

Introduction

The HAH1DR family is for the electronic measurement of DC, AC or pulsed currents in high power automotive applications with galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HAH1DR family gives you the choice of having different current measuring ranges in the same housing (from \pm 200 A up to \pm 900 A).

Features

- Open Loop transducer using the Hall effect
- Unipolar + 5 V DC power supply
- Primary current measuring range ± 200 A
- Maximum RMS primary admissible current: defined by busbar to have T° < + 150 °C
- Operating temperature range: 40 °C < T° < + 125 °C
- Output voltage: full ratio-metric (in sensitivity and offset)
- Compact design.

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift
- Very low thermal sensitivity drift
- Wide frequency bandwith
- No insertion losses.

Automotive applications

- Battery monitoring
- Starter Generators
- Inverters
- HEV application
- EV application.

Principle of HAH1DR Family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density *B*, contributing to the rise of the Hall voltage, is generated by the primary current I_P to be measured. The current to be measured I_P is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, *B* is proportional to:

$$B(I_{\rm P})$$
 = constant (a) x $I_{\rm P}$

The Hall voltage is thus expressed by:

 $V_{\rm H}$ = ($R_{\rm H}$ /d) x I x constant (a) x $I_{\rm P}$

Except for $I_{\rm p}$ all terms of this equation are constant. Therefore:

$$V_{\rm H}$$
 = constant (b) x $I_{\rm P}$

The measurement signal $V_{\rm H}$ amplified to supply the user output voltage or current.

Dimensions HAH1DR 200-S (in mm)

Mechanical characteristics

- Plastic case PBT GF 30
- Magnetic core
 Iron silicon alloy
- Mass 38 g
- Electrical terminal coating Brass tin plated

Mounting recommendation

Connector type TYCO 1473672-1

Electronic schematic

Remarks

• $V_{\rm out}$ > 2.5 when $I_{\rm P}$ flows in the direction of the arrow.

System architecture (example)

 $C_{\rm L} \leq 100 \text{ nF EMC protection}$

RC Low pass filter EMC protection (optional)

Diagnostic Mode

$R_{\rm L}$ > 10 k Ω optiona	resistor for s	signal line	diagnostic
-------------------------------------	----------------	-------------	------------

V _{out}	Diagnostic		
Open circuit	V _{in} = < 0.15V		
Short GND	V _{in} = < 0.15V		

HAH1DR 200-S

Absolute Maximum ratings (not operating)

Parameter	Symbol	Unit	Specification			Conditions
			Min	Typical	Max	Conditions
Primary current peak	$\hat{I}_{_{\rm Pmax}}$				1)	
Supply continuous over voltage		v			7	Not operating
Reverse voltage 2)	U _c		- 0.5			1 min @ T _A = 25 °C
Ambient storage temperature	Ts	°C	- 55		125	
Electrostatic discharge voltage	U	kV			2	JESD 22-A114-B (HBM)
Continuous output current	I _{out}	mA	- 10		10	
RMS voltage for AC insulation test, 50 Hz, 1 min	U _d	kV			2	50 Hz, 1 min
Continuous output over voltage (Analog)	V _{out}	V	- 0.5		U _c +0.5	
Insulation resistance	R _{IS}	MΩ	500			500 V - ISO 16750-2
Output Short circuit duration	t _c	minutes			2	

Operating characteristics in nominal range ($I_{\rm PN}$)

Baramatar	Symbol	Unit		Specificatio	n	Conditions
Parameter	Symbol	Unit	Min	Typical	Max	
		Electric	al Data			
Primary current	I _{Pn}	A	- 200		200	
Supply voltage	U _c	V	4.75	5	5.25	
Ambient operating temperature	T _A	°C	- 40		125	Connector limited 105 °C
Output voltage (Analog) 3)	V _{out}	V	V _{out} =	$= (U_{c}/5) \cdot (V_{o} + 0)$	$G \cdot I_{_{P}})$	@ <i>U</i> _c
Sensitivity 3)	G	mV/A		10		@ U _c = 5 V
Current consumption	I _c	mA		15	20	@ $U_{\rm c}$ = 5 V, - 40 °C < $T_{\rm A}$ < 125 °C
Load resistance	R	ΚΩ	10			
Capacitive loading	CL	nF	1		100	
Output internal resistance	R _{out}	Ω			10	DC to 1 kHz
Ratiometricity error	ε	%		0.5		
		Performa	ince data			
Sensitivity error	ε _G	%	- 1	± 0.5	1	@ T_{A} = 25 °C, @ $I = I_{P}$
Electrical offset current	I _{OE}			± 0.6		@ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V
Magnetic offset current	I _{om}	A		± 0.9		@ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V, after ± 1
Global offset current	I _o		- 1.5		1.5	@ T _A = 25 °C
Average temperature coefficient of $V_{\rm OE}$	TCI	mV/°C	- 0.08	± 0.03	0.08	@ - 40 °C < T _A < 125 °C
Average temperature coefficient of G	TCG _{AV}	%/°C	- 0.035	± 0.02	0.035	@ - 40 °C < T _A < 125 °C
Linearity error	ε	%	- 1		1	@ $U_{\rm c}$ = 5 V, @ $T_{\rm A}$ = 25 °C, @ $I = I$
Step response time to 90 % $I_{_{\rm PN}}$	t _r	μs		6	10	@ d <i>i</i> /d <i>t</i> = 100 A/µs
Frequency bandwidth 4)	BW	kHz		30		@ - 3 dB
Output clamping voltage minimum	14	N			0.1	@ $U_{\rm c}$ = 5 V, @ $T_{\rm A}$ = 25 °C
Output clamping voltage maximum		V	4.9			@ $U_{\rm c}$ = 5 V, @ $T_{\rm A}$ = 25 °C
Output voltage noise peak-peak	V _{no p-p}	mV			22	DC to 1 kHz

Notes:

¹⁾ Busbar temperature must be below 150 °C
 ²⁾ Transducer not protected against reverse polarity

³⁾ The output voltage V_{out} is fully ratiometric: The offset and sensitivity are dependent on the supply voltage U_c relative to the following formula:

$$I_{\rm P} = \left(\frac{5}{U_{\rm c}} \cdot V_{\rm out} - V_{\rm o}\right) \cdot \frac{1}{G} \text{ with } G \text{ in (V/A)}$$

⁴⁾ Tested only with small signal only to avoid excessive heating of the magnetic core.

HAH1DR 200-S

HAH1DR 200 Sensitivity Error (%)

HAH1DR 200 Electrical offset Error (A)

HAH1DR 200-S

Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.

Magnetic offset:

The magnetic offset is the consequence of an over-current on the primary side. It's defined after an excursion of I_{DN} .

Linearity:

The maximum positive or negative discrepancy with a reference straight line $V_{\text{out}} = f(I_{\text{P}})$. Unit: linearity (%) expressed with full scale of I_{PN} .

Response time (delay time) t_r:

The time between the primary current signal $(I_{\rm PN})$ and the output signal reach at 90 % of its final value.

Sensitivity:

The Transducer's sensitivity G is the slope of the straight line

 $V_{\text{out}} = f(I_{\text{P}})$, it must establish the relation: $V_{\text{out}}^{\text{out}}(I_{\text{P}}) = U_{\text{C}}/5 (G \cdot I_{\text{P}} + V_{\text{o}})$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 °C.

The offset variation $I_{\rm OT}$ is a maximum variation the offset in the temperature range:

 $I_{OT} = I_{OE} \max - I_{OE} \min$

The Offset drift TCI_{OEAV} is the I_{OT} value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 °C.

The sensitivity variation G_{τ} is the maximum variation (in ppm or %) of the sensitivity in the temperature range:

 G_{τ} = (Sensitivity max - Sensitivity min) / Sensitivity at 25 °C. The sensitivity drift TCG_{AV} is the G_{T} value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_p = 0 A$:

The offset voltage is the output voltage when the primary current is zero. The ideal value of $V_{\rm o}$ is $U_{\rm c}/2$ at $U_{\rm c} = 5$ V. So, the difference of $V_{\rm o}$ - $U_{\rm c}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Environmental test specifications:

	a	A 1141			
Name	Standard	Conditions			
Damp heat, steady state	JESD22-A101	85 °C - 85 °C / 1000 h			
Insulation resistance	ISO 16750-2 § 4.10	500 V/1min			
Temperature humidity cycle test	ISO 16750-4	- 10 + 85 °C 10 days			
Isolation test	IEC 60664-1	2 kV / 50 Hz / 1min			
Mechanical tests					
Vibration test (random)	IEC 60068-2-64 ISO 16750-3 & 4.1.2.5 (2007)	20 2000 Hz Random rms (11g rms) 8 h / axis			
Terminal strength test	According to LEM				
Thermal shocks	IEC 60068-214 Na	- 40 + 125 °C 300 cycles			
Free fall	ISO 16750-3 § 4.3	1 m concrete ground			
EMC Test					
Radiated electromagnetic immunity	Directive 2004/104/CE ISO 11452-2	30 V/m 20-2000 MHz			
Bulk current injection immunity	Directive 2004/104/CE ISO 11452-4	1 - 400 MHz - 60 mA			
Radiated radio frequency electromagnetic field immunity	IEC 61000-4-3	80 MHz to 1,000 MHz - 10 V/m			
Electrostatic discharge immunity test	IEC 61000-4-2	Air discharge=2 kV			