

Adafruit SCD-30 - NDIR CO2 Temperature

and Humidity Sensor

Created by Kattni Rembor

https://learn.adafruit.com/adafruit-scd30

Last updated on 2023-01-06 02:40:41 PM EST

©Adafruit Industries Page 1 of 27

3

5

6

10

10

16

16

24

26

Table of Contents

Overview

Pinouts

• Power Pins

• I2C Logic Pins

• Other Pins

Arduino

• I2C Wiring

• Library Installation

• Load Example

• Example Code

Arduino Docs

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• CircuitPython Installation of SCD30 Library

• Python Installation of SCD30 Library

• CircuitPython & Python Usage

• Full Example Code

Python Docs

WipperSnapper

• What is WipperSnapper

• Wiring

• Usage

Field Calibration

• Forced Re-Calibration

• Automatic Self-Calibration

• FRC vs. ASC

Downloads

• Files:

• Schematic

• Fab Print

©Adafruit Industries Page 2 of 27

Overview

Take a deep breath in...now slowly breathe out. Mmm isn't it wonderful? All that air

around us, which we bring into our lungs, extract oxygen from and then breathe out

carbon dioxide. CO2 is essential for life on this planet we call Earth - us and plants

take turns using and emitting CO2 in an elegant symbiosis. But it's important to keep

that CO2 balanced - you don't want too much around, not good for humans and not

good for our planet.

The SCD-30 is an NDIR sensor (), which is a 'true' CO2 sensor, that will tell you the

CO2 PPM (parts-per-million) composition of ambient air. Unlike the SGP30, this sensor

isn't approximating it from VOC gas concentration () - it really is measuring the CO2

concentration! That means its a lot bigger and more expensive, but it is the real thing.

Perfect for environmental sensing, scientific experiments, air quality and ventilation

studies and more.

©Adafruit Industries Page 3 of 27

https://en.wikipedia.org/wiki/Nondispersive_infrared_sensor
https://www.adafruit.com/product/3709
https://www.adafruit.com/product/3709

Data is read over I2C, so it works very nicely with just about any microcontroller or

microcomputer. We've written both Arduino and Python/CircuitPython code so you

can get started in a jiffy. Another nice element to this sensor is it comes with an SHT31

temperature and humidity sensor already built in (). The sensor is used to compensate

the NDIR CO2 sensor, but its also readable so you get full environmental data.

Nice sensor right? So we made it easy for you to get right into your next project. The

sensor is hand-soldered onto a custom made PCB in the STEMMA QT form factor (),

making them easy to interface with. The STEMMA QT connectors () on either side are

compatible with the SparkFun Qwiic () I2C connectors. This allows you to make

©Adafruit Industries Page 4 of 27

https://www.adafruit.com/product/2857
https://www.adafruit.com/product/2857
https://www.adafruit.com/?q=stemma%20qt%20sensor
https://www.adafruit.com/?q=stemma%20qt%20sensor
https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma-qt
https://www.sparkfun.com/qwiic

solderless connections between your development board and the SCD-30 or to chain

it with a wide range of other sensors and accessories using a compatible cable ().

We’ve of course broken out all the pins to standard headers and added a 3.3V

voltage regulator and level shifting so allow you to use it with either 3.3V or 5V

systems such as the Raspberry Pi, or Metro M4 or Arduino Uno.

Pinouts

Power Pins

VIN - this is the power pin. Since the sensor chip uses 3 VDC, we have included

a voltage regulator on board that will take 3-5VDC and safely convert it down.

•

©Adafruit Industries Page 5 of 27

https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=stemma%20qt%20cable

To power the board, give it the same power as the logic level of your

microcontroller - e.g. for a 5V microcontroller like Arduino, use 5V

3Vo - this is the 3.3V output from the voltage regulator, you can grab up to

100mA from this if you like

GND - common ground for power and logic

I2C Logic Pins

SCL - I2C clock pin, connect to your microcontroller I2C clock line. This pin is

level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin.

SDA - I2C data pin, connect to your microcontroller I2C data line. This pin is

level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin.

STEMMA QT () - These connectors allow you to connect to dev boards with STE

MMA QT connectors or to other things with various associated accessories ()

Other Pins

RDY - Data Ready Pin. High when data is ready for read-out, it helps if you want

to avoid polling the I2C port to verify data is ready.

Arduino

Using the SCD30 with Arduino is a simple matter of wiring up the sensor to your

Arduino-compatible microcontroller, installing the Adafruit SCD30 () library we've

written, and running the provided example code.

I2C Wiring

Here is how to wire up the sensor using one of the STEMMA QT () connectors. The

examples show a Metro but wiring will work the same for an Arduino or other

compatible board.

•

•

•

•

•

•

©Adafruit Industries Page 6 of 27

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://github.com/adafruit/Adafruit_SCD30
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt

Connect board VIN (red wire) to Arduino

5V if you are running a 5V board Arduino

(Uno, etc.). If your board is 3V, connect to

that instead.

Connect board GND (black

wire) to Arduino GND

Connect board SCL (yellow

wire) to Arduino SCL

Connect board SDA (blue wire) to Arduino

SDA

Here is how to wire the sensor to a board using a solderless breadboard:

Connect board VIN (red wire) to Arduino

5V if you are running a 5V board Arduino

(Uno, etc.). If your board is 3V, connect to

that instead.

Connect board GND (black

wire) to Arduino GND

Connect board SCL (yellow

wire) to Arduino SCL

Connect board SDA (blue wire) to Arduino

SDA

Library Installation

You can install the Adafruit SCD30 library for Arduino using the Library Manager in the

Arduino IDE.

Click the Manage Libraries ... menu item, search for Adafruit SCD30 , and select the A

dafruit SCD30 library:

©Adafruit Industries Page 7 of 27

https://learn.adafruit.com//assets/98479
https://learn.adafruit.com//assets/98479
https://learn.adafruit.com//assets/98480
https://learn.adafruit.com//assets/98480

Finally, search for Adafruit Unified Sensor and install that too (you may have to scroll a

bit)

Load Example

Open up File -> Examples -> Adafruit SCD30 -> adafruit_scd30_test

After opening the demo file, upload to your Arduino wired up to the sensor. Once you

upload the code, you will see the temperature, humidity and eCO2 data values being

printed when you open the Serial Monitor (Tools->Serial Monitor) at 115200 baud,

similar to this:

©Adafruit Industries Page 8 of 27

The sensor has a lot going on, there's temperature and humidity reading thanks to an

SHT31 sensor on board. These values are used internally to normalize the NDIR CO2

readings as well. You can only get data every 2 seconds, which is pretty fast for this

kind of sensor! If you want to slow down the readings to reduce power usage,

uncomment this section:

// if (!scd30.setMeasurementInterval(10)){

// Serial.println("Failed to set measurement interval");

// while(1){ delay(10);}

// }

The valid range is 2 seconds per reading up to 1800 seconds per reading.

Example Code

// Basic demo for readings from Adafruit SCD30

#include <Adafruit_SCD30.h>

Adafruit_SCD30 scd30;

void setup(void) {

 Serial.begin(115200);

 while (!Serial) delay(10); // will pause Zero, Leonardo, etc until serial

console opens

 Serial.println("Adafruit SCD30 test!");

 // Try to initialize!

 if (!scd30.begin()) {

 Serial.println("Failed to find SCD30 chip");

 while (1) { delay(10); }

 }

 Serial.println("SCD30 Found!");

 // if (!scd30.setMeasurementInterval(10)){

 // Serial.println("Failed to set measurement interval");

 // while(1){ delay(10);}

 // }

 Serial.print("Measurement Interval: ");

 Serial.print(scd30.getMeasurementInterval());

 Serial.println(" seconds");

}

void loop() {

 if (scd30.dataReady()){

 Serial.println("Data available!");

 if (!scd30.read()){ Serial.println("Error reading sensor data"); return; }

 Serial.print("Temperature: ");

 Serial.print(scd30.temperature);

Its normal for the first CO2 reading to be 0, simply ignore the first reading when

logging data.

©Adafruit Industries Page 9 of 27

 Serial.println(" degrees C");

 Serial.print("Relative Humidity: ");

 Serial.print(scd30.relative_humidity);

 Serial.println(" %");

 Serial.print("CO2: ");

 Serial.print(scd30.CO2, 3);

 Serial.println(" ppm");

 Serial.println("");

 } else {

 //Serial.println("No data");

 }

 delay(100);

}

Arduino Docs

Arduino Docs ()

Python & CircuitPython

It's easy to use the SCD-30 with Python or CircuitPython, and the Adafruit

CircuitPython SCD30 () module. This module allows you to easily write Python code

that reads CO2, temperature, and humidity from the SCD30 sensor.

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

CircuitPython Microcontroller Wiring

First wire up a SCD-30 to your board exactly as shown below. Here's an example of

wiring a Feather M4 to the sensor with I2C using one of the handy STEMMA QT ()

connectors:

©Adafruit Industries Page 10 of 27

https://adafruit.github.io/Adafruit_SCD30/html/index.html
https://github.com/adafruit/Adafruit_CircuitPython_SCD30
https://github.com/adafruit/Adafruit_CircuitPython_SCD30
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt

Board 3V to sensor VIN (red wire)

Board GND to sensor GND (black wire)

Board SCL to sensor SCL (yellow wire)

Board SDA to sensor SDA (blue wire)

You can also use the standard 0.100" pitch headers to wire it up on a breadboard:

Board 3V to sensor VIN (red wire)

Board GND to sensor GND (black wire)

Board SCL to sensor SCL (yellow wire)

Board SDA to sensor SDA (blue wire)

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use, we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Here's the Raspberry Pi wired to the sensor using I2C and a STEMMA QT () connector:

©Adafruit Industries Page 11 of 27

https://learn.adafruit.com//assets/98474
https://learn.adafruit.com//assets/98474
https://learn.adafruit.com//assets/98475
https://learn.adafruit.com//assets/98475
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt

Pi 3V to sensor VIN (red wire)

Pi GND to sensor GND (black wire)

Pi SCL to sensor SCL (yellow wire)

Pi SDA to sensor SDA (blue wire)

Finally here is an example of how to wire up a Raspberry Pi to the sensor using a

solderless breadboard

Pi 3V to sensor VIN (red wire)

Pi GND to sensor GND (black wire)

Pi SCL to sensor SCL (yellow wire)

Pi SDA to sensor SDA (blue wire)

CircuitPython Installation of SCD30 Library

You'll need to install the Adafruit CircuitPython SCD30 () library on your CircuitPython

board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

©Adafruit Industries Page 12 of 27

https://learn.adafruit.com//assets/100960
https://learn.adafruit.com//assets/100960
https://learn.adafruit.com//assets/98478
https://learn.adafruit.com//assets/98478
https://github.com/adafruit/Adafruit_CircuitPython_SCD30
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Required libraries:

adafruit_scd30.mpy

adafruit_bus_device/

adafruit_register/

Your CIRCUITPY drive should look like the

image.

Before continuing make sure your board's

lib folder or root filesystem has the

adafruit_scd30.mpy file, and the

adafruit_bus_device and adafruit_register

folders copied over.

Python Installation of SCD30 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-scd30

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

Next connect to the board's serial REPL ()so you are at the CircuitPython >>> prompt.

CircuitPython & Python Usage

To demonstrate the usage of the sensor we'll initialize it and read the CO2,

temperature and humidity data from the board's Python REPL.

Run the following code to import the necessary modules and initialize the I2C

connection with the sensor:

import board

import adafruit_scd30

•

©Adafruit Industries Page 13 of 27

https://learn.adafruit.com//assets/98486
https://learn.adafruit.com//assets/98486
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

scd = adafruit_scd30.SCD30(board.I2C())

Now you're ready to read values from the sensor using these properties:

data_available - Check the sensor to see if new data is available.

eCO2 - The CO2 concentration in PPM (parts per million).

temperature - The current temperature in degrees Celsius.

relative_humidity - The current relative humidity in %rH.

print("Data available?", scd.data_available)

print("CO2:", scd.CO2, "PPM")

print("Temperature:", scd.temperature, "degrees C")

print("Humidity:", scd.relative_humidity, "%%rH")

Full Example Code

SPDX-FileCopyrightText: 2020 by Bryan Siepert, written for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

import time

import board

import busio

import adafruit_scd30

SCD-30 has tempremental I2C with clock stretching, datasheet recommends

starting at 50KHz

i2c = busio.I2C(board.SCL, board.SDA, frequency=50000)

scd = adafruit_scd30.SCD30(i2c)

while True:

 # since the measurement interval is long (2+ seconds) we check for new data

before reading

 # the values, to ensure current readings.

 if scd.data_available:

 print("Data Available!")

 print("CO2: %d PPM" % scd.CO2)

 print("Temperature: %0.2f degrees C" % scd.temperature)

•

•

•

•

©Adafruit Industries Page 14 of 27

 print("Humidity: %0.2f %% rH" % scd.relative_humidity)

 print("")

 print("Waiting for new data...")

 print("")

 time.sleep(0.5)

You'll be able to get a new reading every 2 seconds, that's as fast as data comes out

of the sensor.

It's normal for the first reading to be 0, as the sensor 'warms up'. Simply skip that

reading when logging data.

To change things like the interval delay (how often data is calculated) check out this

example which shows how you can tweak the sensor to change the interval, or tune

the sensor with things like the known altitude/barometric pressure. Check the

datasheet for the SCD-30 for more details on tuning the sensor.

SPDX-FileCopyrightText: 2020 by Bryan Siepert, written for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

import time

import board

import busio

import adafruit_scd30

SCD-30 has tempremental I2C with clock stretching, datasheet recommends

starting at 50KHz

i2c = busio.I2C(board.SCL, board.SDA, frequency=50000)

scd = adafruit_scd30.SCD30(i2c)

scd.temperature_offset = 10

print("Temperature offset:", scd.temperature_offset)

scd.measurement_interval = 4

print("Measurement interval:", scd.measurement_interval)

scd.self_calibration_enabled = True

print("Self-calibration enabled:", scd.self_calibration_enabled)

scd.ambient_pressure = 1100

print("Ambient Pressure:", scd.ambient_pressure)

scd.altitude = 100

print("Altitude:", scd.altitude, "meters above sea level")

©Adafruit Industries Page 15 of 27

scd.forced_recalibration_reference = 409

print("Forced recalibration reference:", scd.forced_recalibration_reference)

print("")

while True:

 data = scd.data_available

 if data:

 print("Data Available!")

 print("CO2:", scd.CO2, "PPM")

 print("Temperature:", scd.temperature, "degrees C")

 print("Humidity::", scd.relative_humidity, "%%rH")

 print("")

 print("Waiting for new data...")

 print("")

 time.sleep(0.5)

Python Docs

Python Docs ()

WipperSnapper

What is WipperSnapper

WipperSnapper is a firmware designed to turn any WiFi-capable board into an

Internet-of-Things device without programming a single line of code. WipperSnapper

connects to Adafruit IO (), a web platform designed (by Adafruit! ())

to display, respond, and interact with your project's data.

Simply load the WipperSnapper firmware onto your board, add credentials, and plug it

into power. Your board will automatically register itself with your Adafruit IO account.

From there, you can add components to your board such as buttons, switches,

potentiometers, sensors, and more! Components are dynamically added to hardware,

so you can immediately start interacting, logging, and streaming the data your

projects produce without writing code.

If you've never used WipperSnapper, click below to read through the quick start guide

before continuing.

Quickstart: Adafruit IO

WipperSnapper

©Adafruit Industries Page 16 of 27

https://circuitpython.readthedocs.io/projects/scd30/en/latest/
https://io.adafruit.com/
https://www.adafruit.com/about
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper

Wiring

First, wire up a SCD30 to your board exactly as follows. Here is an example of the

SCD30 wired to an Adafruit ESP32 Feather V2 () using I2C with a STEMMA QT cable

(no soldering required) ()

Board 3V to sensor VIN (red wire on

STEMMA QT)

Board GND to sensor GND (black wire on

STEMMA QT)

Board SCL to sensor SCL (yellow wire on

STEMMA QT)

Board SDA to sensor SDA (blue wire on

STEMMA QT)

Usage

Connect your board to Adafruit IO Wippersnapper and navigate to the

WipperSnapper board list ().

On this page, select the WipperSnapper board you're using to be brought to the

board's interface page.

©Adafruit Industries Page 17 of 27

https://www.adafruit.com/product/5400
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://learn.adafruit.com//assets/113707
https://learn.adafruit.com//assets/113707
https://learn.adafruit.com//assets/113708
https://learn.adafruit.com//assets/113708
https://io.adafruit.com/wippersnapper
https://io.adafruit.com/wippersnapper

If you do not see your board listed here - you need to connect your board to Adafruit

IO () first.

On the device page, quickly check that

you're running the latest version of the

WipperSnapper firmware.

The device tile on the left indicates the

version number of the firmware running on

the connected board.

If the firmware version is green with a

checkmark - continue with this guide.

If the firmware version is red with an "X" -

 update to the latest WipperSnapper

firmware () on your board before

continuing.

©Adafruit Industries Page 18 of 27

https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com//assets/117365
https://learn.adafruit.com//assets/117365
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper

On the device page, quickly check that

you're running the latest version of the

WipperSnapper firmware.

The device tile on the left indicates the

version number of the firmware running on

the connected board.

If the firmware version is green with a

checkmark - continue with this guide.

If the firmware version is red with an "X" -

 update to the latest WipperSnapper

firmware () on your board before

continuing.

Next, make sure the sensor is plugged into your board and click the I2C Scan button.

You should see the SCD30's default I2C address of 0x61 pop up in the I2C scan list.

©Adafruit Industries Page 19 of 27

https://learn.adafruit.com//assets/114510
https://learn.adafruit.com//assets/114510
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper
https://learn.adafruit.com/quickstart-adafruit-io-wippersnapper

I don't see the sensor's I2C address listed!

First, double-check the connection and/or wiring between the sensor and the

board.

Then, reset the board and let it re-connect to Adafruit IO WipperSnapper.

With the sensor detected in an I2C scan, we're ready to add the sensor to your board.

Click the New Component button or the + button to bring up the component picker.

©Adafruit Industries Page 20 of 27

On the component configuration page, the SCD30's sensor address should be listed

along with the sensor's settings.

The Send Every option is specific to each sensor's measurements. This option will tell

the Feather how often it should read from each of the SCD30's three sensors and

send the data to Adafruit IO. Measurements can range from every 30 seconds to

every 24 hours.

For this example, set the Send Every interval for each sensor to every 30 seconds.

©Adafruit Industries Page 21 of 27

Your device interface should now show the sensor components you created. After the

interval you configured elapses, WipperSnapper will automatically read values from

the sensor(s) and send them to Adafruit IO.

©Adafruit Industries Page 22 of 27

To view the data that has been logged from the sensor, click on the graph next to the

sensor name.

Here you can see the feed history and edit things about the feed such as the name,

privacy, webhooks associated with the feed and more. If you want to learn more

about how feeds work, check out this page ().

The SCD30 has three sensors that each have their own feeds. In this picture, we're

looking at the CO2 sensor, but if you click on the graph icon for the different sensors

you'll see their feed history.

©Adafruit Industries Page 23 of 27

https://learn.adafruit.com/all-the-internet-of-things-episode-four-adafruit-io/advanced-feeds

For IO Free accounts, feed data is stored for a maximum of 30 days and there's a

maximum of 10 feeds. In this guide, you created three feeds (one for each of the

SCD30's sensors). If you’d like to store data for more than 30 days, increase the

number of feeds (components) you can use with WipperSnapper, or increase your

data rate to send more sensor measurements to Adafruit IO - upgrade your account to

Adafruit IO Plus ().

Field Calibration

Performing a re-calibration of the SCD-30 can help maintain accurate CO2 readings

over time. Various factors can cause the SCD-30 sensor reading to drift and there are

two available re-calibration options: Forced Re-Calibration (FRC) and Automatic Self-

Calibration (ASC).

This Application Note from Sensirion () goes into lots of detail and is worth reading:

Field calibration for SCD30

Here we summarizes the two approaches.

©Adafruit Industries Page 24 of 27

https://io.adafruit.com/plus
https://io.adafruit.com/plus
https://www.sensirion.com
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9.5_CO2/Sensirion_CO2_Sensors_SCD30_Field_Calibration.pdf

Forced Re-Calibration

This is the easiest approach. The SCD-30 is placed in an environment with a known

CO2 concentration. Then the FRC routine is called and this known concentration

value (in ppm) is supplied. But how do you come up with that known value? That is a

caveat of this approach and Sensirion (see PDF linked above) suggests three

approaches:

Using a separate secondary calibrated CO2 sensor to provide the value.

Exposing the SCD-30 to a controlled environment with a known value.

Exposing the SCD-30 to fresh outside air and using a value of 400 ppm.

However, once you have your reference value, performing a FRC is super easy.

Assuming a reference CO2 concentration of 800 ppm has been determined, then

with the CircuitPython library use:

scd30.forced_recalibration_reference = 800

or with the Arduino library use:

scd30.forceRecalibrationWithReference(800);

Automatic Self-Calibration

Hey, automatic! That sounds great! Set and forget, right? Well, not so fast. The ASC

feature has some requirements which should be considered to determine if it is

suitable for any given end use application. If the conditions can not be met, then the

FRC mentioned above should be used.

The SCD-30 should regularly be exposed to fresh air with CO2 concentration of

400 ppm.

The SCD-30 needs to operate in continuous mode, i.e. do not power it down.

The ASC needs 7 good readings separated by at least 18 hours (that's ~5 days).

See the PDF linked above for many more details. If you want to use ASC, enabling it is

very simple. In CircuitPython use:

scd30.self_calibration_enabled = True

or with the Arduino library use:

1.

2.

3.

1.

2.

3.

©Adafruit Industries Page 25 of 27

scd30.selfCalibrationEnabled(true);

With either, simply use False / false to disable ASC.

FRC vs. ASC

Both the Forced Re-Calibration (FRC) and Automatic Self-Calibration (ASC) are ways of

arriving at the same "Reference Value" which is then used in determining the CO2

ppm reading reported by the SCD-30. With the FRC approach, the Reference Value is

specified. With the ASC approach, the Reference Value is determined algorithmically.

Either one will overwrite the Reference Value from the other one. For example,

running a FRC will immediately change to the new Reference Value. However, if ASC

is enabled, then it may replace the Reference Value at a later time.

Downloads

Files:

SCD-30 Datasheet ()

SCD-30 Design-in Guidelines ()

SCD-30 Interface Description ()

Fritzing object in the Adafruit Fritzing Library ()

EagleCAD PCB files on GitHub ()

3D models on GitHub ()

•

•

•

•

•

•

©Adafruit Industries Page 26 of 27

https://sensirion.com/media/documents/4EAF6AF8/61652C3C/Sensirion_CO2_Sensors_SCD30_Datasheet.pdf
https://sensirion.com/media/documents/84D49268/616536CB/Sensirion_CO2_Sensors_SCD30_Design-In_Guidelines_D1.pdf
https://sensirion.com/media/documents/D7CEEF4A/6165372F/Sensirion_CO2_Sensors_SCD30_Interface_Description.pdf
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20SCD30.fzpz
https://github.com/adafruit/Adafruit-SCD-30-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4867%20SCD-30%20C02%20Sensor

Schematic

Fab Print

©Adafruit Industries Page 27 of 27

	Adafruit SCD-30 - NDIR CO2 Temperature and Humidity Sensor
	Table of Contents
	Overview
	Pinouts
	Arduino
	Arduino Docs
	Python & CircuitPython
	Python Docs
	WipperSnapper
	Field Calibration
	Downloads

	Overview
	Pinouts
	Power Pins
	I2C Logic Pins
	Other Pins

	Arduino
	I2C Wiring
	Library Installation
	Load Example
	Example Code

	Arduino Docs
	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of SCD30 Library
	Python Installation of SCD30 Library
	CircuitPython & Python Usage

	Full Example Code
	Python Docs
	WipperSnapper
	What is WipperSnapper
	Wiring
	Usage
	I don't see the sensor's I2C address listed!

	Field Calibration
	Forced Re-Calibration
	Automatic Self-Calibration
	FRC vs. ASC

	Downloads
	Files:

	Schematic
	Fab Print

