

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V CML FANOUT BUFFER

ICS855011

GENERAL DESCRIPTION

The ICS855011 is a low skew, high performance 1-to-2 Differential-to-2.5V/3.3V CML Fanout Buffer and a member of the HiPerClockS™family of High Performance Clock Solutions from IDT. The ICS855011

is characterized to operate from either a 2.5V or a 3.3V power supply. Guaranteed output and part-topart skew characteristics make the ICS855011 ideal for those clock distribution applications demanding well defined performance and repeatability.

FEATURES

- Two differential 2.5V/3.3V CML outputs
- One differential PCLK, nPCLK input pair
- PCLK, nPCLK pair can accept the following differential input levels: LVPECL, LVDS, CML, SSTL
- Output frequency: >3GHz
- Translates any single ended input signal to 3.3V LVPECL levels with resistor bias on nPCLK input
- Output skew: 5ps (typical)
- Part-to-part skew: TBD
- Propagation delay: 242ps (typical)
- Operating voltage supply range: $V_{cc} = 2.375V$ to 3.8V, $V_{EE} = 0V$
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS5) and lead-free (RoHS 6) packages

BLOCK DIAGRAM

PIN ASSIGNMENT

ICS855011 8-Lead TSSOP 3mm x 3mm x 0.95mm package body G Package Top View

The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification. Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.

ICS855011 Low Skew, 1-to-2 DIFFERENTIAL-TO-2.5V/3.3V CML FANOUT BUFFER

TABLE 1. PIN DESCRIPTIONS

Number	Name	Туре		Description
1, 2	Q0, nQ0	Output		Differential output pair. CML interface levels.
3, 4	Q1, nQ1	Output		Differential output pair. CML interface levels.
5	V _{EE}	Power		Negative supply pin.
6	nPCLK	Input	Pullup	Inverting differential LVPECL clock input.
7	PCLK	Input	Pulldown	Non-inverting LVPECL differential clock input.
8	V _{cc}	Power		Positive supply pin.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
R _{PULLDOWN}	Input Pulldown Resistor			75		kΩ
R _{PULLUP}	Input Pullup Resistor			75		kΩ

= 0)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{cc}	4.6V (CML mode, V _{EE}
Inputs, V ₁	-0.5V to V $_{\rm CC}$ + 0.5 V
Outputs, I _o Continuous Current Surge Current	20mA 40mA
Operating Temperature Range, TA	-40°C to +85°C
Storage Temperature, $T_{_{STG}}$	-65°C to 150°C
Package Thermal Impedance, θ_{JA} (Junction-to-Ambient)	101.7°C/W (0 m/s)

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 3A. Power Supply DC Characteristics, $V_{cc} = 2.375V$ to 3.8V; $V_{ee} = 0V$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Positive Supply Voltage		2.375	3.3	3.8	V
I	Power Supply Current			50		mA

TABLE 3B. LVPECL DC CHARACTERISTICS, $V_{cc} = 2.375V$ to 3.8V; $V_{ee} = 0V$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input High Current	PCLK	$V_{\rm CC} = V_{\rm IN} = 3.8 V$			150	μA
' _{IH}	Input High Current	nPCLK	$V_{\rm CC} = V_{\rm IN} = 3.8 V$			5	μA
		PCLK	$V_{cc} = 3.8V, V_{iN} = 0V$	-5			μA
I _{IL}	Input Low Current	nPCLK	$V_{cc} = 3.8V, V_{IN} = 0V$	-150			μA
V _{PP}	Peak-to-Peak Input	Voltage		0.3		1	V
V _{cmr}	Common Mode Input Voltage; NOTE 1, 2			V _{EE} + 1.5		V _{cc}	V

NOTE 1: Common mode voltage is defined as V_{μ} .

NOTE 2: For single ended applications, the maximum input voltage for PCLK and nPCLK is V_{cc} + 0.3V.

TABLE 3C. CML DC CHARACTERISTICS, $V_{cc} = 2.375V$ to 3.8V; $V_{ee} = 0V$

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{cc} - 0.020	V _{cc} - 0.010	V _{cc}	V
V _{OUT}	Output Voltage Swing		325	400		mV
V _{DIFF_OUT}	Differential Output Voltage Swing		650	800		mV
R _{OUT}	Output Source Impedance		40	50	60	Ω

NOTE 1: Outputs terminated with 100Ω across differential output pair.

ICS855011 Low Skew, 1-to-2 DIFFERENTIAL-TO-2.5V/3.3V CML FANOUT BUFFER

TABLE 4. AC CHARACTERISTICS, $V_{cc} = 0V$; $V_{ee} = -3.8V$ to -2.375V or $V_{cc} = 2.375$ to 3.8V; $V_{ee} = 0V$

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency			>3		GHz
t _{PD}	Propagation Delay; (Differential); NOTE 1			242		ps
<i>t</i> sk(o)	Output Skew; NOTE 2, 4			5		ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 3, 4			TBD		ps
t _R /t _F	Output Rise/Fall Time	20% to 80%		140		ps
odc	Output Duty Cycle			50		ps

All parameters characterized at \leq 1GHz unless otherwise noted.

 $R_{L} = 100\Omega$ after each output pair.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

ICS855011 Low Skew, 1-to-2 DIFFERENTIAL-TO-2.5V/3.3V CML FANOUT BUFFER

PARAMETER MEASUREMENT INFORMATION

ICS855011 Low Skew, 1-to-2 DIFFERENTIAL-TO-2.5V/3.3V CML FANOUT BUFFER

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{cc}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{cc} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

PRELIMINARY ICS855011 Low Skew, 1-to-2

DIFFERENTIAL-TO-2.5V/3.3V CML FANOUT BUFFER

LVPECL CLOCK INPUT INTERFACE

The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 2A to 2F* show interface examples for the HiPerClockS PCLK/nPCLK input driven by the most common driver types. The input interfaces suggested

here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

FIGURE 2A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY AN OPEN COLLECTOR CML DRIVER

FIGURE 2C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER

FIGURE 2E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY AN SSTL DRIVER

FIGURE 2B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A BUILT-IN PULLUP CML DRIVER

FIGURE 2D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER WITH AC COUPLE

FIGURE 2F. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER

ICS855011 Low Skew, 1-to-2 DIFFERENTIAL-TO-2.5V/3.3V CML FANOUT BUFFER

RELIABILITY INFORMATION

TABLE 6. $\boldsymbol{\theta}_{\text{JA}} \text{vs.}$ Air Flow Table for 8 Lead TSSOP

θ_{JA} by Velocity (Meters per Second)						
	0	1	2			
Multi-Layer PCB, JEDEC Standard Test Boards	101.7°C/W	90.5°C/W	89.8°C/W			

TRANSISTOR COUNT

The transistor count for ICS855011 is: 109

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V CML FANOUT BUFFER

PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP

TABLE 7. PACKAGE DIMENSIONS

SYMDOL	Millin	neters		
SYMBOL	Minimum	Maximum		
N	8			
A		1.10		
A1	0	0.15		
A2	0.79	0.97		
b	0.22	0.38		
С	0.08	0.23		
D	3.00 I	BASIC		
E	4.90 I	BASIC		
E1	3.00 I	BASIC		
е	0.65 I	BASIC		
e1	1.95 I	BASIC		
L	0.40	0.80		
α	0° 8°			
aaa	0.10			

Reference Document: JEDEC Publication 95, MO-187

ICS855011 Low Skew, 1-to-2 DIFFERENTIAL-TO-2.5V/3.3V CML FANOUT BUFFER

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
ICS855011AG	011A	8 lead TSSOP	tube	-40°C to 85°C
ICS855011AGT	011A	8 lead TSSOP	2500 tape & reel	-40°C to 85°C
ICS855011AGLF	11AL	8 lead "Lead-Free" TSSOP	tube	-40°C to 85°C
ICS855011AGLFT	11AL	8 lead "Lead-Free" TSSOP	2500 tape & reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.