 Port	1 P01PU RW	0 P00PU RW Initial value : 001

Initial value : 00H

P0OD[7:0]

- 0 Pu sh-pull output
- 1 O pen-drain output

Configure Open-drain of P0 Port

Z51F3220 Product Specification Zilog

Industrial to the

7	6	5	4	3	2	1	0
DBCLK1	DBCLK0	P07DB	P06DB	P05DB	P04DB	P03DB	P02DB
RW	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : 00
	DBC	CLK[1:0]	Configure De	bounce Clock			
			DBCLK1 DBC	CLK 0 De scri	ption		
				0 0 f x/1			
			0 1 f	0 1 f x/4			
			1 0 f	1 0 f x/4096			
			1 1 Res	erv			
	P07DB		Configure De	bounce of P07			
			0 Di 🛛 🥴	sable			
			1 En	able			
	P06	DB	Configure De	bounce of P06			
			0 Di 🛛 🕄	sable			
			1 En	able			
	P05	DB	Configure De	bounce of P05	Port		
			0 Di 🛛 🕄	sable			
			1 En	able			
	P04	DB	Configure De	bounce of P04	Port		
			0 Di 🛛 😒	sable			
			1 En	able			
	P03	DB	Configure De	bounce of P03	Port		
			0 Di 🛛 😒	sable			
			1 En	able			
	P02	DB	-	bounce of P02	Port		
			0 Di 🤤	sable			
			1 En	able			

NOTES) 1. If the same level is not detected on enabled pin three or four times in a row at the sampling clock, the signal is eliminated as noise.

2. A pulse level should be input for the duration of 3 clock or more to be actually detected as a valid edge.

3. The port debounce is automatically disabled at stop mode and recovered after stop mode release.

9.4 P1 Port

9.4.1 P1 Port Description

P1 is 8-bit I/O port. P1 control registers consist of P1 data register (P1), P1 direction register (P1IO), debounce enable register (P15DB), P1 pull-up resistor selection register (P1PU), and P1 open-drain selection register (P1OD). Refer to the port function selection registers for the P1 function selection.

9.4.2 Register description for P1

P1 (P1 Data I	Register) : 88	н					
7	6	5	4	3	2	1	0
P17	P16	P15	P14	P13	P12	P11	P10
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00
	P1[7:0]	I/O Data				
P1IO (P1 Dire	ection Regist	er) : B1H					
7	6	5	4	3	2	1	0
P1710	P1610	P1510	P14Ю	P1310	P1210	P11Ю	P10IO
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00
	P11	O[7:0]	P1 Data I/O D	irection			
			0 I nput				
			1 O utpu	ut			
			NOTE: E INT when input	6/ENINT7/EIN	JT11/EINT12/S	SS2/EC1 fun	ction pos sibl
P1P[] <i>(</i> P1 Pu	II-un Resista	r Selection R	egister) : ADI	4			
7	6	5	4	3	2	1	0
P17PU	P16PU	P15PU	P14PU	P13PU	P12PU	P11PU	P10PU
				L	L	L	4

P17PU	P16PU	P15PU	P14PU	P13PU	P12PU	P11PU	P10PU	I
RW	RW	RW	RW	RW	RW	RW	RW	
						I	nitial value : 00	ЭН
	P1PU[7:0]			-up Resistor o	f P1 Port			
		(0 D isat	ole				
			1 Enab	le				

P1OD (P1 Open-drain Selection Register) : 92H

7	6	5	4	3	2	1	0
P17OD	P16OD	P15OD	P14OD	P13OD	P120D	P110D	P100D
RW	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : 08H
	P10	DD[7:0]	Configure Ope	en-drain of P1	Port		
			0 Pu sh	-pull output			
			10 pen	-drain output			

P15DB (P1/P5 Debounce Enable Register) : DFH

7	6	5	4	3	2	1	0
_	-	P54DB	P52DB	P17DB	P16DB	P12DB	P11DB
_	_	RW	RW	RW	RW	RW	RW
							Initial value : 00
	P54	4DB	Configure Del	oounce of P54	Port		
			0 Di s	able			
			1 En a	able			
	P52	2DB	Configure Del	oounce of P52	Port		
			0 Di s	able			
			1 En a	able			
	P17	7DB	Configure Debounce of P17 Port				
			0 Di s	able			
			1 En a	able			
	P16	6DB	Configure Del	pounce of P16	Port		
			0 Di s	able			
			1 En a	able			
	P12	2DB	Configure Del	oounce of P12	Port		
			0 Di s	able			
			1 En a	able			
	P11	IDB	Configure Del	oounce of P11	Port		
			0 Di s	able			
			1 En a	able			

- NOTES) 1. If the same level is not detected on enabled pin three or four times in a row at the sampling clock, the signal is eliminated as noise.
 - 2. A pulse level should be input for the duration of 3 clock or more to be actually detected as a valid edge.
 - 3. The port debounce is automatically disabled at stop mode and recovered after stop mode release.
 - 4. Refer to the port 0 debounce enable register (P0DB) for the debounce clock of port 1 and port 5.

9.5 P2 Port

9.5.1 P2 Port Description

P2 is 8-bit I/O port. P2 control registers consist of P2 data register (P2), P2 direction register (P2IO), P2 pull-up resistor selection register (P2PU) and P2 open-drain selection register (P2OD). Refer to the port function selection registers for the P2 function selection.

9.5.2 Register description for P2

P2 (P2 Data	Register) : 90	н					
7	6	5	4	3	2	1	0
P27	P26	P25	P24	P23	P22	P21	P20
RW	RW	RW	RW	RW	RW	RW	RW
	_	-	I/O Data				Initial value : 00
•	ection Regist	•					
7	6	5	4	3	2	1	0
P2710	P2610	P2510	P2410	P2310	P2210	P2110	P2010
RW	RW	RW	RW	RW	RW	RW	RW Initial value : 00
2PU (P2 Pu	II-up Resisto	Selection R	egister) : AEF	4	·		
7	6	5	4	3	2	1	0
P27PU	P26PU	P25PU	P24PU	P23PU	P22PU	P21PU	P20PU
RW	RW	RW	RW	RW	RW	RW	RW
	P2F		Configure Pull 0 D isat 1 Enab		of P2 Port		Initial value : 00
20D (P2 Or	oen-drain Sele	ection Regist	ter) · 93H				
20D (P2 Or 7	pen-drain Sele 6	ection Regis	ter) : 93H 4	3	2	1	0
		_	-	3 P230D	2 P220D	1 P210D	0 P200D

7	6	5	4	3	2	1	0
P27OD	P260D	P25OD	P24OD	P230D	P220D	P210D	P20OD
RW	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : 00H
	P2OD[7:0]		Configure Open-drain of P2 Port				
			0 Pu sh				
			10 pen	-drain output			
9.6 P3 Port

9.6.1 P3 Port Description

P3 is 8-bit I/O port. P3 control registers consist of P3 data register (P3), P3 direction register (P3IO) and P3 pull-up resistor selection register (P3PU). Refer to the port function selection registers for the P3 function selection.

9.6.2 Register description for P3

P3 (P3 Data F	Register) : 98	н									
7	6	5	4	3	2	1	0				
P37	P36	P35	P34	P33	P32	P31	P30				
RW	RW	RW	RW	RW	RW	RW	RW				
Initial value : 0											
	P3[7:0]	I/O Data								
P3IO (P3 Dire	ection Registe	er) : C1H									
7	6	5	4	3	2	1	0				
P3710	P3610	P3510	P3410	P3310	P3210	P3110	P3010				
RW	RW	RW	RW	RW	RW	RW	RW				
							Initial value : 00I				
	P3I	O[7:0]	P3 Data I/O D	irection							
			0 I nput								
			10 utp	ut							
P3PU (P3 Pu	II-up Resisto	Selection R	egister) : AFH	1							
7	6	5	4	3	2	1	0				
P37PU	P36PU	P35PU	P34PU	P33PU	P32PU	P31PU	P30PU				
RW	RW	RW	RW	RW	RW	RW	RW				
							Initial value : 00				
	P3F	PU[7:0]	Configure Pull	-up Resistor o	f P3 Port						
			0 D isat	ble							

1 Enab le

9.7 P4 Port

9.7.1 P4 Port Description

P4 is 4-bit I/O port. P4 control registers consist of P4 data register (P4), P4 direction register (P4IO), P4 pull-up resistor selection register (P4PU) and P4 open-drain selection register (P4OD). Refer to the port function selection registers for the P4 function selection.

9.7.2 Register description for P4

4 (P4 Data							
7	6	5	4	3	2	1	0
-	-	-	-	P43	P42	P41	P40
-	_	-	_	RW	RW	RW	RW
	P4[[3:0]	I/O Data				Initial value : 00
-	rection Regist	-	4	•			•
7	6	5	4	3	2	1	0
_	-	-	-	P4310	P4210	P4110	P40IO
-	-	-	-	RW	RW	RW	RW Initial value : 00
		O[3:0]	P4 Data I/O Di 0 I nput 1 O utpu	ut	o ubon input		
4PU (P4 Pi			0 I nput 1 O utpu NOTE: SS0 fu	ut nction possibl	e when input		
4PU (P4 Pi 7			0 I nput 1 O utpu	ut nction possibl	e when input	1	0
	ull-up Resisto	r Selection	0 I nput 1 O utpu NOTE: SS0 fu Register) : A3H	ut nction possibl		1 P41PU	0 P40PU
	ull-up Resisto	r Selection	0 I nput 1 O utpu NOTE: SS0 fu Register) : A3H	ut nction possibl I 3	2		т
	ull-up Resisto	r Selection	0 I nput 1 O utpu NOTE: SS0 fu Register) : A3H	ut nction possibl I 3 P43PU	2 P42PU	P41PU RW	P40PU
	ull-up Resisto 6 – –	r Selection	0 I nput 1 O utpu NOTE: SS0 fu Register) : A3H	ut nction possibl I 3 P43PU RW	2 P42PU RW	P41PU RW	P40PU RW
	ull-up Resisto 6 – –	r Selection 5 – –	0 I nput 1 O utpu NOTE: SS0 fu Register) : A3H 4 - -	ut nction possibl I P43PU RW -up Resistor c	2 P42PU RW	P41PU RW	P40PU RW
	ull-up Resisto 6 – –	r Selection 5 – –	0 I nput 1 O utpu NOTE: SS0 fu Register) : A3H 4 - Configure Pull 0 D isab	ut nction possibl I P43PU RW -up Resistor c	2 P42PU RW	P41PU RW	P40PU RW
7	ull-up Resisto 6 – –	r Selection 5 – – PU[3:0]	0 I nput 1 O utpu NOTE: SS0 fu Register) : A3H 4 - Configure Pull- 0 D isab 1 Enab I	ut nction possibl I P43PU RW -up Resistor c	2 P42PU RW	P41PU RW	P40PU RW

7 6 5 4 3 2 P430D P420D RW RW

P4OD[3:0] Configure Open-drain of P4 Port

0 Pu sh-pull output

1 O pen-drain output

P410D

RW

P40OD

RW

Initial value : 00H

9.8 P5 Port

9.8.1 P5 Port Description

P5 is 6-bit I/O port. P5 control registers consist of P5 data register (P5), P5 direction register (P5IO) and P5 pull-up resistor selection register (P5PU). Refer to the port function selection registers for the P5 function selection.

9.8.2 Register description for P5

7	6	5	4	3	2	1	0			
-	-	P55	P54	P53	P52	P51	P50			
_	-	RW	RW	RW	RW	RW	RW			
	P5[5:0] I/O Data									
5IO (P5 Dir	ection Regist	er) : D1H								
7	6	5	4	3	2	1	0			
_	_	P5510	P5410	P5310	P5210	P5110	P5010			
-	-	RW	RW	RW	RW	RW	RW			
- - RW RW RW RW RW P5IO[5:0] P5 Data I/O Direction 0 I nput 1 O utput NOTE: EC0/EINT8/EINT10/BLNK function possible when input Initial value : 00H										
7	6	5	4	3	2	1	0			
'	-									
-	-	P55PU	P54PU	P53PU	P52PU	P51PU	P50PU			

 P55PU
 P54PU
 P53PU
 P52PU
 P51PU
 P50PU

 RW
 RW
 RW
 RW
 RW
 RW
 Initial value : 00H

 P5PU[5:0]
 Configure Pull-up Resistor of P5 Port

 0
 D
 isable

1 Enab le

9.9 Port Function

9.9.1 Port Function Description

Port function control registers consist of Port function selection register 0 ~ 5. (P0FSRH/L ~ P5FSR).

9.9.2 Register description for P0FSRH/L ~ P5FSR

	6	5	4	3	2	1	0
-	-	POFSRH5	P0FSRH4	P0FSRH3	P0FSRH2	P0FSRH1	P0FSRH0
-	-	RW	RW	RW	RW	RW	RW
							Initial value : 0
	POF	SRH[5:4]	P07 Function	Select			
			P0FSRH5 P0	FSRH4 De	scription		
			0 0		Port (EI NT5 out)	function p o	ssible when
			0 1 SE		G22 Function		
			1 0 AN5		Function		
			11	PWM	4CB Functi	on	
	POF	SRH[3:2]	P06 Function	Select			
			P0FSRH3 P0	FSRH2 De	scription		
			0 0		Port (EI NT4	function p o	ssible when
				ιnμ	out)		
			0 1 SE	ուե	G23 Function		
			0 1 SE 1 0 AN4	ιιμ	,		
				PWM	G23 Function	on	
	POF	-SRH[1:0]	1 0 AN4	PWM	G23 Function Function	on	
	POF	-SRH[1:0]	1 0 AN4 1 1	PWM Select	G23 Function Function 4CA Function	on	
	POF	SRH[1:0]	1 0 AN4 1 1 P05 Function	PWM Select FSRH0 De I/C	G23 Function Function 4CA Function		ossible when
	POF	-SRH[1:0]	1 0 AN4 1 1 P05 Function P0FSRH1 P0	PWM Select FSRH0 De I/C	G23 Function Function 4CA Function scription		ossible when
	POF	⁻ SRH[1:0]	1 0 AN4 1 1 P05 Function P0FSRH1 P0 0 0	PWM Select FSRH0 De I/C	G23 Function Function 4CA Function scription Port (EI NT3 put)		ossible when

P0FSRH (Port 0 Function Selection High Register) : D3H

7	6	5	4	3	2	1	0
-	P0FSRL6	P0FSRL5	P0FSRL4	P0FSRL3	P0FSRL2	P0FSRL1	P0FSRL0
_	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00
	POF	SRL[6:5]	P04 Function	Select			
			POFSRL6 POF	SRL5 De	scription		
			0 0		Port (EI NT2 out)	function p o	ssible when
			0 1 SE		G25 Function		
			1 0 AN2		Function		
			11	PWM	4BA Function	on	
	POF	SRL[4:3]	P03 Function	Select			
			P0FSRL4 P0F	SRL3 De	scription		
			0 0		Port (El NT1 out)	function p o	ssible when
			0 1 SE		G26 Function		
			1 0 AN1		Function		
			11	PWM	4AB Function	on	
	POF	SRL[2:1]	P02 Function	Select			
			P0FSRL2 P0F	SRL1 De	scription		
			0 0		Port (EI NT0 out)	function p o	ssible when
			0 1 AV		REF Function		
			1 0 AN0		Function		
			1 1 T	4	O/PWM4A Fu	nction	
	POF	SRL0	P01 Function	Select			
			0 I/	OPort			
			1 T	30 Function			

P0FSRL (Port 0 Function Selection Low Register) : D2H

7	6	5	4	3	2	1	0	
P1FSRH7	P1FSRH6	P1FSRH5	P1FSRH4	P1FSRH3	P1FSRH2	P1FSRH1	P1FSRH0	
RW	RW	RW	RW	RW	RW	RW	RW	
						I	nitial value : 0	
	P1F	SRH[7:6]	P17 Function	Select				
			P1FSRH7 P1F	SRH6 De	scription			
			0 0	I/O	Port (EINT6/S	S2 function p	ossible when	
			00	inp	out)			
			0 1 SE		G21 Function			
			1 0 AN6		Function			
			1 1 Not		used			
	P1F	SRH[5:4]	P16 Function					
			P1FSRH5 P1F SRH4 De scription					
			0 0	I/O inp	Port (EI NT7 ut)	function p or	ssible when	
			0 1 SE		G20 Function			
			1 0 AN7		Function			
			1 1 SCK2		Function			
	P1F	SRH[3:2]	P15 Function	Select				
			P1FSRH3 P1F	SRH2 De	scription			
			001/	0	Port			
			0 1 SE		G19 Function			
			1 0 AN8		Function			
			1 1 M	18	SO2 Function			
	P1F	SRH[1:0]	P14 Function	Select				
			P1FSRH1 P0F	SRH0 De	scription			
			001/	0	Port			
			0 1 SE		G18 Function			
			UISE					
			1 0 AN9		Function			

P1FSRH (Port 1 Function Selection High Register) : D5H

7	6	5	4	3	2	1	0			
P1FSRL7	P1FSRL6	P1FSRL5	P1FSRL4	P1FSRL3	P1FSRL2	P1FSRL1	P1FSRL0			
RW	RW	RW	RW	RW	RW	RW	RW			
				Initial val						
	P1F	SRL[7:6]	P13 Function	Select						
			P1FSRL7 P1	FSRL6 De	scription					
			0 0	I/O	Port (EC1 fun	ction possible	when input)			
			0 1 SE G17 Function							
			1 0 AN10 Function							
			1 1 BUZO Function							
	P1F	SRL[5:4]	P12Function Select							
			P1FSRL5 P1 FSRL4 De scription							
			0 0 I/OPort (EINT11 function possible wh input)							
			0 1 SE		G16 Function					
			1 0 AN11		Function					
			1 1 T	10	O/PWM1O Fu	nction				
	P1F	SRL[3:2]	P11 Function	Select						
			P1FSRL3 P1	FSRL2 De	scription					
			0 0		Port (EINT12 out)	function possi	ible when			
			0 1 SE		G15 Function					
			1 0 AN12		Function					
			1 1 T	2	0/PWM20 Fu	nction				
	P1F	SRL[1:0]	P10 Function	Select						
		P1FSRL1 P1F SRL0 De scription								
			001/	0	Port					
			0 1 SE		G14 Function					
			1 0 AN13		Function					
			1 1 RXD1		/SCL1/MIS	O1 Function				

P1FSRL (Port 1 Function Selection Low Register) : D4H

гэкп (го	rt z Function	Selection Hig	gn Register) :				
7	6	5	4	3	2	1	0
_	_	-	-	P2FSRH3	P2FSRH2	P2FSRH1	P2FSRH0
_	_	_	-	RW	RW	RW	RW
						I	nitial value : 0
	P21	SRH3	P27 Function	select			
			0 I/ OI	Port			
			1 SEG	6 Function			
	P21	SRH2	P26 Function	Select			
			0 I/ OI	Port			
			1 SE	G7 Function			
	P21	SRH1	P25 Function	select			
			0 I/ OI	Port			
			1 SEG	8 Function			
	P21	SRH0	P24 Function	Select			

OPort

SEG9 Function

0 I/

1

P2FSRL (Port 2 Function Selection Low Register) : D6H

7	6	5	4	3	2	1	0	
_	-	P2FSRL5	P2FSRL4	P2FSRL3	P2FSRL2	P2FSRL1	P2FSRL0	
-	_	RW	RW	RW	RW	RW	RW	
						I	nitial value : 0	
	P2F	SRL5	P23 Function	Select				
			0 1/	OPort				
			1 SE	G10 Functio	n			
	P2FSRL4 P22Function Select							
	0 I/OPort (SS1 function possible when input)							
			1 SE	G11 Functio	n			
	P2F	SRL[3:2]	P21 Function	Select				
			P2FSRL3 P2F	SRL2 De	scription			
			0 0 I/	0	Port			
			0 1 SE		G12 Function			
			1 0 AN15		Function			
			1 1 SCK1		Function			
	P2F	SRL[1:0]	P20 Function	Select				
			P2FSRL1 P1F	SRL0 De	scription			
			0 0 I/	0	Port			
			0 1 SE		G13 Function			
			1 0 AN14		Function			
			1 1 T	Х	D1/SDA1/MO	SI1 Function		

7	6	5	4	3	2	1	0
P3FSR7	P3FSR6	P3FSR5	P3FSR	4 P3FSR3	P3FSR2	P3FSR1	P3FSR0
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00
	P3F	SR7	P37 Funct	ion select			
			0 I/	OPort			
			1 CO	M0 Function			
	P3F	SR6	P36 Funct	ion Select			
			0 I/	OPort			
			1	COM1 Function			
	P3F	SR5	P35 Funct	ion select			
				OPort			
			1 CO		nction		
	P3F	SR4	P34 Funct				
				OPort			
				COM3/SEG1 Fur	nction		
	P3F	SR3	P33 Funct				
				OPort			
	Dor		1	COM4/SEG2 or (n	
	P3F	SR2	P32 Funct 0 I/	OPort			
			1	COM5/SEG3 or (COM1 Eurotia	n	
	D2E	SR1	P31 Funct			ЛТ	
	FJF	JNI		OPort			
			1	COM6/SEG4 or (Function	
	P3F	SR0	P30 Funct				
		0.10	0 1/	OPort			
			0 <i></i> 1	COM7/SEG5 or (COM3/SEG5	Function	

P3FSR (Port 3 Function Selection Register) : EEH

NOTES) 1. The P30-P35 is automatically configured as common or segment signal according to the duty in the LCDCRL register when the pin is selected as the sub-function for common/segment.

2. The COM0-COM3 signals can be outputted through the P33-P30 pins. Refer to the LCD drive control high register (LCDCRH).

•

P4FSR (Port 4 Function Selection Register) : EFH

7	6	5	4	3	2	1	0		
_	P4FSR6	P4FSR5	P4FSR4	P4FSR3	P4FSR2	P4FSR1	P4FSR0		
-	RW	RW	RW	RW	RW	RW	RW		
							Initial value : 00		
	P4F	SR6	P43 Function Select						
			0 1/01	Port (SS0 fund	ction possible	when input)			
	P4F	SR[5:4]	P42 Function						
			P4FSR5 P4FS	SR 4 Descri	ption				
			001/	OPor	t				
			0 1 VL	C1	Function				
			1 0 SCK0		Function				
			1 1 Not	us	ed				
	P4F	SR[3:2]	P41 Function	Select					
			P4FSR3 P4FS	SR 2 Descri	ption				
			001/	OPor	t				
			0 1 VL	-	Function				
			1 0 T	XD0/	SDA0/MOSI0	Function			
			1 1 Not	us	ed				
	P4F	SR6[1:0]	P40 Function	Select					
			P4FSR1 P4FS	SR 0 Descri	ption				
			001/	OPor					
			0 1 VL		Function				
			1 0 RXD0	1	SCL0/MISO0	Function			
			1 1 Not	110	ed				

7	6	5	4	3	2	1	0			
-	_	P5FSR5	P5FSR4	P5FSR3	P5FSR2	P5FSR1	P5FSR0			
_	-	RW	RW	RW	RW	RW	RW			
							Initial value : 00H			
	P5F	SR5	P54 Function	Select						
			0 I/OPort (EINT10 function possible when input)							
	1 SXO UT Function									
	P5FSR[4:3] P53 Function Select									
	P5FSR4 P5FSR 3 Description									
	0 0 I/ OPort									
			0 1 SX IN Function							
			1 0 T 00/PWM00 Function							
			1 1 Not	us	ed					
	P5F	SR2	P51 Function	Select						
			1 0 I/	OPor	t					
			1 1 XIN	Fu	Inction					
	P5F	SR[1:0]	P50 Function	Select						
			P5FSR1 P5FS	SR 0 Descri	otion					
			001/	OPor	t					
			0 1 XO	UT	Function					
			1 0 Not	us	ed					
			1 1 Not	us	ed					

P5FSR (Port 5 Function Selection Register) : FFH

NOTE) Refer to the configure option for the P55/RESETB.

10. Interrupt Controller

10.1 Overview

The Z51F3220 supports up to 23 interrupt sources. The interrupts have separate enable register bits associated with them, allowing software control. They can also have four levels of priority assigned to them. The non-maskable interrupt source is always enabled with a higher priority than any other interrupt source, and is not controllable by software. The interrupt controller has following features:

- Receive the request from 23 interrupt source
- 6 group priority
- 4 priority levels
- Multi Interrupt possibility
- If the requests of different priority levels are received simultaneously, the request of higher priority level is served first.
- Each interrupt source can be controlled by EA bit and each IEx bit
- Interrupt latency: 3~9 machine cycles in single interrupt system

The non-maskable interrupt is always enabled. The maskable interrupts are enabled through four pair of interrupt enable registers (IE, IE1, IE2, IE3). Each bit of IE, IE1, IE2, IE3 register individually enables/disables the corresponding interrupt source. Overall control is provided by bit 7 of IE (EA). When EA is set to '0', all interrupts are disabled: when EA is set to '1', interrupts are individually enabled or disabled through the other bits of the interrupt enable registers. The EA bit is always cleared to '0' jumping to an interrupt service vector and set to '1' executing the [RETI] instruction. The Z51F3220 supports a four-level priority scheme. Each maskable interrupt is individually assigned to one of four priority levels according to IP and IP1.

Default interrupt mode is level-trigger mode basically, but if needed, it is possible to change to edge-trigger mode. Table 10-1 shows the Interrupt Group Priority Level that is available for sharing interrupt priority. Priority of a group is set by two bits of interrupt priority registers (one bit from IP, another one from IP1). Interrupt service routine serves higher priority interrupt first. If two requests of different priority levels are received simultaneously, the request of higher priority level is served prior to the lower one.

Interrupt Group	Highest			Lowest	
0 (Bit0)	Interrupt 0	Interrupt 6	Interrupt 12	Interrupt 18	Highest
1 (Bit1)	Interrupt 1	Interrupt 7	Interrupt 13	Interrupt 19	
2 (Bit2)	Interrupt 2	Interrupt 8	Interrupt 14	Interrupt 20	
3 (Bit3)	Interrupt 3	Interrupt 9	Interrupt 15	Interrupt 21	
4 (Bit4)	Interrupt 4	Interrupt 10	Interrupt 16	Interrupt 22	
5 (Bit5)	Interrupt 5	Interrupt 11	Interrupt 17	Interrupt 23	Lowest

Table 10-1 Interrupt Group Priority Level

10.2 External Interrupt

The external interrupt on INT0, INT1, INT5, INT6 and INT11 pins receive various interrupt request depending on the external interrupt polarity 0 high/low register (EIPOL0H/L) and external interrupt polarity 1 register (EIPOL1) as shown in Figure 10.1. Also each external interrupt source has enable/disable bits. The External interrupt flag 0 register (EIFLAG0) and external interrupt flag 1 register 1 (EIFLAG1) provides the status of external interrupts.

Figure 10.1 External Interrupt Description

10.3 Block Diagram

Figure 10.2 Block Diagram of Interrupt

- NOTES) 1. The release signal for stop/idle mode may be generated by all interrupt sources which are enabled without reference to the priority level.
 - 2. An interrupt request is delayed while data are written to IE, IE1, IE2, IE3, IP, IP1, and PCON register.

10.4 Interrupt Vector Table

The interrupt controller supports 24 interrupt sources as shown in the Table 10-2. When interrupt is served, long call instruction (LCALL) is executed and program counter jumps to the vector address. All interrupt requests have their own priority order.

Interrupt Source	Symbol	Interrupt Enable Bit	Polarity	Mask	Vector Address
Hardware Reset	RESETB	0 0	0	Non-Maskable	0000H
External Interrupt 10	INT0	IE.0	1	Maskable	0003H
External Interrupt 11	INT1	IE.1	2	Maskable	000BH
USI1 I2C Interrupt	INT2	IE.2	3	Maskable	0013H
USI1 Rx Interrupt	INT3	IE.3	4	Maskable	001BH
USI1 Tx Interrupt	INT4	IE.4	5	Maskable	0023H
External Interrupt 0 - 7	INT5	IE.5	6	Maskable	002BH
External Interrupt 8	INT6	IE1.0	7	Maskable	0033H
-	INT7	IE1.1	8	Maskable	003BH
USI0 I2C Interrupt	INT8	IE1.2	9	Maskable	0043H
USI0 Rx Interrupt	INT9	IE1.3	10	Maskable	004BH
USI0 Tx Interrupt	INT10	IE1.4	11	Maskable	0053H
External Interrupt 12	INT11	IE1.5	12	Maskable	005BH
T0 Overflow Interrupt	INT12	IE2.0	13	Maskable	0063H
T0 Match Interrupt	INT13	IE2.1	14	Maskable	006BH
T1 Match Interrupt	INT14	IE2.2	15	Maskable	0073H
T2 Match Interrupt	INT15	IE2.3	16	Maskable	007BH
T3 Match Interrupt	INT16	IE2.4	17	Maskable	0083H
T4 Interrupt	INT17	IE2.5	18	Maskable	008BH
ADC Interrupt	INT18	IE3.0	19	Maskable	0093H
SPI 2 Interrupt	INT19	IE3.1	20	Maskable	009BH
WT Interrupt	INT20	IE3.2	21	Maskable	00A3H
WDT Interrupt	INT21	IE3.3	22	Maskable	00ABH
BIT Interrupt	INT22	IE3.4	23	Maskable	00B3H
-	INT23	IE3.5	24	Maskable	00BBH

Table 10-2 Interrupt Vector Address Table

For maskable interrupt execution, EA bit must set '1' and specific interrupt must be enabled by writing '1' to associated bit in the IEx. If an interrupt request is received, the specific interrupt request flag is set to '1'. And it remains '1' until CPU accepts interrupt. If the interrupt is served, the interrupt request flag will be cleared automatically.

10.5 Interrupt Sequence

An interrupt request is held until the interrupt is accepted or the interrupt latch is cleared to '0' by a reset or an instruction. Interrupt acceptance always generates at last cycle of the instruction. So instead of fetching the current instruction, CPU executes internally LCALL instruction and saves the PC at stack. For the interrupt service routine, the interrupt controller gives the address of LJMP instruction to CPU. Since the end of the execution of current instruction, it needs 3~9 machine cycles to go to the interrupt service routine. The interrupt service task is terminated by the interrupt return instruction [RETI]. Once an interrupt request is generated, the following process is performed.

Z51F3220 Product Specification Zilog

Reduction in Life

Figure 10.3 Interrupt Vector Address Table

10.6 Effective Timing after Controlling Interrupt Bit

Case a) Control Interrupt Enable Register (IE, IE1, IE2, IE3)

Figure 10.4 Effective Timing of Interrupt Enable Register

Case b) Interrupt flag Register

Figure 10.5 Effective Timing of Interrupt Flag Register

10.7 Multi Interrupt

If two requests of different priority levels are received simultaneously, the request of higher priority level is served first. If more than one interrupt request are received, the interrupt polling sequence determines which request is served first by hardware. However, for special features, multi-interrupt processing can be executed by software.

Figure 10.6 Effective Timing of Interrupt

Figure 10.6 shows an example of multi-interrupt processing. While INT1 is served, INT0 which has higher priority than INT1 is occurred. Then INT0 is served immediately and then the remain part of INT1 service routine is executed. If the priority level of INT0 is same or lower than INT1, INT0 will be served after the INT1 service has completed.

An interrupt service routine may be only interrupted by an interrupt of higher priority and, if two interrupts of different priority occur at the same time, the higher level interrupt will be served first. An interrupt cannot be interrupted by another interrupt of the same or a lower priority level. If two interrupts of the same priority level occur simultaneously, the service order for those interrupts is determined by the scan order.

Z51F3220 Product Specification

10.8 Interrupt Enable Accept Timing

Figure 10.7 Interrupt Response Timing Diagram

10.9 Interrupt Service Routine Address

Figure 10.8 Correspondence between Vector Table Address and the Entry Address of ISP

10.10 Saving/Restore General-Purpose Registers

Figure 10.9 Saving/Restore Process Diagram and Sample Source

10.11 Interrupt Timing

Figure 10.10 Timing Chart of Interrupt Acceptance and Interrupt Return Instruction

Interrupt sources are sampled at the last cycle of a command. If an interrupt source is detected the lower 8-bit of interrupt vector (INT_VEC) is decided. M8051W core makes interrupt acknowledge at the first cycle of a command, and executes long call to jump to interrupt service routine.

NOTE) command cycle CLPx: L=Last cycle, 1=1st cycle or 1st phase, 2=2nd cycle or 2nd phase

10.12 Interrupt Register Overview

10.12.1 Interrupt Enable Register (IE, IE1, IE2, IE3)

Interrupt enable register consists of global interrupt control bit (EA) and peripheral interrupt control bits. Total 24 peripherals are able to control interrupt.

10.12.2 Interrupt Priority Register (IP, IP1)

The 24 interrupts are divided into 6 groups which have each 4 interrupt sources. A group can be assigned 4 levels interrupt priority using interrupt priority register. Level 3 is the highest priority, while level 0 is the lowest priority. After a reset IP and IP1 are cleared to '00H'. If interrupts have the same priority level, lower number interrupt is served first.

10.12.3 External Interrupt Flag Register (EIFLAG0, EIFLAG1)

The external interrupt flag 0 register (EIFLAG0) and external interrupt flag 1 register (EIFLAG1) are set to '1' when the external interrupt generating condition is satisfied. The flag is cleared when the interrupt service routine is executed. Alternatively, the flag can be cleared by writing '0' to it.

10.12.4 External Interrupt Polarity Register (EIPOL0L, EIPOL0H, EIPOL1)

The external interrupt polarity 0 high/low register (EIPOL0H/L) and external interrupt polarity 1 register (EIPOL1) determines which type of rising/falling/both edge interrupt. Initially, default value is no interrupt at any edge.

10.12.5 Register Map

Name	Address	Dir	Default	Description
IE	A8H	R/W	00H	Interrupt Enable Register
IE1	A9H	R/W	00H	Interrupt Enable Register 1
IE2	AAH	R/W	00H	Interrupt Enable Register 2
IE3	ABH	R/W	00H	Interrupt Enable Register 3
IP B8H		R/W	00H	Interrupt Polarity Register
IP1 F	8H	R/W	00H	Interrupt Polarity Register 1
EIFLAG0	C0H	R/W	00H	External Interrupt Flag 0 Register
EIPOL0L	A4H	R/W	00H	External Interrupt Polarity 0 Low Register
EIPOL0H	A5H	R/W	00H	External Interrupt Polarity 0 High Register
EIFLAG1	A6H	R/W	00H	External Interrupt Flag 1 Register
EIPOL1	A7H	R/W	00H	External Interrupt Polarity 1 Register

Table 10-3 Interrupt Register Map

10.13 Interrupt Register Description

The interrupt register is used for controlling interrupt functions. Also it has external interrupt control registers. The interrupt register consists of interrupt enable register (IE), interrupt enable register 1 (IE1), interrupt enable register 2 (IE2) and interrupt enable register 3 (IE3). For external interrupt, it consists of external interrupt flag 0 register (EIFLAG0), external interrupt polarity 0 high/low register (EIPOL0H/L), external interrupt flag 1 register (EIFLAG1) and external interrupt polarity 1 register (EIPOL1).

10.13.1 Register Description for Interrupt

7	6	5	4	3	2	1	0		
EA	-	INT5E	INT4E	INT3E	INT2E	INT1E	INT0E		
RW	_	RW	RW	RW	RW	RW	RW		
						I	nitial value : 00		
	EA		Enable or Disable All Interrupt bits						
			0 All Interrupt disable						
			1 All Interrupt enable						
	INT	5E	Enable or Disable External Interrupt 0 ~ 7 (EINT0 ~ EINT7)						
			0 D isal	ole					
			1 Enab	le					
	INT	4E	Enable or Dis	able USI1 Tx I	nterrupt				
			0 D isal	ole					
			1 Enab	le					
	INT3E			able USI1 Rx	nterrupt				
			0 D isal	ole					
			1 Enab	le					
	INT	2E	Enable or Dis	able USI1 I2C	Interrupt				
			0 D isal	ble					
			1 Enab	le					
	INT1E			able External I	nterrupt 11(EI	NT11)			
			0 D isal	ole					
			1 Enab	le					
	INT	0E	Enable or Dis	able External I	nterrupt 10 (E	INT10)			
			0 D isal	ole					
			1 Enab	le					

IE (Interrupt Enable Register) : A8H

IE1 (Interrupt Enable Register 1): A9H

7	6	5	4	3	2	1	0		
_	_	INT11E	INT10E	INT9E	INT8E	_	INT6E		
_	-	RW	RW	RW	RW	_	RW		
							Initial value: 00		
	INT	11E	Enable or Disable External Interrupt 12 (EINT12)						
			0 D isa	ble					
			1 Enab	le					
	INT	10E	Enable or Dis	able USI0 Tx I	nterrupt				
			0 D isa	ble					
				le					
	INT9E			able USI0 Rx	Interrupt				
			0 D isa	ble					
			1 Enab	le					
	INT8E			able USI0 I2C	Interrupt				
				ble					
				le					
	INT6E			able External I	nterrupt 8 (EIN	NT8)			
			0 D isa	ble					
			1 Enab	le					

IE2 (Interrupt Enable Register 2) : AAH

7	6	5	4	3	2	1	0
_	_	INT17E	INT16E	INT15E	INT14E	INT13E	INT12E
_	_	RW	RW	RW	RW	RW	RW
							Initial value : 00
	INT	17E	Enable or D	isable Timer 4 I	nterrupt		
			0 D is	able			
			1 Enab	le			
INT16E			Enable or D	isable Timer 3 N	Aatch Interrupt		
			0 D is	able			
			1 Enab	le			
INT15E			Enable or D	isable Timer 2 N	Aatch Interrupt		
			0 D is	able			
			1 Enab	le			
	INT	14E	Enable or D	isable Timer 1 N	Aatch Interrupt		
			0 D is	able			
			1 Enab	le			
INT13E		Enable or D	isable Timer 0 I	Match nterrup	t		
			0 D is	able			
		1 Enab	le				
	INT	12E	Enable or D	isable Timer 0 C	Overflow Interro	upt	
			0 D is	able			
			1 Enab	le			

IE3 (Interrupt Enable Register 3) : ABH

7	6	5	4	3	2	1	0		
_	_	-	INT22E	INT21E	INT20E	INT19E	INT18E		
_	-	-	RW	RW	RW	RW	RW		
						I	nitial value : 00H		
	INT	22E	Enable or Disable BIT Interrupt						
			0 D isable						
			1 Enab	le					
	INT	21E	Enable or Disa	able WDT Inte	rrupt				
			0 D isat	ole					
			1 Enab	le					
INT20E			Enable or Disable WT Interrupt						
			0 D isable						
			1 Enab	le					
INT19E			Enable or Disa	able SPI 2 Inte	errupt				
			0 D isat	ole					
			1 Enab	le					
	INT18E			able ADC Inter	rrupt				
			0 D isat	ole					
			1 Enab	le					

Z51F3220 **Product Specification** zilog

IP (Interrupt Priority Register) : B8H

IP5 IP4 IP3 IP2 IP1 IP0	7	6	5	4	3	2	1	0	
	-	-	IP5	IP4	IP3	IP2	IP1	IP0	
	-	-	RW	RW	RW	RW	RW	RW	

Initial value : 00H

IP1 (Interrupt Priority Register 1) : F8H

7	6	5	4	3	2	1	0
– – IP15			IP14	IP13	IP12	IP11	IP10
-	-	RW	RW	RW	RW	RW	RW
							nitial value : 00
	IP[5	5:0],	Select Interrupt Group Priority				

IF[5:0],	Select II	nenupi	Sloup Phoney
IP1[5:0]	IP1x I	Px	Description
	0 0		level 0 (lowest)
	0 1		level 1
	10		level 2
	11		level 3 (highest)

EIFLAG0 (External Interrupt Flag 0 Register) : C0H

7	6	5	4	3	2	1	0
FLAG7	FLAG6	FLAG5	FLAG4	FLAG3	FLAG2	FLAG1	FLAG0
RW							

Initial value : 00H

EIFLAG0[7:0] When an External Interrupt 0-7 is occurred, the flag becomes '1'. The flag is cleared only by writing '0' to the bit. So, the flag should be cleared by software.

0 External Interrupt 0 ~ 7 not occurred

1 External Interrupt 0 ~ 7 occurred

EIPOL0H (External Interrupt Polarity 0 High Register): A5H

7	6	5	4	3	2	1	0
PC	OL7	PC	POL6 POL5		POL4		
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value: 00F
	EIP	OL0H[7:0]	External interr	upt (EINT7, E	INT6, EINT5, I	EINT4) polarit	y selection

POLn[1:0]	De scription							
0 0	No interrupt at any edge							
0 1	Interrupt on rising edge							
1 0	Interrupt on falling edge							
1 1	Interrupt on both of rising and fa	alling edge						
Where n =	Where n =4, 5, 6 and 7							

EIPOL0L (External Interrupt Polarity 0 Low Register): A4H

3	-			3	2	I	0	
,	F	POL2		POL1		POL0		
RW	RW	RM	V	RW RW		RW	RW	
							Initial value: 0	
EIP	OL0L[7:0]	External interrupt (EINT0, EINT1, EINT2, EINT3) polarity selection						
		POLn[1:0	0] De	scriptio	n			
		0	0	No interru	ot at any edge			
		0	1	I Interrupt on rising edge				
		1	0	Interrupt o	n falling edge			
		1 1 Interrupt on both of rising and falling edg					edge	
		RW RW	EIPOLOL[7:0] External POLn[1: 0 0 1 1 1	EIPOLOL[7:0] External interrup POLn[1:0] De 0 0 0 1 1 0 1 1	EIPOLOL[7:0] External interrupt (EINTO, El POLn[1:0] De scription 0 0 No interrup 0 1 Interrupt o 1 0 Interrupt o	EIPOLOL[7:0]External interrupt (EINT0, EINT1, EINT2, I POLn[1:0] De scription00No interrupt at any edge01Interrupt on rising edge10Interrupt on falling edge11Interrupt on both of rising	EIPOLOL[7:0] External interrupt (EINT0, EINT1, EINT2, EINT3) polari POLn[1:0] De scription 0 0 No interrupt at any edge 0 1 Interrupt on rising edge 1 0 Interrupt on falling edge 1 1 Interrupt on both of rising and falling edge	

Where n =0, 1, 2 and 3

7	6	5	4	3	2	1	0		
TOOVIFR	TOIFR	T3IFR	-	FLAG12	FLAG11	FLAG10	FLAG8		
RW	RW	RW	-	RW	RW	RW	RW		
						I	nitial value : 00ł		
	тос	OVIFR	When T0 overflow interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit or automatically clear by INT_ACK signal.						
			0 T0 ov	erflow Interru	pt no generati	on			
			1 T0 ov	erflow Interru	pt generation				
	TOI	FR	When T0 interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit or automatically clear by INT_ACK signal.						
			0 T0 Interrupt no generation						
			1 T0 Interrupt generation						
	T3I	FR	When T3 interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit or automatically clear by INT_ACK signal.						
			0 T3 Interrupt no generation						
			1 T3 In	terrupt genera	ation				
	EIF	LAG1[3:0]	When a n External Interrupt (EINT8, EINT10-EINT12) is occurred, the flag becomes '1'. The flag is cleared by writing '0' to the bit or automatically cleared by INT_ACK signal.						
			0 External Interrupt not occurred						
			1 Exter	nal Interrupt o	ccurred				

EIFLAG1 (External Interrupt Flag 1 Register) : A6H

EIPOL1 (External Interrupt Polarity 1 Register): A7H

7	6	5	4	3	2	1	0		
PO	L12	Р	OL11	POL10		Р	OL8		
RW	RW	RW	RW	RW	RW	RW	RW		
							Initial value: 00H		
	EIP	OL1[7:0]	External interr	upt (EINT8,EI	NT10,EINT11,	EINT12) pola	arity selection		
			POLn[1:0] De	scriptio	n				
			0 0	No interru	No interrupt at any edge				
			0 1	Interrupt on rising edge					
			1 0	Interrupt o	Interrupt on falling edge				
			1 1	Interrupt o	Interrupt on both of rising and falling edge				
	Where n =8, 10, 11 and 12								

11. Peripheral Hardware

11.1 Clock Generator

11.1.1 Overview

As shown in Figure 11.1, the clock generator produces the basic clock pulses which provide the system clock to be supplied to the CPU and the peripheral hardware. It contains main/sub-frequency clock oscillator. The main/sub clock operation can be easily obtained by attaching a crystal between the XIN/SXIN and XOUT/SXOUT pin, respectively. The main/sub clock can be also obtained from the external oscillator. In this case, it is necessary to put the external clock signal into the XIN/SXIN pin and open the XOUT/SXOUT pin. The default system clock is 1MHz INT-RC Oscillator and the default division rate is eight. In order to stabilize system internally, it is used 1MHz INT-RC oscillator on POR.

- Calibrated Internal RC Oscillator (16 MHz)
 - . INT-RC OSC/1 (16 MHz)
 - . INT-RC OSC/2 (8 MHz)
 - . INT-RC OSC/4 (4 MHz)
 - . INT-RC OSC/8 (2 MHz)
 - . INT-RC OSC/16 (1 MHz, Default system clock)
 - . INT-RC OSC/32 (0.5 MHz)
- Main Crystal Oscillator (0.4~12 MHz)
- Sub Crystal Oscillator (32.768 kHz)
- Internal WDTRC Oscillator (5 kHz)

11.1.2 Block Diagram

Figure 11.1 Clock Generator Block Diagram

11.1.3 Register Map

Table 11-1 Clock Generator Register Map

Name	Address	Dir	Default	Description
SCCR	8AH	R/W	00H	System and Clock Control Register
OSCCR C8	Н	R/W	20H	Oscillator Control Register

11.1.4 Clock Generator Register Description

The clock generator register uses clock control for system operation. The clock generation consists of System and clock control register and oscillator control register.

11.1.5 Register Description for Clock Generator

7	6	5	4	3	2	1	0	
_	-	-	-	-	_	SCLK1	SCLK0	
-	-	-	_	_	-	RW	RW	
						I	nitial value : 00	
	SC	LK [1:0]	System Clock	Selection Bit				
			SCLK1 SC LH	K0 Descriptio	n			
			0 0	INT RC O	SC (f _{IRC}) for s	ystem clock		
			0 1 External Main OSC (f _{XIN}) for system clock					
			1 0	External S	External Sub OSC (f _{SUB}) for system clock			
			1 1 Not used					

SCCR (System and Clock Control Register) : 8AH

OSCCR (Oscillator Control Register) : C8H

7	6	5	4	3	2	1	0
_	-	IRCS2	IRCS1	IRCS0	IRCE	XCLKE	SCLKE
-	-	RW	RW	RW	RW	RW	RW
							Initial value : 08H
	IRC	S[2:0]	Internal RC Os	scillator Post-	divider Selection	on	
			IRCS21 RCS	1 IRCS0 E	Description		
			0 0	0 I	NT-RC/32 (0.5	iMHz)	
			0 0	1 I	NT-RC/16 (1M	lHz)	
			0 1	0 I	NT-RC/8 (2MF	łz)	
			0 1	1 I	NT-RC/4 (4MF	łz)	
			10	0 I	NT-RC/2 (8MF	łz)	
			10	1 I	NT-RC/1 (16M	lHz)	
			Other values				
	IRC	E	Control the Op	Oscillator			
			0 Enab	le operation o	f INT-RC OSC	;	
			1 Disab	le operation of	of INT-RC OSC	0	
	XCI	LKE	Control the Op	eration of the	External Mair	n Oscillator	
			0 Disab	le operation of	of X-TAL		
			1 Enab	le operation o	f X-TAL		
	SCI	LKE	Control the Op	eration of the	External Sub	Oscillator	
			0 Disab	le operation o	of SX-TAL		
			1 Enab	le operation o	f SX-TAL		

11.2 Basic Interval Timer

11.2.1 Overview

The Z51F3220 has one 8-bit basic interval timer that is free-run and can't stop. Block diagram is shown in Figure 11.2. In addition, the basic interval timer generates the time base for watchdog timer counting. It also provides a basic interval timer interrupt (BITIFR).

The Z51F3220 has these basic interval timer (BIT) features:

- During Power On, BIT gives a stable clock generation time
- On exiting Stop mode, BIT gives a stable clock generation time
- As timer function, timer interrupt occurrence

11.2.2 Block Diagram

Figure 11.2 Basic Interval Timer Block Diagram

11.2.3 Register Map

Name	Address	Dir	Default	Description
BITCNT 8CH		R	00H	Basic Interval Timer Counter Register
BITCR	8BH	R/W	01H	Basic Interval Timer Control Register

Table 11-2 Basic Interval Timer Register Map

11.2.4 Basic Interval Timer Register Description

The basic interval timer register consists of basic interval timer counter register (BITCNT) and basic interval timer control register (BITCR). If BCLR bit is set to '1', BITCNT becomes '0' and then counts up. After 1 machine cycle, BCLR bit is cleared to '0' automatically.

11.2.5 Register Description for Basic Interval Timer

BITCNT (Basic Interval Timer Counter Register) : 8CH

BITCNT[7:0]

7	6	5	4	3	2	1	0
BITCNT7	BITCNT6	BITCNT5	BITCNT4	BITCNT3	BITCNT2	BITCNT1	BITCNTO
R	R	R	R	R	R	R	R
							nitial value : 00H

BIT Counter

BITCR (Basic Interval Timer Control Register) : 8BH

7	6	5	4	L .	3	2	1	0	
BITIFR	BITCK1	BITCK0	-	-	BCLR	BCK2	BCK1	BCK0	
RW	RW	RW	-	-	RW	RW	RW	RW	
								nitial value : 01F	
	BIT	IFR	When BIT Interrupt occurs, this bit becomes '1'. For clearing bit, w to this bit or auto clear by INT_ACK signal.						
			0	BIT ir	nterrupt no ge	neration			
			1	BIT ir	nterrupt gener	ation			
	BIT	CK[1:0]	Select B	IT cloc	k source				
			BITCK1	BIT C	K0 De script	tion			
			0 0		fx/4096				
			0 1		fx/1024				
			10		fx/128				
			11		fx/16				
	BCI	LR	If this bit is written to '1', BIT Counter is cleared to '0'						
			0 Free Running						
			1 Clear		Counter				
	BCI	K[2:0]	Select B	IT over	flow period				
			BCK2 B	CK1	BCK0	Description			
			0	0	0	Bit 0 overflow	(BIT Clock *	2)	
			0	0	1	Bit 1 overflow	(BIT Clock *	4) (default)	
			0	1	0	Bit 2 overflow	(BIT Clock *	8)	
			0	1	1	Bit 3 overflow	(BIT Clock *	16)	
			1	0	0	Bit 4 overflow	(BIT Clock *	32)	
			1	0	1	Bit 5 overflow	(BIT Clock *	64)	
			1	1	0	Bit 6 overflow	(BIT Clock *	128)	
			1	1	1	Bit 7 overflow	(BIT Clock *	256)	

11.3 Watch Dog Timer

11.3.1 Overview

The watchdog timer rapidly detects the CPU malfunction such as endless looping caused by noise or something like that, and resumes the CPU to the normal state. The watchdog timer signal for malfunction detection can be used as either a CPU reset or an interrupt request. When the watchdog timer is not being used for malfunction detection, it can be used as a timer to generate an interrupt at fixed intervals. It is possible to use free running 8-bit timer mode (WDTRSON='0') or watch dog timer mode (WDTRSON='1') as setting WDTCR[6] bit. If WDTCR[5] is written to '1', WDT counter value is cleared and counts up. After 1 machine cycle, this bit is cleared to '0' automatically. The watchdog timer consists of 8-bit binary counter and the watchdog timer data register. When the value of 8-bit binary counter is equal to the 8 bits of WDTCNT, the interrupt request flag is generated. This can be used as Watchdog timer interrupt or reset of CPU in accordance with the bit WDTRSON.

The input clock source of watch dog timer is the BIT overflow. The interval of watchdog timer interrupt is decided by BIT overflow period and WDTDR set value. The equation can be described as

WDT Interrupt Interval = (BIT Interrupt Interval) X (WDTDR Value+1)

11.3.2 WDT Interrupt Timing Waveform

Figure 11.3 Watch Dog Timer Interrupt Timing Waveform
11.3.3 Block Diagram

Figure 11.4 Watch Dog Timer Block Diagram

11.3.4 Register Map

Table 11-3 Watch Do	g Timer Register Map
---------------------	----------------------

Name	Address	Dir	Default Description	
WDTCNT 8EH		R	00H	Watch Dog Timer Counter Register
WDTDR	8EH	W	FFH	Watch Dog Timer Data Register
WDTCR	8DH	R/W	00H	Watch Dog Timer Control Register

11.3.5 Watch Dog Timer Register Description

The watch dog timer register consists of watch dog timer counter register (WDTCNT), watch dog timer data register (WDTDR) and watch dog timer control register (WDTCR).

11.3.6 Register Description for Watch Dog Timer

WDTCNT (Watch Dog Timer Counter Register, Reau Case), och													
7	6	5	4	3	2	1	0						
WDTCNT7	WDTCNT6	WDTCNT 5	WDTCNT4	WDTCNT3	WDTCNT2	WDTCNT 1	WDTCNT 0						
R	R	R	R	R	R	R	R						
							Initial value : 00	ЭН					

WDTCNT (Watch Dog Timer Counter Register: Read Case) · 8FH

WDTCNT[7:0] WDT Counter

WDTDR (Watch Dog Timer Data Register: Write Case) : 8EH

7	6	5	4	3	2	1	0
WDTDR7	WDTDR6	WDTDR5	WDTDR4	WDTDR3	WDTDR2	WDTDR 1	WDTDR0
W	W	W	W	W	W	W	W

Initial value : FFH

WDTDR[7:0]

Set a period WDT Interrupt Interval=(BIT Interrupt Interval) x(WDTDR Value+1)

NOTE) Do not write "0" in the WDTDR register.

WDTCR (Watch Dog Timer Control Register) : 8DH

WDTCL

WDTCK

WDTIFR

7	6	5	4	3	2	1	0
WDTEN	WDTRSON	WDTCL	-	_	-	WDTCK	WDTIFR
RW	RW	RW	-	-	-	RW	RW
						I	nitial value : 00H
	WD	TEN C	Control WDT C	peration			
		0	Di sable	9			
		1	Enab le)			
	WD	TRSON C	Control WDT R	ESET Operat	ion		
		0	Free R	unning 8-bit ti	mer		

1 Watch Dog Timer RESET ON

Run

Control WDT Clock Selection Bit

'0' to this bit or auto clear by INT_ACK signal.

Interrupt no generation

Interrupt generation

Clear WDT Counter (auto clear after 1 Cycle)

BIT overflow for WDT clock (WDTRC disable) WDTRC for WDT xlock (WDTRC enable)

When WDT Interrupt occurs, this bit becomes '1'. For clearing bit, write

Clear WDT Counter

0 Free

1

0

1

0 WDT

1 WDT

11.4 Watch Timer

11.4.1 Overview

The watch timer has the function for RTC (Real Time Clock) operation. It is generally used for RTC design. The internal structure of the watch timer consists of the clock source select circuit, timer counter circuit, output select circuit, and watch timer control register. To operate the watch timer, determine the input clock source, output interval, and set WTEN to '1' in watch timer control register (WTCR). It is able to execute simultaneously or individually. To stop or reset WT, clear the WTEN bit in WTCR register. Even if CPU is STOP mode, sub clock is able to be so alive that WT can continue the operation. The watch timer counter circuits may be composed of 21-bit counter which contains low 14-bit with binary counter and high 7-bit counter in order to raise resolution. In WTDR, it can control WT clear and set interval value at write time, and it can read 7-bit WT counter value at read time.

The watch timer supplies the clock frequency for the LCD driver (f_{LCD}). Therefore, if the watch timer is disabled, the LCD driver controller does not operate.

11.4.2 Block Diagram

Figure 11.5 Watch Timer Block Diagram

11.4.3 Register Map

Name	Address	Dir	Default	Description
WTCNT	89H	R	00H	Watch Timer Counter Register
WTDR	89H	W	7FH	Watch Timer Data Register
WTCR	96H	R/W	00H	Watch Timer Control Register

Table 11-4 Watch Timer Register Map

11.4.4 Watch Timer Register Description

The watch timer register consists of watch timer counter register (WTCNT), watch timer data register (WTDR), and watch timer control register (WTCR). As WTCR is 6-bit writable/ readable register, WTCR can control the clock source (WTCK[1:0]), interrupt interval (WTIN[1:0]), and function enable/disable (WTEN). Also there is WT interrupt flag bit (WTIFR).

11.4.5 Register Description for Watch Timer

WTCNT (Watch Timer Counter Register: Read Case) : 89H 7 6 5 4 3 2 1 0 WTCNT6 WTCNT 5 WTCNT4 WTCNT3 WTCNT 2 WTCNT1 WTCNT0 _ R R R R R R R _ Initial value : 00H WTCNT[6:0] WT Counter WTDR (Watch Timer Data Register: Write Case) : 89H 6 5 4 2 0 7 3 1 WTCL WTDR6 WTDR3 WTDR0 WTDR5 WTDR4 WTDR2 WTDR1 RW W W W W W W W Initial value : 7FH WTCL **Clear WT Counter** 0 Free Run 1 Clear WT Counter (auto clear after 1 Cycle) WTDR[6:0] Set WT period WT Interrupt Interval=fwck/(2^14 x(7bit WTDR Value+1)) NOTE) Do not write "0" in the WTDR register.

WTCR (Watch Timer Control Register) : 96H

7	6	5	4	3	2	1	0
WTEN	_	_	WTIFR	WTIN1	WTIN0	WTCK1	WTCK0
RW	-	-	RW	RW	RW	RW	RW
						I	nitial value : 0
	WT	EN	Control Watch	Timer			
			0 Di s	able			
			1 En a	able			
	WT	IFR	When WT In te write '0' to this				•
			0 WT	Interrupt no g	generation		
			1 WT	Interrupt gen	eration		
	WT	IN[1:0]	Determine inte	errupt interval			
			WTIN1 WTI	N0 De scri	ption		
			0 0 f	_{wск} /2'	^7		
			0 1 f	_{wcк} /2'	`13		
			1 0 f	_{wск} /2'	^14		
			1 1 f	_{wcк} /(2	2^14 x (7bit W	(DR Value+1)
	WT	CK[1:0]	Determine So	urce Clock			
			WTCK1 WTC	K0 De scri	ption		
			0 0 f	SUB			
			0 1 f	_x /256			
			1 0 f	_x /128			
			1 1 f	_× /64			
DTE)f _x -S	System clock f	frequency (Where fx= 4.19N	(Hz)			
f _{SUB} -	 Sub clock o 	scillator free	quency (32.768k	Hz)			

 $f_{\text{WCK}}-$ Selected Watch timer clock

 f_{LCD} – LCD frequency (Where f_X = 4.19MHz, WTCK[1:0]='10'; f_{LCD} = 1024Hz)

11.5 Timer 0

11.5.1 Overview

The 8-bit timer 0 consists of multiplexer, timer 0 counter register, timer 0 data register, timer 0 capture data register and timer 0 control register (T0CNT, T0DR, T0CDR, T0CR).

It has three operating modes:

- 8-bit timer/counter mode
- 8-bit PWM output mode
- 8-bi t capture mode

The timer/counter 0 can be clocked by an internal or an external clock source (EC0). The clock source is selected by clock selection logic which is controlled by the clock selection bits (T0CK[2:0]).

- TIMER 0 clock source: f_X/2, 4, 8, 32, 128, 512, 2048 and EC0

In the capture mode, by EINT10, the data is captured into input capture data register (T0CDR). In timer/counter mode, whenever counter value is equal to T0DR, T0O port toggles. Also the timer 0 outputs PWM waveform through PWM0O port in the PWM mode.

T0EN T0	MS[1:0]	T0CK[2:0]	Timer 0
1	00	XXX	8 Bit Timer/Counter Mode
1	01	XXX	8 Bit PWM Mode
1	1X	XXX	8 Bit Capture Mode

Table 11-5 Timer 0 Operating Modes

11.5.2 8-Bit Timer/Counter Mode

The 8-bit timer/counter mode is selected by control register as shown in Figure 11.6.

The 8-bit timer have counter and data register. The counter register is increased by internal or external clock input. Timer 0 can use the input clock with one of 2, 4, 8, 32, 128, 512 and 2048 prescaler division rates (T0CK[2:0]). When the value of T0CNT and T0DR is identical in timer 0, a match signal is generated and the interrupt of Timer 0 occurs. T0CNT value is automatically cleared by match signal. It can be also cleared by software (T0CC).

The external clock (EC0) counts up the timer at the rising edge. If the EC0 is selected as a clock source by T0CK[2:0], EC0 port should be set to the input port by P52IO bit.

Figure 11.6 8-Bit Timer/Counter Mode for Timer 0

Figure 11.7 8-Bit Timer/Counter 0 Example

11.5.3 8-Bit PWM Mode

The timer 0 has a high speed PWM (Pulse Width Modulation) function. In PWM mode, T0O/PWM00 pin outputs up to 8-bit resolution PWM output. This pin should be configured as a PWM output by setting the T0O/PWM00 function by P5FSR[4:3] bits. In the 8-bit timer/counter mode, a match signal is generated when the counter value is identical to the value of T0DR. When the value of T0CNT and T0DR is identical in timer 0, a match signal is generated and the interrupt of timer 0 occurs. In PWM mode, the match signal does not clear the counter. Instead, it runs continuously, overflowing at "FFH", and then continues incrementing from "00H". The timer 0 overflow interrupt is generated whenever a counter overflow occurs. T0CNT value is cleared by software (T0CC) bit.

Figure 11.8 8-Bit PWM Mode for Timer 0

Figure 11.9 PWM Output Waveforms in PWM Mode for Timer 0

11.5.4 8-Bit Capture Mode

The timer 0 capture mode is set by T0MS[1:0] as '1x'. The clock source can use the internal/external clock. Basically, it has the same function as the 8-bit timer/counter mode and the interrupt occurs when T0CNT is equal to T0DR. T0CNT value is automatically cleared by match signal and it can be also cleared by software (T0CC).

This timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer.

The capture result is loaded into T0CDR. In the timer 0 capture mode, timer 0 output (T0O) waveform is not available.

According to EIPOL1 registers setting, the external interrupt EINT10 function is chosen. Of cource, the EINT10 pin must be set to an input port.

T0CDR and T0DR are in the same address. In the capture mode, reading operation reads T0CDR, not T0DR and writing operation will update T0DR.

Figure 11.10 8-Bit Capture Mode for Timer 0

Figure 11.11 Input Capture Mode Operation for Timer 0

Figure 11.12 Express Timer Overflow in Capture Mode

runia.

11.5.5 Block Diagram

Figure 11.13 8-Bit Timer 0 Block Diagram

11.5.6 Register Map

Table 11-6 Timer 0 Register Map

Name	Address	Dir	Default	Description
T0CNT B3H		R	00H	Timer 0 Counter Register
T0DR	B4H	R/W	FFH	Timer 0 Data Register
T0CDR	B4H	R	00H	Timer 0 Capture Data Register
T0CR	B2H	R/W	00H	Timer 0 Control Register

11.5.6.1 Timer/Counter 0 Register Description

The timer/counter 0 register consists of timer 0 counter register (T0CNT), timer 0 data register (T0DR), timer 0 capture data register (T0CDR), and timer 0 control register (T0CR). T0IFR and T0OVIFR bits are in the external interrupt flag 1 register (EIFLAG1).

11.5.6.2 Register Description for Timer/Counter 0

T0CNT (Time	T0CNT (Timer 0 Counter Register) : B3H												
7	6	5	4	3	2	1	0						
T0CNT7	TOCNT6	TOCNT5	T0CNT4	TOCNT3	T0CNT2	T0CNT1	TOCNTO						
R	R	R	R	R	R	R	R						
	тос	CNT[7:0]	T0 Counter				Initial value : 00H						
T0DR (Timer	0 Data Regis	ter) : B4H											
T0DR (Timer 7	0 Data Regis 6	ter) : B4H 5	4	3	2	1	0						
•	-		4 TODR4	3 TODR3	2 T0DR2	1 TODR1	0 TODRO						
7	6	5	T	г – ^с		-	- -						

T0CDR (Timer 0 Capture Data Register: Read Case, Capture mode only) : B4H

7	6	5	4	3	2	1	0	
TOCDR	TOCDR6	T0CDR5	T0CDR4	T0CDR3	T0CDR2	T0CDR1	T0CDR0	
R	R	R	R	R	R	R	R	
						I	nitial value : 0	0H

T0CDR[7:0] T0 Capture Data

T0CR (Timer 0 Control Register) : B2H

7	6	5	4	3	2	1	0
TOEN	_	T0MS1	TOMSO	T0CK2	T0CK1	T0CK0	TOCC
RW	_	RW	RW	RW	RW	RW	RW
							Initial value : 00
	TOE	EN	Control Timer	0			
			0 T im	er 0 disable			
			1 Ti m	er 0 enable			
	TON	MS[1:0]	Control Timer	0 Operation M	ode		
			TOMS1 TO M	IS0 Descriptio	n		
			0 0	Timer/cou	nter mode		
			0 1	PWM mod	de		
			1 x	Capture n	node		
	тос	CK[2:0]	Select Timer () clock source.	fx is a system	clock frequer	псу
			TOCK2 TOC	K1 T0 CK0 De	e scription		
			0 0 0 1		x/2		
			0 01	· :	x/4		
			0 10	· :	x/8		
			0 11	:	x/32		
			1 0.01		x/128		
			1 01		x/512		
			1 101	:	x/2048		
			1 11	Ξx	ternal Clock	(EC0)	
	тос	CC 00	Clear timer 0	Counter			
			0 No 🦸	effect			
			1 Clea "0" a	ar the Timer 0 after being clea	counter (Whe red counter)	n write, auton	natically cleare

NOTES) 1. Match Interrupt is generated in Capture mode.

2. Refer to the external interrupt flag 1 register (EIFLAG1) for the T0 interrupt flags.

11.6 Timer 1

11.6.1.1 Overview

The 16-bit timer 1 consists of multiplexer, timer 1 A data register high/low, timer 1 B data register high/low and timer 1 control register high/low (T1ADRH, T1ADRL, T1BDRH, T1BDRL, T1CRH, T1CRL).

It has four operating modes:

- 16-bit timer/counter mode
- 16-bit capture mode
- 16-bit PPG output mode (one-shot mode)
- 16-bit PPG output mode (repeat mode)

The timer/counter 1 can be clocked by an internal or an external clock source (EC1). The clock source is selected by clock selection logic which is controlled by the clock selection bits (T1CK[2:0]).

- TIMER 1 clock source: f_X/1, 2, 4, 8, 64, 512, 2048 and EC1

In the capture mode, by EINT11, the data is captured into input capture data register (T1BDRH/T1BDRL). Timer 1 outputs the comparision result between counter and data register through T1O port in timer/counter mode. Also Ttimer 1 outputs PWM wave form through PWM1O port in the PPG mode.

T1EN P	1FSRL[5:4]	T1MS[1:0] T	1 CK[2:0]	Timer 1
1	11	00	XXX	16 Bit Timer/Counter Mode
1	00	01	XXX	16 Bit Capture Mode
		10		16 Bit PPG Mode
1 11		10	XXX	(one-shot mode)
		44		16 Bit PPG Mode
1 11		11	XXX	(repeat mode)

Table 11-7 Timer 1 Operating Modes

11.6.2 16-Bit Timer/Counter Mode

The 16-bit timer/counter mode is selected by control register as shown in Figure 11.14.

The 16-bit timer have counter and data register. The counter register is increased by internal or external clock input. Timer 1 can use the input clock with one of 1, 2, 4, 8, 64, 512 and 2048 prescaler division rates (T1CK[2:0]). When the value of T1CNTH, T1CNTL and the value of T1ADRH, T1ADRL are identical in Timer 1 respectively, a match signal is generated and the interrupt of Timer 1 occurs. The T1CNTH, T1CNTL value is automatically cleared by match signal. It can be also cleared by software (T1CC).

The external clock (EC1) counts up the timer at the rising edge. If the EC1 is selected as a clock source by T1CK[2:0], EC1 port should be set to the input port by P13IO bit.

Z51F3220 Product Specification

Figure 11.15 16-Bit Timer/Counter 1 Example

11.6.3 16-Bit Capture Mode

The 16-bit timer 1 capture mode is set by T1MS[1:0] as '01'. The clock source can use the internal/external clock. Basically, it has the same function as the 16-bit timer/counter mode and the interrupt occurs when T1CNTH/T1CNTL is equal to T1ADRH/T1ADRL. The T1CNTH, T1CNTL values are automatically cleared by match signal. It can be also cleared by software (T1CC).

This timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer.

The capture result is loaded into T1BDRH/T1BDRL.

According to EIPOL1 registers setting, the external interrupt EINT11 function is chosen. Of cource, the EINT11 pin must be set as an input port.

Figure 11.17 Input Capture Mode Operation for Timer 1

Figure 11.18 Express Timer Overflow in Capture Mode

11.6.4 16-Bit PPG Mode

The timer 1 has a PPG (Programmable Pulse Generation) function. In PPG mode, T1O/PWM10 pin outputs up to 16-bit resolution PWM output. This pin should be configured as a PWM output by setting P1FSRL[5:4] to '11'. The period of the PWM output is determined by the T1ADRH/T1ADRL. And the duty of the PWM output is determined by the T1BDRH/T1BDRL.

NOTE) The T1EN is automatically cleared to logic "0" after one pulse is generated at a PPG one-shot mode.

Figure 11.19 16-Bit PPG Mode for Timer 1

One-shot Mode(T1MS = 10b) and "Start High"(T1POL = 0b).

runia.

11.6.5 Block Diagram

Figure 11.21 16-Bit Timer/Counter Mode for Timer 1 and Block Diagram

11.6.6 Register Map

Table 11-8	Timer 2	2 Register	Мар
------------	---------	------------	-----

Name	Address	Dir	Default	Description
T1ADRH	BDH	R/W	FFH	Timer 1 A Data High Register
T1ADRL	ВСН	R/W	FFH	Timer 1 A Data Low Register
T1BDRH	BFH	R/W	FFH	Timer 1 B Data High Register
T1BDRL	BEH	R/W	FFH	Timer 1 B Data Low Register
T1CRH	BBH	R/W	00H	Timer 1 Control High Register
T1CRL	BAH	R/W	00H	Timer 1 Control Low Register

11.6.6.1 Timer/Counter 1 Register Description

The timer/counter 1 register consists of timer 1 A data high register (T1ADRH), timer 1 A data low register (T1ADRL), timer 1 B data high register (T1BDRH), timer 1 B data low register (T1BDRL), timer 1 control High register (T1CRH) and timer 1 control low register (T1CRL).

11.6.6.2 Register Description for Timer/Counter 1

T1ADRH (Tin	ner 1 A data H	ligh Register) : BDH				
7	6	5	4	3	2	1	0
T1ADRH7	T1ADRH6	T1ADRH5	T1ADRH4	T1ADRH3	T1ADRH2	T1ADRH1	T1ADRH0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						li	nitial value : Fl
	T1 <i>F</i>	DRH[7:0]	T1 A Data Hig	h Byte			
「1ADRL (Tin	ner 1 A Data L	ow Register) : BCH				
7	6	5	4	3	2	1	0
T1ADRL7	T1ADRL6	T1ADRL5	T1ADRL4	T1ADRL3	T1ADRL2	T1ADRL1	T1ADRL0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						h	nitial value : Fl
	T1 <i>A</i>	DRL[7:0]	T1 A Data Lov	v Byte			
			NOTE) Do not PPG mode	t write "0000H	" in the T1ADI	RH/T1ADRL r	egister when
Г1BDRH (Tin	ner 1 B Data I	High Register	r) : BFH				
7	6	5	4	3	2	1	0
T1BDRH7	T1BDRH6	T1BDRH5	T1BDRH4	T1BDRH3	T1BDRH2	T1BDRH1	T1BDRH0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						lı	nitial value : F
	T1E	BDRH[7:0]	T1 B Data Hig	h Byte			
			0	-			
[1BDRL (Tin	ner 1 B Data L	.ow Register) : BEH				
			,	•	•	4	•

7	6	5	4	3	2	1	0	
T1BDRL7	T1BDRL6	T1BDRL5	T1BDRL4	T1BDRL3	T1BDRL2	T1BDRL1	T1BDRL0	
R/W								
						h	nitial value : Fl	FH

T1BDRL[7:0] T1 B Data Low Byte

Z51F3220 **Product Specification**

zilog

T1CRH (Timer 1 Control High Register) : BBH

7	6	5	4	3	2	1	0
T1EN	-	T1MS1	T1MS0	_	_	-	T1CC
RW	-	R/W	RW	-	-	-	RW
						I	nitial value : 00H
	T1E	EN C	Control Timer 1				
		C) T ime	r 1 disable			
		1	Time	r 1 enable (Co	unter clear an	id start)	
	T1M	/IS[1:0]	Control Timer 1	Operation Me	ode		
		T	1MS1 T1 MS	S0 Descriptio	n		
		C) 0	Timer/cou	nter mode (T1	O: toggle at A	match)
		C) 1	Capture m	ode (The A m	atch interrupt	can occur)
		1	0	PPG one-	shot mode (P\	VM1O)	
		1	1	PPG repea	at mode (PWN	/10)	
	T10	 0	Clear Timer 1 (Counter			
		C) No ef	fect			
		1			ounter (When ing cleared co	-	itically

Balantine in the

7	6	5		4	3	2	1	0
T1CK2	T1CK1	T1CK0	T1	FR	_	T1POL	T1ECE	T1CNTR
R/W	R/W	R/W	R/	W	_	RW	RW	RW
							I	nitial value : 00H
	T10	CK[2:0]	Select T	imer 1	clock source.	fx is main sys	tem clock freq	uency
			T1CK2	T1CK	(1 T1 CK0 De	e scription		
			0	0 0 f	3	x/2048		
			0	0 1 f	2	x/512		
			0	1 0 f	2	x/64		
			0	1 1 f	2	x/8		
			1	0 0 f	2	x/4		
			1	0 1 f	2	x/2		
			1	1 0 f	2	x/1		
			1	11E	x	ternal clock	(EC1)	
	T1II	FR				nis bit become INT_ACK sigr		aring bit, write
			0	T1 In	terrupt no ger	eration		
			1 T	1 In	terrupt genera	ation		
	T1P	POL	T10/PW	/M10 F	olarity Select	ion		
			0	Start	High (T1O/PV	VM1O is low le	evel at disable)
			1			/M1O is high I	evel at disable	e)
	T1E	CE			al Clock Edge			
			0 Ex		nal clock fallir			
			1		nal clock risin	0 0		
	T1C	NTR			er Read Contr	ol		
			0 No		fect			
			1			alue to the B ed "0" after be		· (When write,

T1CRL (Timer 1 Control Low Register) : BAH

11.7 Timer 2

11.7.1.1 Overview

The 16-bit timer 2 consists of multiplexer, timer 2 A data high/low register, timer 2 B data high/low register and timer 2 control high/low register (T2ADRH, T2ADRL, T2BDRH, T2BDRL, T2CRH, T2CRL).

It has four operating modes:

- 16-bit timer/counter mode
- 16-bit capture mode
- 16-bit PPG output mode (one-shot mode)
- 16-bit PPG output mode (repeat mode)

The timer/counter 2 can be divided clock of the system clock selectd from prescaler output and T1 A Match (timer 1 A match signal). The clock source is selected by clock selection logic which is controlled by the clock selection bits (T2CK[2:0]).

- TIMER 2 clock source: $f_X\!/1,\,2,\,4,\,8,\,32,\,128,\,512$ and T1 A Match

In the capture mode, by EINT12, the data is captured into input capture data register (T2BDRH/T2BDRL). In timer/counter mode, whenever counter value is equal to T2ADRH/L, T2O port toggles. Also the timer 2 outputs PWM wave form to PWM2O port in the PPG mode.

T2EN P1	SRL [3:2]	T2MS[1:0]	T2CK[2:0]	Timer 2
1	11	00	XXX	16 Bit Timer/Counter Mode
1	00	01	XXX	16 Bit Capture Mode
1 11		10	xxx	16 Bit PPG Mode
1 1 1		10	~~~	(one-shot mode)
4 4 4		44	VVV	16 Bit PPG Mode
1 11		11	XXX	(repeat mode)

Table 11-9 Timer 2 Operating Modes

11.7.2 16-Bit Timer/Counter Mode

The 16-bit timer/counter mode is selected by control register as shown in Figure 11.22.

The 16-bit timer have counter and data register. The counter register is increased by internal or timer 1 A match clock input. Timer 2 can use the input clock with one of 1, 2, 4, 8, 32, 128, 512 and T1 A Match prescaler division rates (T2CK[2:0]). When the values of T2CNTH/T2CNTL and T2ADRH/T2ADRL are identical in timer 2, a match signal is generated and the interrupt of Timer 2 occurs. The T2CNTH/T2CNTL values are automatically cleared by match signal. It can be also cleared by software (T2CC).

Figure 11.22 16-Bit Timer/Counter Mode for Timer 2

11.7.3 16-Bit Capture Mode

The timer 2 capture mode is set by T2MS[1:0] as '01'. The clock source can use the internal clock. Basically, it has the same function as the 16-bit timer/counter mode and the interrupt occurs when T2CNTH/T2CNTL is equal to T2ADRH/T2ADRL. T2CNTH/T2CNTL values are automatically cleared by match signal and it can be also cleared by software (T2CC).

This timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer.

The capture result is loaded into T2BDRH/T2BDRL. In the timer 2 capture mode, timer 2 output(T2O) waveform is not available.

According to EIPOL1 registers setting, the external interrupt EINT12 function is chosen. Of cource, the EINT12 pin must be set to an input port.

Figure 11.24 16-Bit Capture Mode for Timer 2

Figure 11.25 Input Capture Mode Operation for Timer 2

Figure 11.26 Express Timer Overflow in Capture Mode

11.7.4 16-Bit PPG Mode

The timer 2 has a PPG (Programmable Pulse Generation) function. In PPG mode, the T2O/PWM2O pin outputs up to 16-bit resolution PWM output. This pin should be configured as a PWM output by set P1FSRL[3:2] to '11'. The period of the PWM output is determined by the T2ADRH/T2ADRL. And the duty of the PWM output is determined by the T2BDRH/T2BDRL.

NOTE) The T2EN is automatically cleared to logic "0" after one pulse is generated at a PPG one-shot mode.

Figure 11.27 16-Bit PPG Mode for Timer 2

One-shot Mode (T2MS = 10b) and "Start High" (T2POL = 0b).

Figure 11.28 16-Bit PPG Mode Timming chart for Timer 2

11.7.5 Block Diagram

Figure 11.29 16-Bit Timer/Counter Mode for Timer 2 and Block Diagram

11.7.6 Register Map

Name	Address	Dir	Default	Description
T2ADRH	C5H	R/W	FFH	Timer 2 A Data High Register
T2ADRL	C4H	R/W	FFH	Timer 2 A Data Low Register
T2BDRH	C7H	R/W	FFH	Timer 2 B Data High Register
T2BDRL	C6H	R/W	FFH	Timer 2 B Data Low Register
T2CRH	СЗН	R/W	00H	Timer 2 Control High Register
T2CRL	C2H	R/W	00H	Timer 2 Control Low Register

11.7.6.1 Timer/Counter 2 Register Description

The timer/counter 2 register consists of timer 2 A data high register (T2ADRH), timer 2 A data low register (T2ADRL), timer 2 B data high register (T2BDRH), timer 2 B data low register (T2BDRL), timer 2 control High register (T2CRH) and timer 2 control low register (T2CRL).

11.7.6.2 Register Description for Timer/Counter 2

T2ADRH (Tin							
7	6	5	4	3	2	1	0
T2ADRH7	T2ADRH6	T2ADRH5	T2ADRH4	T2ADRH3	T2ADRH2	T2ADRH1	T2ADRH0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						l	nitial value : Fl
	T2/	DRH[7:0]	T2 A Data Hig	h Byte			
T2ADRL (Tim	ner 2 A Data L	ow Register) : C4H				
7	6	5	4	3	2	1	0
T2ADRL7	T2ADRL6	T2ADRL5	T2ADRL4	T2ADRL3	T2ADRL2	T2ADRL1	T2ADRL0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						l	nitial value : Fl
	124		T2 A Data Lov NOTE) Do not PPG mode.	•	in the T2ADF	RH/T2ADRL n	egister when
T2BDRH (Tin	124 ner 2 B Data I		NOTE) Do noi PPG mode.	•	" in the T2ADF	RH/T2ADRL n	egister when
T2BDRH (Tin 7			NOTE) Do noi PPG mode.	•	" in the T2ADF	RH/T2ADRL r 1	egister when 0
•	ner 2 B Data I	High Register	NOTE) Do not PPG mode. r) : C7H	t write "0000H			-
7	ner 2 B Data I 6	High Register	NOTE) Do not PPG mode. r) : C7H 4	t write "0000H	2	1	0
7 T2BDRH7	ner 2 B Data I 6 T2BDRH6	High Register 5 T2BDRH5	NOTE) Do not PPG mode. r) : C7H 4 T2BDRH4	t write "0000H 3 T2BDRH3	2 T2BDRH2	1 T2BDRH1 R/W	0 T2BDRH0
7 T2BDRH7	ner 2 B Data I 6 T2BDRH6 R/W	High Register 5 T2BDRH5 R/W	NOTE) Do not PPG mode. r) : C7H 4 T2BDRH4	3 T2BDRH3 R/W	2 T2BDRH2	1 T2BDRH1 R/W	0 T2BDRH0 R/W
7 T2BDRH7	ner 2 B Data I 6 T2BDRH6 R/W	High Register 5 T2BDRH5 R/W	NOTE) Do not PPG mode. r) : C7H 4 T2BDRH4 R/W	3 T2BDRH3 R/W	2 T2BDRH2	1 T2BDRH1 R/W	0 T2BDRH0 R/W
7 T2BDRH7 R/W	ner 2 B Data I 6 T2BDRH6 R/W	High Register 5 T2BDRH5 R/W BDRH[7:0]	NOTE) Do not PPG mode. r) : C7H 4 T2BDRH4 R/W T2 B Data Hig	3 T2BDRH3 R/W	2 T2BDRH2	1 T2BDRH1 R/W	0 T2BDRH0 R/W
7 T2BDRH7 R/W	ner 2 B Data I 6 T2BDRH6 R/W T2E	High Register 5 T2BDRH5 R/W BDRH[7:0]	NOTE) Do not PPG mode. r) : C7H 4 T2BDRH4 R/W T2 B Data Hig	3 T2BDRH3 R/W	2 T2BDRH2	1 T2BDRH1 R/W	0 T2BDRH0 R/W
7 T2BDRH7 R/W	ner 2 B Data I 6 T2BDRH6 R/W T2E ner 2 B Data L	High Register 5 T2BDRH5 R/W BDRH[7:0]	NOTE) Do not PPG mode. r) : C7H 4 T2BDRH4 R/W T2 B Data Hig) : C6H	3 T2BDRH3 R/W h Byte	2 T2BDRH2 R/W	1 T2BDRH1 R/W	0 T2BDRH0 R/W nitial value : Fl
7 T2BDRH7 R/W T2BDRL (Tim 7	ner 2 B Data I 6 T2BDRH6 R/W T2E ner 2 B Data L 6	High Register 5 T2BDRH5 R/W BDRH[7:0] ow Register 5	NOTE) Do not PPG mode. () : C7H 4 T2BDRH4 R/W T2 B Data Hig) : C6H 4	3 T2BDRH3 R/W h Byte 3	2 T2BDRH2 R/W	1 T2BDRH1 R/W	0 T2BDRH0 R/W nitial value : Fl

T2BDRL[7:0] T2 B Data Low

T2CRH (Timer 2 Control High Register) : C3H

7	6	5	4	3	2	1	0
T2EN	-	T2MS1	T2MS0	-	_	-	T2CC
RW	-	R/W	RW	-	-	-	RW
						I	nitial value : 00H
	T2E	E N C	Control Timer 2	2			
		0	T ime	r 2 disable			
		1	Time	r 2 enable (Co	unter clear an	nd start)	
	T2N	MS[1:0] C	Control Timer 2	2 Operation M	ode		
		Т	2MS1 T2 MS	60 Descriptio	n		
		0	0	Timer/cou	nter mode (T2	2O: toggle at A	match)
		0	1	Capture m	ode (The A m	atch interrupt	can occur)
		1	0	PPG one-	shot mode (P\	VM2O)	
		1	1	PPG repe	at mode (PWN	M2O)	
	T20	с с	lear Timer 2 0	Counter			
		0	No et	fect			
		1	0.00	the Timer 2 c ed "0" after be		write, automa punter)	atically

7	6	5	4	4	3	2	1	0
T2CK2	T2CK1	T2CK0	T2	FR	_	T2POL	-	T2CNTR
R/W	R/W	R/W	R/	W	_	RW	-	RW
							I	nitial value : 00
	T20	CK[2:0]	Select T	imer 2	clock source.	fx is main sys	tem clock freq	uency
			T2CK2	T2CK	1 T2 CK0 De	e scription		
			0	0 0 f	2	k/512		
			0	0 1 f	2	k/128		
			0	1 0 f	2	k/32		
			0	11f	3	k/8		
			1	0 0 f	2	k/4		
			1	0 1 f	2	k/2		
			1	1 0 f	2	k/1		
			1	1 1 T		1 A Match		
	T21	FR				curs, this bit b ar by INT_ACI		or clearing bit,
			0	T2 int	errupt no gen	eration		
			1	T2 int	errupt genera	ition		
	T2F	POL	T2O/PW	/M2O P	olarity Select	ion		
			0	Start I	High (T2O/PV	VM2O is low le	evel at disable)
			1	Start	Low (T2O/PV	/M2O is high I	evel at disable	e)
	T20	NTR	Timer 2	Counte	r Read Contr	ol		
			0 No	ef	fect			
			1			alue to the B ed "0" after be	•	·(When write,

T2CRL (Timer 2 Control Low Register) : CAH

11.8 Timer 3, 4

11.8.1 Overview

Timer 3 and timer 4 can be used either two 8-bit timer/counter or one 16-bit timer/counter with combine them. Each 8-bit timer/event counter module has multiplexer, comparator, 8-bit timer data register, 8-bit counter register, control register and capture data register (T3CNT, T3DR, T3CAPR, T3CR, T4CNT, T4DR, T4CAPR, T4CR). For PWM, it has PWM register (T4PPRL. T4PPRH, T4ADRL, T4ADRH, T4BDRL, T4BDRH, T4CDRL, T4CDRH, T4DLYA, T4DLYB, T4DLYC).

It has five operating modes:

- 8-bit timer/counter mode
- 8-bit capture mode
- 16-bit timer/counter mode
- 16-bit capture mode
- 10-bit PWM mode

The timer/counter 3 and 4 can be clocked by an internal or an external clock source (EC3). The clock source is selected by clock selection logic which is controlled by the clock selection bits (T3CK[2:0], T4CK[3:0]). Also the timer/counter 4 can use more clock sources than timer/counter 3.

- TIMER 3 clock source: f_X/2, 4, 8, 32, 128, 512, 2048 and EC3

- TIMER 4 clock source: f_x/1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384 and T3 clock

In the capture mode, by EINT0/EINT1, the data is captured into input capture data register (T3CAPR, T4CAPR). In 8-bit timer/counter 3/4 mode, whenever counter value is equal to T3DR/T4DR, T3O/T4O port toggles. Also In 16-bit timer/counter 3 mode,

The timer 3 outputs the comparison result between counter and data register through T3O port. The PWM wave form to PWMAA, PWMAB, PWMBA, PWMBB, PWMCA, PWMCB Port (6-channel) in the PWM mode.

16BIT	T3MS	T4MS	PWM4E	T3CK[2:0]	T4CK[3:0]	Timer 3	Timer 4
0	0	0	0	XXX	XXXX	8 Bit Timer/Counter Mode	8 Bit Timer/Counter Mode
0	1	1	0	XXX	XXXX	8 Bit Capture Mode	8 Bit Capture Mode
1	0	0	0	XXX	XXXX	16 Bit Tmer/0	Counter Mode
1	1	1	0	XXX	XXXX	16 Bit Cap	oture Mode
0	х	х	1	XXX	XXXX	10 Bit PV	VM Mode

Table 11-11 Timer 3, 4 Operating Modes
--
11.8.2 8-Bit Timer/Counter 3, 4 Mode

The 8-bit timer/counter mode is selected by control register as shown in Figure 11.30.

The two 8-bit timers have each counter and data register. The counter register is increased by internal or external clock input. Timer 3 can use the input clock with one of 2, 4, 8, 32, 128, 512, 2048 and EC3 prescaler division rates (T3CK[2:0]). Timer 4 can use the input clock with one of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384 and timer 3 clock prescaler division rates (T4CK[3:0]). When the value of T3CNT, T4CNT and T3DR, T4DR are respectively identical in Timer 3, 4, the interrupt Timer 3, 4 occurs.

The external clock (EC3) counts up the timer at the rising edge. If the EC3 is selected as a clock source by T3CK[2:0], EC3 port should be set to the input port by P00IO bit. Timer 4 can't use the external EC3 clock.

NOTE: Do not set to "1111b" in the T4CK[3:0], when two 8-bit timer 3/4 modes.

Figure 11.30 8-Bit Timer/Counter Mode for Timer 3, 4

11.8.3 16-Bit Timer/Counter 3 Mode

The 16-bit timer/counter mode is selected by control register as shown in Figure 11.31.

The 16-bit timer have counter and data register. The counter register is increased by internal or external clock input. Timer 3 can use the input clock with one of 2, 4, 8, 32, 128, 512 and 2048 prescaler division rates (T3CK[2:0]).

A 16-bit timer/counter register T3CNT, T4CNT are incremented from 0000H to FFFFH until it matches T3DR, T4DR and then cleared to 0000H. The match signal output generates the Timer 3 Interrupt (No timer 4 interrupt). The clock source is selected from T3CK[2:0] and 16BIT bit must be set to '1'. Timer 3 is LSB 8-bit, the timer 4 is MSB 8-bit.

The external clock (EC3) counts up the timer at the rising edge. f the EC3 is selected as a clock source by T3CK[2:0], EC3 port should be set to the input port by P00IO bit.

NOTE) The T4CR.7 bit (16BIT) should be set to '1' and the T4CK[3:0] should be set to "1111b".

Figure 11.31 16-Bit Timer/Counter Mode for Timer 3

11.8.4 8-Bit Timer 3, 4 Capture Mode

The 8-bit Capture 3 and 4 mode is selected by control register as shown in Figure 11.32.

The timer 3, 4 capture mode is set by T3MS, T4MS as '1'. The clock source can use the internal/external clock. Basically, it has the same function as the 8-bit timer/counter mode and the interrupt occurs when T3CNT, T4CNT is equal to T3DR, T4DR. The T3CNT, T4CNT value is automatically cleared by match signal.

This timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer.

The capture result is loaded into T3CAPR, T4CAPR. In the timer 3, 4 capture mode, timer 3, 4 output (T3O, T4O) waveform is not available.

According to the EIPOL0L register setting, the external interrupt EINT0 and EINT1 function is chose. Of cource, the EINT0 and EINT1 pins must be set to an input port.

The T3CAPR and T3DR are in the same address. In the capture mode, reading operation reads T3CAPR, not T3DR and writing operation will update T3DR. The T4CAPR has the same function.

Z51F3220 Product Specification

Zilog

NOTE: Do not set to "1111b" in the T4CK[3:0], when two 8-bit timer 3/4 modes.

Figure 11.32 8-Bit Capture Mode for Timer 3, 4

11.8.5 16-Bit Timer 3 Capture Mode

The 16-bit Capture mode is selected by control register as shown in Figure 11.33.

The 16-bit capture mode is the same operation as 8-bit capture mode, except that the timer register uses 16 bits. The 16-bit timer 3 capture mode is set by T3MS, T4MS as '1'. The clock source is selected from T3CK[2:0] and 16BIT bit must be set to '1'. Timer 3 is LSB 8-bit, the timer 4 is MSB 8-bit.

NOTE) The T4CR.7 bit (16BIT) should be set to '1' and the T4CK[3:0] should be set to "1111b".

Figure 11.33 16-Bit Capture Mode for Timer 3

11.8.6 10-Bit Timer 4 PWM Mode

The timer 4 has a high speed PWM (Pulse Width Modulation) function. In PWM mode, the 6-channel pins output up to 10-bit resolution PWM output. This pin should be configured as a PWM output by set PWM4E to '1'. When the value of 2bit +T4CNT and T4PPRH/L are identical in timer 4, a period match signal is generated and the interrupt of timer 4 occurs. In 10-bit PWM mode, A, B, C, bottom(underflow) match signal are generated when the 10-bit counter value are identical to the value of T4xADRH/L. The period of the PWM output is determined by the T4PPRH/L (PWM period register), T4xDRH/L (each channel PWM duty register).

PWM Period = [T4PPRH/T4PPRL] X Source Clock PWM Duty(A-ch) = [T4ADRH/T4ADRL] X Source Clock

Resolution	Frequency							
	T4CK[3:0]=0001 (250ns)	T4CK[3:0]=0010 (500ns)	T4CK[3:0]=0100 (2us)					
10 Bit	3.9KHz	1.95KHz	0.49KHz					
9 Bit	7.8KHz	3.9KHz	0.98KHz					
8 Bit	15.6KHz	7.8KHz	1.95KHz					
7 Bit	31.2KHz	15.6KHz	3.91KHz					

Table 11-12 PWM Frequency vs. Resolution at 8 MHz

The POLxA bit of T4PCR3 register decides the polarity of duty cycle. If the duty value is set same to the period value, the PWM output is determined by the bit POLxA (1: High, 0: Low). And if the duty value is set to "00H", the PWM output is determined by the bit POLxA (1: Low, 0: High).

PHLT:PxxOE F	POLx A	POLBO	POLxB	PWM4xA Pin Output	PWM4xB Pin Output
		0	0 Lo	w-level	Low-level
	0	0	1 L	ow-level	High-level
0x, x0, 00		1 x		Low-level	Low-level
UX, XU, UU	1	1 0	0 High-	level	High-level
			1 High-	level	Low-level
		1 x		High-level	High-level
	0 x		0 Pos	itive-phase	Positive-Phase
11	UX		1 Pos	itive-phase	Negative-Phase
11	1 x		0 Ne	gative-Phase	Negative-Phase
	I X		1 Neg	ative-Phase	Positive-phase

Table 11-13 PWM Channel Polarity

Z51F3220 Product Specification

zilog

NOTE: Do not set to "1111b" in the T4CK[3:0], when two 8-bit timer 3/4 modes.

Figure 11.34 10-Bit PWM Mode (Force 6-ch)

1018

1000

NOTE: Do not set to "1111b" in the T4CK[3:0], when two 8-bit timer 3/4 modes.

Figure 11.35 10-Bit PWM Mode (Force All-ch)

Figure 11.36 Example of PWM at 4 MHz

Figure 11.37 Example of Changing the Period in Absolute Duty Cycle at 4 MHz

Update period & duty register value at once

The period and duty of PWM comes to move from temporary registers to T4PPRH/L (PWM Period Register) and T4ADRH/L/T4BDRH/L/T4CDRH/L (PWM Duty Register) when always period match occurs. If you want that the period and duty is immediately changed, the UPDT bit in the T4PCR1 register must set to '1'. It should be noted that it needs the 3 cycle of timer clock for data transfer in the internal clock synchronization circuit. So the update data is written before 3 cycle of timer clock to get the right output waveform.

Phase correction & Frequency correction

On operating PWM, it is possible that it is changed the phase and the frequency by using BMOD bit (back-to-back mode) in T4PCR1 register. (Figure 1.38, Figure 11.39, Figure 11.40 referred)

In the back-to-back mode, the counter of PWM repeats up/down count. In fact, the effective duty and period becomes twofold of the register set values. (Figure 1.38, Figure 11.39 referred)

Figure 11.38 Example of PWM Output Waveform

Figure 11.39 Example of PWM waveform in Back-to-Back mode at 4 MHz

DOM:

Figure 11.40 Example of Phase Correction and Frequency correction of PWM

External Sync

If using ESYNC bit of T4PCR1 register, it is possible to synchronize the output of PWM from external signal.

If ESYNC bit sets to '1', the external signal moves to PWM module through the BLNK pin. If BLNK signal is low, immediately PWM output becomes a reset value, and internal counter becomes reset. If BLNK signal returns to '1', the counter is started again and PWM output is normally generated. (Figure 11.41 referred)

PWM Halt

If using PHLT bit of T4PCR1 register, it is possible to stop PWM operation by the software. During PHLT bit being '1', PWM output becomes a reset value, and internal counter becomes reset as 0. Without changing PWM setting, temporarily it is able to stop PWM. In case of T4CNT, when stopping counter, PWM output pin remains before states. But if PHLT bit sets to '1', PWM output pin has reset value.

Figure 11.41 Example of PWM External Synchronization with BLNK Input

FORCE Drive ALL Channel with A-ch mode

If FORCA bit sets to '1', it is possible to enable or disable all PWM output pins through PWM outputs which occur from A-ch duty counter. It is noted that the inversion outputs of A, B, C channel have the same A-ch output waveform. According to POLAA/BB/CC, it is able to control the inversion of outputs.

Figure 11.42 Example of Force Drive All Channel with A-ch

FORCE 6-Ch Drive

If FORCA bit sets to '0', it is possible to enable or disable PWM output pin and inversion output pin generated through the duty counter of each channel. The inversion output is the reverse phase of the PWM output. A AA/AB output of the A-channel duty register, a BA/BB output of the B-channel duty register, a CA/CB output of the C-channel duty register are controlled respectively. If the UALL bit is set to '1', it is updated B/C channel duty at the same time, when it is written by a A-channel duty register.

Figure 11.43 Example of Force Drive 6-ch Mode

PWM output Delay

If using the T4DLYA, T4DLYB, T4DLYC register, it can delay PWM output based on the rising edge. At that time, it does not change the falling edge, so the duty is reduced as the time delay. In POLAA/BA/CA setting to '0', the delay is applied to the falling edge. In POLAA/BA/CA setting to '1', the delay is applied to the rising edge. It can produce a pair of Non-overlapping clock. The each channel is able to have 4-bit delay. As it can select the clock up to 1/8 divided clock using NOPS[1:0] the delay of its maximum 128 timer clock cycle is produced.

Figure 11.44 Example of PWM Delay

11.8.7 Block Diagram

NOTE: Do not set to "1111b" in the T4CK[3:0], when two 8-bit timer 3/4 modes.

Figure 11.45 Two 8-Bit Timer 3, 4 Block Diagram

Z51F3220 Product Specification

NOTE) The T4CR.7 bit (16BIT) should be set to '1' and the T4CK[3:0] should be set to "1111b".

Figure 11.46 16-Bit Timer 3 Block Diagram

NOTE: Do not set to "1111b" in the T4CK[3:0], when two 8-bit timer 3/4 modes.

Figure 11.47 10-Bit PWM Timer 4 Block Diagram

11.8.8 Register Map

Name	Address	Dir	Default	Description
T3CNT 1001H	(ESFR)	R	00H	Timer 3 Counter Register
T3DR	1001H (ESFR)	W	FFH	Timer 3 Data Register
T3CAPR	1001H (ESFR)	R	00H	Timer 3 Capture Data Register
T3CR 1000H	(ESFR)	R/W	00H	Timer 3 Control Register
T4PPRH	1009H (ESFR)	R/W	00H	Timer 4 PWM Period High Register
T4PPRL	1008H (ESFR)	R/W	FFH	Timer 4 PWM Period Low Register
T4ADRH	100BH (ESFR)	R/W	00H	Timer 4 PWM A Duty High Register
T4ADRL	100AH (ESFR)	R/W	7FH	Timer 4 PWM A Duty Low Register
T4BDRH 100DH	(ESFR)	R/W	00H	Timer 4 PWM B Duty High Register
T4BDRL 100CH	(ESFR)	R/W	7FH	Timer 4 PWM B Duty Low Register
T4CDRH	100FH (ESFR)	R/W	00H	Timer 4 PWM C Duty High Register
T4CDRL	100EH (ESFR)	R/W	7FH	Timer 4 PWM C Duty Low Register
T4DLYA	1010H (ESFR)	R/W	00H	Timer 4 PWM A Delay Register
T4DLYB	1011H (ESFR)	R/W	00H	Timer 4 PWM B Delay Register
T4DLYC 1012H	(ESFR)	R/W	00H	Timer 4 PWM C Delay Register
T4DR 1013H	(ESFR)	R/W	FFH	Timer 4 Data Register
T4CAPR	1014H (ESFR)	R	00H	Timer 4 Capture Data Register
T4CNT 1015H	(ESFR)	R	00H	Timer 4 Counter Register
T4CR 1002H	(ESFR)	R/W	00H	Timer 4 Control Register
T4PCR1 1003H	(ESFR)	R/W	00H	Timer 4 PWM Control Register 1
T4PCR2 1004H	(ESFR)	R/W	00H	Timer 4 PWM Control Register 2
T4PCR3 1005H	(ESFR)	R/W	00H	Timer 4 PWM Control Register 3
T4ISR	1006H (ESFR)	R/W	00H	Timer 4 Interrupt Status Register
T4MSK	1007H (ESFR)	R/W	00H	Timer 4 Interrupt Mask Register

Table 11-14 Timer 3, 4 Register Map

11.8.8.1 Timer/Counter 3 Register Description

The timer/counter 3 register consists of timer 3 counter register (T3CNT), timer 3 data register (T3DR), timer 3 capture data register (T3CAPR) and timer 3 control register (T3CR).

11.8.8.2 Register Description for Timer/Counter 3

T3CNT (Timer 3 Counter Register: Read Case, Timer mode only) : 1001H (ESFR)									
7	6	5	4	3	2	1	0		
T3CNT7	T3CNT6	T3CNT5	T3CNT4	T3CNT3	T3CNT2	T3CNT1	T3CNT0		
R	R	R	R	R	R	R	R		
Initial value : 00H T3CNT[7:0] T3 Counter T3DR (Timer 3 Data Register: Write Case) : 1001H (ESFR)									
7	3 Data Regis	ter: write Ca	4	3	2	1	0		
T3DR7	T3DR6	T3DR5	T3DR4	T3DR3	T3DR2	T3DR1	T3DR0		
							TODI (O		
W	W	W	W	W	W	W	W		
W	W	W	-		-	W			
	W T3E	W DR[7:0]	W	W	W	W	W		
	W T3E	W DR[7:0]	W T3 Data	W	W	W	W		
T3CAPR (Tin	W T3E ner 3 Capture	W DR[7:0] Data Registe	W T3 Data er: Read Case	W e, Capture mo	W de only) : 100	W)1H (ESFR)	W nitial value : FF		

Initial value : 00H

T3CAPR[7:0] T3 Capture Data

Z51F3220 Product Specification Zilog

egister) : 1000H (ESFR) 5 4 3 2 1 0 T3MS T3CK2 T3CK1 T3CK0 T3CN T3ST RW RW RW RW RW RW Initial value : 00H

T3CR (Timer 3 Control Register) : 1000H (ESFR)

6

7

T3EN	-	T3MS	T3CK2	2 ТЗС	Ж1	T3CK0	T3CN	T3ST
RW	-	RW	RW	R/	W	RW	RW	RW
							l	nitial value
	T3E	EN	Control Tin	ner 3				
			0 Т	imer 3 disa	ble			
			1 Ti	mer 3 enat	ole			
	T3M	NS	Control Tin	ner 3 Opera	tion Mo	ode		
			о т	imer/counte	er mode	e (T3O: toggle	at match)	
			1 (Capture mod	le (the	match interrup	ot can occur)	
	Т3С	CK[2:0]	Select Tim	er 3 clock s	ource.	fx is main syst	em clock freq	uency
			T3CK2 1	3CK1 T3 C	K0 De	scription		
			0 0) O f	х	/2		
			0 0) 1 f	х	/4		
			0 1	0 f	х	/8		
			0 1	1 f	х	/32		
			1 C) 0 f	х	/128		
			1 C) 1 f	х	/512		
				0 f	х	/2048		
				1 Ex		ternal Clock	(EC3)	
	Т3С			ner 3 Count				
			0 T	emporary c		юр		
			1 Con	tinue cou				
	T3S			ner 3 Start/S				
			0 Co	unter stop				
			1 Clear	counte		start		
	1. 0 1	1			1 11	TO	1	

NOTE) Refer to the external interrupt flag 1 register (EIFLAG1) tor the T3 interrupt flag.

11.8.8.3 Timer/Counter 4 Register Description

The timer/counter 4 register consists of timer 4 PWM period high/low register (T4PPRH/L), timer 4 PWM A duty high/low register (T4ADRH/L), timer 4 PWM B duty high/low register (T4ADRH/L),), timer 4 PWM C duty high/low register (T4CDRH/L), timer 4 PWM A delay register (T4DLYA), timer 4 PWM B delay register (T4DLYB), timer 4 PWM C delay register (T4DLYC), timer 4 data register (T4DR), timer 4 capture data register (T4CAPR), timer 4 counter register (T4CNT), timer 4 control register (T4CR), timer 4 PWM control register 1 (T4PCR1), timer 4 PWM control register 2 (T4PCR2), timer 4 PWM control register 3 (T4PCR3), timer 4 interrupt status register (T4ISR) and timer 4 interrupt mask register (T4MSK).

11.8.8.4 Register Description for Timer/Counter 4

Т	T4PPRH (Timer 4 PWM Period High Register : 6-ch PWM mode only) : 1009H (ESFR)								
	7	6	5	4	3	2	1	0	
	-	-	-	-	-	-	T4PPRH1	T4PPRH0	I
	-	-	-	-	-	-	RW	RW	
							I	nitial value : 00	ЭН

T4PPRL[1:0] T4 PWM Period Data High Byte

T4PPRL (Timer 4 PWM Period Low Register : 6-ch PWM mode only) : 1008H (ESFR)

7	6	5	4	3	2	1	0	_
T4PPRL7	T4PPRL6	T4PPRL5	T4PPRL4	T4PPRL3	T4PPRL2	T4PPRL1	T4PPRL0	
RW								
						l	nitial value : F	FH

T4PPRL[7:0] T4 PWM Period Data Low Byte

T4ADRH (Timer 4 PWM A Duty High Register : 6-ch PWM mode only) : 100BH (ESFR)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	T4ADRH1	T4ADRH0
-	-	-	-	-	-	RW	RW
						I	nitial value : 00H

T4ADRL[1:0] T4 PWM A Duty Data High Byte

T4ADRL (Timer 4 PWM A Duty Low Register : 6-ch PWM mode only) : 100AH (ESFR)

7	6	5	4	3	2	1	0
T4ADRL7	T4ADRL6	T4ADRL5	T4ADRL4	T4ADRL3	T4ADRL2	T4ADRL1	T4ADRL0
RW							
						I	nitial value : 7F

T4ADRL[7:0] T4 PWM A Duty Data Low Byte

T4BDRH (Timer 4 PWM B Duty High Register : 6-ch PWM mode only) : 100DH (ESFR)									
7	6	5	4	3	2	1	0		
_	_	_	_	_	_	T4BDRH1	T4BDRH0		
_	_	_	_	-	-	RW	RW		
						I	nitial value : 00		

7	6	5	4	3	2	1	0	
T4BDRL7	T4BDRL6	T4BDRL5	T4BDRL4	T4BDRL3	T4BDRL2	T4BDRL1	T4BDRL0	
RW								
						I	nitial value : 7F	ΞH

T4BDRL[7:0] T4 PWM B Duty Data Low Byte

T4CDRH (Timer 4 PWM C Duty High Register : 6-ch PWM mode only) : 100FH (ESFR)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	T4CDRH1	T4CDRH0
-	-	-	-	-	-	RW	RW
						I	nitial value : 00H

T4CDRL[1:0] T4 PWM C Duty Data High Byte

T4CDRL (Timer 4 PWM C Duty Low Register : 6-ch PWM mode only) : 100EH (ESFR)

-		-	-			-	
7	6	5	4	3	2	1	0
T4CDRL7	T4CDRL6	T4CDRL5	T4CDRL4	T4CDRL3	T4CDRL2	T4CDRL1	T4CDRL0
RW							

Initial value : 7FH

T4CDRL[7:0] T4 PWM C Duty Data Low Byte

T4DLYA (Timer 4 PWM A Delay Register : 6-ch PWM mode only) : 1010H (ESFR)

	Ū	-	3	2	1	U
T4DLYAA2	T4DLYAA1	T4DLYAA0	T4DLYAB3	T4DLYAB2	T4DLYAB1	T4DLYAB0
RW						
		<u>I</u>				

Initial value : 00H

T4DLYAA[3:0]PWM4AA Delay Data (Rising edge only)T4DLYAB[3:0]PWM4AB Delay Data (Rising edge only)

T4DLYB (Timer 4 PWM B Delay Register : 6-ch PWM mode only) : 1011H (ESFR)

7	6	5	4	3	2	1	0
T4DLYBA3	T4DLYBA2	T4DLYBA1	T4DLYBA0	T4DLYBB3	T4DLYBB2	T4DLYBB1	T4DLYBB0
RW							
						I	nitial value : 00H

T4DLYBA[3:0]PWM4BA Delay Data (Rising edge only)T4DLYBB[3:0]PWM4BB Delay Data (Rising edge only)

7	6	5	4	3	2	1	0
T4DLYCA3	T4DLYCA2	T4DLYCA1	T4DLYCA0	T4DLYCB3	T4DLYCB2	T4DLYCB1	T4DLYCB0
RW	RW	RW	RW	RW	RW	RW	RW
							nitial value : (
	T40	DLYCA[3:0]	PWM4CA Del	ay Data (Risin	g edge only)		
	T40	DLYCB[3:0]	PWM4CB Dela	ay Data (Risin	g edge only)		
DR (Timer	4 Data Regis	ter: Timer an	d Capture mo	ode only) : 10	13H (ESFR)		
7	6	5	4	3	2	1	0
T4DR7	T4DR6	T4DR5	T4DR4	T4DR3	T4DR2	T4DR1	T4DR0
RW	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : F
	T40	DR[7:0]	T4 Data				
CAPR (Tin	ner 4 Capture	Data Registe	er: Read Case	e, Capture mo	ode only) : 10	14H (ESFR)	
7	6	5	4	3	2	1	0
T4CAPR7	T4CAPR6	T4CAPR5	T4CAPR4	T4CAPR3	T4CAPR2	T4CAPR1	T4CAPR0
R	R	R	R	R	R	R	R
							nitial value : 0
	Т40	CAPR[7:0]	T4 Capture Da	ata			

7	6	5	4	3	2	1	0
T4CNT7	T4CNT6	T4CNT5	T4CNT4	T4CNT3	T4CNT2	T4CNT1	T4CNT0
R	R	R	R	R	R	R	R
						I	nitial value : 00

T4CNT[7:0] T4 Counter

T4CR (Timer 4 Control Register) : 1002H (ESFR)

7	6	5	4	ļ.	3	2	1	0				
16BIT	T4MS	T4CN	T4	ST	T4CK3	T4CK2	T4CK1	T4CK0				
RW	RW	RW	R/	W	RW	RW	RW	RW				
								Initial value : 00				
	16E	ыт	Select T	wo 8-bit	or 16-bit M	lode for Timer	3/4					
			0	Two 8-	-bit Timer 3	/4						
			1	16-bit	Timer 3							
	T4N	NS	Control -	Timer 4	Operation N	Node						
			0	0 Timer/counter mode (T4O: toggle at match)								
			1	1 Capture mode (the match interrupt can occur)								
	T40	CN	Control ⁻	Timer 4	Count Paus	se/Continue						
			0 T		orary count	stop						
			1 Con		ue count							
	T4S	ST			Start/Stop							
			0 Co		er stop							
			1 Clear		counter and							
	T40				-	stem clock free	quency					
			T4CK3			4 CK0 De so	ription					
			0	000f		x/1						
			0	001f		x/2						
			0	010f		x/3						
			0	011f		x/8						
			0	100f		x/16						
			0	101f		x/32						
			0	110f		x/64						
			0	111f		x/12						
			1	000f		x/25						
			1	001f		x/51						
			1	010f		x/10						
			1	011f 100f		x/20 x/40						
			1 1	100f		x/40 x/81						
			1	101f		x/81 x/16						
			1	1	1	1 Time	I S CIOCK (ONLY	16-Bit Timer 3)				

7	6	5	4	3	2	1	0			
PWM4E	ESYNC	BMOD	PHLT	UPDT	UALL	NOPS1	NOPS0			
RW	RW	RW	RW	RW	RW	RW	RW			
							Initial value : 00			
	PW	M4E	Control Time	r 4 Mode						
			0 Se	lect timer/counte	er or capture n	node of Timer	4			
			1 Se	lect 10-bit PWM	mode of Time	er 4				
	ES	YNC	Select the O	peration of Exter	nal Sync with	the BLNK pir	ı			
			0 Dis	0 Disable external sync operation						
				able external sy						
				ne all PWM4xA/ rising edge of th						
	ВМ	OD		-to-Back Mode	-		, , D and C)			
			0 Disable back-to-back mode (up count only)							
			1 Enable back-to-back mode (up/down count only)							
	PHI	LT	Control Time	r 4 PWM Opera	tion					
			0 Ru) Run 10-bit PWM						
			1 Stop 10-bit PWM (counter hold and output disable)							
	UPI	DT	Select the Update Timer of T4PPR/T4ADR/T4BDR/T4CDR							
			0 Update at period match of T4CNT and T4PPR							
			1 Up	date at any time	when written					
	UAI	LL	-	ate All Duty Regi	sters (T4ADR	/T4BDR/T4CI	DR)			
				ite a duty registe	, ,					
				tie all duty regis ADR)	ters via Timer	4 PWM A dur	y register			
	NO	PS[1:0]	Select on-Ov	erlap Prescaler						
				S0 Descript	ion					
			0 0	f _{PWM} /1						
			0 1	f _{PWM} /2						
			10	f _{PWM} /4						
			11	f _{PWM} /8						
				the fiethe	alaal fraguer	out of the Time				

T4PCR1 (Timer 4 PWM Control Register 1) : 1003H (ESFR)

NOTE) Where the f_{PWM} is the clock frequency of the Timer 4 PWM.

7	6	5	4	3	2	1	0			
FORCA	_	PAAOE	PABOE	PBAOE	PBBOE	PCAOE	PCBOE			
RW	-	RW	RW	RW	RW	RW	RW			
						I	nitial value : 0			
	FO	RCA	Control The PV	VM outputs Mo	ode					
			06-c ha	annel mode						
			(The PWM4xA/PWM4xB pins are output according to the							
				R registers, re		here x = A, B	and C)			
				e A-channel m all PWM4xA/F		are output ac	oording to the			
			•	T4ADR registe						
	PA	AOE	Select Channe	-		.,,				
		-		ole PWM4AA						
			1 Enab	le PWM4AA o	utput					
	PAE	BOE	Select Channe	I PWM4AB Op	eration					
			0 Disal	ole PWM4AB	output					
			1 Enab	le PWM4AB o	utput					
	PB	AOE	Select Channel PWM4BA Operation							
			0 Disal	ole PWM4BA	output					
			1 Enab	le PWM4BA c	utput					
	PBI	BOE	Select Channe	I PWM4BB Op	eration					
			0 Disal	ble PWM4BB	output					
			1 Enab	le PWM4BB o	utput					
	PC	AOE	Select Channe	I PWM4CA Op	peration					
			0 Di sal	ole PWM4CA	output					
				le PWM4CA c	•					
	PCI		Select Channe							
				ole PWM4CB	•					
			1 Ena b	le PWM4CB c	output					

T4PCR2 (Timer 4 PWM Control Register 2) : 1004H (ESFR)

7	6	5	4	3	2	1	0			
HZCLR	POLBO	POLAA	POLAB	POLBA	POLBB	POLCA	POLCB			
RW	RW	RW	RW	RW	RW	RW	RW			
						I	nitial value : 00			
	HZ	CLR	High-Impedance Output Clear Bit							
			0 No e	ffect						
			1 Clear	high-impedar	nce output					
			(The PWM4xA/PWM4xB pins are back to output and this bit is automatically cleared to logic '0'. where x = A, B and C)							
	PO	LBO		Configure PWM 4AB/PWM4BB/PWMCB Channel Polarity When these pins are disabled						
				0 These p ins are output according to the polarity setting when disable (POLAB/POLBB/POLCB bits)						
			1 These pins are same level as the PWM4xA pins regardless of the polarity setting when disable (POLAB/POLBB/POLCB bits, where x = A, B and C)							
	PO	LAA	Configure PWM4AA Channel Polarity							
			0 Start at high level (This pin is low level when disable)							
			1 Start at low level (This pin is high level when disable)							
	PO	LAB	Configure PWM4AB Channel Polarity							
			0 Non-inversion signal of PWM4AA pin							
			1 Inver	sion signal of l	PWM4AA pin					
	PO	LBA	Configure PW	M4AA Channel	Polarity					
			0 Start	at high level (This pin is low	level when di	sable)			
			1 Start	at low level (T	his pin is high	level when di	sable)			
	PO	LBB	Configure PW	M4AB Channel	Polarity					
			0 Non-	inversion signa	al of PWM4BA	A pin				
			1 Inver	sion signal of l	PWM4BA pin					
	PO	LCA	Configure PW	M4CA Channe	l Polarity					
			0 Start	at high level (This pin is low	level when di	sable)			
			1 Start	at low level (T	his pin is high	level when di	sable)			
	PO	LCB	Configure PWM4CB Channel Polarity							
			0 Non-	inversion signa	al of PWM4CA	A pin				
			1 Inver	sion signal of l	PWM4CA pin					

7	6	5	4	3	2	1	0	
IOVR	IBTM	ICMA	ICMB	ICMC	_	_	-	
RW	RW	RW	RW	RW	-	-	-	
						I	Initial value : 00	
	IOV	'R	Timer 4 Overflo	ow Interrupt St	atus, Write '1'	to this bit for	clear	
			0 O verflo	ow occurrence	;			
			1 O verflo	ow no occurre	nce			
	IBT		Timer 4 Bottom (In the Back-to-	•	tus, Write '1' to	o this bit for cl	ear	
			0 Bot ton	n occurrence				
			1 Bo ttom	n no occurrenc	e			
	ICN		Timer 4 Compare Match or PWM A-ch Match Interrupt Staus, Write '1' t this bit for clear					
			0 Compa	are match or F	WM A-ch mat	tch occurrence	е	
			1 Compa	are match or F	WM A-ch mat	tch no occurre	ence	
	ICN	IB	Timer 4 PWM I	B-ch Match Int	errupt Status,	Write '1' to th	is bit for clear	
			0 PWm l	B-ch match oc	currence			
			1 PWm l	B-ch match no	occurrence			
	ICN	IC	Timer 4 PWM	C-ch Match In	terrupt Status,	Write '1' to th	is bit for clear	
			0 PWm (C-ch match oc	currence			
			1 PWm 0	C-ch match no	occurrence			

T4ISR (Timer 4 Interrupt Status Register) : 1006H (ESFR)

T4MSK (Timer 4 Interrupt Mask Register) : 1007H (ESFR)

•	•	0	, ,	,					
7	6	5	4	3	2	1	0		
OVRMSK	BTMMSK	CMAMSK	CMBMSK	CMCMSK	-	-	-		
RW	RW	RW	RW	RW	-	-	_		
						I	nitial value : 00		
	OV	RMSK	Control Timer 4	4 Overflow Inte	errupt				
			0 Disbl e	overflow inter	rupt				
			1 Enable	e overflow inte	rrupt				
	BTI	MMSK	Control Timer 4	4 Bottom Inter	rupt				
			0 Disbl e bottom interrupt						
			1 Enable	e bottom interr	upt				
	СМ	AMSK	Control Timer 4 Compare Match or PWM A-ch Match Interrupt						
			0 Disble	compare mat	ch or PWM A-	ch match inter	rrupt		
			1 Enable	e compare ma	tch or PWM A	-ch match inte	errupt		
	СМ	BMSK	Control Timer 4	1 PWM B-ch N	latch Interrupt	t			
			0 Disble	PWM B-ch m	atch interrupt				
			1 Enable	e PWM B-ch m	natch interrupt				
	СМ	CMSK	Control Timer 4	4 PWM C-ch N	latch Interrup	t			
			0 Disble	PWM C-ch m	atch interrupt				
			1 Enable	e PWM C-ch n	natch interrupt	:			

11.9 Buzzer Driver

11.9.1 Overview

The Buzzer consists of 8 bit counter, buzzer data register (BUZDR), and buzzer control register (BUZCR). The Square Wave (61.035Hz~125.0 kHz @8MHz) is outputted through P13/SEG17/AN10/EC1/BUZO pin. The buzzer data register (BUZDR) controls the bsuzzer frequency (look at the following expression). In buzzer control register (BUZCR), BUCK[1:0] selects source clock divided by prescaler.

$$f_{BUZ}(Hz) = \frac{\text{Oscillator Frequency}}{2 \times \text{Prescaler Ratio} \times (BUZDR + 1)}$$

	Buzzer Frequency (kHz)								
BUZDR[7:0]	BUZCR[2:1]=00	BUZCR[2:1]=01	BUZCR[2:1]=10	BUZCR[2:1]=11					
0000_0000 1	25kHz	62.5kHz	31.25kHz 15.625	kH z					
0000_0001 6	2.5kHz	31.25kHz	15.625kHz	7.812kHz					
1111_1101 4	92.126Hz	246.063Hz	123.031Hz	61.515Hz					
1111_1110 4	90.196Hz	245.098Hz	122.549Hz	61.274Hz					
1111_1111 4	88.281Hz	244.141Hz	122.07Hz	61.035Hz					

Table 11-15 Buzzer Frequency at 8 MHz

11.9.2 Block Diagram

Figure 11.48 Buzzer Driver Block Diagram

11.9.3 Register Map

Table 11-16 Buzzer Driver Register Map

Name	Address	Dir	Default	Description
BUZDR	8FH	R/W	FFH	Buzzer Data Register
BUZCR	97H	R/W	00H	Buzzer Control Register

11.9.4 Buzzer Driver Register Description

Buzzer driver consists of buzzer data register (BUZDR) and buzzer control register (BUZCR).

11.9.5 Register Description for Buzzer Driver

BUZDR (Buzz	zer Data Regi	ister) : 8FH						
7	6	5	4	3	2	1	0	
BUZDR7	BUZDR6	BUZDR5	BUZDR4	BUZDR3	BUZDR2	BUZDR1	BUZDR0	
RW	RW	RW	RW	RW	RW	RW	RW	-
						I	nitial value : F	FH

BUZDR[7:0] This bits control the Buzzer frequency Its resolution is 00H ~ FFH

BUZCR (Buzzer Control Register) : 97H

7	6	5	4	3	2	1	0
-	-	-	_	-	BUCK1	BUCK0	BUZEN
-	-	-	-	-	RW	RW	RW
						I	nitial value : 00H
	BU	CK[1:0]	Buzzer Driver	Source Clock	Selection		
			BUCK1 BUCK	0 Descri	ption		
			0 0	fx/32			
			0 1	fx/64			
			10	fx/128			
			11	fx/256			
	BU	ZEN	Buzzer Driver	Operation Co	ntrol		
			0 Buz	zer Driver dis	able		
			1 Buz	zer Driver ena	able		

NOTE) fx: System clock oscillation frequency.

11.10 SPI 2

11.10.1 Overview

There is serial peripheral interface (SPI 2) one channel in Z51F3220. The SPI 2 allows synchronous serial data transfer between the external serial devices. It can do Full-duplex communication by 4-wire (MOSI2, MISO2, SCK2, SS2), support master/slave mode, can select serial clock (SCK2) polarity, phase and whether LSB first data transfer or MSB first data transfer.

11.10.2 Block Diagram

Figure 11.49 SPI 2 Block Diagram

11.10.3 Data Transmit / Receive Operation

User can use SPI 2 for serial data communication by following step

- 1. Select SPI 2 operation mode(master/slave, polarity, phase) by control register SPICR.
- 2. When the SPI 2 is configured as a Master, it selects a Slave by SS2 signal (active low).

When the SPI 2 is configured as a Slave, it is selected by SS2 signal incoming from Master

- 3. When the user writes a byte to the data register SPIDR, SPI 2 will start an operation.
- 4. In this time, if the SPI 2 is configured as a Master, serial clock will come out of SCK2 pin. And Master shifts the eight bits into the Slave (transmit), Slave shifts the eight bits into the Master at the same time (receive). If the SPI 2 is configured as a Slave, serial clock will come into SCK2 pin. And Slave shifts the eight bits into the Master (transmit), Master shifts the eight bits into the Slave at the same time (receive).
- 5. When transmit/receive is done, SPIIFR bit will be set. If the SPI 2 interrupt is enabled, an interrupt is requested. And SPIIFR bit is cleared by hardware when executing the corresponding interrupt. If SPI 2 interrupt is disable, SPIIFR bit is cleared when user read the status register SPISR, and then access (read/write) the data register SPIDR.

11.10.4 SS2 pin function

- 1. When the SPI 2 is configured as a Slave, the SS2 pin is always input. If LOW signal come into SS2 pin, the SPI 2 logic is active. And if 'HIGH' signal come into SS2 pin, the SPI 2 logic is stop. In this time, SPI 2 logic will be reset, and invalidated any received data.
- 2. When the SPI 2 is configured as a Master, the user can select the direction of the SS2 pin by port direction register (P17IO). If the SS2 pin is configured as an output, user can use general P17IO output mode. If the SS2 pin is configured as an input, 'HIGH' signal must come into SS2 pin to guarantee Master operation. If 'LOW' signal come into SS2 pin, the SPI 2 logic interprets this as another master selecting the SPI 2 as a slave and starting to send data to it. To avoid bus contention, MSB bit of SPICR will be cleared and the SPI 2 becomes a Slave and then, SPIIFR bit of SPISR will be set, and if the SPI 2 interrupt is enabled, an interrupt is requested.

NOTES)

- When the SS2 pin is configured as an output at Master mode, SS2 pin's output value is defined by user's software (P17IO). Before SPICR setting, the direction of SS2 pin must be defined
- If you don't need to use SS2 pin, clear the SSENA bit of SPISR. So, you can use disabled pin by P17IO freely. In this case, SS2 signal is driven by 'HIGH' or 'LOW' internally. In other words, master is 'HIGH', salve is 'LOW'
- When SS2 pin is configured as input, if 'HIGH' signal come into SS2 pin, SS_HIGH flag bit will be set. And you can clear it by writing '0'.

11.10.5 SPI 2 Timing Diagram

Figure 11.50 SPI 2 Transmit/Receive Timing Diagram at CPHA = 0

Figure 11.51 SPI 2 Transmit/Receive Timing Diagram at CPHA = 1

11.10.6 Register Map

Table 11-17 SPI 2 Register Map

Name	Address	Dir	Default	Description
SPISR	B7H	R/W	00H	SPI 2 Status Register
SPIDR B6H		R/W	00H	SPI 2 Data Register
SPICR B5H		R/W	00H	SPI 2 Control Register

11.10.7 SPI 2 Register Description

The SPI 2 register consists of SPI 2 control register (SPICR), SPI 2 status register (SPISR) and SPI 2 data register (SPIDR)

11.10.8 Register Description for SPI 2

SPIDR (SPI 2 Data Register) : B6H

7	6	5	4	3	2	1	0
SPIDR7	SPIDR6	SPIDR5	SPIDR4	SPIDR3	SPIDR2	SPIDR1	SPIDR0
RW							
						I	nitial value : 00H

SPIDR [7:0]

SPI 2 Data

When it is written a byte to this data register, the SPI 2 will start an operation.

Z51F3220 Product Specification

SPISR	(SPI 2	Status	Register)	: B7H
				_

7	6	5	4	3	2	1	0
SPIIFR	WCOL	SS_HIGH	-	FXCH	SSENA	_	-
RW	R	RW	_	RW	RW	-	_
						I	nitial value : 00
	SPI	OL		is auto cleared bit is cleared ad/write) the nterrupt no ge nterrupt gene f any data ar it is cleared w	d by INT_ACI when the statu data register S eneration ration e written to th /hen the statu	K signal. And us register SP PIDR e data registe s register SP	if SPI 2 Interru ISR is read, ar er SPIDR durir
			,	ision			
			1 Coll isic				
	SS_	HIGH	When the SS2 pin is configured as input, if "HIGH" signal comes into the pin, this flag bit will be set.				
			0 Cleare	d when '0' is v	vritten		
			1 No effe	ect when '1' is	written		
	FXC	СН	SPI 2 port funct	ion exchange	control bit.		
			0 No effe	ect			
			1 Exchar	nge MOSI2 ar	nd MISO2 func	tion	
	SSE	ENA	This bit controls	s the SS2 pin	operation		
			0 Di sable	e			
			1 Enable	(The P17 sho	ould be a norm	nal input)	

SPICR (SPI 2 Control Register) : B5H

7	6	5	4	3	2	1	0				
SPIEN	FLSB	MS	CPOL	CPHA	DSCR	SCR1	SCR0				
RW	RW	RW	RW	RW	RW	RW	RW				
							nitial value : 00				
	SPI	EN	This bit controls the SPI 2 operation								
			0 Disable	e SPI 2 ope	eration						
			1 En able	e SPI 2 ope	eration						
	FLS	SB .	This bit selects	the data t	ransmission sequ	ence					
			0 MSB fi	rst							
			1 LSB fir	st							
	MS		This bit selects	whether N	laster or Slave m	ode					
			0 Slav e i	mode							
			1 Mas ter	mode							
	CP				erial clock (SCK2						
	CPH	HA			determine SCK2's						
			trailing edge of		determine if data	are sampled	on the leading				
			CPOL CPHA	Leading	edge T	railing e	dge				
			0 0	Sample (Rising)		Setup (Falling)					
			0 1	Setup (F	Rising)	Sample (Falling)					
			1 0	Sample	(Falling)	Setup (Ri	sing)				
			1 1	Setup (F	0,	Sample (I	•				
	DS(SCI	CR R[2:0]			the S CK2 r ate c is written one, S						
			DSCR SCR1	SCR0	SCK2 frequency						
			0 0	0	fx/4						
			0 0	1	fx/16						
			0 1	0	fx/64						
			0 1	1	fx/128						
			10	0	fx/2						
			10	1	fx/8						
			11	0	fx/32						
11.11 12-Bit A/D Converter

11.11.1 Overview

The analog-to-digital converter (A/D) allows conversion of an analog input signal to corresponding 12-bit digital value. The A/D module has eight analog inputs. The output of the multiplexer is the input into the converter which generates the result through successive approximation. The A/D module has four registers which are the A/D converter control high register (ADCCRH), A/D converter control low register (ADCCRL), A/D converter data high register (ADCDRH), and A/D converter data low register (ADCDRL). The channels to be converted are selected by setting ADSEL[3:0]. To execute A/D conversion, TRIG[2:0] bits should be set to 'xxx'. The register ADCDRH and ADCDRL contains the results of the A/D conversion. When the conversion is completed, the result is loaded into the ADCDRH and ADCDRL, the A/D conversion status bit AFLAG is set to '1', and the A/D interrupt is set. During A/D conversion, AFLAG bit is read as '0'.

11.11.2 Conversion Timing

The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to set up A/D conversion. Therefore, total of 58 clocks are required to complete a 12-bit conversion: When fxx/8 is selected for conversion clock with a 12MHz fxx clock frequency, one clock cycle is 0.66 µs. Each bit conversion requires 4 clocks, the conversion rate is calculated as follows:

4 clocks/bit × 12 bits + set-up time = 58 clocks,

58 clock × 0.66 µs = 38.28 µs at 1.5 MHz (12 MHz/8)

NOTE) The A/D converter needs at least 20 µs for conversion time. So you must set the conversion time more than 20 µs.

11.11.3 Block Diagram

11.11.4 ADC Operation

Align bit set"0"

Figure 11.56 A/D Converter Operation Flow

11.11.5 Register Map

Table 11-18	ADC Registe	^г Мар
-------------	-------------	------------------

Name	e Address		Default	Description
ADCDRH	9FH	R xxH		A/D Converter Data High Register
ADCDRL	DRL 9EH		ххН	A/D Converter Data Low Register
ADCCRH	H 9DH R/W		00H	A/D Converter Control High Register
ADCCRL	9CH	R/W	00H	A/D Converter Control Low Register

11.11.6 ADC Register Description

The ADC register consists of A/D converter data high register (ADCDRH), A/D converter data low register (ADCDRL), A/D converter control high register (ADCCRH) and A/D converter control low register (ADCCRL).

11.11.7 Register Description for ADC

-							
7	6	5	4	3	2	1	0
ADDM11	ADDM10	ADDM9	ADDM8	ADDM7 ADDL11	ADDM6 ADDL10	ADDM5 ADDL9	ADDM4 ADDL8
R	R	R	R	R	R	R	R
							Initial value : >

ADCDRH (A/D Converter Data High Register) : 9FH

ADDM[11:4] MSB align, A/D Converter High Data (8-bit) ADDL[11:8] LSB align, A/D Converter High Data (4-bit)

ADCDRL (A/D Converter Data Low Register) : 9EH

7	6	5	4	3	2	1	0	
ADDM3 ADDL7	ADDM2 ADDL6	ADDM1 ADDL5	ADDM0 ADDL4	ADDL3	ADDL2	ADDL1	ADDL0	
R	R	R	R	R-	R	R	R	
							Initial value : >	xН

MSB align, A/D Converter Low Data (4-bit)

LSB align, A/D Converter Low Data (8-bit)

ADDM[3:0]

ADDL[7:0]

ADCCRH (A/D Converter High Register) : 9DH

7	6	5	4	3		2	1	0	
ADCIFR	_	TRIG2	TRIG1	TRIG0	A	LIGN	CKSEL1	CKSEL0	
RW	-	RW	RW	RW	F	R	RW	RW	
							I	nitial value : 00	
	AD	CIFR		interrupt o.cci is bit or auto			omes '1'. For K signal.	clearing bit,	
			0 ADC	Interrup	t no gen	eration			
			1 ADC	Interrup	t genera				
	TRI	G[2:0]	A/D Trigger	Signal Selecti	on				
			TRIG2 TR	IG1 1	RIG0	Descri	ption		
			0 0	()	ADST			
			0	0 1		Timer	1 A match sig	nal	
			0	1 ()	Timer	4 overflow ev	ent signal	
			0	1 1		Timer	4 A match eve	ent signal	
			1	0 0)	Timer	4 B match eve	ent signal	
			1	0 1		Timer 4 C match event signal Not used			
			Other Values	3					
	ALI	GN	A/D Convert	er data align s	selectior	۱.			
			0	MSB align (A	DCDRH	[7:0], AD) CDRL[7:4])		
			1	LSB align (Al	CRDH[3:0], AD	CDRL[7:0])		
	CK	SEL[1:0]	A/D Convert	er Clock sele	ction				
			CKSEL1 CKSEL0 Descript			on			
			0 0	f	x/1				
			0 1	f	x/2				
			10	f	x/4				
			11		x/8				

ADCCRL (A/D Converter Counter Low Register) : 9CH

7	6	5	4		3	2	1	0
STBY	ADST	REFSEL	AFLAG	G AL	DSEL3	ADSEL2	ADSEL1	ADSEL0
RW	RW	RW	R		RW	RW	RW	RW
								nitial value : 00
	ST	ВҮ	Control Op (The ADC I			cally disabled	d at stop mode	.)
			0	ADC mo	dule disab	ole		
			1	ADC mo	dule enab	le		
	AD	ST	Control A/E	Convers	ion stop/s	start.		
			0 No	effect	t			
			1	ADC Cor	nversion S	Start and auto	o clear	
	RE	FSEL	A/D Conve	rter Refer	ence Sele	ection		
			0 In	ternal F	Reference	(VDD)		
			1 Ex	ternal	Reference	e (AVREF)		
	AF	LAG				e (This bit is U is at STOF	cleared to '0' mode)	when the STI
			0	During A	/D Conve	rsion		
			1	A/D Con	version fin	nished		
	AD	SEL[3:0]	A/D Conve	rter input	selection			
			ADSEL3 A	DSEL2	ADSEL	1 ADSEL0	De scription	
			0	0	0 0	А	N0	
			0	0	0 1	А	N1	
			0	0	10	А	N2	
			0	0	11	А	N3	
			0	1	0 0	А	N4	
			0	1	0 1	А	N5	
			0	1	10	А	N6	
			0	1	11	А	N7	
			1	0	0 0	А	N8	
			1	0	0 1	А	N9	
			1	0	10	А	N10	
			1	0	11	А	N11	
			1	1	0 0	А	N12	
			1	1	0 1	А	N13	
			1	1	10	А	N14	
			1	1	11	А	N15	

11.12 USI0 (UART + SPI + I2C)

11.12.1 Overview

The USI0 consists of USI0 control register1/2/3/4, USI0 status register 1/2, USI0 baud-rate generation register, USI0 data register, USI0 SDA hold time register, USI0 SCL high period register, USI0 SCL low period register, and USI0 slave address register (USI0CR1, USI0CR2, USI0CR3, USI0CR4, USI0ST1, USI0ST2, USI0BD, USI0DR, USI0SDHR, USI0SCHR, USI0SCLR, USI0SAR).

The operation mode is selected by the operation mode of USI0 selection bits (USI0MS[1:0]).

It has four operating modes:

- Asynchronous mode (UART)
- Synchronous mode
- SPI mode
- I2C mode

11.12.2 USI0 UART Mode

The universal synchronous and asynchronous serial receiver and transmitter (UART) is a highly flexible serial communication device. The main features are listed below.

- Full Duplex Operation (Independent Serial Receive and Transmit Registers)
- Asynchronous or Synchronous Operation
- Baud Rate Generator
- Supports Serial Frames with 5,6,7,8, or 9 Data Bits and 1 or 2 Stop Bits
- Odd or Even Parity Generation and Parity Check Supported by Hardware
- Data OverRun Detection
- Framing Error Detection
- Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
- Double Speed Asynchronous communication mode

USI0 has three main parts of clock generator, Transmitter and receiver. The clock generation logic consists of synchronization logic for external clock inut used by synchronous or SPI slave operation, and the baud rate generator for asynchronous or master (synchronous or SPI) operation.

The Transmitter consists of a single write buffer, a serial shift register, parity generator and control logic for handling different serial frame formats. The write buffer allows continuous transfer of data without any delay between frames. The receiver is the most complex part of the UART module due to its clock and data recovery units. The receivery unit is used for asynchronous data reception. In addition to the recovery unit, the receiver includes a parity checker, a shift register, a two-level receive FIFO (USI0DR) and control logic. The receiver supports the same frame formats as the transmitter and can detect frame error, data overrun and parity errors.

11.12.3 USI0 UART Block Diagram

Figure 11.57 USI0 UART Block Diagram

11.12.4 USI0 Clock Generation

Figure 11.58 Clock Generation Block Diagram (USI0)

The clock generation logic generates the base clock for the transmitter and receiver. The USI0 supports four modes of clock operation and those are normal asynchronous, double speed asynchronous, master synchronous and slave synchronous mode. The clock generation scheme for master SPI and slave SPI mode is the same as master synchronous and slave synchronous operation mode. The USI0MS[1:0] bits in USI0CR1 register selects asynchronous or synchronous operation. Asynchronous double speed mode is controlled by the DBLS0 bit in the USI0CR2 register. The MASTER0 bit in USI0CR3 register controls whether the clock source is internal (master mode, output pin) or external (slave mode, input pin). The SCK0 pin is active only when the USI0 operates in synchronous or SPI mode.

Following table shows the equations for calculating the baud rate (in bps).

Table 11-19 Equations for Calculating USI0 Baud Rate Register Setting

Operating Mode	Equation for Calculating Baud Rate
Asynchronous Normal Mode (DBLS0=0)	Baud Rate = $\frac{fx}{16(USIOBD + 1)}$
Asynchronous Double Speed Mode (DBLS0=1)	Baud Rate = $\frac{fx}{8(USI0BD + 1)}$
Synchronous or SPI Master Mode	Baud Rate = $\frac{fx}{2(USIOBD + 1)}$

11.12.5 USI0 External Clock (SCK0)

External clocking is used in the synchronous mode of operation.

External clock input from the SCK0 pin is sampled by a synchronization logic to remove meta-stability. The output from the synchronization logic must be passed through an edge detector before it is used by the transmitter and receiver. This process introduces two CPU clock period delay. The maximum frequency of the external SCK0 pin is limited up-to 1MHz.

11.12.6 USI0 Synchronous mode operation

When synchronous or SPI mode is used, the SCK0 pin will be used as either clock input (slave) or clock output (master). Data sampling and transmitter is issued on the different edge of SCK0 clock each other. For example, if data input on RXD0 (MISO0 in SPI mode) pin is sampled on the rising edge of SCK0 clock, data output on TXD0 (MOSI0 in SPI mode) pin is altered on the falling edge.

The CPOL0 bit in USI0CR1 register selects which SCK0 clock edge is used for data sampling and which is used for data change. As shown in the figure below, when CPOL0 is zero, the data will be changed at rising SCK0 edge and sampled at falling SCK0 edge.

Figure 11.59 Synchronous Mode SCK0 Timing (USI0)

11.12.7 USI0 UART Data format

A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and optionally a parity bit for error detection.

The UART supports all 30 combinations of the following as valid frame formats.

- 1 start bit
- 5, 6, 7, 8 or 9 data bits
- no, even or odd parity bit
- 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit (LSB). Then the next data bits, up to nine, are succeeding, ending with the most significant bit (MSB). If parity function is enabled, the parity bit is inserted between the last data bit and the stop bit. A high-to-low transition on data pin is considered as start bit. When a complete frame is transmitted, it can be directly followed by a new frame, or the communication line can be set to an idle state. The idle means high state of data pin. The following figure shows the possible combinations of the frame formats. Bits inside brackets are optional.

Figure 11.60 Frame Format (USI0)

1 data frame consists of the following bits

- Idle No communication on communication line (TXD0/RXD0)
- St Start bit (Low)
- Dn Data bits (0~8)
- · Parity bit ----- Even parity, Odd parity, No parity
- Stop bit(s) ----- 1 bit or 2 bits

The frame format used by the UART is set by the USI0S[2:0], USI0PM[1:0] bits in USI0CR1 register and USI0SB bit in USI0CR3 register. The Transmitter and Receiver use the same setting.

11.12.8 USI0 UART Parity bit

The parity bit is calculated by doing an exclusive-OR of all the data bits. If odd parity is used, the result of the exclusive-O is inverted. The parity bit is located between the MSB and first stop bit of a serial frame.

 $P_{even} = D_{n-1} \wedge \dots \wedge D_3 \wedge D_2 \wedge D_1 \wedge D_0 \wedge 0$

- $P_{odd} = D_{n-1} ^{\circ} \dots ^{\circ} D_3 ^{\circ} D_2 ^{\circ} D_1 ^{\circ} D_0 ^{\circ} 1$
- $\mathsf{P}_{\mathsf{even}}$: Parity bit using even parity
- $\mathsf{P}_{\mathsf{odd}}\;$: Parity bit using odd parity
- D_n : Data bit n of the character

11.12.9 USI0 UART Transmitter

The UART transmitter is enabled by setting the TXE0 bit in USI0CR2 register. When the Transmitter is enabled, the TXD0 pin should be set to TXD0 function for the serial output pin of UART by the P4FSR[3:2]. The baud-rate, operation mode and frame format must be setup once before doing any transmission. In synchronous operation mode, the SCK0 pin is used as transmission clock, so it should be selected to do SCK0 function by P4FSR[5:4].

11.12.9.1 USI0 UART Sending Tx data

A data transmission is initiated by loading the transmit buffer (USI0DR register I/O location) with the data to be transmitted. The data written in transmit buffer is moved to the shift register when the shift register is ready to send a new frame. The shift register is loaded with the new data if it is in idle state or immediately after the last stop bit of the previous frame is transmitted. When the shift register is loaded with new data, it will transfer one complete frame according to the settings of control registers. If the 9-bit characters are used in asynchronous or synchronous operation mode, the ninth bit must be written to the USI0TX8 bit in USI0CR3 register before it is loaded to the transmit buffer (USI0DR register).

11.12.9.2 USI0 UART Transmitter flag and interrupt

The UART transmitter has 2 flags which indicate its state. One is UART data register empty flag (DRE0) and the other is transmit complete flag (TXC0). Both flags can be interrupt sources.

DRE0 flag indicates whether the transmit buffer is ready to receive new data. This bit is set when the transmit buffer is empty and cleared when the transmit buffer contains data to be transmitted but has not yet been moved into the shift register. And also this flag can be cleared by writing '0' to this bit position. Writing '1' to this bit position is prevented.

When the data register empty interrupt enable (DRIE0) bit in USI0CR2 register is set and the global interrupt is enabled, USI0ST1 status register empty interrupt is generated while DRE0 flag is set.

The transmit complete (TXC0) flag bit is set when the entire frame in the transmit shift register has been shifted out and there is no more data in the transmit buffer. The TXC0 flag is automatically cleared when the transmit complete interrupt service routine is executed, or it can be cleared by writing '0' to TXC0 bit in USI0ST1 register.

When the transmit complete interrupt enable (TXCIE0) bit in USI0CR2 register is set and the global interrupt is enabled, UART transmit complete interrupt is generated while TXC0 flag is set.

11.12.9.3 USI0 UART Parity Generator

The parity generator calculates the parity bit for the serial frame data to be sent. When parity bit is enabled (USI0PM1=1), the transmitter control logic inserts the parity bit between the MSB and the first stop bit of the frame to be sent.

11.12.9.4 USI0 UART Disabling Transmitter

Disabling the transmitter by clearing the TXE0 bit will not become effective until ongoing transmission is completed. When the Transmitter is disabled, the TXD0 pin can be used as a normal general purpose I/O (GPIO).

11.12.10 USI0 UART Receiver

The UART receiver is enabled by setting the RXE0 bit in the USI0CR2 register. When the receiver is enabled, the RXD0 pin should be set to RXD0 function for the serial input pin of UART by P4FSR[1:0]. The baud-rate, mode of operation and frame format must be set before serial reception. In synchronous or SPI operation mode the SCK0 pin is used as transfer clock, so it should be selected to do SCK0 function by P4FSR[5:4]. In SPI operation mode the SS0 input pin in slave mode or can be configured as SS0 output pin in master mode. This can be done by setting USI0SSEN bit in USI0CR3 register.

11.12.10.1 USI0 UART Receiving Rx data

When UART is in synchronous or asynchronous operation mode, the receiver starts data reception when it detects a valid start bit (LOW) on RXD0 pin. Each bit after start bit is sampled at pre-defined baud-rate (asynchronous) or sampling edge of SCK0 (synchronous), and shifted into the receive shift register until the first stop bit of a frame is received. Even if there's 2nd stop bit in the frame, the 2nd stop bit is ignored by the receiver. That is, receiving the first stop bit means that a complete serial frame is present in the receiver shift register and contents of the shift register are to be moved into the receive buffer. The receive buffer is read by reading the USI0DR register.

If 9-bit characters are used (USI0S[2:0] = "111"), the ninth bit is stored in the USI0RX8 bit position in the USI0CR3 register. The 9th bit must be read from the USI0RX8 bit before reading the low 8 bits from the USI0DR register. Likewise, the error flags FE0, DOR0, PE0 must be read before reading the data from USI0DR register. It's because the error flags are stored in the same FIFO position of the receive buffer.

11.12.10.2 USI0 UART Receiver Flag and Interrupt

The UART receiver has one flag that indicates the receiver state.

The receive complete (RXC0) flag indicates whether there are unread data in the receive buffer. This flag is set when there are unread data in the receive buffer and cleared when the receive buffer is empty. If the receiver is disabled (RXE0=0), the receiver buffer is flushed and the RXC0 flag is cleared.

When the receive complete interrupt enable (RXCIE0) bit in the USI0CR2 register is set and global interrupt is enabled, the UART receiver complete interrupt is generated while RXC0 flag is set.

The UART receiver has three error flags which are frame error (FE0), data overrun (DOR0) and parity error (PE0). These error flags can be read from the USI0ST1 register. As received data are stored in the 2-level receive buffer, these error flags are also stored in the same position of receive buffer. So, before reading received data from USI0DR register, read the USI0ST1 register first which contains error flags.

The frame error (FE0) flag indicates the state of the first stop bit. The FE0 flag is '0' when the stop bit was correctly detected as "1", and the FE0 flag is "1" when the stop bit was incorrect, i.e. detected as "0". This flag can be used for detecting out-of-sync conditions between data frames.

The data overrun (DOR0) flag indicates data loss due to a receive buffer full condition. DOR0 occurs when the receive buffer is full, and another new data is present in the receive shift register which are to be stored into the receive buffer. After the DOR0 flag is set, all the incoming data are lost. To prevent data loss or clear this flag, read the receive buffer.

The parity error (PE0) flag indicates that the frame in the receive buffer had a parity error when received. If parity check function is not enabled (USI0PM1=0), the PE bit is always read "0".

11.12.10.3 USI0 UART Parity Checker

If parity bit is enabled (USI0PM1=1), the Parity Checker calculates the parity of the data bits in incoming frame and compares the result with the parity bit from the received serial frame.

11.12.10.4 USI0 UART Disabling Receiver

In contrast to transmitter, disabling the Receiver by clearing RXE0 bit makes the Receiver inactive immediately. When the receiver is disabled, the receiver flushes the receive buffer, the remaining data in the buffer is all reset, and the RXD0 pin can be used as a normal general purpose I/O (GPIO).

11.12.10.5 USI0 Asynchronous Data Reception

To receive asynchronous data frame, the UART includes a clock and data recovery unit. The clock recovery logic is used for synchronizing the internally generated baud-rate clock to the incoming asynchronous serial frame on the RXD0 pin.

The data recovery logic samples and low pass filters the incoming bits, and this removes the noise of RXD0 pin.

The next figure illustrates the sampling process of the start bit of an incoming frame. The sampling rate is 16 times of the baud-rate in normal mode and 8 times the aud-rate for double speed mode (DBLS0=1). The horizontal arrows show the synchronization variation due to the asynchronous sampling process. Note that larger time variation is shown when using the double speed mode.

When the receiver is enabled (RXE0=1), the clock recovery logic tries to find a high-to-low transition on the RXD0 line, the start bit condition. After detecting high to low transition on RXD0 line, the clock recovery logic uses samples 8, 9 and 10 for normal mode to decide if a valid start bit is received. If more than 2 samples have logical low level, it is considered that a valid start bit is detected and the internally generated clock is synchronized to the incoming data frame. And the data recovery can begin. The synchronization process is repeated for each start bit.

As described above, when the receiver clock is synchronized to the start bit, the data recovery can begin. Data recovery process is almost similar to the clock recovery process. The data recovery logic samples 16 times for each incoming bits for normal mode and 8 times for double speed mode, and uses sample 8, 9 and 10 to decide data value. If more than 2 samples have low levels, the received bit is considered to a logic '0' and if more than 2 samples have low levels, the received bit is considered to a logic '0' and if more than 2 samples have high levels, the received bit is considered to a logic '1'. The data recovery process is then repeated until a complete frame is received including the first stop bit. The decided bit value is stored in the receive shift register in order. Note that the Receiver only uses the first stop bit of a frame. Internally, after receiving the first stop bit, the Receiver is in idle state and waiting to find start bit.

The process for detecting stop bit is like clock and data recovery process. That is, if 2 or more samples of 3 center values have high level, correct stop bit is detected, else a frame error (FE0) flag is set. After deciding whether the first stop bit is valid or not, the Receiver goes to idle state and monitors the RXD0 line to check a valid high to low transition is detected (start bit detection).

Figure 11.63 Stop Bit Sampling and Next Start Bit Sampling (USI0)

11.12.11 USI0 SPI Mode

The USI0 can be set to operate in industrial standard SPI compliant mode. The SPI mode has the following features.

- Full Duplex, Three-wire synchronous data transfer
- Mater and Slave Operation
- Supports all four SPI0 modes of operation (mode 0, 1, 2, and 3)
- Selectable LSB first or MSB first data transfer
- Double buffered transmit and receive
- Programmable transmit bit rate

When SPI mode is enabled (USI0MS[1:0]="11"), the slave select (SS0) pin becomes active LOW input in slave mode operation, or can be output in master mode operation if USI0SSEN bit is set to '0'.

Note that during SPI mode of operation, the pin RXD0 is renamed as MISO0 and TXD0 is renamed as MOSI0 for compatibility to other SPI devices.

11.12.12 USI0 SPI Clock Formats and Timing

To accommodate a wide variety if synchronus serial peripherals from different manufacturers, the USI0 has a clock polarity bit (CPOL0) and a clock phase control bit (CPHA0) to select one of four clock formats for data transfers. CPOL0 selectively insert an inverter in series with the clock. CPHA0 chooses between two different clock phase relationships between the clock and data. Note that CPHA0 and CPOL0 bits in USI0CR1 register have different meanings according to the USI0MS[1:0] bits which decides the operating mode of USI0.

Table below shows four combinations of CPOL0 and CPHA0 for SPI mode 0, 1, 2, and 3.

SPI Mode	SPI Mode CPOL0		Leading Edge	Trailing Edge	
0 0	0 0 0 Sam		ple (Rising)	Setup (Falling)	
10	0		up (Rising)	Sample (Falling)	
2 1	2 1		ple (Falling)	Setup (Rising)	
3 1		1 Set	up (Falling)	Sample (Rising)	

Table 11-20 CPOL0 Functionality

Figure 11.64 USI0 SPI Clock Formats when CPHA0=0

When CPHA0=0, the slave begins to drive its MISO0 output with the first data bit value when SS0 goes to active low. The first SCK0 edge causes both the master and the slave to sample the data bit value on their MISO0 and MOSI0 inputs, respectively. At the second SCK0 edge, the USI0 shifts the second data bit value out to the MOSI0 and MISO0 outputs of the master and slave, respectively. Unlike the case of CPHA0=1, when CPHA0=0, the slave's SS0 input must go to its inactive high level between transfers. This is because the slave can prepare the first data bit when it detects falling edge of SS0 input.

Figure 11.65 USI0 SPI Clock Formats when CPHA0=1

When CPHA0=1, the slave begins to drive its MISO0 output when SS0 goes active low, but the data is not defined until the first SCK0 edge. The first SCK0 edge shifts the first bit of data from the shifter onto the MOSI0 output of the master and the MISO0 output of the slave. The next SCK0 edge causes both the master and slave to sample the data bit value on their MISO0 and MOSI0 inputs, respectively. At the third SCK0 edge, the USI0 shifts the second data bit value out to the MOSI0 and MISO0 output of the master and slave respectively. When CPHA0=1, the slave's SS0 input is not required to go to its inactive high level between transfers.

Because the SPI logic reuses the USI0 resources, SPI mode of operation is similar to that of synchronous or asynchronous operation. An SPI transfer is initiated by checking for the USI0 Data Register Empty flag (DRE0=1) and then writing a byte of data to the USI0DR Register. In master mode of operation, even if transmission is not enabled (TXE0=0), writing data to the USI0DR register is necessary because the clock SCK0 is generated from transmitter block.

Complete

11.12.13 USI0 SPI Block Diagram

11.12.14 USI0 I2C Mode

The USI0 can be set to operate in industrial standard serial communicatin protocols mode. The I2C mode uses 2 bus lines serial data line (SDA0) and serial clock line (SCL0) to exchange data. Because both SDA0 and SCL0 lines are open-drain output, each line needs pull-up resistor. The features are as shown below.

- Compatible with I2C bus standard
- Multi-master operation
- Up to 400kHz data transfer read speed
- 7 bit address
- Both master and slave operation
- Bus busy detection

11.12.15 USI0 I2C Bit Transfer

The data on the SDA0 line must be stable during HIGH period of the clock, SCL0. The HIGH or LOW state of the data line can only change when the clock signal on the SCL0 line is LOW. The exceptions are START(S), repeated START(Sr) and STOP(P) condition where data line changes when clock line is high.

Figure 11.67 Bit Transfer on the I2C-Bus (USI0)

11.12.16 USI0 I2C Start / Repeated Start / Stop

One master can issue a START (S) condition to notice other devices connected to the SCL0, SDA0 lines that it will use the bus. A STOP (P) condition is generated by the master to release the bus lines so that other devices can use it.

A high to low transition on the SDA0 line while SCL0 is high defines a START (S) condition. A low to high transition on the SDA0 line while SCL0 is high defines a STOP (P) condition.

START and STOP conditions are always generated by the master. The bus is considered to be busy after START condition. The bus is considered to be free again after STOP condition, ie, the bus is busy between START and STOP condition. If a repeated START condition (Sr) is generated instead of STOP condition, the bus stays busy. So, the START and repeated START conditions are functionally identical.

Figure 11.68 START and STOP Condition (USI0)

11.12.17 USI0 I2C Data Transfer

Every byte put on the SDA0 line must be 8-bits long. The number of bytes that can be transmitted per transfer is unlimited. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. If a slave can't receive or transmit another complete byte of data until it has performed some other function, it can hold the clock line SCL0 LOW to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCL0.

Figure 11.69 Data Transfer on the I2C-Bus (USI0)

11.12.18 USI0 I2C Acknowledge

The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA0 line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA0 line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse. When a slave is addressed by a master (Address Packet), and if it is unable to receive or transmit because it's performing some real time function, the data line must be left HIGH by the slave. And also, when a slave addressed by a master is unable to receive more data bits, the slave receiver must release the SDA0 line (Data Packet). The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.

If a master receiver is involved in a transfer, it must signal the end of data to the slave transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave transmitter must release the data line to allow the master to generate a STOP or repeated START condition.

Figure 11.70 Acknowledge on the I2C-Bus (USI0)

11.12.19 USI0 I2C Synchronization / Arbitration

Clock synchronization is performed using the wired-AND connection of I2C interfaces to the SCL0 line. This means that a HIGH to LOW transition on the SCL0 line will cause the devices concerned to start counting off their LOW period and it will hold the SCL0 line in that state until the clock HIGH state is reached. However the LOW to HIGH transition of this clock may not change the state of the SCL0 line if another clock is still within its LOW period. In this way, a synchronized SCL0 clock is generated with its LOW period determined by the device with the longest clock LOW period, and its HIGH period determined by the one with the shortest clock HIGH period.

A master may start a transfer only if the bus is free. Two or more masters may generate a START condition. Arbitration takes place on the SDA0 line, while the SCL0 line is at the HIGH level, in such a way that the master which transmits a HIGH level, while another master is transmitting a LOW level will switch off its DATA output state because the level on the bus doesn't correspond to its own level. Arbitration continues for many bits until a winning master gets the ownership of I2C bus. Its first stage is comparison of the address bits.

Figure 11.71 Clock Synchronization during Arbitration Procedure (USI0)

Figure 11.72 Arbitration Procedure of Two Masters (USI0)

11.12.20 USI0 I2C Operation

The I2C is byte-oriented and interrupt based. Interrupts are issued after all bus events except for a transmission of a START condition. Because the I2C is interrupt based, the application software is free to carry on other operations during a I2C byte transfer.

Note that when a I2C interrupt is generated, IIC0IFR flag in USI0CR4 register is set, it is cleared by writing an any value to USI0ST2. When I2C interrupt occurs, the SCL0 line is hold LOW until writing any value to USI0ST2. When the IIC0IFR flag is set, the USI0ST2 contains a value indicating the current state of the I2C bus. According to the value in USI0ST2, software can decide what to do next.

I2C can operate in 4 modes by configuring master/slave, transmitter/receiver. The operating mode is configured by a winning master. A more detailed explanation follows below.

11.12.20.1 USI0 I2C Master Transmitter

To operate I2C in master transmitter, follow the recommended steps below.

- 1. Enable I2C by setting USI0MS[1:0] bits in USI0CR1 and USI0EN bit in USI0CR2. This provides main clock to the peripheral.
- 2. Load SLA0+W into the USI0DR where SLA0 is address of slave device and W is transfer direction from the viewpoint of the master. For master transmitter, W is '0'. Note that USI0DR is used for both address and data.
- 3. Configure baud rate by writing desired value to both USI0SCLR and USI0SCHR for the Low and High period of SCL0 line.
- 4. Configure the USI0SDHR to decide when SDA0 changes value from falling edge of SCL0. If SDA0 should change in the middle of SCL0 LOW period, load half the value of USI0SCLR to the USI0SDHR.
- Set the STARTC0 bit in USI0CR4. This transmits a START condition. And also configure how to handle interrupt and ACK signal. When the STARTC0 bit is set, 8-bit data in USI0DR is transmitted out according to the baud-rate.
- 6. This is ACK signal processing stage for address packet transmitted by master. When 7-bit address and 1-bit transfer direction is transmitted to target slave device, the master can know whether the slave acknowledged or not in the 9th high period of SCL0. If the master gains bus mastership, I2C generates GCALL interrupt regardless of the reception of ACK from the slave device. When I2C loses bus mastership during arbitration process, the MLOST0 bit in USI0ST2 is set, and I2C waits in idle state or can be operate as an addressed slave. To operate as a slave when the MLOST0 bit in USI0ST2 is set, the ACK0EN bit in USI0CR4 must be set and the received 7-bit address must equal to the USI0SLA[6:0] bits in USI0SAR. In this case I2C operates as a slave transmitter or a slave receiver (go to appropriate section). In this stage, I2C holds the SCL0 LOW. This is because to decide whether I2C continues serial transfer or stops communication. The following steps continue assuming that I2C does not lose mastership during first data transfer.

I2C (Master) can choose one of the following cases regardless of the reception of ACK signal from slave.

1) Master receives ACK signal from slave, so continues data transfer because slave can receive more data from master. In this case, load data to transmit to USI0DR.

2) Master stops data transfer even if it receives ACK signal from slave. In this case, set the STOPC0 bit in USI0CR4.

3) Master transmits repeated START condition with not checking ACK signal. In this case, load SLA0+R/W into the USI0DR and set STARTC0 bit in USI0CR4.

After doing one of the actions above, write any arbitrary to USI0ST2 to release SCL0 line. In case of 1), move to step 7. In case of 2), move to step 9 to handle STOP interrupt. In case of 3), move to step 6 after transmitting the data in USI0DR and if transfer direction bit is '1' go to master receiver section.

- 7. 1-Byte of data is being transmitted. During data transfer, bus arbitration continues.
- This is ACK signal processing stage for data packet transmitted by master. I2C holds the SCL0 LOW. When I2C loses bus mastership while transmitting data arbitrating other masters, the MLOST0 bit in USI0ST2 is set. If then, I2C waits in idle state. When the data in USI0DR is transmitted completely, I2C generates TEND0 interrupt.

I2C can choose one of the following cases regardless of the reception of ACK signal from slave.

1) Master receives ACK signal from slave, so continues data transfer because slave can receive more data from master. In this case, load data to transmit to USI0DR.

2) Master stops data transfer even if it receives ACK signal from slave. In this case, set the STOPC0 bit in USI0CR4.

3) Master transmits repeated START condition with not checking ACK signal. In this case, load SLA0+R/W into the USI0DR and set the STARTC0 bit in USI0CR4.

After doing one of the actions above, write any arbitrary to USI0ST2 to release SCL0 line. In case of 1), move to step 7. In case of 2), move to step 9 to handle STOP interrupt. In case of 3), move to step 6 after transmitting the data in USI0DR, and if transfer direction bit is '1' go to master receiver section.

9. This is the final step for master transmitter function of I2C, handling STOP interrupt. The STOP bit indicates that data transfer between master and slave is over. To clear USI0ST2, write any value to USI0ST2. After this, I2C enters idle state.

The next figure depicts above process for master transmitter operation of I2C.

11.12.20.2 USI0 I2C Master Receiver

To operate I2C in master receiver, follow the recommended steps below.

- 1. Enable I2C by setting USI0MS[1:0] bits in USI0CR1 and USI0EN bit in USI0CR2. This provides main clock to the peripheral.
- Load SLA0+R into the USI0DR where SLA is address of slave device and R is transfer direction from the viewpoint of the master. For master receiver, R is '1'. Note that USI0DR is used for both address and data.
- 3. Configure baud rate by writing desired value to both USI0SCLR and USI0SCHR for the Low and High period of SCL0 line.
- Configure the USI0SDHR to decide when SDA0 changes value from falling edge of SCL0. If SDA0 should change in the middle of SCL0 LOW period, load half the value of USI0SCLR to the USI0SDHR.
- Set the STARTC0 bit in USI0CR4. This transmits a START condition. And also configure how to handle interrupt and ACK signal. When the STARTC0 bit is set, 8-bit data in USI0DR is transmitted out according to the baud-rate.
- 6. This is ACK signal processing stage for address packet transmitted by master. When 7-bit address and 1-bit transfer direction is transmitted to target slave device, the master can know whether the slave acknowledged or not in the 9th high period of SCL0. If the master gains bus mastership, I2C generates GCALL interrupt regardless of the reception of ACK from the slave device. When I2C loses bus mastership during arbitration process, the MLOST0 bit in USI0ST2 is set, and I2C waits in idle state or can be operate as an addressed slave. To operate as a slave when the MLOST0 bit in USI0ST2 is set, the ACK0EN bit in USI0CR4 must be set and the received 7-bit address must equal to the USI0SLA[6:0] bits in USI0SAR. In this case I2C operates as a slave transmitter or a slave receiver (go to appropriate section). In this stage, I2C holds the SCL0 LOW. This is because to decide whether I2C continues serial transfer or stops communication. The following steps continue assuming that I2C does not lose mastership during first data transfer.

I2C (Master) can choose one of the following cases according to the reception of ACK signal from slave.

1) Master receives ACK signal from slave, so continues data transfer because slave can prepare and transmit more data to master. Configure ACK0EN bit in USI0CR4 to decide whether I2C ACKnowledges the next data to be received or not.

2) Master stops data transfer because it receives no ACK signal from slave. In this case, set the STOPC0 bit in USI0CR4.

3) Master transmits repeated START condition due to no ACK signal from slave. In this case, load SLA0+R/W into the USI0DR and set STARTC0 bit in USI0CR4.

After doing one of the actions above, write arbitrary value to USI0ST2 to release SCL0 line. In case of 1), move to step 7. In case of 2), move to step 9 to handle STOP interrupt. In case of 3), move to step 6 after transmitting the data in USI0DR and if transfer direction bit is '0' go to master transmitter section.

- 7. 1-Byte of data is being received.
- 8. This is ACK signal processing stage for data packet transmitted by slave. I2C holds the SCL0 LOW. When 1-Byte of data is received completely, I2C generates TEND0 interrupt.

I2C0 can choose one of the following cases according to the RXACK0 flag in USI0ST2.

1) Master continues receiving data from slave. To do this, set ACK0EN bit in USI0CR4 to ACKnowledge the next data to be received.

2) Master wants to terminate data transfer when it receives next data by not generating ACK signal. This can be done by clearing ACK0EN bit in USI0CR4.

3) Because no ACK signal is detected, master terminates data transfer. In this case, set the STOPC0 bit in USI0CR4.

4) No ACK signal is detected, and master transmits repeated START condition. In this case, load SLA0+R/W into the USI0DR and set the STARTC0 bit in USI0CR4.

After doing one of the actions above, write arbitrary value to USI0ST2 to release SCL0 line. In case of 1) and 2), move to step 7. In case of 3), move to step 9 to handle STOP interrupt. In case of 4), move to step 6 after transmitting the data in USI0DR, and if transfer direction bit is '0' go to master transmitter section.

 This is the final step for master receiver function of I2C, handling STOP interrupt. The STOP bit indicates that data transfer between master and slave is over. To clear USI0ST2, write any value to USI0ST2. After this, I2C enters idle state.

The processes described above for master receiver operation of I2C can be depicted as the following figure.

Figure 11.74 Formats and States in the Master Receiver Mode (USI0)

11.12.20.3 USI0 I2C Slave Transmitter

To operate I2C in slave transmitter, follow the recommended steps below.

- 1. If the main operating clock (SCLK) of the system is slower than that of SCL0, load value 0x00 into USI0SDHR to make SDA0 change within one system clock period from the falling edge of SCL0. Note that the hold time of SDA0 is calculated by SDAH x period of SCLK where SDAH is multiple of number of SCLK coming from USI0SDHR. When the hold time of SDA0 is longer than the period of SCLK, I2C (slave) cannot transmit serial data properly.
- 2. Enable I2C by setting USI0MS[1:0] bits in USI0CR1, IIC0IE bit in USI0CR4 and USI0EN bit in USI0CR2. This provides main clock to the peripheral.
- 3. When a START condition is detected, I2C receives one byte of data and compares it with USI0SLA[6:0] bits in USI0SAR. If the GCALL0 bit in USI0SAR is enabled, I2C compares the received data with value 0x00, the general call address.
- 4. If the received address does not equal to USI0SLA[6:0] bits in USI0SAR, I2C enters idle state ie, waits for another START condition. Else if the address equals to USI0SLA[6:0] bits and the ACK0EN bit is enabled, I2C generates SSEL0 interrupt and the SCL0 line is held LOW. Note that even if the address equals to USI0SLA[6:0] bits, when the ACK0EN bit is disabled, I2C enters idle state. When SSEL0 interrupt occurs, load transmit data to USI0DR and write arbitrary value to USI0ST2 to release SCL0 line.
- 5. 1-Byte of data is being transmitted.
- 6. In this step, I2C generates TEND0 interrupt and holds the SCL0 line LOW regardless of the reception of ACK signal from master. Slave can select one of the following cases.

No ACK signal is detected and I2C waits STOP or repeated START condition.
ACK signal from master is detected. Load data to transmit into USI0DR.

After doing one of the actions above, write arbitrary value to USI0ST2 to release SCL0 line. In case of 1) move to step 7 to terminate communication. In case of 2) move to step 5. In either case, a repeated START condition can be detected. For that case, move step 4.

7. This is the final step for slave transmitter function of I2C, handling STOP interrupt. The STOPC0 bit indicates that data transfer between master and slave is over. To clear USI0ST2, write any value to USI0ST2. After this, I2C enters idle state.

The next figure shows flow chart for handling slave transmitter function of I2C.

Figure 11.75 Formats and States in the Slave Transmitter Mode (USI0)

11.12.20.4 USI0 I2C Slave Receiver

To operate I2C in slave receiver, follow the recommended steps below.

- If the main operating clock (SCLK) of the system is slower than that of SCL0, load value 0x00 into USI0SDHR to make SDA0 change within one system clock period from the falling edge of SCL0. Note that the hold time of SDA0 is calculated by SDAH x period of SCLK where SDAH is multiple of number of SCLK coming from USI0SDHR. When the hold time of SDA0 is longer than the period of SCLK, I2C (slave) cannot transmit serial data properly.
- 2. Enable I2C by setting USI0MS[1:0] bits in USI0CR1, IIC0IE bit in USI0CR4 and USI0EN bit in USI0CR2. This provides main clock to the peripheral.
- 3. When a START condition is detected, I2C receives one byte of data and compares it with USI0SLA[6:0] bits in USI0SAR. If the GCALL0 bit in USI0SAR is enabled, I2C0 compares the received data with value 0x00, the general call address.
- 4. If the received address does not equal to SLA0bits in USI0SAR, I2C enters idle state ie, waits for another START condition. Else if the address equals to SLA0 bits and the ACK0EN bit is enabled, I2C generates SSEL0 interrupt and the SCL0 line is held LOW. Note that even if the address equals to SLA0 bits, when the ACK0EN bit is disabled, I2C enters idle state. When SSEL0 interrupt occurs and I2C is ready to receive data, write arbitrary value to USI0ST2 to release SCL0 line.
- 5. 1-Byte of data is being received.
- 6. In this step, I2C generates TEND0 interrupt and holds the SCL0 line LOW regardless of the reception of ACK signal from master. Slave can select one of the following cases.

1) No ACK signal is detected (ACK0EN=0) and I2C waits STOP or repeated START condition. 2) ACK signal is detected (ACK0EN=1) and I2C can continue to receive data from master.

After doing one of the actions above, write arbitrary value to USI0ST2 to release SCL0 line. In case of 1) move to step 7 to terminate communication. In case of 2) move to step 5. In either case, a repeated START condition can be detected. For that case, move step 4.

7. This is the final step for slave receiver function of I2C, handling STOP interrupt. The STOPC0 bit indicates that data transfer between master and slave is over. To clear USI0ST2, write any value to USI0ST2. After this, I2C enters idle state.

The process can be depicted as following figure when I2C operates in slave receiver mode.

Figure 11.76 Formats and States in the Slave Receiver Mode (USI0)

11.12.21 USI0 I2C Block Diagram

NOTE) When the USI0 block is an I2C mode and the corresponding port is an sub-function for SCL0/SDA0 pin, the SCL0/SDA0 pins are automatically set to the N-channel open-drain outputs and the input latch is read in the case of reading the pins. The corresponding pull-up resistor is determined by the control register.

Figure 11.77 USI0 I2C Block Diagram

11.12.22 Register Map

Name	Address	Dir	Default	Description
USI0BD	E3H	R/W	FFH	USI0 Baud Rate Generation Register
USI0DR	E5H	R/W	00H	USI0 Data Register
USI0SDHR	E4H	R/W	01H	USI0 SDA Hold Time Register
USI0SCHR E7	H	R/W	3FH	USI0 SCL High Period Register
USI0SCLR	E6H	R/W	3FH	USI0 SCL Low Period Register
USI0SAR	DDH	R/W	00H	USI0 Slave Address Register
USI0CR1	D9H	R/W	00H	USI0 Control Register 1
USI0CR2	DAH	R/W	00H	USI0 Control Register 2
USI0CR3	DBH	R/W	00H	USI0 Control Register 3
USI0CR4	DCH	R/W	00H	USI0 Control Register 4
USI0ST1	E1H	R/W	80H	USI0 Status Register 1
USI0ST2	E2H	R	00H	USI0 Status Register 2

Table 11-21 USI0 Register Map

11.12.23 USI0 Register Description

USI0 module consists of USI0 baud rate generation register (USI0BD), USI0 data register (USI0DR), USI0 SDA hold time register (USI0SDHR), USI0 SCL high period register (USI0SCHR), USI0 SCL low period Register (USI0SCLR), USI0 slave address register (USI0SAR), USI0 control register 1/2/3/4 (USI0CR1/2/3/4), USI0 status register 1/2 (USI0ST1/2).

11.12.24 Register Description for USI0

7	6	5	4	3	2	1	0
USI0BD7	USI0BD6	USI0BD 5	USI0BD4	USI0BD 3	USI0BD 2	USI0BD 1	USI0BD 0
RW	RW	RW	RW	RW	RW	RW	RW
						li	nitial value : Fl
USI0BD[7:0]			asynchronou prevent malf	us mode or to	s used to gen generate SC ot write '0' in a ode.	K0 clock in S	PI mode. To
			,		U SI0SAR reg gister when the		0

USI0BD (USI0 Baud- Rate Generation Register: For UART and SPI mode) : E3H
USI0DR (USI0 Data Register: For UART, SPI, and I2C mode) : E5H

7	6	5	4	3	2	1	0
USI0DR7	USIODR6	USI0DR5	USI0DR4	USI0DR3	USI0DR2	USI0DR 1	USIODR 0
RW	RW						

Initial value : 00H

USIODR[7:0] The USI0 transmit b uffer and receive buffer s hare the s ame I/O address with this DAT A register. The transmit da ta buffer is the destination for data written to the USI 0DR register. Reading the USI0DR register returns the contents of the receive buffer. Write to this register only when the DRE0 flag is set. In SPI master mode, the SCK clock is generated when d ata are written to this register.

USI0SDHR (USI0 SDA Hold Time Register: For I2C mode) : E4H

7	6	5	4	3	2	1	0
USI0SDHR7	USI0SDHR6	USI0SDHR5	USI0SDHR4	USI0SDHR3	USI0SDHR2	USI0SDHR 1	USI0SDHR0
RW	RW	RW	RW	RW	RW	RW	RW
							nitial value : 00H
	USI	0SDHR[7:0]	edge of SCI NOTE) That master SDA In slave mo SCL0 from n The SDA0 i mode. So, to	in I2C mode. t S DA0 is ch 0 change in tl de, configure naster. s ch anged a o insure opera	ntrol SDA0 ou anged after te ne middle of S this register r fter t sclk X (tion in slave m nust be smalle	GCLK X (USIOS CL0. egarding the USIOSDHR+2 lode, the value	SDHR+2), in frequency of 2) in master

USI0SCHR (USI0 SCL High Period Register: For I2C mode) : E7H

7	6	5	4	3	2	1	0
USI0SCHR7	USI0SCHR6	USI0SCHR5	USIOSCHR4	USIOSCHR3	USI0SCHR2	USIOSCHR 1	USIOSCHR0
RW	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : 00
	USI	0SCHR[7:0]	This register I2C master r		nigh period of	SCL0 when i	t operates in
			calculated by	y the formula:	t _{SCLK} Χ (4 Χ U		
			t_{SCLK} is the p	eriod of SCLK	ζ.		

So, the operating frequency of I2C master mode is calculated by the following equation.

 $f_{I2C} = \frac{1}{t_{SCLK} X (4 X (USI0SCLR + USI0SCHR + 4))}$

USI0SCLR (USI0 SCL Low Period Register: For I2C mode) : E6H

7	6	5	4	3	2	1	0	
USI0SCLR7	USI0SCLR6	USI0SCLR5	USI0SCLR4	USIOSCLR3	USI0SCLR2	USIOSCLR1	USI0SCLR0	l
RW								
							nitial value : 00	ΟH

USI0SAR (USI0 Slave Address Register: For I2C mode) : DDH

7	6	5	4	3	2	1	0
USI0SLA6	USIOSLA5	USIOSLA4	USI0SLA3	USIOSLA2	USIOSLA1	USI0SLA0	USI0GCE
RW	RW	RW	RW	RW	RW	RW	RW
						l	nitial value : 00⊢
	USI	0SLA[6:0]	These bits c I2C slave me	0	lave address	of I2C when	it operaties in
	UPI	V [1:0]	This bit deci I2C slave mo		2C allows ge	neral call ad d	ress or not in
			0 Ign	ore general ca	ll address		
			1 Allo	w general call	address		

7	6	5	4	3		2	1	0
JSIOMS1	USIOMSO	USIOPM1	USIOPMO	USI0S2	,	SIOS1 RD0	USIOSO CPHAO	CPOL0
RW	RW	RW	RW	RW	F	w	RW	RW
								Initial value :
	USI	0MS[1:0]	Selects operation	tion mode	of USI0			
			USI0MS1 USI	0MS0	Operation	n mode		
			0 0		Asynchro	nous M	ode (UART)	
			0 1		Synchron	ious Mo	de	
			10		I2C mode	9		
			11		SPI mode	9		
	USI	0PM[1:0]	Selects parity	generatior	n and cheo	k meth	ods (only UA	RT mode)
			USI0PM1 USI	0PM0	Parity			
			0 0		No Parity			
			0 1		Reserved	I		
			10		Even Par	ity		
			11		Odd Parit	ty		
	USI	0S[2:0]	When in asyne	chronous o	or synchro	nous m	ode of opera	tion,
			selects the ler	igth of data	a bits in fra	ame		
			USI0S2 USI0	S1	USI0S0	Data I	ength	
			0 0		0	5 bit		
			0 0		1	6 bit		
			0 1		0	7 bit		
			0 1		1	8 bit		
			10		0	Reser	ved	
			10		1	Reser	ved	
			11		0	Reser	ved	
			11		1	9 bit		
	ORI	D0	This bit in the byte is transm (onl SPI mode	nitted first				
			0 LS	B-first				
			1 MSB-	first				
	CPO	DL0	This bit deterr mode.	nines the	clock pola	arity of <i>I</i>	ACK in sync	hronous or SI
			0 T.	XD change	e@Rising	Edge, F	RXD change@	Falling Edge
			1 T.	XD change	e@Falling	Edge, I	RXD change	@Rising Edge
	CPI	HA0	This bit is in the data are samp mode).					
			CPOL0 CPHA	.0	Leading e	edge	Trailin	g edge
			0 0		Sample (Rising)	Setup	(Falling)
			0 1		Setup (Ri	sing)	Sampl	e (Falling)
			1 0		Sample (Falling)	Setup	(Rising)
						0/	•	(0,

7	6	5	4	3	2	1	0		
DRIE0	TXCIE0	RXCIE0	WAKEIE0	TXE0	RXE0	USIOEN	DBLS0		
RW	RW	RW	RW	RW	RW	RW	RW		
						I	nitial value : 0		
	DR	IE0	Interrupt enable	e bit for data re	egister empty	(only UART a	nd SPI mode).		
			0 Interru	pt from DRE0	is inhibited (u	se polling)			
			1 When	DRE0 is set, r	equest an inte	errupt			
	ТХС	CIE0	Interrupt enable	e bit for transn	nit complete (c	only UART and	d SPI mode).		
			0 Interru	pt from TXC0	is inhibited (us	se polling)			
			1 When	TXC0 is set, r	equest an inte	rrupt			
	RX	CIE0	Interrupt enable	e bit for receiv	e complete (o	nly UART and	SPI mode).		
			0 Interru	pt from RXC0	is inhibited (u	se polling)			
			 When RXC0 is set, request an interrupt Interrupt enable bit for asynchronous wake in STOP mode. Whe 						
	WA	KEIE0	is in stop mode to wake-up sys USI0ST1 regist	e, if RXD0 goe stem. (only UA	es to low level ART mode). A	an interrupt c At that time th	an be request e DRIE0 bit a		
			0 Interru	pt from Wake	is inhibited				
			1 When	WAKE0 is set	, request an ir	nterrupt			
	ТХІ	Ξ0	Enables the tra	nsmitter unit (only UART an	d SPI mode).			
			0 Tr ansr	nitter is disable	ed				
			1 Tr ansr	nitter is enable	ed				
	RX	E0	Enables the red	ceiver unit (on	ly UART and S	SPI mode).			
			0 Receiv	er is disabled					
			1 Receiv	er is enabled					
	US	SIOEN Activate USI0 function block by supplying.							
				s disabled					
				s enabled					
	DB	LS0	This bit selects	-		y UART).			
				l asynchronou	•				
			1 Double	e Speed asynd	chronous oper	ation			

USI0CR2 (USI0 Control Register 2: For UART, SPI, and I2C mode) : DAH

7	6	5	4	3	2	1	0
MASTER0	LOOPS0	DISSCK0	USIOSSEN	FXCH0	USIOSB	USI0TX8	USIORX8
RW	RW	RW	RW	RW	RW	RW	R
						I	nitial value : 00
	MA	STER0	Selects maste controls the direction of			chronous mod	e operation ar
			0 Slave	mode operatio	n (External cl	ock for SCK0)	
			1 Maste	r mode operat	ion(Internal cl	ock for SCK0)	
	LOO	OPS0	Controls the lo mode)	op back mode	of USI0 for t	est mode (onl	y UART and S
			0 Nor ma	al operation			
			1 Loo p l	Back mode			
	DIS	SCK0	In synchronous	s mode of oper	ation, selects	the waveform	of SCK0 outp
				s f ree-running r mode	g while UAR	T is en abled	i n s ynchrono
			1 ACK	is active while	any frame is o	on transferring	
	USI	OSSEN	This bit control	s the SS0 pin	operation (onl	y SPI mode)	
			0 Di sab	le			
			1 Enable	e (The SS0 pir	should be a	normal input)	
	FXC	CH0	SPI port function	on exchange c	ontrol bit (only	/ SPI mode)	
			0 No eff	ect			
			1 Excha	inge MOSI0 ar	d MISO0 fund	ction	
	USI	0SB	Selects the ler operation.	ngth of stop bi	t in a synchro	nous or synch	nronous mode
			0 1 Stop	o Bit			
			1 2 Stop	o Bit			
	USI	0TX8	The ninth bit operation. Write				
			0 MSB	(9 th bit) to be tra	ansmitted is '0)'	
			1 MSB ((9 th bit) to be tra	ansmitted is '1	,	
	USI	ORX8	The ninth bit operation. Rea mode).				
			0 MSB	(9 th bit) receive	d is '0'		
			1 MSB (9 th bit) receive	d is '1'		

USI0CR3 (USI0 Control Register 3: For UART, SPI, and I2C mode) : DBH

USI0CR4 (USI0 Control Register 4: For I2C mode) : DCH

7	6	5	4	3	2	1	0
IICOIFR	-	TXDLYENB0	ICOIE	ACK0EN	IMASTER0	STOPC0	STARTCO
R	-	RW	RW	RW	R	RW	RW
						I	nitial value : 00
	II		This is an inter bit becomes '1'				
			0 I2C int	errupt no gene	eration		
			1 I2C int	errupt generat	tion		
	т	XDLYENB0	USI0SDHR reg	jister control b	it		
			0 Enab le	e USI0SDHR r	egister		
			1 Disable	e USI0SDHR	register		
	II	COIE	Interrupt Enable	e bit for I2C m	ode		
			0 Interru	pt from I2C is	inhibited (use	polling)	
			1 Enable	e interrupt for I	2C		
	A	CK0EN	Controls ACK s	signal Generat	ion at ninth S	CL0 period.	
			0 No AC	K signal is ge	nerated (SDA) =1)	
			1 ACK s	ignal is genera	ated (SDA0 =0))	
			NOTES) ACK s	•	, ,	-	
			1. When receiv		•		
			 When re cei enabled. 	ved a duress	packet equais		
			3. When I2C op	perates as a re	eceiver (maste	er or slave)	
	IF	MASTER0	Represent ope	rating mode o	f I2C		
			0 I2C is i	in slave mode			
			1 I2C is	in master mod	le		
	S	TOPC0	When I2C is ma	aster, STOP c	ondition gene	ration	
			0 No effe	ect			
			1 STOP	condition is to	be generated		
	S	TARTC0	When I2C is m	aster, START	condition gen	eration	
			0 No effe	ect			
			1 STAR	T or repeated	START condit	ion is to be ge	enerated

USI0ST1 (USI	0 Status Reg	gister 1: For U	ART and SP	I mode) : E1H
7	6	5	4	2

7	6	5	4	3	2	1	0	
DRE0	TXC0	RXC0	WAKE0	USIORST	DOR0	FE0	PE0	
RW	RW	R	RW	RW	R	RW	RW	
							nitial value : 80	
	DR		The DR E0 flag receive ne w da written. This flag	ata. If DRE0 i	s '1', the buf	fer is empty a		
			0 Transr	nit buffer is no	t empty.			
			1 Transr	nit buffer is en	npty.			
	TX		This flag is set been s hifted of transmit b uffer service routine TXC0 interrupt.	out a nd ther e . T his flag is of a TXC0 int	is no new automaticall errupt is exec	data cu rrently y cleared wh uted. This flac	present in the interru	
			0 Transr	nission is onge	oing.			
				nit buffer is ei fted out comp		datain trans	mit shift regist	
	RX	C0	This flag is se cleared when a can be used to	all the data in	the receive b			
			0 There	is no data unr	ead in the rec	eive buffer		
			1 There	are more than	n 1 data in the	receive buffer	r	
	WA	KE0	This flag is set when the RXD0 pin is detected low while the CPU is STOP mode. This flag can be used to generate a WAKE0 interrupt. The bit is set only when in asynchronous mode of operation. This bit shou be cleared by program software. (only UART mode)					
			0 No WA	KE interrupt i	s generated.			
			1 WAKE	interrupt is ge	enerated			
	US	IORST	This is an inter- initializes the in '0'.					
			0 No ope	eration				
			1 Reset	USI0				
	DO	R0	This bit is set if incoming data is read.				,	
			0 No Da	ta OverRun				
			1 Data C	verRun detec	ted			
	FEO	D	This bit is set i detected as '0 UART mode)					
			0 No Fra	me Error				
			1 Frame	Error detecte	d			
	PE		This bit is set if to be received receive buffer is	while Parity C	hecking is en			
			0 N o Par	rity Error				
			1 Parit v	Error detected				

USI0ST2 (USI0 Status Register 2: For I2C mode) : E2H

7	6	5	4	3	2	1	0
GCALL0	TEND0	STOPD0	SSEL0	MLOST0	BUSY0	TMODE0	RXACK0
R	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : 0
	GC	ALL0 ^(NOTE)	This bit has di slave. Wh en la AACK (address	2Cisamast	ter, this bit re		
			0 No AA	CK is received	d (Master mod	e)	
			1 AACK	is received (N	Master mode)		
			When I2C is a	slave, this bit i	is used to indi	cated general	call.
			0 Gener	al call address	s is not detecte	ed (Slave mod	e)
			1 Gener	al call address	s is detected (S	Slave mode)	
	TEN	ND0 ^(NOTE)	This bit is set v	hen 1-byte of	data is transfe	erred complete	ely
			0 1 byte	of data is not	completely tra	nsferred	
			1 1 byte	of data is com	pletely transfe	erred	
	STOPD0 ^(NOTE) This bit is set when a STOP condition is detected.					tected.	
			0 No ST	OP condition i	s detected		
			1 STOF	condition is d	letected		
	SSI	ELO ^(NOTE)	This bit is set v	hen I2C is ad	dressed by ot	ner master.	
			0 I2C is	not selected a	s a slave		
			1 I2C is	addressed by	other master	and acts as a	slave
	ML	OST0 ^(NOTE)	This bit represe	ents the result	of bus arbitrat	ion in master	mode.
			0 I 2C m	aintains bus m	astership		
			1 I2C m	aintains bus m	astership duri	ng arbitration	process
	BU	SY0	This bit reflects	s bus status.			
			0 I2C bu	s is idle, so a	master can is	sue a START	condition
			1 I2C bu	is is busy			
	TM	ODE0	This bit is used	to indicate wh	nether I2C is t	ransmitter or r	eceiver.
			0 I 2C is	a receiver			
			1 I2C is	a transmitter			
	RX	ACK0	This bit shows	the state of A	CK signal		
			0 No AC	K is received			
			1 ACK is	received at n	inth SCL perio	bd	

NOTE) These bits can be source of interrupt.

When an I2C interrupt oc curs except for STOP mode, the SCL0 line is hold LOW. To release SCL0, write r bitrary value to USI 0ST2. When USI0ST2 is written, the TEND0, STOPD0, SSEL0, MLOST0, and RXACK0 bits are cleared.

11.13 USI1 (UART + SPI + I2C)

11.13.1 Overview

The USI1 consists of USI1 control register1/2/3/4, USI1 status register 1/2, USI1 baud-rate generation register, USI1 data register, USI1 SDA hold time register, USI1 SCL high period register, USI1 SCL low period register, and USI1 slave address register (USI1CR1, USI1CR2, USI1CR3, USI1CR4, USI1ST1, USI1ST2, USI1BD, USI1DR, USI1SDHR, USI1SCHR, USI1SCLR, USI1SAR).

The operation mode is selected by the operation mode of USI1 selection bits (USI1MS[1:0]).

It has four operating modes:

- Asynchronous mode (UART)
- Synchronous mode
- SPI mode
- I2C mode

11.13.2 USI1 UART Mode

The universal synchronous and asynchronous serial receiver and transmitter (UART) is a highly flexible serial communication device. The main features are listed below.

- Full Duplex Operation (Independent Serial Receive and Transmit Registers)
- Asynchronous or Synchronous Operation
- Baud Rate Generator
- Supports Serial Frames with 5,6,7,8, or 9 Data Bits and 1 or 2 Stop Bits
- Odd or Even Parity Generation and Parity Check Supported by Hardware
- Data OverRun Detection
- Framing Error Detection
- Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
- Double Speed Asynchronous communication mode

USI1 has three main parts of clock generator, Transmitter and receiver. The clock generation logic consists of synchronization logic for external clock inut used by synchronous or SPI slave operation, and the baud rate generator for asynchronous or master (synchronous or SPI) operation.

The Transmitter consists of a single write buffer, a serial shift register, parity generator and control logic for handling different serial frame formats. The write buffer allows continuous transfer of data without any delay between frames. The receiver is the most complex part of the UART module due to its clock and data recovery units. The recovery unit is used for asynchronous data reception. In addition to the recovery unit, the receiver includes a parity checker, a shift register, a two-level receive FIFO (USI1DR) and control logic. The receiver supports the same frame formats as the transmitter and can detect frame error, data overrun and parity errors.

11.13.3 USI1 UART Block Diagram

Figure 11.78 USI1 UART Block Diagram

11.13.4 USI1 Clock Generation

Figure 11.79 Clock Generation Block Diagram (USI1)

The clock generation logic generates the base clock for the transmitter and receiver. The USI1 supports four modes of clock operation and those are normal asynchronous, double speed asynchronous, master synchronous and slave synchronous mode. The clock generation scheme for master SPI and slave SPI mode is the same as master synchronous and slave synchronous operation mode. The USI1MS[1:0] bits in USI1CR1 register selects asynchronous or synchronous operation. Asynchronous double speed mode is controlled by the DBLS1 bit in the USI1CR2 register. The MASTER1 bit in USI1CR3 register controls whether the clock source is internal (master mode, output pin) or external (slave mode, input pin). The SCK1 pin is active only when the USI1 operates in synchronous or SPI mode.

Following table shows the equations for calculating the baud rate (in bps).

Table 11-22 Equations for Calculatin	g USI1 Baud Rate Register Setting

Operating Mode	Equation for Calculating Baud Rate	
Asynchronous Normal Mode (DBLS1=0)	Baud Rate = $\frac{fx}{16(USI1BD + 1)}$	
Asynchronous Double Speed Mode (DBLS1=1)	Baud Rate = $\frac{fx}{8(USI1BD + 1)}$	
Synchronous or SPI Master Mode	Baud Rate = $\frac{fx}{2(USI1BD + 1)}$	

11.13.5 USI1 External Clock (SCK1)

External clocking is used in the synchronous mode of operation.

External clock input from the SCK1 pin is sampled by a synchronization logic to remove meta-stability. The output from the synchronization logic must be passed through an edge detector before it is used by the transmitter and receiver. This process introduces two CPU clock period delay. The maximum frequency of the external SCK1 pin is limited up-to 1MHz.

11.13.6 USI1 Synchronous mode operation

When synchronous or SPI mode is used, the SCK1 pin will be used as either clock input (slave) or clock output (master). Data sampling and transmitter is issued on the different edge of SCK1 clock each other. For example, if data input on RXD1 (MISO1 in SPI mode) pin is sampled on the rising edge of SCK1 clock, data output on TXD1 (MOSI1 in SPI mode) pin is altered on the falling edge.

The CPOL1 bit in USI1CR1 register selects which SCK1 clock edge is used for data sampling and which is used for data change. As shown in the figure below, when CPOL1 is zero, the data will be changed at rising SCK1 edge and sampled at falling SCK1 edge.

Figure 11.80 Synchronous Mode SCK1 Timing (USI1)

11.13.7 USI1 UART Data format

A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and optionally a parity bit for error detection.

The UART supports all 30 combinations of the following as valid frame formats.

- 1 start bit
- 5, 6, 7, 8 or 9 data bits
- no, even or odd parity bit
- 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit (LSB). Then the next data bits, up to nine, are succeeding, ending with the most significant bit (MSB). If parity function is enabled, the parity bit is inserted between the last data bit and the stop bit. A high-to-low transition on data pin is considered as start bit. When a complete frame is transmitted, it can be directly followed by a new frame, or the communication line can be set to an idle state. The idle means high state of data pin. The following figure shows the possible combinations of the frame formats. Bits inside brackets are optional.

Figure 11.81 Frame Format (USI1)

1 data frame consists of the following bits

- Idle No communication on communication line (TXD0/RXD0)
- St Start bit (Low)
- Dn Data bits (0~8)
- · Parity bit ----- Even parity, Odd parity, No parity
- Stop bit(s) ----- 1 bit or 2 bits

The frame format used by the UART is set by the USI1S[2:0], USI1PM[1:0] bits in USI1CR1 register and USI1SB bit in USI1CR3 register. The Transmitter and Receiver use the same setting.

11.13.8 USI1 UART Parity bit

The parity bit is calculated by doing an exclusive-OR of all the data bits. If odd parity is used, the result of the exclusive-O is inverted. The parity bit is located between the MSB and first stop bit of a serial frame.

 $P_{even} = D_{n-1} \wedge ... \wedge D_3 \wedge D_2 \wedge D_1 \wedge D_0 \wedge 0$

 $P_{odd} = D_{n-1} ^{A} \dots ^{A} D_{3} ^{A} D_{2} ^{A} D_{1} ^{A} D_{0} ^{A} 1$

- P_{even} : Parity bit using even parity
- Podd : Parity bit using odd parity
- D_n : Data bit n of the character

11.13.9 USI1 UART Transmitter

The UART transmitter is enabled by setting the TXE1 bit in USI1CR2 register. When the Transmitter is enabled, the TXD1 pin should be set to TXD1 function for the serial output pin of UART by the P2FSR[1:0]. The baud-rate, operation mode and frame format must be setup once before doing any transmission. In synchronous operation mode, the SCK1 pin is used as transmission clock, so it should be selected to do SCK1 function by P2FSR[3:2].

11.13.9.1 USI1 UART Sending Tx data

A data transmission is initiated by loading the transmit buffer (USI1DR register I/O location) with the data to be transmitted. The data written in transmit buffer is moved to the shift register when the shift register is ready to send a new frame. The shift register is loaded with the new data if it is in idle state or immediately after the last stop bit of the previous frame is transmitted. When the shift register is loaded with new data, it will transfer one complete frame according to the settings of control registers. If the 9-bit characters are used in asynchronous or synchronous operation mode, the ninth bit must be written to the USI1TX8 bit in USI1CR3 register before it is loaded to the transmit buffer (USI1DR register).

11.13.9.2 USI1 UART Transmitter flag and interrupt

The UART transmitter has 2 flags which indicate its state. One is UART data register empty flag (DRE1) and the other is transmit complete flag (TXC1). Both flags can be interrupt sources.

DRE1 flag indicates whether the transmit buffer is ready to receive new data. This bit is set when the transmit buffer is empty and cleared when the transmit buffer contains data to be transmitted but has not yet been moved into the shift register. And also this flag can be cleared by writing '0' to this bit position. Writing '1' to this bit position is prevented.

When the data register empty interrupt enable (DRIE1) bit in USI1CR2 register is set and the global interrupt is enabled, USI1ST1 status register empty interrupt is generated while DRE1 flag is set.

The transmit complete (TXC1) flag bit is set when the entire frame in the transmit shift register has been shifted out and there is no more data in the transmit buffer. The TXC1 flag is automatically cleared when the transmit complete interrupt service routine is executed, or it can be cleared by writing '0' to TXC1 bit in USI1ST1 register.

When the transmit complete interrupt enable (TXCIE1) bit in USI1CR2 register is set and the global interrupt is enabled, UART transmit complete interrupt is generated while TXC1 flag is set.

11.13.9.3 USI1 UART Parity Generator

The parity generator calculates the parity bit for the serial frame data to be sent. When parity bit is enabled (USI1PM1=1), the transmitter control logic inserts the parity bit between the MSB and the first stop bit of the frame to be sent.

11.13.9.4 USI1 UART Disabling Transmitter

Disabling the transmitter by clearing the TXE1 bit will not become effective until ongoing transmission is completed. When the Transmitter is disabled, the TXD1 pin can be used as a normal general purpose I/O (GPIO).

11.13.10 USI1 UART Receiver

The UART receiver is enabled by setting the RXE1 bit in the USI1CR2 register. When the receiver is enabled, the RXD1 pin should be set to RXD1 function for the serial input pin of UART by P1FSR[1:0]. The baud-rate, mode of operation and frame format must be set before serial reception. In synchronous or SPI operation mode the SCK1 pin is used as transfer clock, so it should be selected to do SCK1 function by P2FSR[3:2]. In SPI operation mode the SS1 input pin in slave mode or can be configured as SS1 output pin in master mode. This can be done by setting USI1SSEN bit in USI1CR3 register.

11.13.10.1 USI1 UART Receiving Rx data

When UART is in synchronous or asynchronous operation mode, the receiver starts data reception when it detects a valid start bit (LOW) on RXD1 pin. Each bit after start bit is sampled at pre-defined baud-rate (asynchronous) or sampling edge of SCK1 (synchronous), and shifted into the receive shift register until the first stop bit of a frame is received. Even if there's 2nd stop bit in the frame, the 2nd stop bit is ignored by the receiver. That is, receiving the first stop bit means that a complete serial frame is present in the receiver shift register and contents of the shift register are to be moved into the receive buffer. The receive buffer is read by reading the USI1DR register.

If 9-bit characters are used (USI1S[2:0] = "111"), the ninth bit is stored in the USI1RX8 bit position in the USI1CR3 register. The 9th bit must be read from the USI1RX8 bit before reading the low 8 bits from the USI1DR register. Likewise, the error flags FE1, DOR1, PE1 must be read before reading the data from USI1DR register. It's because the error flags are stored in the same FIFO position of the receive buffer.

11.13.10.2 USI1 UART Receiver Flag and Interrupt

The UART receiver has one flag that indicates the receiver state.

The receive complete (RXC1) flag indicates whether there are unread data in the receive buffer. This flag is set when there are unread data in the receive buffer and cleared when the receive buffer is empty. If the receiver is disabled (RXE1=1), the receiver buffer is flushed and the RXC1 flag is cleared.

When the receive complete interrupt enable (RXCIE1) bit in the USI1CR2 register is set and global interrupt is enabled, the UART receiver complete interrupt is generated while RXC1 flag is set.

The UART receiver has three error flags which are frame error (FE1), data overrun (DOR1) and parity error (PE1). These error flags can be read from the USI1ST1 register. As received data are stored in the 2-level receive buffer, these error flags are also stored in the same position of receive buffer. So, before reading received data from USI1DR register, read the USI1ST1 register first which contains error flags.

The frame error (FE1) flag indicates the state of the first stop bit. The FE1 flag is '0' when the stop bit was correctly detected as "1", and the FE1 flag is "1" when the stop bit was incorrect, i.e. detected as "0". This flag can be used for detecting out-of-sync conditions between data frames.

The data overrun (DOR1) flag indicates data loss due to a receive buffer full condition. DOR1 occurs when the receive buffer is full, and another new data is present in the receive shift register which are to be stored into the receive buffer. After the DOR1 flag is set, all the incoming data are lost. To prevent data loss or clear this flag, read the receive buffer.

The parity error (PE1) flag indicates that the frame in the receive buffer had a parity error when received. If parity check function is not enabled (USI1PM1=0), the PE bit is always read "0".

11.13.10.3 USI1 UART Parity Checker

If parity bit is enabled (USI1PM1=1), the Parity Checker calculates the parity of the data bits in incoming frame and compares the result with the parity bit from the received serial frame.

11.13.10.4 USI1 UART Disabling Receiver

In contrast to transmitter, disabling the Receiver by clearing RXE1 bit makes the Receiver inactive immediately. When the receiver is disabled, the receiver flushes the receive buffer, the remaining data in the buffer is all reset, and the RXD1 pin can be used as a normal general purpose I/O (GPIO).

11.13.10.5 USI1 Asynchronous Data Reception

To receive asynchronous data frame, the UART includes a clock and data recovery unit. The clock recovery logic is used for synchronizing the internally generated baud-rate clock to the incoming asynchronous serial frame on the RXD1 pin.

The data recovery logic samples and low pass filters the incoming bits, and this removes the noise of RXD1 pin.

The next figure illustrates the sampling process of the start bit of an incoming frame. The sampling rate is 16 times of the baud-rate in normal mode and 8 times the aud-rate for double speed mode (DBLS1=1). The horizontal arrows show the synchronization variation due to the asynchronous sampling process. Note that larger time variation is shown when using the double speed mode.

When the receiver is enabled (RXE1=1), the clock recovery logic tries to find a high-to-low transition on the RXD1 line, the start bit condition. After detecting high to low transition on RXD1 line, the clock recovery logic uses samples 8, 9 and 10 for normal mode to decide if a valid start bit is received. If more than 2 samples have logical low level, it is considered that a valid start bit is detected and the internally generated clock is synchronized to the incoming data frame. And the data recovery can begin. The synchronization process is repeated for each start bit.

As described above, when the receiver clock is synchronized to the start bit, the data recovery can begin. Data recovery process is almost similar to the clock recovery process. The data recovery logic samples 16 times for each incoming bits for normal mode and 8 times for double speed mode, and uses sample 8, 9 and 10 to decide data value. If more than 2 samples have low levels, the received bit is considered to a logic '0' and if more than 2 samples have high levels, the received bit is considered to a logic '1'. The data recovery process is then repeated until a complete frame is received including the first stop bit. The decided bit value is stored in the receive shift register in order. Note that the Receiver only uses the first stop bit of a frame. Internally, after receiving the first stop bit, the Receiver is in idle state and waiting to find start bit.

Figure 11.83 Asynchronous Sampling of Data and Parity Bit (USI1)

The process for detecting stop bit is like clock and data recovery process. That is, if 2 or more samples of 3 center values have high level, correct stop bit is detected, else a frame error (FE1) flag is set. After deciding whether the first stop bit is valid or not, the Receiver goes to idle state and monitors the RXD1 line to check a valid high to low transition is detected (start bit detection).

Figure 11.84 Stop Bit Sampling and Next Start Bit Sampling (USI1)

11.13.11 USI1 SPI Mode

The USI1 can be set to operate in industrial standard SPI compliant mode. The SPI mode has the following features.

- Full Duplex, Three-wire synchronous data transfer
- Mater and Slave Operation
- Supports all four SPI0 modes of operation (mode 0, 1, 2, and 3)
- Selectable LSB first or MSB first data transfer
- Double buffered transmit and receive
- Programmable transmit bit rate

When SPI mode is enabled (USI1MS[1:0]="11"), the slave select (SS1) pin becomes active LOW input in slave mode operation, or can be output in master mode operation if USI1SSEN bit is set to '0'.

Note that during SPI mode of operation, the pin RXD1 is renamed as MISO1 and TXD1 is renamed as MOSI1 for compatibility to other SPI devices.

11.13.12 USI1 SPI Clock Formats and Timing

To accommodate a wide variety if synchronus serial peripherals from different manufacturers, the USI1 has a clock polarity bit (CPOL1) and a clock phase control bit (CPHA1) to select one of four clock formats for data transfers. CPOL1 selectively insert an inverter in series with the clock. CPHA1 chooses between two different clock phase relationships between the clock and data. Note that CPHA1 and CPOL1 bits in USI1CR1 register have different meanings according to the USI1MS[1:0] bits which decides the operating mode of USI1.

Table below shows four combinations of CPOL1 and CPHA1 for SPI mode 0, 1, 2, and 3.

SPI Mode	CPOL1	CPHA1	Leading Edge	Trailing Edge
0 0		0	Sample (Rising)	Setup (Falling)
1 0		1	Setup (Rising)	Sample (Falling)
2	1	0	Sample (Falling)	Setup (Rising)
3	1	1	Setup (Falling)	Sample (Rising)

Table 11-23 CPOL1 Functionality

Figure 11.85 USI1 SPI Clock Formats when CPHA1=0

When CPHA1=0, the slave begins to drive its MISO1 output with the first data bit value when SS1 goes to active low. The first SCK1 edge causes both the master and the slave to sample the data bit value on their MISO1 and MOSI1 inputs, respectively. At the second SCK1 edge, the USI1 shifts the second data bit value out to the MOSI1 and MISO1 outputs of the master and slave, respectively. Unlike the case of CPHA1=1, when CPHA1=0, the slave's SS1 input must go to its inactive high level between transfers. This is because the slave can prepare the first data bit when it detects falling edge of SS1 input.

Figure 11.86 USI1 SPI Clock Formats when CPHA1=1

When CPHA1=1, the slave begins to drive its MISO1 output when SS1 goes active low, but the data is not defined until the first SCK1 edge. The first SCK1 edge shifts the first bit of data from the shifter onto the MOSI1 output of the master and the MISO1 output of the slave. The next SCK1 edge causes both the master and slave to sample the data bit value on their MISO1 and MOSI1 inputs, respectively. At the third SCK1 edge, the USI1 shifts the second data bit value out to the MOSI1 and MISO1 output of the master and slave respectively. When CPHA1=1, the slave's SS1 input is not required to go to its inactive high level between transfers.

Because the SPI logic reuses the USI1 resources, SPI mode of operation is similar to that of synchronous or asynchronous operation. An SPI transfer is initiated by checking for the USI1 Data Register Empty flag (DRE1=1) and then writing a byte of data to the USI1DR Register. In master mode of operation, even if transmission is not enabled (TXE1=0), writing data to the USI1DR register is necessary because the clock SCK1 is generated from transmitter block.

Complete

11.13.13 USI1 SPI Block Diagram

11.13.14 USI1 I2C Mode

The USI1 can be set to operate in industrial standard serial communicatin protocols mode. The I2C mode uses 2 bus lines serial data line (SDA1) and serial clock line (SCL1) to exchange data. Because both SDA1 and SCL1 lines are open-drain output, each line needs pull-up resistor. The features are as shown below.

- Compatible with I2C bus standard
- Multi-master operation
- Up to 400kHz data transfer read speed
- 7 bit address
- Both master and slave operation
- Bus busy detection

11.13.15 USI1 I2C Bit Transfer

The data on the SDA1 line must be stable during HIGH period of the clock, SCL1. The HIGH or LOW state of the data line can only change when the clock signal on the SCL1 line is LOW. The exceptions are START(S), repeated START(Sr) and STOP(P) condition where data line changes when clock line is high.

Figure 11.88 Bit Transfer on the I2C-Bus (USI1)

11.13.16 USI1 I2C Start / Repeated Start / Stop

One master can issue a START (S) condition to notice other devices connected to the SCL1, SDA1 lines that it will use the bus. A STOP (P) condition is generated by the master to release the bus lines so that other devices can use it.

A high to low transition on the SDA1 line while SCL1 is high defines a START (S) condition. A low to high transition on the SDA1 line while SCL1 is high defines a STOP (P) condition.

START and STOP conditions are always generated by the master. The bus is considered to be busy after START condition. The bus is considered to be free again after STOP condition, ie, the bus is busy between START and STOP condition. If a repeated START condition (Sr) is generated instead of STOP condition, the bus stays busy. So, the START and repeated START conditions are functionally identical.

Figure 11.89 START and STOP Condition (USI1)

11.13.17 USI1 I2C Data Transfer

Every byte put on the SDA1 line must be 8-bits long. The number of bytes that can be transmitted per transfer is unlimited. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. If a slave can't receive or transmit another complete byte of data until it has performed some other function, it can hold the clock line SCL1 LOW to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCL1.

Figure 11.90 Data Transfer on the I2C-Bus (USI1)

11.13.18 USI1 I2C Acknowledge

The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA1 line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA1 line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse. When a slave is addressed by a master (Address Packet), and if it is unable to receive or transmit because it's performing some real time function, the data line must be left HIGH by the slave. And also, when a slave addressed by a master is unable to receive more data bits, the slave receiver must release the SDA1 line (Data Packet). The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.

If a master receiver is involved in a transfer, it must signal the end of data to the slave transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave transmitter must release the data line to allow the master to generate a STOP or repeated START condition.

Figure 11.91 Acknowledge on the I2C-Bus (USI1)

11.13.19 USI1 I2C Synchronization / Arbitration

Clock synchronization is performed using the wired-AND connection of I2C interfaces to the SCL1 line. This means that a HIGH to LOW transition on the SCL1 line will cause the devices concerned to start counting off their LOW period and it will hold the SCL1 line in that state until the clock HIGH state is reached. However the LOW to HIGH transition of this clock may not change the state of the SCL1 line if another clock is still within its LOW period. In this way, a synchronized SCL1 clock is generated with its LOW period determined by the device with the longest clock LOW period, and its HIGH period determined by the one with the shortest clock HIGH period.

A master may start a transfer only if the bus is free. Two or more masters may generate a START condition. Arbitration takes place on the SDA1 line, while the SCL1 line is at the HIGH level, in such a way that the master which transmits a HIGH level, while another master is transmitting a LOW level will switch off its DATA output state because the level on the bus doesn't correspond to its own level. Arbitration continues for many bits until a winning master gets the ownership of I2C bus. Its first stage is comparison of the address bits.

Figure 11.92 Clock Synchronization during Arbitration Procedure (USI1)

11.13.20 USI1 I2C Operation

The I2C is byte-oriented and interrupt based. Interrupts are issued after all bus events except for a transmission of a START condition. Because the I2C is interrupt based, the application software is free to carry on other operations during a I2C byte transfer.

Note that when a I2C interrupt is generated, IIC1IFR flag in USI1CR4 register is set, it is cleared by writing an any value to USI1ST2. When I2C interrupt occurs, the SCL1 line is hold LOW until writing any value to USI1ST2. When the IIC1IFR flag is set, the USI1ST2 contains a value indicating the current state of the I2C bus. According to the value in USI1ST2, software can decide what to do next.

I2C can operate in 4 modes by configuring master/slave, transmitter/receiver. The operating mode is configured by a winning master. A more detailed explanation follows below.

11.13.20.1 USI1 I2C Master Transmitter

To operate I2C in master transmitter, follow the recommended steps below.

- 10. Enable I2C by setting USI1MS[1:0] bits in USI1CR1 and USI1EN bit in USI1CR2. This provides main clock to the peripheral.
- 11. Load SLA1+W into the USI1DR where SLA1 is address of slave device and W is transfer direction from the viewpoint of the master. For master transmitter, W is '0'. Note that USI1DR is used for both address and data.
- 12. Configure baud rate by writing desired value to both USI1SCLR and USI1SCHR for the Low and High period of SCL1 line.
- 13. Configure the USI0SDHR to decide when SDA1 changes value from falling edge of SCL1. If SDA1 should change in the middle of SCL1 LOW period, load half the value of USI1SCLR to the USI1SDHR.
- 14. Set the STARTC1 bit in USI1CR4. This transmits a START condition. And also configure how to handle interrupt and ACK signal. When the STARTC1 bit is set, 8-bit data in USI1DR is transmitted out according to the baud-rate.
- 15. This is ACK signal processing stage for address packet transmitted by master. When 7-bit address and 1-bit transfer direction is transmitted to target slave device, the master can know whether the slave acknowledged or not in the 9th high period of SCL1. If the master gains bus mastership, I2C generates GCALL interrupt regardless of the reception of ACK from the slave device. When I2C loses bus mastership during arbitration process, the MLOST1 bit in USI1ST2 is set, and I2C waits in idle state or can be operate as an addressed slave. To operate as a slave when the MLOST1 bit in USI1ST2 is set, the ACK1EN bit in USI1CR4 must be set and the received 7-bit address must equal to the USI1SLA[6:0] bits in USI1SAR. In this case I2C operates as a slave transmitter or a slave receiver (go to appropriate section). In this stage, I2C holds the SCL1 LOW. This is because to decide whether I2C continues serial transfer or stops communication. The following steps continue assuming that I2C does not lose mastership during first data transfer.

I2C (Master) can choose one of the following cases regardless of the reception of ACK signal from slave.

1) Master receives ACK signal from slave, so continues data transfer because slave can receive more data from master. In this case, load data to transmit to USI1DR.

2) Master stops data transfer even if it receives ACK signal from slave. In this case, set the STOPC1 bit in USI1CR4.

3) Master transmits repeated START condition with not checking ACK signal. In this case, load SLA1+R/W into the USI1DR and set STARTC1 bit in USI1CR4.

After doing one of the actions above, write any arbitrary to USI1ST2 to release SCL1 line. In case of 1), move to step 7. In case of 2), move to step 9 to handle STOP interrupt. In case of 3), move to step 6 after transmitting the data in USI1DR and if transfer direction bit is '1' go to master receiver section.

- 16. 1-Byte of data is being transmitted. During data transfer, bus arbitration continues.
- 17. This is ACK signal processing stage for data packet transmitted by master. I2C holds the SCL1 LOW. When I2C loses bus mastership while transmitting data arbitrating other masters, the MLOST1 bit in USI1ST2 is set. If then, I2C waits in idle state. When the data in USI1DR is transmitted completely, I2C generates TEND1 interrupt.

I2C can choose one of the following cases regardless of the reception of ACK signal from slave.

1) Master receives ACK signal from slave, so continues data transfer because slave can receive more data from master. In this case, load data to transmit to USI1DR.

2) Master stops data transfer even if it receives ACK signal from slave. In this case, set the STOPC1 bit in USI1CR4.

3) Master transmits repeated START condition with not checking ACK signal. In this case, load SLA1+R/W into the USI1DR and set the STARTC1 bit in USI1CR4.

After doing one of the actions above, write any arbitrary to USI1ST2 to release SCL1 line. In case of 1), move to step 7. In case of 2), move to step 9 to handle STOP interrupt. In case of 3), move to step 6 after transmitting the data in USI1DR, and if transfer direction bit is '1' go to master receiver section.

18. This is the final step for master transmitter function of I2C, handling STOP interrupt. The STOP bit indicates that data transfer between master and slave is over. To clear USI1ST2, write any value to USI1ST2. After this, I2C enters idle state.

The next figure depicts above process for master transmitter operation of I2C.

11.13.20.2 USI1 I2C Master Receiver

To operate I2C in master receiver, follow the recommended steps below.

- 10. Enable I2C by setting USI1MS[1:0] bits in USI1CR1 and USI1EN bit in USI1CR2. This provides main clock to the peripheral.
- 11. Load SLA1+R into the USI1DR where SLA is address of slave device and R is transfer direction from the viewpoint of the master. For master receiver, R is '1'. Note that USI1DR is used for both address and data.
- 12. Configure baud rate by writing desired value to both USI1SCLR and USI1SCHR for the Low and High period of SCL1 line.
- 13. Configure the USI1SDHR to decide when SDA1 changes value from falling edge of SCL1. If SDA1 should change in the middle of SCL1 LOW period, load half the value of USI1SCLR to the USI1SDHR.
- 14. Set the STARTC1 bit in USI1CR4. This transmits a START condition. And also configure how to handle interrupt and ACK signal. When the STARTC1 bit is set, 8-bit data in USI1DR is transmitted out according to the baud-rate.
- 15. This is ACK signal processing stage for address packet transmitted by master. When 7-bit address and 1-bit transfer direction is transmitted to target slave device, the master can know whether the slave acknowledged or not in the 9th high period of SCL1. If the master gains bus mastership, I2C generates GCALL interrupt regardless of the reception of ACK from the slave device. When I2C loses bus mastership during arbitration process, the MLOST1 bit in USI1ST2 is set, and I2C waits in idle state or can be operate as an addressed slave. To operate as a slave when the MLOST1 bit in USI1ST2 is set, the ACK1EN bit in USI1CR4 must be set and the received 7-bit address must equal to the USI1SLA[6:0] bits in USI1SAR. In this case I2C operates as a slave transmitter or a slave receiver (go to appropriate section). In this stage, I2C holds the SCL1 LOW. This is because to decide whether I2C continues serial transfer or stops communication. The following steps continue assuming that I2C does not lose mastership during first data transfer.

I2C (Master) can choose one of the following cases according to the reception of ACK signal from slave.

1) Master receives ACK signal from slave, so continues data transfer because slave can prepare and transmit more data to master. Configure ACK0EN bit in USI0CR4 to decide whether I2C ACKnowledges the next data to be received or not.

2) Master stops data transfer because it receives no ACK signal from slave. In this case, set the STOPC1 bit in USI1CR4.

3) Master transmits repeated START condition due to no ACK signal from slave. In this case, load SLA1+R/W into the USI1DR and set STARTC1 bit in USI1CR4.

After doing one of the actions above, write arbitrary value to USI1ST2 to release SCL1 line. In case of 1), move to step 7. In case of 2), move to step 9 to handle STOP interrupt. In case of 3), move to step 6 after transmitting the data in USI1DR and if transfer direction bit is '0' go to master transmitter section.

- 16. 1-Byte of data is being received.
- 17. This is ACK signal processing stage for data packet transmitted by slave. I2C holds the SCL1 LOW. When 1-Byte of data is received completely, I2C generates TEND1 interrupt.

I2C can choose one of the following cases according to the RXACK1 flag in USI1ST2.

1) Master continues receiving data from slave. To do this, set ACK1EN bit in USI0CR4 to ACKnowledge the next data to be received.

2) Master wants to terminate data transfer when it receives next data by not generating ACK signal. This can be done by clearing ACK1EN bit in USI1CR4.

3) Because no ACK signal is detected, master terminates data transfer. In this case, set the STOPC1 bit in USI1CR4.

4) No ACK signal is detected, and master transmits repeated START condition. In this case, load SLA1+R/W into the USI1DR and set the STARTC1 bit in USI1CR4.

After doing one of the actions above, write arbitrary value to USI1ST2 to release SCL1 line. In case of 1) and 2), move to step 7. In case of 3), move to step 9 to handle STOP interrupt. In case of 4), move to step 6 after transmitting the data in USI1DR, and if transfer direction bit is '0' go to master transmitter section.

 This is the final step for master receiver function of I2C, handling STOP interrupt. The STOP bit indicates that data transfer between master and slave is over. To clear USI1ST2, write any value to USI1ST2. After this, I2C enters idle state.

The processes described above for master receiver operation of I2C can be depicted as the following figure.

Figure 11.95 Formats and States in the Master Receiver Mode (USI1)

11.13.20.3 USI1 I2C Slave Transmitter

To operate I2C in slave transmitter, follow the recommended steps below.

- 8. If the main operating clock (SCLK) of the system is slower than that of SCL1, load value 0x00 into USI1SDHR to make SDA1 change within one system clock period from the falling edge of SCL1. Note that the hold time of SDA1 is calculated by SDAH x period of SCLK where SDAH is multiple of number of SCLK coming from USI1SDHR. When the hold time of SDA1 is longer than the period of SCLK, I2C (slave) cannot transmit serial data properly.
- 9. Enable I2C by setting USI1MS[1:0] bits in USI1CR1, IIC1IE bit in USI1CR4 and USI1EN bit in USI1CR2. This provides main clock to the peripheral.
- 10. When a START condition is detected, I2C receives one byte of data and compares it with USI1SLA[6:0] bits in USI1SAR. If the GCALL1 bit in USI1SAR is enabled, I2C compares the received data with value 0x00, the general call address.
- 11. If the received address does not equal to USI1SLA[6:0] bits in USI1SAR, I2C enters idle state ie, waits for another START condition. Else if the address equals to USI1SLA[6:0] bits and the ACK1EN bit is enabled, I2C generates SSEL1 interrupt and the SCL1 line is held LOW. Note that even if the address equals to USI1SLA[6:0] bits, when the ACK1EN bit is disabled, I2C enters idle state. When SSEL1 interrupt occurs, load transmit data to USI1DR and write arbitrary value to USI1ST2 to release SCL1 line.
- 12. 1-Byte of data is being transmitted.
- 13. In this step, I2C generates TEND1 interrupt and holds the SCL1 line LOW regardless of the reception of ACK signal from master. Slave can select one of the following cases.

No ACK signal is detected and I2C waits STOP or repeated START condition.
 ACK signal from master is detected. Load data to transmit into USI1DR.

After doing one of the actions above, write arbitrary value to USI1ST2 to release SCL1 line. In case of 1) move to step 7 to terminate communication. In case of 2) move to step 5. In either case, a repeated START condition can be detected. For that case, move step 4.

14. This is the final step for slave transmitter function of I2C, handling STOP interrupt. The STOPC1 bit indicates that data transfer between master and slave is over. To clear USI1ST2, write any value to USI1ST2. After this, I2C enters idle state.

The next figure shows flow chart for handling slave transmitter function of I2C.

Figure 11.96 Formats and States in the Slave Transmitter Mode (USI1)

11.13.20.4 USI1 I2C Slave Receiver

To operate I2C in slave receiver, follow the recommended steps below.

- 8. If the main operating clock (SCLK) of the system is slower than that of SCL1, load value 0x00 into USI1SDHR to make SDA1 change within one system clock period from the falling edge of SCL1. Note that the hold time of SDA1 is calculated by SDAH x period of SCLK where SDAH is multiple of number of SCLK coming from USI1SDHR. When the hold time of SDA1 is longer than the period of SCLK, I2C (slave) cannot transmit serial data properly.
- 9. Enable I2C by setting USI1MS[1:0] bits in USI1CR1, IIC1IE bit in USI1CR4 and USI1EN bit in USI1CR2. This provides main clock to the peripheral.
- 10. When a START condition is detected, I2C receives one byte of data and compares it with USI1SLA[6:0] bits in USI1SAR. If the GCALL1 bit in USI1SAR is enabled, I2C1 compares the received data with value 0x00, the general call address.
- 11. If the received address does not equal to SLA1 bits in USI1SAR, I2C enters idle state ie, waits for another START condition. Else if the address equals to SLA1 bits and the ACK1EN bit is enabled, I2C generates SSEL1 interrupt and the SCL1 line is held LOW. Note that even if the address equals to SLA1 bits, when the ACK1EN bit is disabled, I2C enters idle state. When SSEL1 interrupt occurs and I2C is ready to receive data, write arbitrary value to USI1ST2 to release SCL1 line.
- 12. 1-Byte of data is being received.
- 13. In this step, I2C generates TEND1 interrupt and holds the SCL1 line LOW regardless of the reception of ACK signal from master. Slave can select one of the following cases.

1) No ACK signal is detected (ACK1EN=0) and I2C waits STOP or repeated START condition. 2) ACK signal is detected (ACK1EN=1) and I2C can continue to receive data from master.

After doing one of the actions above, write arbitrary value to USI1ST2 to release SCL1 line. In case of 1) move to step 7 to terminate communication. In case of 2) move to step 5. In either case, a repeated START condition can be detected. For that case, move step 4.

14. This is the final step for slave receiver function of I2C, handling STOP interrupt. The STOPC1 bit indicates that data transfer between master and slave is over. To clear USI1ST2, write any value to USI1ST2. After this, I2C enters idle state.

The process can be depicted as following figure when I2C operates in slave receiver mode.

Figure 11.97 Formats and States in the Slave Receiver Mode (USI1)

11.13.21 USI1 I2C Block Diagram

NOTE) When the USI1 block is an I2C mode and the corresponding port is an sub-function for SCL1/SDA1 pin, the SCL1/SDA1 pins are automatically set to the N-channel open-drain outputs and the input latch is read in the case of reading the pins. The corresponding pull-up resistor is determined by the control register.

Figure 11.98 USI1 I2C Block Diagram
11.13.22 Register Map

Name	Address	Dir	Default	Description
USI1BD	F3H	R/W	FFH	USI1 Baud Rate Generation Register
USI1DR	F5H	R/W	00H	USI1 Data Register
USI1SDHR	F4H	R/W	01H	USI1 SDA Hold Time Register
USI1SCHR	F7H	R/W	3FH	USI1 SCL High Period Register
USI1SCLR	F6H	R/W	3FH	USI1 SCL Low Period Register
USI1SAR	EDH	R/W	00H	USI1 Slave Address Register
USI1CR1	E9H	R/W	00H	USI1 Control Register 1
USI1CR2	EAH	R/W	00H	USI1 Control Register 2
USI1CR3	EBH	R/W	00H	USI1 Control Register 3
USI1CR4	ECH	R/W	00H	USI1 Control Register 4
USI1ST1	F1H	R/W	80H	USI1 Status Register 1
USI1ST2	F2H	R	00H	USI1 Status Register 2

Table 11-24 USI1 Register Map

11.13.23 USI1 Register Description

USI1 module consists of USI1 baud rate generation register (USI1BD), USI1 data register (USI1DR), USI1 SDA hold time register (USI1SDHR), USI1 SCL high period register (USI1SCHR), USI1 SCL low period Register (USI1SCLR), USI1 slave address register (USI1SAR), USI1 control register 1/2/3/4 (USI1CR1/2/3/4), USI1 status register 1/2 (USI1ST1/2).

11.13.24 Register Description for USI1

	7	6	5	4	3	2	1	0		
ſ	USI1BD7	USI1BD6	USI1BD 5	USI1BD4	USI1BD3	USI1BD2	USI1BD 1	USI1BD0		
Ĩ	RW	RW	RW	RW	RW	RW	RW	RW		
							li	nitial value : F	FH	
		USI	1BD[7:0]	The value in this register is used to generate internal baud rate in asynchronous mode or to generate SCK1 clock in SPI mode. To prevent malfunction, do not write '0' in asynchronous mode and do not write '0' or '1' in SPI mode.						
				NOTE) In common with U SI1SAR register, USI1BD r egister is used for slave address register when the USI1 I2C mode.						

USI1BD (USI1 Baud- Rate Generation Register: For UART and SPI mode) : F3H

USI1DR (USI1 Data Register: For UART, SPI, and I2C mode) : F5H

7	6	5	4	3	2	1	0
USI1DR7	USI1DR6	USI1DR5	USI1DR4	USI1DR3	USI1DR2	USI1DR1	USI1DR0
RW							

Initial value : 00H

USI1DR[7:0] The USI1 transmit b uffer and receive buffer s hare the s ame I/O address with t his DAT A register. The transmit da ta buffer is th e destination for data written to the USI 1DR register. Reading the USI1DR register returns the contents of the receive buffer. Write to this register only when the DRE1 flag is set. In SPI master mode, the SCK1 clock is generated when data are written to this register.

USI1SDHR (USI1 SDA Hold Time Register: For I2C mode) : F4H

7	6	5	4	3	2	1	0
USI1SDHR7	USI1SDHR6	USI1SDHR5	USI1SDHR4	USI1SDHR3	USI1SDHR2	USI1SDHR 1	USI1SDHR0
RW	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : 00H
	USI	1SDHR[7:0]	edge of SCL NOTE) That master SDA In slave mo SCL1 from n The SDA1 i mode. So, to	1 in I2C mode t S DA1 is ch 1 change in th de, configure naster. s ch anged a b insure opera	ntrol SDA1 ou e. anged after ta e middle of So this register r after t sclk X (tion in slave m nust be smaller	SCLK X (USI19 CL1. egarding the (USI1SDHR+2 lode, the value	SDHR+2), in frequency of 2) in master

USI1SCHR (USI1 SCL High Period Register: For I2C mode) : F7H

7	6	5	4	3	2	1	0	
USI1SCHR7	USI1SCHR6	USI1SCHR5	USI1SCHR4	USI1SCHR3	USI1SCHR2	USI1SCHR 1	USI1SCHR0	
RW	RW	RW	RW	RW	RW	RW	RW	
						I	nitial value : 00	
	USI	1SCHR[7:0]	This register defines the high period of SCL1 when it operates in I2C master mode.					
			The b ase c lock is S CLK, the s ystem c lock, and t he p eriod i s calculated by the formula: $t_{SCLK} X$ (4 X USI1SCHR +2) where					
			t_{SCLK} is the p	eriod of SCLK	ζ.			

So, the operating frequency of I2C master mode is calculated by the following equation.

 $f_{I2C} = \frac{1}{t_{SCLK} X (4 X (USI1SCLR + USI1SCHR + 4))}$

USI1SCLR (USI1 SCL Low Period Register: For I2C mode) : F6H

7	6	5	4	3	2	1	0	
USI1SCLR7	USI1SCLR6	USI1SCLR5	USI1SCLR4	USI1SCLR3	USI1SCLR2	USI1SCLR1	USI1SCLR0	
RW								
						I	nitial value : 0	OН

 $\label{eq:USI1SCLR[7:0]} \begin{array}{l} \mbox{This register defines the high period of SCL1 when it operates in l2C master mode.} \\ \mbox{The b ase c lock is S CLK, the s ystem c lock, and t he p eriod i s calculated by the formula: } t_{SCLK} X (4 X USI1SCLR +2) where \\ t_{SCLK} \mbox{ is the period of SCLK.} \end{array}$

USI1SAR (USI1 Slave Address Register: For I2C mode) : EDH

7	6	5	4	3	2	1	0		
USI1SLA6	USI1SLA5	USI1SLA4	USI1SLA3	USI1SLA2	USI1SLA1	USI1SLA0	USI1GCE		
RW	RW	RW	RW	RW	RW	RW	RW		
						l	nitial value : 00H		
	USI	1SLA[6:0]	These bits configure the slave address of I2C when it operaties in I2C slave mode.						
	UPI	W[1:0]	This bit decides whether I2C allows general call address or not in I2C slave mode.						
			0 Ignore general call address						
			1 Allo	Allow general call address					

7	6	5	4	3		2	1	0
USI1MS1	USI1MS0	USI1PM1	USI1PM0	USI1S2		SI1S1 RD1	USI1S0 CPHA1	CPOL1
RW	RW	RW	RW	RW	F	w	RW	RW
								Initial value :
		4.0014.01	Colocto onorci	tion mode.	of LICI4			
	031	1MS[1:0]	Selects operat					
			USI1MS1 USI	11/150	Operation			
			0 0 0 1		-		lode (UART)	
					Synchron		de	
			10		I2C mode			
			11		SPI mode			
	USI	1PM[1:0]	Selects parity	-		k meth	ods (only UA	ARI mode)
				1PM0	Parity			
			00		No Parity			
			01		Reserved			
			10		Even Par	•		
			11		Odd Parif	y		
	USI	1S[2:0]	When in async selects the len				ode of opera	ation,
			USI1S2 USI1	S1	USI1S0	Data I	_ength	
			0 0		0	5 bit		
			0 0		1	6 bit		
			0 1		0	7 bit		
			0 1		1	8 bit		
			10		0	Reser	ved	
			10		1	Reser	ved	
			11		0	Reser	ved	
			11		1	9 bit		
	ORI	D1	This bit in the byte is transm (onl SPI mode	nitted first				
			0 LS	B-first				
			1 MSB-	first				
	CPO	DL1	This bit deterr mode.	mines the o	clock pola	arity of <i>I</i>	ACK in syno	hronous or SF
			0 T.	XD change	@Rising	Edge, F	RXD change	@Falling Edge
				-		-	-	@Rising Edge
	CPI	HA1	This bit is in th data are samp mode).	ne same bi	t position	with US	SI1S0. This	bit determines
			CPOL1 CPHA	.1	Leading e	edge	Trailir	ng edge
			0 0		Sample (-		(Falling)
			0 1		Setup (Ri			le (Falling)
			1 0		Sample (-	(Rising)

7	6	5	4	3	2	1	0
DRIE1	TXCIE1	RXCIE1	WAKEIE1	TXE1	RXE1	USI1EN	DBLS1
RW	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : 0
	DR	IE1	Interrupt enable	e bit for data re	egister empty	(only UART a	nd SPI mode)
			0 Interru	pt from DRE1	is inhibited (u	se polling)	
			1 When	DRE1 is set, r	equest an inte	errupt	
	ТХС	CIE1	Interrupt enable	e bit for transn	nit complete (o	only UART and	d SPI mode).
			0 Interru	pt from TXC1	is inhibited (u	se polling)	
			1 When	TXC1 is set, r	equest an inte	errupt	
	RX	CIE1	Interrupt enable	e bit for receiv	e complete (o	nly UART and	SPI mode).
			0 Interru	pt from RXC1	is inhibited (u	se polling)	
			1 When	RXC1 is set, r	equest an inte	errupt	
	WA	KEIE1	Interrupt enable is in stop mode to wake-up sys USI1ST1 regist	e, if RXD1 goe stem. (only UA	es to low level ART mode). A	an interrupt o At that time th	an be reques e DRIE1 bit a
			0 Interru	pt from Wake	is inhibited		
			1 When	WAKE1 is set	, request an ir	nterrupt	
	TXE	E1	Enables the tra	nsmitter unit (only UART ar	nd SPI mode).	
			0 Tr ansn	nitter is disable	ed		
			1 Tr ansn	nitter is enable	ed		
	RXI	E1	Enables the red	eiver unit (on	ly UART and S	SPI mode).	
			0 Receiv	er is disabled			
			1 Receiv	er is enabled			
	USI	I1EN	Activate USI1 f	unction block	by supplying.		
			0 USI 1 is	disabled			
			1 USI 1 is	s enabled			
	DB	LS1	This bit selects	receiver sam	oling rate (only	y UART)	
			0 Norma	l asynchronou	is operation		
			1 Double	Speed async	chronous oper	ation	

USI1CR2 (USI1 Control Register 2: For UART, SPI, and I2C mode) : EAH

7	6	5	4	3	2	1	0		
MASTER1	LOOPS1	DISSCK1	USI1SSEN	FXCH1	USI1SB	USI1TX8	USI1RX8		
RW	RW	RW	RW	RW	RW	RW	R		
						I	nitial value : 00		
	MA	STER1		er or s lave in S rection of SCK		chronous mod	e operation an		
			0 Slave	mode operatio	on (External cl	ock for SCK1)			
			1 Maste	er mode operat	ion(Internal cl	ock for SCK1)			
	LOO	OPS1	Controls the lo mode)	oop back mode	of USI1 for t	est mode (onl	y UART and S		
			0 Nor ma	al operation					
			1 Loo p	Back mode					
	DIS	SCK1	In synchronou	s mode of oper	ration, selects	the waveform	of SCK1 output		
				s f ree-running r mode	g while UAR	T is en abled	i n s ynchronol		
			1 ACK	is active while	any frame is o	on transferring			
	USI	1SSEN	This bit contro	Is the SS1 pin	operation (onl	y SPI mode)			
			0 Di sab	le					
			1 Enabl	e (The SS1 pir	should be a	normal input)			
	FXC	CH1	SPI port functi	SPI port function exchange control bit (only SPI mode)					
			0 No eff	ect					
			1 Excha	ange MOSI1 ar	nd MISO1 fund	ction			
	USI	1SB	Selects the le operation.	ngth of stop bi	it in a synchro	nous or synch	nronous mode		
			0 1 Stop	o Bit					
			1 2 Stop	o Bit					
	USI	1TX8		of data frame te this bit first b			ronous mode egister		
			0 MSB	(9 th bit) to be tra	ansmitted is '0)'			
			1 MSB	(9 th bit) to be tra	ansmitted is '1	,			
	USI	1RX8					ronous mode uffer (only UAF		
			0 MSB	(9 th bit) receive	d is '0'				
			1 MSB	(9 th bit) receive	d is '1'				

USI1CR3 (USI1 Control Register 3: For UART, SPI, and I2C mode) : EBH

USI1CR4 (USI1 Control Register 4: For I2C mode) : ECH

7	6	5	4	3	2	1	0			
IIC1IFR	-	TXDLYENB1	IIC1IE	ACK1EN	IMASTER1	STOPC1	STARTC1			
R	-	RW	RW	RW	R	RW	RW			
						I	nitial value : 00			
	IIC		This is an interrupt flag bit for I2C mode. When an interrupt occurs, this bit becomes '1'. This bit is cleared when write any values in th USI1ST2.							
			0 I2C int	errupt no gene	eration					
			1 I2C interrupt generation							
	тх	DLYENB1	USI1SDHR reg	jister control b	it					
			0 Enab le	e USI1SDHR r	egister					
			1 Disable	e USI1SDHR	register					
	IIC	1IE	Interrupt Enabl	e bit for I2C m	ode					
			0 Interrupt from I2C is inhibited (use polling)							
			1 Enable interrupt for I2C							
	AC	K1EN	Controls ACK s	signal Generat	ion at ninth So	CL1 period.				
			0 No AC	K signal is ge	nerated (SDA	1 =1)				
			1 ACK s	ignal is genera	ated (SDA1 =0))				
			NOTES) ACK s							
			 When received address packet equals to USI1SLA bits in USI1SAR. When received a ddress packet equals to value 0x00 with GCALL1 							
			2. when reicer enabled.	ved a ddress	packet eq uais	to value uxu	0 with GC ALI			
			3. When I2C or	perates as a re	eceiver (maste	er or slave)				
	IM	ASTER1	Represent ope	rating mode o	f I2C					
			0 I2C is	in slave mode						
			1 I2C is	in master mod	le					
	ST	OPC1	When I2C is m	aster, STOP o	ondition gene	ration				
			0 No effe	ect						
			1 STOP	condition is to	be generated					
	ST	ARTC1	When I2C is m	aster, START	condition gen	eration				
			0 No effe	ect						
			1 STAR	T or repeated	START condit	ion is to be ge	enerated			

7	6	5	4	3	2	1	0		
DRE1	TXC1	RXC1	WAKE1	USI1RST	DOR1	FE1	PE1		
RW	RW	R	RW	RW	R	RW	RW		
						Ir	nitial value : 80		
	DR	E1	The DR E1 flag receive ne w da written. This flag	ata. If DRE1 i	s '1', the buf	fer is empty a			
			0 Transn	nit buffer is no	t empty.				
			1 Transmit buffer is empty.						
	TX	C1	This flag is set when the entire frame in the transmit shift register has been shifted out and there is no new data currently present in the transmit b uffer. This flag is automatically cleared when the interrup service routine of a TXC1 interrupt is executed. This flag can generate a TXC1 interrupt. This bit is automatically cleared.						
			0 Transn	nission is onge	oing.				
				nit buffer is ei fted out comp		data in transr	nit shift regist		
	RX	C1	This flag is se cleared when a can be used to	all the data in	the receive b				
			0 There is no data unread in the receive buffer						
			1 There	are more than	n 1 data in the	receive buffer			
	WA	KE1	This flag is set when the RXD1 pin is detected low while the CPU is in STOP mode. This flag can be used to generate a WAKE1 interrupt. This bit is set only when in asynchronous mode of operation. This bit should be cleared by program software. (only UART mode)						
			0 No WAKE interrupt is generated.						
			1 WAKE interrupt is generated						
	US	I1RST	This is an internal reset and only has effect on USI1. Writing '1' to this bi initializes the internal logic of USI1 and this bit is automatically cleared to '0'.						
			0 No ope	eration					
			1 Reset	USI1					
	DO	R1	This bit is set if incoming data is read.						
			0 No Dat	ta OverRun					
			1 Data C	verRun detec	ted				
	FE ²	1	This bit is set if the first stop bit of next character in the receive buffer is detected as '0'. This bit is valid un til the receive buffer is read. (only UART mode)						
			0 No Fra	me Error					
			1 Frame	Error detecte	d				
	PE	1	This bit is set if to be received receive buffer is	while Parity C	hecking is en				
			0 N o Par	rity Error					
			1 Parit v	Error detected					

USI1ST2 (USI1 Status Register 2: For I2C mode) : F2H

7	6	5	4	3	2	1	0
GCALL1	TEND1	STOPD1	SSEL1	MLOST1	BUSY1	TMODE1	RXACK1
R	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : 0
	GC	ALL1 ^(NOTE)	This bit has di slave. Wh en l2 AACK (address	2Cisa mast	ter, this bit re		
			0 No AA	CK is received	d (Master mod	e)	
			1 AACK	is received (N	Master mode)		
			When I2C is a	slave, this bit i	is used to indi	cated general	call.
			0 Gener	al call address	s is not detecte	ed (Slave mod	e)
			1 Gener	al call address	s is detected (S	Slave mode)	
	TE	ND1 ^(NOTE)	This bit is set w	/hen 1-byte of	data is transfe	erred complete	ely
			0 1 byte	of data is not	completely tra	nsferred	
			1 1 byte	of data is com	pletely transfe	erred	
	STO	OPD1 ^(NOTE)	This bit is set w	hen a STOP	condition is de	tected.	
			0 No ST	OP condition i	s detected		
			1 STOP	condition is d	letected		
	SSI	EL1 ^(NOTE)	This bit is set w	hen I2C is ad	dressed by otl	ner master.	
			0 I2C is	not selected a	s a slave		
			1 I2C is	addressed by	other master a	and acts as a	slave
	ML	OST1 ^(NOTE)	This bit represe	ents the result	of bus arbitrat	ion in master	mode.
			0 I 2C ma	aintains bus m	astership		
			1 I2C ma	aintains bus m	astership duri	ng arbitration	process
	BU	SY1	This bit reflects	bus status.			
			0 I2C bu	s is idle, so a	master can iss	sue a START	condition
			1 I2C bu	s is busy			
	TM	ODE1	This bit is used	to indicate wh	nether I2C is ti	ansmitter or r	eceiver.
			0 I 2C is	a receiver			
			1 I2C is	a transmitter			
	RX	ACK1	This bit shows	the state of A	CK signal		
			0 No AC	K is received			
			1 ACK is	received at n	inth SCL perio	bd	

NOTE) These bits can be source of interrupt.

When an I2C interrupt oc curs except for STOP mode, the SCL1 line is hold LOW. To release SCL1, write r bitrary value to USI 1ST2. When USI1ST2 is written, the TEND1, STOPD1, SSEL1, MLOST1, and RXACK1 bits are cleared.

11.14.1 Baud Rate setting (example)

Baud	fx=1.0	0MHz f	x=1.84	32MHz	fx=2.00MHz	
Rate	USI0BD/USI1BD	ERROR US	10BD/USI1BD EF	RRO R US	I0BD/USI1BD	ERROR
2400	25	0.2% 47	0.	0% 51		0.2%
4800	12	0.2% 23	0.	0% 25		0.2%
9600	6	-7.0%	11 0.	0% 12		0.2%
14.4k	3	8.5% 7		0.0% 8		-3.5%
19.2k	2	8.5% 5		0.0% 6		-7.0%
28.8k	1	8.5% 3		0.0% 3		8.5%
38.4k 1		-18.6%	2	0.0%	2	8.5%
57.6k	-	-	1 -25.	0% 1		8.5%
76.8k -		-	1	0.0%	1	-18.6%
115.2k	-					
230.4k	-					

Table 11-25 Examples of USI0BD and USI1BD Settings for Commonly Used Oscillator Frequencies

(continued)

Baud	fx=3.686	64MHz f	x=4.00MH	lz f	x=7.3728MHz		
Rate	USI0BD/USI1BD	ERROR US	10BD/USI1BD ERRO	R US	I0BD/USI1BD	ERROR	
2400	95	0.0% 10	3	0.2% 191		0.0%	
4800	47	0.0% 51	0.	2% 95		0.0%	
9600	23	0.0% 25	0.	2% 47		0.0%	
14.4k	15	0.0% 16	2.	1% 31		0.0%	
19.2k	11	0.0% 12	0.	2% 23		0.0%	
28.8k 7		0.0%	8	-3.5%	15	0.0%	
38.4k 5		0.0%	6	-7.0%	11	0.0%	
57.6k	3	0.0% 3		8.5% 7		0.0%	
76.8k	2	0.0% 2		8.5% 5		0.0%	
115.2k	1	0.0% 1		8.5% 3		0.0%	
230.4k	-				1	0.0%	
250k	-				1	-7.8%	
0.5M	-						

(continued)

Baud	fx=8.0	0MHz f	x=11.0	592MHz
Rate	USI0BD/USI1BD EF	RRO R	USI0BD/USI1BD EF	RRO R
2400 20	7	0.2%	-	-
4800	103 0.	2% 143	0.	0%
9600	51 0.	2%	71 0.	0%
14.4k 34	Ļ	-0.8%	47	0.0%
19.2k	25 0.	2%	35 0.	0%
28.8k	16 2.	1%	23 0.	0%
38.4k	12 0.	2%	17 0.	0%
57.6k 8		-3.5%	11	0.0%
76.8k	6 -7.	0% 8		0.0%
115.2k	3 8.	5% 5		0.0%
230.4k	1 8.	5% 2		0.0%
250k	1 0.	0% 2		-7.8%
0.5M	-			
1M	-		_	

11.15 LCD Driver

11.15.1 Overview

The LCD driver is controlled by the LCD Control Register (LCDCRH/L). The LCLK[1:0] determines the frequency of COM signal scanning of each segment output. A RESET clears the LCD control register LCDCRH and LCDCRL values to logic '0'.

The LCD display can continue operating during IDLE and STOP modes if a sub-frequency clock is used as system clock source.

11.15.2 LCD Display RAM Organization

Display data are stored to the display data area in the external data memory.

The display data which stored to the display external data area (address 0000H-001AH) are read automatically and sent to the LCD driver by the hardware. The LCD driver generates the segment signals and common signals in accordance with the display data and drive method. Therefore, display patterns can be changed by only overwriting the contents of the display external data area with a program.

Figure 11-99 shows the correspondence between the display external data area and the COM/SEG pins. The LCD is turned on when the display data is "1" and turned off when "0".

Figure 11.99 LCD Circuit Block Diagram

11.15.3 LCD Signal Waveform

11.15.4 LCD Voltage Dividing Resistor Connection

NOTES)

The above figures are for the internal resistor bias connection. So, It is not needed an external connection.
 When the internal resistors are selected, all the P40/VLC3, P41/VLC2, P42/VLC1 and P43/VLC0 pins can be used for normal I/O.

Figure 11.104 Internal Resistor Bias Connection

NOTES)

- 1. When the external resistor bias is selected, the internal resistors for bias are disconnected.
- 2. When the external resistor bias is selected, the dividing resistors should be connected like the above figure and the needed bias pins should be selected as the LCD bias function pins (VLC0, VLC1, VLC2, and VLC3) by P4FSR register.
- When it is 1/2 bias, the P43/VLC0 and P41/VLC2 pins should be selected as VLC0 and VLC2 functions. The other pins can be used for normal I/O.
- When it is 1/3 bias, the P43/VLC0, P42/VLC1, and P41/VLC2 pins should be selected as VLC0, VLC1, and VLC2 functions. Another pin can be used for normal I/O.
- When it is 1/4 bias, the P43/VLC0, P42/VLC1, P41/VLC2, and P40/VLC3 pins should be selected as VLC0, VLC1, VLC2, and VLC3 functions

Figure 11.105 External Resistor Bias Connection

11.15.5 Block Diagram

11.15.6 Register Map

Table	11-26	LCD	Register M	lap
-------	-------	-----	-------------------	-----

Name	Address	Dir	Default	Description
LCDCRH 9AH		R/W	00H	LCD Driver Control High Register
LCDCRL 99H		R/W	00H	LCD Driver Control Low Register
LCDCCR	9BH	R/W	00H	LCD Contrast Control Register

11.15.7 LCD Driver Register Description

LCD driver register has two control registers, LCD driver control high register (LCDCRH), LCD driver control low register (LCDCRL) and LCD contrast control register.

11.15.8 Register Description for LCD Driver

7	6	5	4	3	2	1	0
-	-	-	COMCHG	-	-	LCDDR	DISP
-	-	_	RW	-	-	RW	RW
						I	nitial value : 00H
	CO	MCHG (Common Signa	al Output Port	Change Cont	rol	
		(COM	0 – COM3 sig	nals are outpu	utted through t	he P37-P34
			I COM	0 – COM3 sig	nals are outpu	utted through t	he P33-P30
		1	NOTES)				
	1. The COM0/COM1/COM2/COM3 signals can be outputted through						
	the P33/P32/P31/P30, respectively.						
		2	2. For example		Ignal may be c	•	33 pin if the
		:	3. Refer to the				
			1. Available on	•	•		
	LCI	DDR I	CD Driving R	esistor for Bia	s Select		
		() Interr	nal LCD driving	g resistors for	bias	
			I Exter	nal ICD driving	g resistors for	bias	
	DIS	i P l	CD Display C	ontrol			
		() Dis pl	ay off			
			l Norm	al display on			

LCDCRH (LCD Driver Control High Register) : 9AH

Z51F3220 **Product Specification** zilog

LCDCRL (LC	D Driver Cont	trol Low Regi	ister) : 99H			
7	6	5	4	3	2	
-	-	DBS3	DBS2	DBS1	DBS0	LC
_	-	RW	RW	RW	RW	F

6	5	4		3		2	1	0
-	DBS3	DBS	52	DBS1	D	BS0	LCLK1	LCK0
-	RW	RA	N	RW	F	RW .	RW	RW
							I	nitial value : 0
DB	S[3:0]	LCD Dut	y and	Bias Select	(NOTE)			
	I	DBS3 DI	3S2	DBS1	DBS0	Descri	ption	
	(0 0		0	0	1/8Du	ty, 1/4Bias (60)k ohm)
	(0	0	0	1	1/6Du	ty, 1/4Bias (60)k ohm)
	(0	0	1	0	1/5Du	ty, 1/3Bias (60)k ohm)
	(0	0	1	1	1/4Du	ty, 1/3Bias (60)k ohm)
		D	1	0	0	1/3Du	ty, 1/3Bias (60)k ohm)
		D	1	0	1	1/3Du	ty, 1/2Bias (60)k ohm)
		01		1	0	1/3Du	ty, 1/2Bias (12	20k ohm)
	(0	1	1	1	1/2Dut	ty, 1/2Bias (60)k ohm)
		10		0	0	1/2Dut	ty, 1/2Bias (12	20k ohm)
	(Other va	lues			Not av	ailable	
LCI	LK[1:0]	LCD Clo	ck Sel	ect (When	f _{wcк} (Wat	ch timer	clock)= 32.76	68 kHz)
	l	LCLK1 L	CLK	0 Descrip	tion			
	(0 0		f _{LCD} = 1	28Hz			
	(01		$f_{LCD} = 2$	56Hz			
		10		$f_{LCD} = 5$	12Hz			
		11		f _{LCD} = 1	024Hz			
	I	NOTE) T	he LC	D clock is	generat	ed by w	atch timer cl	ock (f _{wcк}). So

the watch timer should be enabled when the LCD display is turned on.

LCDCCR (LCD Driver Contrast Control Low Register) : 9BH	LCDCCR (LCD Driver Contrast Control Low Register) : 9BH	
---	---	--

7	6	5	4	4	3	2	1	0		
LCTEN	_	-	-	-	VLCD3	VLCD	VLCD1	VLCD0		
RW	_	-	-	-	RW	RW	RW	RW		
								nitial value : 0		
	LC.	ΓEN	Control	Control LCD Driver Contrast						
			0 LCD	Driv	er Contras	st disable				
			1 LCD Driver Contrast enable VLC0 Voltage Control when the contrast is enabled							
	VLO	CD[3:0]								
			VLCD3	VLCD 2	VLCD 1	VLCD 0	Description			
			0	0	0 0	V	LC0 = VDD x	c 16/31 step		
			0	0	0 1	V	LC0 = VDD x	c 16/30 step		
			0	0	10	V	LC0 = VDD x	c 16/29 step		
			0	0	11	V	LC0 = VDD x	c 16/28 step		
			0	1	0 0	V	LC0 = VDD x	16/27 step		
			0	1	0 1	V	LC0 = VDD x	16/26 step		
			0	1	10	V	LC0 = VDD x	16/25 step		
			0	1	11	V	LC0 = VDD x	16/24 step		
			1	0	0 0	V	LC0 = VDD x	16/23 step		
			1	0	0 1	V	LC0 = VDD x	16/22 step		
			1	0	10	V	LC0 = VDD x	16/21 step		
			1	0	11	V	LC0 = VDD x	16/20 step		
			1	1	0 0	V	LC0 = VDD x	c 16/19 step		
			1	1	0 1	V	LC0 = VDD x	16/18 step		
			1	1	10	V	LC0 = VDD x	16/17 step		
			1	1	11	V	LC0 = VDD x	16/16 step		
			1/4 bias 1/3 bias) The LCD : VDD x (1 : VDD x (1 : VDD x (8	6/31 – VL 2/27 – VL	C[3:0]) C[3:0])	l on 1/4 bias.			

12. Power Down Operation

12.1 Overview

The Z51F3220 has two power-down modes to minimize the power consumption of the device. In power down mode, power consumption is reduced considerably. The device provides three kinds of power saving functions, Main-IDLE, Sub-IDLE and STOP mode. In three modes, program is stopped.

12.2 Peripheral Operation in IDLE/STOP Mode

Table 12-1 Peripheral Operation during Power Down Mode

Peripheral ID	LE Mode	STOP Mode		
CPU	ALL CPU Operation are Disable	ALL CPU Operation are Disable		
RAM R	etain	Retain		
Basic Interval Timer	Operates Continuously	Stop		
Watch Dog Timer	Operates Continuously	Stop (Can be operated with WDTRC OSC)		
Watch Timer	Operates Continuously	Stop (Can be operated with sub clock)		
Timer0~4 O	perates Continuously	Halted (Only when the Event Counter Mode is Enabled, Timer operates Normally)		
ADC O	perates Continuously	Stop		
BUZ O	BUZ O perates Continuously Stop			
SPI	SPI Operates Continuously Only operate with exte			
USI0/1	Operates Continuously	Only operate with external clock		
LCD Controller	Operates Continuously	Stop (Can be operated with sub clock)		
Internal OSC (16MHz)	Oscillation	Stop when the system clock (fx) is fire		
WDTRC OSC (5kHz)	Stop	Can be operated with setting value		
Main OSC (0.4~12MHz)	Oscillation	Stop when fx = fxiN		
Sub OSC (32.768kHz)	Oscillation	Stop when fx = fsuB		
I/O Port	Retain	Retain		
Control Register	Retain	Retain		
Address Data Bus	Retain	Retain		
Release Method	By RESET, all Interrupts	By RESET, Timer Interrupt (EC0, EC1, EC3), SPI (External clock), External Interrupt, UART by ACK, WT (sub clock), WDT		

12.3 IDLE Mode

The power control register is set to '01h' to enter the IDLE Mode. In this mode, the internal oscillation circuits remain active. Oscillation continues and peripherals are operated normally but CPU stops. It is released by reset or interrupt. To be released by interrupt, interrupt should be enabled before IDLE mode. If using reset, because the device becomes initialized state, the registers have reset value.

Figure 12.1 IDLE Mode Release Timing by External Interrupt

12.4 STOP Mode

The power control register is set to '03H' to enter the STOP Mode. In the stop mode, the selected oscillator, system clock and peripheral clock is stopped, but watch timer can be continued to operate with sub clock. With the clock frozen, all functions are stopped, but the on-chip RAM and control registers are held. For example, If the internal RC oscillator (fiRc) is selected for the system clock and the sub clock (fsub) is oscillated, the internal RC oscillator stops oscillation and the sub clock is continuously oscillated in stop mode. At that time, the watch timer and LCD controller can be operated with the sub clock.

The source for exit from STOP mode is hardware reset and interrupts. The reset re-defines all the control registers.

When exit from STOP mode, enough oscillation stabilization time is required to normal operation. Figure 12.2 shows the timing diagram. When released from STOP mode, the Basic interval timer is activated on wake-up. Therefore, before STOP instruction, user must be set its relevant prescale divide ratio to have long enough time. This guarantees that oscillator has started and stabilized.

Figure 12.2 STOP Mode Release Timing by External Interrupt

12.5 Release Operation of STOP Mode

After STOP mode is released, the operation begins according to content of related interrupt register just before STOP mode start (Figure 12.3). If the global interrupt Enable Flag (IE.EA) is set to `1`, the STOP mode is released by the interrupt which each interrupt enable flag = `1` and the CPU jumps to the relevant interrupt service routine. Even if the IE.EA bit is cleared to '0', the STOP mode is released by the interrupt of which the interrupt enable flag is set to '1'.

Figure 12.3 STOP Mode Release Flow

12.5.1 Register Map

Table 12-2 Power Down Operation Register Map

Name	Address	Dir	Default	Description
PCON 87H		R/W	00H	Power Control Register

12.5.2 Power Down Operation Register Description

The power down operation register consists of the power control register (PCON).

12.5.3 Register Description for Power Down Operation

PCON (Power Control Register) : 87H										
7	6	5	4	3	2	1	0			
PCON7	-	-	-	PCON3	PCON2	PCON1	PCON0			
RW	_	-	-	RW	RW	RW	RW			
						I	nitial value : 00	Н		

PCON[7:0]	Power Contro	I
	01H	IDLE mode enable
	03H ST	OP mode enable
	Other Values	Normal operation

NOTES) 1. To enter IDLE mode, PCON must be set to '01H'.

- 2. To enter STOP mode, PCON must be set to '03H'.
- 3. The PCON register is automatically cleared by a release signal in STOP/IDLE mode.
- 4. Three or more NOP instructions must immediately follow the instruction that make the device enter STOP/IDLE mode. Refer to the following examples.

Ex1)	MOV NOP NOP NOP	PCON, #01H	; IDLE mode	Ex2) MOV NOP NOP NOP	PCON, #03H	; STOP mode
	•				•		
	•				•		
	•				•		

13. RESET

13.1 Overview

The following is the hardware setting value.

Table 13-1 Reset State

On Chip Hardware	Initial Value			
Program Counter (PC)	0000h			
Accumulator 00h				
Stack Pointer (SP)	07h			
Peripheral Clock	On			
Control Register	Refer to the Peripheral Registers			

13.2 Reset Source

The Z51F3220 has five types of reset sources. The following is the reset sources.

- External RESETB
- Power ON RESET (POR)
- WDT Overflow Reset (In the case of WDTEN = `1`)
- Low Voltage Reset (In the case of LVREN = `0 `)
- OCD Reset

13.3 RESET Block Diagram

Figure 13.1 RESET Block Diagram

13.4 RESET Noise Canceller

The Figure 13.2 is the noise canceller diagram for noise cancellation of RESET. It has the noise cancellation value of about 2us ($@V_{DD}$ =5V) to the low input of system reset.

Figure 13.2 Reset noise canceller timer diagram

13.5 Power on RESET

When rising device power, the POR (Power On Reset) has a function to reset the device. If POR is used, it executes the device RESET function instead of the RESET IC or the RESET circuits.

Figure 13.3 Fast VDD Rising Time

Figure 13.4 Internal RESET Release Timing On Power-Up

Z51F3220 Product Specification

Figure 13.5 Configuration Timing when Power-on

Figure 13.6 Boot Process WaveForm

Process	Description	Remarks		
1	-No Operation			
2	-1st POR level Detection	-about 1.4V		
	- (INT-OSC 8MHz/8)x256x28h Delay section (=10ms)			
3	-VDD input voltage must ris e over tha n fl ash operating voltage for Config read	-Slew Rate >= 0.15V/ms		
		-about 1.5V ~ 1.6V		
4	- Config read point	-Config V alue is determined by Writing Option		
5	- Rising section to Reset Release Level	-16ms point after POR or Ext_reset release		
	- Reset Release section (BIT overflow)			
6	i) after16ms, after External Reset Release (External reset)	- BIT is used for Peripheral stability		
	ii) 16ms point after POR (POR only)			
$\overline{\mathcal{O}}$	-Normal operation			

Table 13-2 Boot Process Description

13.6 External RESETB Input

The External RESETB is the input to a Schmitt trigger. If RESETB pin is held with low for at least 10us over within the operating voltage range and stable oscillation, it is applied and the internal state is initialized. After reset state becomes '1', it needs the stabilization time with 16ms and after the stable state, the internal RESET becomes '1'. The Reset process step needs 5 oscillator clocks. And the program execution starts at the vector address stored at address 0000H.

Figure 13.7 Timing Diagram after RESET

Figure 13.8 Oscillator generating waveform example

NOTE) As shown Figure 13.8, the stable generating time is not included in the start-up time. The RESETB pin has a Pull-up register by H/W.

13.7 Brown Out Detector Processor

The Z51F3220 has an On-chip brown-out detection circuit (BOD) for monitoring the VDD level during operation by comparing it to a fixed trigger level. The trigger level for the BOD can be selected by LVRVS[3:0] bit to be 1.60V, 2.00V, 2.10V, 2.20V, 2.32V, 2.44V, 2.59V, 2.75V, 2.93V, 3.14V, 3.38V, 3.67V, 4.00V, 4.40V. In the STOP mode, this will contribute significantly to the total current consumption. So to minimize the current consumption, the LVREN bit is set to off by software.

Figure 13.9 Block Diagram of BOD

Figure 13.10 Internal Reset at the power fail situation

Figure 13.11 Configuration timing when BOD RESET

13.8 LVI Block Diagram

Figure 13.12 LVI Diagram

13.8.1 Register Map

Name	Address	Dir	Default	Description
RSTFR E8H		R/W	80H	Reset Flag Register
LVRCR D	8H	R/W	00H	Low Voltage Reset Control Register
LVICR	86H	R/W	00H	Low Voltage Indicator Control Register

Table 13-3 Reset Operation Register Map

13.8.2 Reset Operation Register Description

The reset control register consists of the reset flag register (RSTFR), low voltage reset control register (LVRCR), and low voltage indicator control register (LVICR).

13.8.3 Register Description for Reset Operation

RSTFR (Reset Flag Register) : E8H

7	6	5	4	3	2	1	0		
PORF	EXTRF	WDTRF	OCDRF	LVRF	-	-	-		
RW	RW	RW	RW	RW	-	_	-		
							nitial value : 80H		
	PO	RF	Power-On Re	set flag bit. The	e bit is reset b	y writing '0' to	this bit.		
			0 No d	etection					
			1 Det e	ction					
EXTRF				External Reset (RESETB) flag bit. The bit is reset by writing '0' to this bit or by Power-On Reset.					
			0 No d	etection					
			1 De te	ction					
	WDTRF			Watch Dog Reset flag bit. The bit is reset by writing '0' to this bit or by Power-On Reset.					
			0 No d	etection					
			1 De te	ction					
	OCDRF			On-Chip Debug Reset flag bit. The bit is reset by writing '0' to this bit or by Power-On Reset.					
			0 No d	etection					
			1 De te	ction					
	LVF	RF	Low Voltage I Power-On Re		The bit is rese	et by writing '0	' to this bit or by		
			0 No de	etection					
			1 De teo	tion					
,	/hen the Powe DRF) bits are			RF bit is only s	et to "1", the c	other flag (WD	TRF and		
2. W	hen the Powe	r-On Reset	occurs, the EX	TRF bit is unkn	own, At that ti	me, the EXTR	F bit can be set		

to "1" when External Reset (RESETB) occurs.

3. When the Power-On Reset occurs, the LVRF bit is unknown, At that time, the LVRF bit can be set to "1" when LVR Reset occurs.

4. When a reset except the POR occurs, the corresponding flag bit is only set to "1", the other flag bits are kept in the previous values.

Z51F3220 **Product Specification** zilog

Balantited in Life

7	6	5	4		3	2	1	0			
LVRST	_	-	LVRVS	53	LVRVS2	LVRVS1	LVRVS0	LVREN			
RW	_	-	RW		RW	RW	RW	RW			
								Initial value : (
	LV	RST	LVR Enab	le wh	en Stop Relea	ase					
			0 Not effect at stop release								
			1								
			NOTES)								
					s '1', the LVR	EN bit is clea	ared to '0' by	stop mode to			
			release. (l				at affact by	atan mada t			
			release.	5 DIL	is '0', the L V		or enect by				
	LV	RVS[3:0]	LVR Volta	ige Se	elect						
			LVRVS3		VS2 LV RVS	1 LVRVS0 I	Description				
			0	0	0 0	1	.60V				
			0	0	0 1	2	.00V				
			0	0	1 0	2	.10V				
			0	0	11	2	.20V				
			0	1	0 0	2	.32V				
			0	1	0 1	2	.44V				
			0	1	1 0	2	.59V				
			0	1	11	2	.75V				
			1	0	0 0	2	.93V				
			1	0	0 1	3	.14V				
			1	0	10	3	.38V				
			1	0	11	3	.67V				
			1	1	0 0	4	.00V				
			1	1	0 1	4	.40V				
			1	1	1 0	Not	available				
			1	1	11	Not	available	e			
	LV	REN	LVR Oper	ation							
			0 LVR		Enable						
			1 LVR		Disable						

LVRCR (Low Voltage Reset Control Register) : D8H

NOTES) 1. The LVRVS[3:0] bits are cleared by a power-on reset but are retained by other reset signals.

2. The LVRVS[3:0] bits should be set to '0000b' while LVREN bit is "1".
| 7 | 6 | 5 | 4 | | 3 | 2 | 1 | 0 |
|---|-----|---------|-----------|------------|-------------|--------|-------------|---------------------|
| _ | _ | LVIF | LVIE | IN | LVILS3 | LVILS2 | LVILS1 | LVILS0 |
| _ | - | RW | RV | V | RW | RW | RW | RW |
| | | | | | | | | Initial value : 00H |
| | LVI | F | Low Volta | age Indica | ator Flag B | it | | |
| | | | 0 No | detec | tion | | | |
| | | | 1 De | tectior | า | | | |
| | LVI | EN | LVI Enab | le/Disable | e | | | |
| | | | 0 Di | sable | | | | |
| | | | 1 En | able | | | | |
| | LVI | LS[3:0] | LVI Leve | I Select | | | | |
| | | | LVILS3 L | V ILS2 | LVILS1 | LVILS0 | Description | |
| | | | 0 | 0 | 0 0 | 2 | .00V | |
| | | | 0 | 0 | 0 1 | 2 | .10V | |
| | | | 0 | 0 | 10 | 2 | .20V | |
| | | | 0 | 0 | 11 | 2 | .32V | |
| | | | 0 | 1 | 0 0 | 2 | .44V | |
| | | | 0 | 1 | 0 1 | 2 | .59V | |
| | | | 0 | 1 | 10 | 2 | .75V | |
| | | | 0 | 1 | 11 | 2 | .93V | |
| | | | 1 | 0 | 0 0 | 3 | .14V | |
| | | | 1 | 0 | 01 | 3 | .38V | |
| | | | 1 | 0 | 10 | 3 | .67V | |
| | | | 1 | 0 | 11 | 4 | .00V | |
| | | | 1 | 1 | 0 0 | 4 | .40V | |

LVICR (Low Voltage Indicator Control Register) : 86H

Other Values

Not available

14. On-chip Debug System

14.1 Overview

14.1.1 Description

On-chip debug system (OCD) of Z51F3220 can be used for programming the non-volatile memories and onchip debugging. Detail descriptions for programming via the OCD interface can be found in the following chapter. Figure 14.1 shows a block diagram of the OCD interface and the On-chip Debug system.

14.1.2 Feature

- Two-wire external interface: 1-wire serial clock input, 1-wire bi-directional serial data bus
- Debugger Access to:
 - All Internal Peripheral Units
 - Internal data RAM
 - Program Counter
 - Flash and Data EEPROM Memories
- Extensive On-chip Debug Support for Break Conditions, Including
 - Break Instruction
 - Single Step Break
 - Program Memory Break Points on Single Address
 - Programming of Flash, EEPROM, Fuses, and Lock Bits through the two-wire Interface
 - On-chip Debugging Supported by Dr.Choice[®]
- · Operating frequency
 - Supports the maximum frequency of the target MCU

Figure 14.1 Block Diagram of On-Chip Debug System

14.2 Two-Pin External Interface

14.2.1 Basic Transmission Packet

- 10-bit packet transmission using two-pin interface.
- 1-packet consists of 8-bit data, 1-bit parity and 1-bit acknowledge.
- Parity is even of '1' for 8-bit data in transmitter.
- Receiver generates acknowledge bit as '0' when transmission for 8-bit data and its parity has no error.
- When transmitter has no acknowledge (Acknowledge bit is '1' at tenth clock), error process is executed in transmitter.
- When acknowledge error is generated, host PC makes stop condition and transmits command which has error again.
- Background debugger command is composed of a bundle of packet.
- · Start condition and stop condition notify the start and the stop of background debugger command respectively.

Figure 14.2 10-bit Transmission Packet

14.2.2 Packet Transmission Timing

14.2.2.1 Data Transfer

Figure 14.3 Data Transfer on the Twin Bus

14.2.2.2 Bit Transfer

Figure 14.4 Bit Transfer on the Serial Bus

14.2.2.3 Start and Stop Condition

Figure 14.5 Start and Stop Condition

14.2.2.4 Acknowledge Bit

Figure 14.6 Acknowledge on the Serial Bus

Figure 14.7 Clock Synchronization during Wait Procedure

14.2.3 Connection of Transmission

Two-pin interface connection uses open-drain (wire-AND bidirectional I/O).

15. Flash Memory

15.1 Overview

15.1.1 Description

Z51F3220 incorporates flash memory to which a program can be written, erased, and overwritten while mounted on the board. The flash memory can be read by 'MOVC' instruction and it can be programmed in OCD, serial ISP mode or user program mode.

- Flash Size : 32kbytes
- Single power supply program and erase
- Command interface for fast program and erase operation
- Up to 100,000 program/erase cycles at typical voltage and temperature for flash memory

15.1.2 Flash Program ROM Structure

Figure 15.1 Flash Program ROM Structure

15.1.3 Register Map

Name	Address	Dir	Default	Description
FSADRH	FAH	R/W	00H	Flash Sector Address High Register
FSADRM	FBH	R/W	00H	Flash Sector Address Middle Register
FSADRL	FCH	R/W	00H	Flash Sector Address Low Register
FIDR	FDH	R/W	00H	Flash Identification Register
FMCR	FEH	R/W	00H	Flash Mode Control Register

Table 15-1Flash Memory Register Map

15.1.4 Register Description for Flash Memory Control and Status

Flash control register consists of the flash sector address high register (FSADRH), flash sector address middle register (FSADRM), flash sector address low register (FSADRL), flash identification register (FIDR), and flash mode control register (FMCR). They are mapped to SFR area and can be accessed only in programming mode.

15.1.5 Register Description for Flash

7	6	5	4	3	2	1	0
-	-	-	-	FSADRH3	FSADRH2	FSADRH1	FSADRH0
-	-	-	-	RW	RW	RW	RW
						I	nitial value : 00H

FSADRH (Flash Sector Address High Register) : FAH

FSADRH[3:0] Flash Sector Address High

FSADRM (Flash Sector Address Middle Register) : FBH

7	6	5	4	3	2	1	0
FSADRM7	FSADRM6	FSADRM5	FSADRM4	FSADRM3	FSADRM2	FSADRM1	FSADRM0
RW							
						I	nitial value : 00H

FSADRM[7:0] Flash Sector Address Middle

FSADRL (Flash Sector Address Low Register) : FCH

7	6	5	4	3	2	1	0
FSADRL7	FSADRL6	FSADRL5	FSADRL4	FSADRL3	FSADRL2	FSADRL1	FSADRL0
RW							
						I	nitial value : 00

FSADRL[7:0] Flash Sector Address Low

FIDR (Flash Identification Register) : FDH

7	6	5	4	3	2	1	0
FIDR7	FIDR6	FIDR5	FIDR4	FIDR3	FIDR2	FIDR1	FIDR0
RW							
						I	nitial value : 00H

FIDR[7:0] F

Flash Identification

Others No identification value

10100101 Identification value for a flash mode

(These bits are automatically cleared to logic '00H' immediately after one time operation)

FMCR (Flash Mode Control Register) : FEH

7	6	5	4	3	2	1	0
FMBUSY	-	-	-	-	FMCR2	FMCR1	FMCR0
R	-	-	-	-	RW	RW	RW
						I	nitial value : 00
	FM	BUSY	Flash Mode B	Busy Bit. This b	oit will be used	for only debu	gger.
			0 No	effect when "	1" is written		
			1 Bus	у			
	FM	CR[2:0]		Control Bits. D global interrup			
			FMCR2 FM	CR1 FMCR	0 Descriptio	on	
			0 0	1	and start i	sh page buffer regardless of f ear all 64byte	the FIDR
			0 1	0		sh sector eras ation when the 100101b'	
			0 1	1		sh sector write ation when the 100101b'	
			1 0	0		sh sector hard ation when the 100101b'	

Others Values: No operation

(These bits are automatically cleared to logic '00H' immediately after one time operation)

15.1.6 Serial In-System Program (ISP) Mode

Serial in-system program uses the interface of debugger which uses two wires. Refer to chapter 14 in details about debugger

15.1.7 Protection Area (User program mode)

Z51F3220 can program its own flash memory (protection area). The protection area can not be erased or programmed. The protection areas are available only when the PAEN bit is cleared to '0', that is, enable protection area at the configure option 2 if it is needed. If the protection area isn't enabled (PAEN ='1'), this area can be used as a normal program memory.

The size of protection area can be varied by setting of configure option 2.

Table 15-2 Protection Area size

Protection Area Size Select		Size of Protection Area	Address of Protection Area
PASS1	PASS0		
0 0 3.		8k Bytes	0100H – 0FFFH
011.		7k Bytes	0100H – 07FFH
10	7	68 Bytes	0100H – 03FFH
1 1	2	56 Bytes	0100H – 01FFH

NOTE) Refer to chapter 16 in configure option control.

15.1.8 Erase Mode

The sector erase program procedure in user program mode

- 1. Page buffer clear (FMCR=0x01)
- 2. Write '0' to page buffer
- 3. Set flash sector address register (FSADRH/FSADRM/FSADRL).
- 4. Set flash identification register (FIDR).
- 5. Set flash mode control register (FMCR).
- 6. E rase verify

Program Tip – sector erase

	Mov Nop Nop Nop	FMCR,#0x01		;page buffer clear ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
М	MOV A, OV MOV MOV	#0 R0,#64 DPH,#0x80 DPL,#0	;	Sector size is 64bytes
Pgbuf_clr: N	M OVX INC	@DPTR,A DPTR		
DJNZ		R0, Pgbuf_clr	;	Write '0' to all page buffer
	Mov Mov Mov FS Mov FI Mov Nop Nop	,		;Select sector 509 ;Identification value ;Start flash erase mode ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
M M	OV OV MOV MOV MOV	A,#0 R0,#64 R1,#0 DPH,#0x7F DPL,#0x40	- - -	erase verify Sector size is 64bytes
Erase_verif	y: MOVC SUBB JNZ INC DJNZ	A,@A+DPTR A,R1 Verify_error DPTR R0, Erase_verify		

Verify_error:

The Byte erase program procedure in user program mode

- 1. Page buffer clear (FMCR=0x01)
- 2. Write '0' to page buffer
- 3. Set flash sector address register (FSADRH/FSADRM/FSADRL).
- 4. Set flash identification register (FIDR).
- 5. Set flash mode control register (FMCR).
- 6. E rase verify

Program Tip – byte erase

	MOV FMCR,#0x01 NOP NOP NOP	;page buffer clear ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
	MOV A, #0 MOV DPH,#0x80 MOV DPL,#0 MOVX @ DPTR,A	
	MOV DPH,#0x80 MOV DPL,#0x05 MOVX @ DPTR,A	;Write '0' to page buffer
	MOV FSADRH,#0x00 MOV FSADRM,#0x7F MOV FSADRL ,#0x40 MOV FI DR,#0xA5 MOV FMCR,#0x02 NOP NOP NOP	;Select sector 509 ;Identification value ;Start flash erase mode ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
M SU	OV A,#0 ; MOV R1,#0 ; MOV DPH,#0x7F ; MOV DPL,#0x40 ; MOVC A,@A+DPTR ; BB A,R1 ; JNZ Verify_error	erase verify 0x7F40 = 0 ?
SU	MOV A, #0 MOV R1,#0 MOV DPH,#0x7F MOV DPL,#0x45 MOVC A,@A+DPTR BB A,R1 ; JNZ Verify_error	0x7F45 = 0 ?

Verify_error:

15.1.9 Write Mode

The sector Write program procedure in user program mode

- 1. Page buffer clear (FMCR=0x01)
- 2. Write data to page buffer
- 3. Set flash sector address register (FSADRH/FSADRM/FSADRL).
- 4. Set flash identification register (FIDR).
- 5. Set flash mode control register (FMCR).
- 6. E rase verify

Program Tip - sector write

	Mov Nop Nop Nop	FMCR,#0x01		;page buffer clear ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
М	Mov A, ov Mov Mov	#0 R0,#64 DPH,#0x80 DPL,#0	;	Sector size is 64bytes
Pgbuf_WR:	M OVX INC INC DJNZ	@DPTR,A A DPTR R0, Pgbuf_WR		;Write data to all page buffer
	Mov Mov Mov FS Mov FI Mov Nop Nop	- ,		;Select sector 509 ;Identification value ;Start flash write mode ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
M M	OV OV MOV MOV MOV	A,#0 R0,#64 R1,#0 DPH,#0x7F DPL,#0x40	;W ;	rite verify Sector size is 64bytes
Write_verify	MOVC SUBB JNZ INC INC DJNZ	A,@A+DPTR A,R1 Verify_error R1 DPTR R0, Write_verify		

Verify_error:

The Byte Write program procedure in user program mode

- 1. Page buffer clear (FMCR=0x01)
- 2. Write data to page buffer
- 3. Set flash sector address register (FSADRH/FSADRM/FSADRL).
- 4. Set flash identification register (FIDR).
- 5. Set flash mode control register (FMCR).
- 6. E rase verify

Program Tip – byte write

	Mov Nop Nop Nop	FMCR,#0x01		;page buffer clear ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
	Mov A, Mov Mov Movx	, #5 DPH,#0x80 DPL,#0 @DPTR,A		;Write data to page buffer
	Mov A, Mov Mov Movx	DPH,#0x80 DPL,#0x05		;Write data to page buffer
	Mov Mov FS Mov FI Mov Nop Nop	,		;Select sector 509 ;Identification value ;Start flash write mode ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
M SU	OV MOV MOV MOVC BB JNZ	A,#0 R1,#5 DPH,#0x7F DPL,#0x40 A,@A+DPTR A,R1 Verify_error	;w ;	rite verify 0x7F40 = 5 ?
SU	MOV A, MOV MOV MOV MOVC BB JNZ	, #0 R1,#6 DPH,#0x7F DPL,#0x45 A,@A+DPTR A,R1 Verify_error	,	0x7F45 = 6 ?

Verify_error:

15.1.10 Read Mode

The Reading program procedure in user program mode

1. Load receive data from flash memory on MOVC instruction by indirectly addressing mode.

Program Tip – reading

М	MOV MOV OV	A,#0 DPH,#0x7F DPL,#0x40	;	flash memory address
	MOVC	A,@A+DPTR		;read data from flash memory

15.1.11 Hard Lock Mode

The Reading program procedure in user program mode

- 1. Set flash identification register (FIDR).
- 2. Set flash mode control register (FMCR).

Program Tip – reading

MOV FI DR,#0xA5	;Identification value
MOV FMCR,#0x04	;Start flash hard lock mode
NOP	;Dummy instruction, This instruction must be needed.
NOP	;Dummy instruction, This instruction must be needed.
NOP	;Dummy instruction, This instruction must be needed.

16. Configure Option

16.1 Configure Option Control

The data for configure option should be written in the configure option area (003EH – 003FH) by programmer (Writer tools).

CONFIGURE OPTION 1 : ROM Address 003FH

7	6	5	4	3	2	1	0
R_P	HL	-	-	-	-	-	RSTS
							nitial value : 00H
	R_F)	Read Protection	on			
			0 Disa	ble "Read pr	otection"		
			1 Enab	le "Read pro	otection"		
	HL		Hard-Lock				
			0 Disa	ble "Hard-loc	:k"		
			1 Enab	le "Hard-loc	k"		
	RST	rs	RESETB Sele	ct			
			0 P55	port			
			1 RE	SETB port wit	h a pull-up res	istor	

CONFIGURE OPTION 2: ROM Address 003EH

7	6	5	4	3	2	1	0
-	-	_	_	-	PAEN	PASS1	PASS0

Initial value : 00H

PAEN	Protectio	n Area	a Ena	able/Disable
	0	Disa	ble F	Protection (Erasable by instruction)
	1	Enal	ole P	rotection (Not erasable by instruction)
PASS [1:0]	Protectio	n Area	a Size	e Select
	PASS1 F	PASS	0	Description
	0	0		3.8k Bytes (Address 0100H – 0FFFH)
	0	1		1.7k Bytes (Address 0100H – 07FFH)
	1	0		768 Bytes (Address 0100H – 03FFH)
	1	1		256 Bytes (Address 0100H – 01FFH)

17. APPENDIX

A. Instruction Table

Instructions are either 1, 2 or 3 bytes long as listed in the 'Bytes' column below.

Each instruction takes either 1, 2 or 4 machine cycles to execute as listed in the following table. 1 machine cycle comprises 2 system clock cycles.

ARITHMETIC					
Mnemonic	Description	Bytes	Cycles	Hex code	
ADD A,Rn	Add register to A	11		28-2F	
ADD A,dir	Add direct byte to A	2	1	25	
ADD A,@Ri	Add indirect memory to A	1	1	26-27	
ADD A,#data	Add immediate to A	2	1	24	
ADDC A,Rn	Add register to A with carry	1	1	38-3F	
ADDC A,dir	Add direct byte to A with carry	2	1	35	
ADDC A,@Ri	Add indirect memory to A with carry	1	1	36-37	
ADDC A,#data	Add immediate to A with carry	2	1	34	
SUBB A,Rn	Subtract register from A with borrow	1	1	98-9F	
SUBB A,dir	Subtract direct byte from A with borrow	2	1	95	
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	1	96-97	
SUBB A,#data	Subtract immediate from A with borrow	2	1	94	
INC A	Increment A	1	1	04	
INC Rn	Increment register	1	1	08-0F	
INC dir	Increment direct byte	2	1	05	
INC @Ri	Increment indirect memory	1	1	06-07	
DEC A	Decrement A	1	1	14	
DEC Rn	Decrement register	1	1	18-1F	
DEC dir	Decrement direct byte	2	1	15	
DEC @Ri	Decrement indirect memory	1	1	16-17	
INC DPTR	Increment data pointer	1	2	A3	
MUL AB	Multiply A by B	1	4	A4	
DIV AB	Divide A by B	1	4	84	
DA A	Decimal Adjust A	1	1	D4	

	LOGICAL					
Mnemonic	Description	Bytes	Cycles	Hex code		
ANL A,Rn	AND register to A	11		58-5F		
ANL A,dir	AND direct byte to A	2	1	55		
ANL A,@Ri	AND indirect memory to A	1	1	56-57		
ANL A,#data	AND immediate to A	2	1	54		
ANL dir,A	AND A to direct byte	2	1	52		
ANL dir,#data	AND immediate to direct byte	3	2	53		
ORL A,Rn	OR register to A	1	1	48-4F		
ORL A,dir	OR direct byte to A	2	1	45		
ORL A,@Ri	OR indirect memory to A	1	1	46-47		
ORL A,#data	OR immediate to A	2	1	44		
ORL dir,A	OR A to direct byte	2	1	42		
ORL dir,#data	OR immediate to direct byte	3	2	43		
XRL A,Rn	Exclusive-OR register to A	1	1	68-6F		
XRL A,dir	Exclusive-OR direct byte to A	2	1	65		
XRL A, @Ri	Exclusive-OR indirect memory to A	1	1	66-67		

zilog

XRL A,#data	Exclusive-OR immediate to A	2	1	64
XRL dir,A	Exclusive-OR A to direct byte	2	1	62
XRL dir,#data	Exclusive-OR immediate to direct byte	3	2	63
CLR A	Clear A	1	1	E4
CPL A	Complement A	1	1	F4
SWAP A	Swap Nibbles of A	1	1	C4
RL A	Rotate A left	1	1	23
RLC A	Rotate A left through carry	1	1	33
RR A	Rotate A right	1	1	03
RRC A	Rotate A right through carry	1	1	13

DATA TRANSFER						
Mnemonic	Description	Bytes	Cycles	Hex code		
MOV A,Rn	Move register to A	1	1	E8-EF		
MOV A,dir	Move direct byte to A	2	1	E5		
MOV A,@Ri	Move indirect memory to A	1	1	E6-E7		
MOV A,#data	Move immediate to A	2	1	74		
MOV Rn,A	Move A to register	1	1	F8-FF		
MOV Rn,dir	Move direct byte to register	2	2	A8-AF		
MOV Rn,#data	Move immediate to register	2	1	78-7F		
MOV dir,A	Move A to direct byte	2	1	F5		
MOV dir,Rn	Move register to direct byte	2	2	88-8F		
MOV dir,dir	Move direct byte to direct byte	3	2	85		
MOV dir,@Ri	Move indirect memory to direct byte	2	2	86-87		
MOV dir,#data	Move immediate to direct byte	3	2	75		
MOV @Ri,A	Move A to indirect memory	1	1	F6-F7		
MOV @Ri,dir	Move direct byte to indirect memory	2	2	A6-A7		
MOV @Ri,#data	Move immediate to indirect memory	2	1	76-77		
MOV DPTR,#data	Move immediate to data pointer	3	2	90		
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	2	93		
MOVC A,@A+PC	Move code byte relative PC to A	1	2	83		
MOVX A,@Ri	Move external data(A8) to A	1	2	E2-E3		
MOVX A,@DPTR	Move external data(A16) to A	1	2	E0		
MOVX @Ri,A	Move A to external data(A8)	1	2	F2-F3		
MOVX @DPTR,A	Move A to external data(A16)	1	2	F0		
PUSH dir	Push direct byte onto stack	2	2	C0		
POP dir	Pop direct byte from stack	2	2	D0		
XCH A,Rn	Exchange A and register	1	1	C8-CF		
XCH A,dir	Exchange A and direct byte	2	1	C5		
XCH A,@Ri	Exchange A and indirect memory	1	1	C6-C7		
XCHD A,@Ri	Exchange A and indirect memory nibble	1	1	D6-D7		

BOOLEAN					
Mnemonic	Description	Bytes	Cycles	Hex code	
CLR C	Clear carry	11		C3	
CLR bit	Clear direct bit	2	1	C2	
SETB C	Set carry	1	1	D3	
SETB bit	Set direct bit	2	1	D2	
CPL C	Complement carry	1	1	B3	
CPL bit	Complement direct bit	2	1	B2	
ANL C,bit	AND direct bit to carry	2	2	82	
ANL C,/bit	AND direct bit inverse to carry	2	2	B0	

zilog

ORL C,bit	OR direct bit to carry	2	2	72
ORL C,/bit	OR direct bit inverse to carry	2	2	A0
MOV C,bit	Move direct bit to carry	2	1	A2
MOV bit,C	Move carry to direct bit	2	2	92

	BRANCHING			
Mnemonic	Description	Bytes	Cycles	Hex code
ACALL addr 11	Absolute jump to subroutine	2 2		11→F1
LCALL addr 16	Long jump to subroutine	3	2	12
RET Return	from subroutine	1	2	22
RETI Return	from interrupt	1	2	32
AJMP addr 11	Absolute jump unconditional	2	2	01→E1
LJMP addr 16	Long jump unconditional	3	2	02
SJMP rel	Short jump (relative address)	2	2	80
JC rel	Jump on carry = 1	2	2	40
JNC rel	Jump on carry = 0	2	2	50
JB bit,rel	Jump on direct bit = 1	3	2	20
JNB bit,rel	Jump on direct bit = 0	3	2	30
JBC bit,rel	Jump on direct bit = 1 and clear	3	2	10
JMP @A+DPTR	Jump indirect relative DPTR	1	2	73
JZ rel	Jump on accumulator = 0	2	2	60
JNZ rel	Jump on accumulator $\neq 0$	2	2	70
CJNE A,dir,rel	Compare A, direct jne relative	3	2	B5
CJNE A,#d,rel	Compare A, immediate jne relative	3	2	B4
CJNE Rn,#d,rel	Compare register, immediate jne relative	3	2	B8-BF
CJNE @Ri,#d,rel	Compare indirect, immediate jne relative	3	2	B6-B7
DJNZ Rn,rel	Decrement register, jnz relative	3	2	D8-DF
DJNZ dir,rel	Decrement direct byte, jnz relative	3	2	D5

MISCELLANEOUS								
Mnemonic	Description	Bytes	Cycles	Hex code				
NOP No	operation	11		00				

ADDITIONAL INSTRUCTIONS (selected through EO[7:4])								
Mnemonic	Description	n Bytes Cy						
MOVC @(DPTR++),A	M8051W/M8051EW-specific instruction supporting software download into program memory	12		A5				
TRAP So	ftware break command	11		A5				

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as $11 \rightarrow F1$ (for example), are used for absolute jumps and calls, with the top 3 bits of the code being used to store the top three bits of the destination address.

The CJNE instructions use the abbreviation #d for immediate data; other instructions use #data.

B. Instructions on how to use the input port.

- Error occur status
 - Using compare jump instructions with input port, it could cause error due to the timing conflict inside the MCU.
 - Compare jump Instructions which cause potential error used with input port condition:

bit, rel	; jump on direct bit=1
bit, rel	; jump on direct bit=0
bit, rel	; jump on direct bit=1 and clear
A, dir, re	I ; compare A, direct jne relative
dir, rel	; decrement direct byte, jnz relative
	bit, rel bit, rel

- It is only related with Input port. Internal parameters, SFRs and output bit ports don't cause any error by using compare jump instructions.
- If input signal is fixed, there is no error in using compare jump instructions.
- Error status example

while(1){	z	zz:	JNB	080.0, xxx ;it possible to be error
if (P00==1){ P10=1; }			SETB	088.0
else { P10=0; }			SJMP	ууу
P11^=1;	x	xx:	CLR	088.0
}	y y	yy:	MOV	C,088.1
			CPL	С
			MOV	088.1,C
			SJMP	222
unsigned char ret_bit_err(void)] [MOV	R7, #000
{			JB	080.0, xxx ;it possible to be error
			MOV	R7, #001
return !P00 ;				

- Preventative measures (2 cases)
 - Do not use input bit port for bit operation but for byte operation. Using byte operation instead of bit oper ation will not cause any error in using compare jump instructions for input port.

while(1){		zzz:	MOV	A, 080	; read as byte
if ((P0&0x01)==0x01){ P10=1; }			JNB	0E0.0, xxx	; compare
else { P10=0; }			SETB	088.0	
P11^=1;			SJMP	ууу	
}		xxx:	CLR	088.0	
	1	ууу:	MOV	C,088.1	
			CPL	С	
			MOV	088.1,C	
			SJMP	ZZZ	

Г

• If you use input bit port for compare jump instruction, you have to copy the input port as internal paramet er or carry bit and then use compare jump instruction.

bit tt; while(1){ tt=P00;	zzz:	MOV MOV JB	C,080.0 020.0, C 020.0, xxx	; input port use internal parameter ; move ; compare
if (tt==0){ P10=1;}		SETB	088.0	
else {P10=0;}		SJMP	ууу	
P11^=1;	xxx:	CLR	088.0	
}	ууу:	MOV	C,088.1	
-		CPL	С	
		MOV	088.1,C	
		SJMP	ZZZ	

Customer Support

To share comments, get your technical questions answered, or report issues you may be experiencing with our products, please visit Zilog's Technical Support page at http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other facets about Zilog product offerings, please visit the <u>Zilog Knowledge Base</u> or consider participating in the <u>Zilog Forum</u>.

This publication is subject to replacement by a later edition. To determine whether a later edition exists, please visit the Zilog website at <u>http://www.zilog.com</u>.