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Preface 
 
 

A major revolution in digital design has taken place over the past decade.  
Field programmable gate arrays (FPGAs) can now contain over a million equivalent 
logic gates and tens of thousands of flip-flops.  This means that it is not possible to 
use traditional methods of logic design involving the drawing of logic diagrams 
when the digital circuit may contain thousands of gates.  The reality is that today 
digital systems are designed by writing software in the form of hardware 
description languages (HDLs).  The most common HDLs used today are VHDL and 
Verilog.  Both are in widespread use.  When using these hardware description 
languages the designer typically describes the behavior of the logic circuit rather 
than writing traditional Boolean logic equations.  Computer-aided design tools are 
used to both simulate the Verilog or VHDL design and to synthesize the design to 
actual hardware. 

This book assumes no previous knowledge of digital design.  We use 30 
examples to show you how to get started designing digital circuits that you can 
implement on a Xilinx Spartan3E FPGA using either the Digilent BASYS™ system 
board that can be purchased from www.digilentinc.com for $59 or the Digilent 
Nexys-2 board that costs $99.   We will use Active-HDL from Aldec to design, 
simulate, synthesize, and implement our digital designs.  A free student edition of 
Active-HDL is available from Aldec, Inc. (www.aldec.com).   To synthesize your 
designs to a Spartan3E FPGA you will need to download the free ISE WebPACK 
from Xilinx, Inc. (www.xilinx.com).  The Xilinx synthesis tools are called from 
within the Aldec Active-HDL integrated GUI.  We will use the ExPort utility to 
download your synthesized design to the Spartan3E FPGA.  ExPort is part of the 
Adept software suite that you can download free from Digilent, Inc. 
(www.digilentinc.com).  A more complete book called Digital Design Using 
Digilent FPGA Boards – Verilog / Active-HDL Edition is also available from 
Digilent or LBE Books (www.lbebooks.com).   This more comprehensive book 
contains over 75 examples including examples of using the VGA and PS/2 ports.  
Similar books that use VHDL are also available from Digilent or LBE Books. 

 Many colleagues and students have influenced the development of this 
book.  Their stimulating discussions, probing questions, and critical comments are 
greatly appreciated.   

  
       Richard E. Haskell 
       Darrin M. Hanna 
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Introduction 
  

Digital Design Using FPGAs  
  
 
 
The first integrated circuits that were developed in the early 1960s contained less 

that 100 transistors on a chip and are called small-scale integrated (SSI) circuits.  
Medium-scale integrated (MSI) circuits, developed in the late 1960s, contain up to 
several hundreds of transistors on a chip.  By the mid 1970s large-scale integrated (LSI) 
circuits containing several thousands of transistors had been developed.  Very-large-scale 
integrated (VLSI) circuits containing over 100,000 transistors had been developed by the 
early 1980s.  This trend has continued to the present day with 1,000,000 transistors on a 
chip by the late 1980s, 10,000,000 transistors on a chip by the mid-1990s, over 
100,000,000 transistors by 2004, and up to 1,000,000,000 transistors on a chip today.  
This exponential growth in the amount of digital logic that can be packed into a single 
chip has produced serious problems for the digital designer.  How can an engineer, or 
even a team of engineers, design a digital logic circuit that will end up containing 
millions of transistors? 

In Appendix C we show that any digital logic circuit can be made from only three 
types of basic gates: AND, OR, and NOT.  In fact, we will see that any digital logic 
circuit can be made using only NAND gates (or only NOR gates), where each NAND or 
NOR gate contains four transistors. These basic gates were provided in SSI chips using 
various technologies, the most popular being transistor-transistor logic (TTL).  These 
TTL chips were the mainstay of digital design throughout the 1960s and 1970s.  Many 
MSI TTL chips became available for performing all types of digital logic functions such 
as decoders, adders, multiplexers, comparators, and many others.   

By the 1980s thousands of gates could fit on a single chip.  Thus, several different 
varieties of programmable logic devices (PLDs) were developed in which arrays 
containing large numbers of AND, OR, and NOT gates were arranged in a single chip 
without any predetermined function.  Rather, the designer could design any type of 
digital circuit and implement it by connecting the internal gates in a particular way.  This 
is usually done by opening up fuse links within the chip using computer-aided tools.  
Eventually the equivalent of many PLDs on a single chip led to complex programmable 
logic devices (CPLDs).   

 
 

Field Programmable Gate Arrays (FPGAs) 
 

A completely different architecture was introduced in the mid-1980’s that uses 
RAM-based lookup tables instead of AND-OR gates to implement combinational logic.  
These devices are called field programmable gate arrays (FPGAs).  The device consists 
of an array of configurable logic blocks (CLBs) surrounded by an array of I/O blocks.  
The Spartan-3E from Xilinx also contains some blocks of RAM, 18 x 18 multipliers, as 
well as Digital Clock Manager (DCM) blocks.  These DCMs are used to eliminate clock 
distribution delay and can also increase or decrease the frequency of the clock. 
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Each CLB in the Spartan-3E FPGA contains four slices, each of which contains 
two 16 x 1 RAM look-up tables (LUTs), which can implement any combinational logic 
function of four variables.  In addition to two look-up tables, each slice contains two D 
flip-flops which act as storage devices for bits.  The basic architecture of a Spartan-3E 
FPGA is shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The BASYS board from Digilent contains a Xilinx Spartan3E-100 TQ144 FPGA.  

This chip contains 240 CLBs arranged as 22 rows and 16 columns.  There are therefore 
960 slices with a total of 1,920 LUTs and flip-flops.  This part also contains 73,728 bits 
of block RAM.  Half of the LUTs on the chip can be used for a maximum of 15,360 bits 
of distributed RAM. 

By contrast the Nexys-2 board from Digilent contains a Xilinx Spartan3E-500 
FG320 FPGA.  This chip contains 1,164 CLBs arranged as 46 rows and 34 columns.  
There are therefore 4,656 slices with a total of 9,312 LUTs and flip-flops.  This part also 
contains 368,640 bits of block RAM.  Half of the LUTs on the chip can be used for a 
maximum of 74,752 bits of distributed RAM. 

In general, FPGAs can implement much larger digital systems than CPLDs as 
illustrated in Table 1.  The column labeled No. of Gates is really equivalent gates as we 
have seen that FPGAs really don’t have AND and OR gates, but rather just RAM look-up 
tables.  (Each slice does include two AND gates and two XOR gates as part of carry and 
arithmetic logic used when implementing arithmetic functions including addition and 
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Figure 1  Architecture of a Spartan-3E FPGA 
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multiplication.)  Note from Table 1 that FPGAs can have the equivalent of millions of 
gates and tens of thousands of flip-flops.     
 
 

Table 1  Comparing Xilinx CPLDs and FPGAs 
Xilinx Part No. of Gates No. of I/Os No. of CLBs No. of Flip-flops Block RAM (bits) 

CPLDs  
9500 family 800 – 6,400 34 – 192 36 - 288 

  
FPGAs  
Spartan 5,000 –     40,000 77 – 224     100  –  784 360 – 2,016 

Spartan II 15,000 –   200,000 86 – 284 96 – 1,176 642 – 5,556 16,384 –  57,344
Spartan IIE   23,000 –   600,000 182 – 514 384 – 3,456 2,082 – 15,366 32,768 – 294,912
Spartan 3 50,000 – 5,000,000 124 – 784 192 – 8,320 2,280 – 71,264 73,728 – 1,916,928

Spartan-3E 100,000 – 1,600,000 108 – 376 240 – 3,688 1,920 – 29,505 73,728 –  663,552
Virtex 57,906 – 1,124,022   180 –  512  384 –   6,144 2,076 – 26,112 32,768 – 131,072

Virtex E 71,693 – 4,074,387   176 –  804 384 – 16,224 1,888 – 66,504 65,536 – 851,968
Virtex-II 40,960 – 8,388,608     88 – 1,108 64 – 11,648 1,040 – 99,832 73,728 – 3,096,576

 
 

 
Modern Design of Digital Systems 

 
The traditional way of designing digital circuits is to draw logic diagrams 

containing SSI gates and MSI logic functions.  However, by the late 1980s and early 
1990s such a process was becoming problematic.  How can you draw schematic diagrams 
containing hundreds of thousands or millions of gates?  As programmable logic devices 
replaced TTL chips in new designs a new approach to digital design became necessary.  
Computer-aided tools are essential to designing digital circuits today.  What has become 
clear over the last decade is that today’s digital engineer designs digital systems by 
writing software!  This is a major paradigm shift from the traditional method of designing 
digital systems.  Many of the traditional design methods that were important when using 
TTL chips are less important when designing for programmable logic devices. 

Today digital designers use hardware description languages (HDLs) to design 
digital systems.  The most widely used HDLs are VHDL and Verilog.  Both of these 
hardware description languages allow the user to design digital systems by writing a 
program that describes the behavior of the digital circuit.  The program can then be used 
to both simulate the operation of the circuit and synthesize an actual implementation of 
the circuit in a CPLD, an FPGA, or an application specific integrated circuit (ASIC). 

Another recent trend is to design digital circuits using block diagrams or graphic 
symbols that represent higher-level design constructs.  These block diagrams can then be 
compiled to produce Verilog or VHDL code.  We will illustrate this method in this book.   

We will use Active-HDL from Aldec for designing our digital circuits.  This 
integrated tool allows you to enter your design using either a block diagram editor (BDE) 
or by writing Verilog or VHDL code using the hardware description editor (HDE).  Once 
your hardware has been described you can use the functional simulator to produce 
waveforms that will verify your design. This hardware description can then be 
synthesized to logic equations and implemented or mapped to the FPGA architecture.  
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Figure 2  (a) BASYS board, (b) Nexys-2 Board 

We include a tutorial for using Active-HDL in Appendix A.  A free student version of 
Active-HDL is available on their website.1  We will use Xilinx ISE for synthesizing our 
VHDL designs.  You can download a free version of ISETM WebPACKTM from the 
Xilinx website.2  This WebPACKTM synthesis tool can be run from within the Aldec 
Active-HDL development environment as shown in the tutorial in Appendix A.  The 
implementation process creates a .bit file that is downloaded to a Xilinx FPGA on the 
BASYS board or Nexys-2 shown in Fig. 2.  The BASYS board is available to students 
for $59 from Digilent, Inc.3  This board includes a 100k-gate equivalent Xilinx 
Spartan3E FPGA (250k-gate capacity is also available), 8 slide switches, 4 pushbutton 
switches, 8 LEDs, and four 7-segment displays.  The frequency of an on-board clock can 
be set to 25 MHz, 50 MHz, or 100 MHz using a jumper.  There are connectors that allow 
the board to be interfaced to external circuits.  The board also includes a VGA port and a 
PS2 port.  The use of these ports are described in a different book.4    Another more 
advanced board, the Nexys-2 board, is also available to students for $99 from Digilent.  
The Nexys-2 board is similar to the BASYS board except that it contains a 500k- or 
1200k-gate equivalent Spartan 3E FPGA, a Hirose FX2 interface for additional add-on 
component boards, 16 MB of cellular RAM, 16 MB of flash memory, a 50 MHz clock 
and a socket for a second oscillator.  The Nexys-2 is ideally suited for embedded 
processors. 

All of the examples in this book can be used on both the BASYS board and the 
Nexys-2 board.  The only difference is that you would use the file basys2.ucf to define 
the pinouts on the BASYS board and you would use the file nexys2.ucf to define the 
pinouts on the Nexys-2 board.  Both of these files are available to download from 
www.lbebooks.com.  Table 2 shows the jumper settings you would use on the two 
boards.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
         (a)                (b) 
 
 
 

                                                 
1 http://www.aldec.com/education/ 
2 http://www.xilinx.com 
3 http://www.digilentinc.com 
4 Digital Design Using Digilent FPGA Boards –  Verilog / Active-HDL Edition;  available    
   from www.lbebooks.com. 
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Table 1.2  Board Jumper Settings 

BASYS Boad Nexys-2 Board 
Set the JP3 jumper to JTAG Set the POWER SELECT jumper to USB 
Remove the JP4 jumper to select a 50 MHz 
clock 

Set the MODE jumper to JTAG 

 
 

Verilog 
 
Verilog is based on the C programming language but it is not C.  Verilog is a 

hardware description language that is designed to model digital logic circuits.  It simply 
has the same syntax as the C programming language but the way it behaves is different.  
In this book we begin by using the Active-HDL block diagram editor to draw logic 
circuits using basic gates.  When you compile these block diagrams Active-HDL will 
generate the corresponding Verilog code.  The block diagram representing your logic 
circuit can then be used as a module in a higher-level digital design.  This higher-level 
design can then be compiled to produce its corresponding Verilog code.  This hierachical 
block diagram editor will make it easy to design top-level designs. 

Sometimes it will be easier to design a digital module by writing a Verilog 
program directly rather than drawing it using gates.  When you do this you can still use 
the block diagram for this module in higher-level designs.  We will illustrate this process 
in many of our examples. 

Just like any programming language, you can only learn Verilog by actually 
writing Verilog programs and simulating the designs using a Verilog simulator that will 
display the waveforms of the signals in your design.  This is a good way to learn not only 
Verilog but digital logic as well. 

A companion book5 that uses VHDL instead of Verilog is available from Digilent 
or www.lbebooks.com.  More comprehensive Verilog and VHDL books are also 
available.6,7  

                                                 
5 Introduction to Digital Design Using Digilent FPGA Boards – Block Diagram  / VHDL Examples, LBE 
Books, 2009. 
6 Digital Design Using Digilent FPGA Boards – Verilog / Active-HDL Edition, LBE Books, 2009. 
7 Digital Design Using Digilent FPGA Boards – VHDL / Active-HDL Edition, LBE Books, 2009. 
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Example 1 
  

Switches and LEDs 
  
 

 
In this example we will show the basic structure of a Verilog program and how to 

write logic equations for 2-input gates.  Example 1a will show the simulation results 
using Aldec Active-HDL and Example 1b will show how to synthesize the program to a 
Xilinx FPGA on the BASYS or Nexys-2 board.   

 
Prerequisite knowledge: 
 None 
Learned in this Example: 
 Use of Aldec Active-HDL – Appendix A 

 
1.1  Slide Switches 
 

  The slide switches on the BASYS and 
Nexys-2 boards are connected to pins on the 
FPGA through a resistor R as shown in Fig. 1.1.  
The value of R is 4.7 kΩ on the BASYS board 
and 10 kΩ on the Nexys-2 board.  When the slide 
switch is down it is connected to ground and the 
input sw[i] to the FPGA is read as a logic 0.  
When the slide switch is up it is connected to 3.3 
V and the input sw[i] to the FPGA is read as a 
logic 1. 

There are eight slide switches on the BASYS and Nexys-2 boards.  The eight pin 
numbers on the FPGA corresponding to the eight slide switches are given in a .ucf file.  
The file basys2.ucf shown in Listing 1.1 defines the pin numbers for all I/O on the 
BASYS board.  Note that we have named the slide switches sw[i], i = 0:7, which 
correspond to the switch labels on the board.  We will always name the slide switches 
sw[i] in our top-level designs so that we can use the basys2.ucf file without change.  
Because the pin numbers on the Nexys-2 board are different from those on the BASYS 
board we will use a different file called nexys2.ucf to define the pin numbers on the 
Nexys-2 board.  The names of the I/O ports, however, will be the same for both boards.  
Therefore, all of the examples in this book can be used with either board by simply using 
the proper .ucf file when implementing the design.  Both of these .ucf files can be 
downloaded from www.lbebooks.com. 

 
1.2  LEDs 
 

A light emitting diode (LED) emits light when current flows through it in the 
positive direction as shown in Fig. 1.2.  Current flows through the LED when the voltage 

Figure 1.1  Slide switch connection  

3.3 V

sw[i]
R
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on the anode side (the wide side of the black triangle) is made higher than the voltage on 
the cathode side (the straight line connected to the apex of the black triangle).  When 
current flows through a lighted LED the forward voltage across the LED is typically 
between +1.5 and +2.0 volts.  If voltage V2 in Fig. 1.2 is less than or equal to voltage V1 
then no current can flow through the LED and therefore no light will be emitted.  If 
voltage V2 is greater than voltage V1 then current will flow through the resistor R and the 
LED.  The resistor is used to limit the amount of current that flows through the LED.  
Typical currents needed to light LEDs range from 2 to 15 milliamps.   
 
 
  Listing 1.1 basys2.ucf 

# Pin assignment for LEDs 
NET "ld<7>" LOC = "p2" ;  
NET "ld<6>" LOC = "p3" ;  
NET "ld<5>" LOC = "p4" ;  
NET "ld<4>" LOC = "p5" ;  
NET "ld<3>" LOC = "p7" ;  
NET "ld<2>" LOC = "p8" ;  
NET "ld<1>" LOC = "p14" ;  
NET "ld<0>" LOC = "p15" ;  
 
# Pin assignment for slide switches 
NET "sw<7>" LOC = "p6";  
NET "sw<6>" LOC = "p10";  
NET "sw<5>" LOC = "p12";  
NET "sw<4>" LOC = "p18";  
NET "sw<3>" LOC = "p24";  
NET "sw<2>" LOC = "p29";  
NET "sw<1>" LOC = "p36";  
NET "sw<0>" LOC = "p38";  
 
# Pin assignment for pushbutton switches 
NET "btn<3>" LOC = "p41";  
NET "btn<2>" LOC = "p47";  
NET "btn<1>" LOC = "p48";  
NET "btn<0>" LOC = "p69";  
 
# Pin assignment for 7-segment displays 
NET "a_to_g<6>"  LOC = "p25"  ; 
NET "a_to_g<5>"  LOC = "p16"  ; 
NET "a_to_g<4>"  LOC = "p23"  ; 
NET "a_to_g<3>"  LOC = "P21"  ; 
NET "a_to_g<2>"  LOC = "p20"  ; 
NET "a_to_g<1>"  LOC = "p17"  ; 
NET "a_to_g<0>"  LOC = "p83"  ; 
NET "dp"  LOC = "p22"  ; 
 
NET "an<3>" LOC = "p26";  
NET "an<2>" LOC = "p32";  
NET "an<1>" LOC = "p33";  
NET "an<0>" LOC = "p34";  
 
# Pin assignment for clock 
NET "mclk" LOC = "p54";  
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There are two different ways that an I/O 
pin of an FPGA can be used to turn on an LED.  
The first is to connect the FPGA pin to V2 in Fig. 
1.2 and to connect V1 to ground.  Bringing the pin 
(V2) high will then turn on the LED.  To turn off 
the LED the output pin would be brought low.  
This is the method used for the LEDs ld[7] – ld[0] 
on the BASYS and Nexys-2 boards. 

The second method is to connect the 
FPGA pin to V1 in Fig. 1.2 and to connect V2 to 
a constant voltage.  Bringing the pin (V1) low 
will then turn on the LED.  To turn off the LED 
the output pin would be brought high.  This voltage should be equal to V2 to make sure 
no current flows through the LED.  This second method is the method used for the 7-
segment displays on the BASYS and Nexys-2 boards.  Examples 9 and 10 will show how 
to display hex digits on the 7-segment displays.  
 
 
1.3  Connecting the Switches to the LEDs 
 

Part 1 of the tutorial in Appendix A shows how to 
connect the input switches to the output LEDs using the block 
diagram editor (BDE) in Active-HDL.  The result is shown in 
Fig. 1.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1.2  Turning on an LED  

V2
R LED

V2
R LED

V1 > V2
No current

Current
light

no light

V1 < V2

Figure 1.3  Connecting the eight switches to the eight LEDs  
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Compiling the file sw2led.bde generates the Verilog file sw2led.v shown in 
Listing 1.2.  Alternatively, by selecting the hardware description editor (HDE) the 
module statement and port declarations are automatically generated but you will need to 
write your own assign statement.  This can lead to the simpler Verilog program shown in 
Listing 1.3 where we have combined the module statement and port declarations in a 
single module statement that conforms to the 2001 Verilog standard.  This format makes 
it easier to see the input and output signals.  We can also write a single assign statement 
to replace the two assign statements in Listing 1.2.  It is unnecessary to define the 
intermediate bus BUS7[7:0] and because sw and ld are the same size we don't need to 
include the [7:0] in the assign statement. 

 
 

 Listing 1.2 sw2led.v 
// Title       : sw2led 
module sw2led (sw,ld) ; 
 
// ------------ Port declarations --------- // 
input [7:0] sw; 
wire [7:0] sw; 
output [7:0] ld; 
wire [7:0] ld; 
 
// ----------- Signal declarations -------- // 
wire [7:0] BUS7; 
 
// ----------- Terminals assignment --------// 
//        ---- Input terminals ---         // 
assign BUS7[7:0] = sw[7:0]; 
 
//     ---- Output terminals ---        // 
assign ld[7:0] = BUS7[7:0]; 
 
endmodule 

 
 
 
 

 Listing 1.3 sw2led2.v 
// Title       : sw2led2 
module sw2led2 ( 
input wire [7:0] sw , 
output wire [7:0] ld  
) ; 
 
assign ld = sw; 
 
endmodule 

 
 
In Parts 2 and 3 of the tutorial in Appendix A we show how to synthesize, 

implement, and download the design to the FPGA board.  In summary, the steps you 
follow to implement a digital design on the BASYS or Nexys-2 board are the following: 
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1. Create a new project and design name. 
2. Using the BDE create a logic diagram. 
3. Save and compile the .bde file. 
4. Optionally simulate the design (see Example 2). 
5. Synthesize the design selecting the Spartan3E family and the 3s100etq144 

device for the BASYS board and the 3s500efg320 device for the Nexys-2 
board. 

6. Implement the design using either basys2.ucf or nexys2.ucf as the custom 
constraint file.  Check Allow Unmatched LOC Constraints under 
Translate and uncheck Do Not Run Bitgen under BitStream.  Select JTAG 
Clock as the start-up clock under Startup Options. 

7. Use ExPort to download the .bit file to the FPGA board. 
 
At this point the switches are connected to the LEDs.  Turning on a switch will 

light up the corresponding LED. 
 

Problem 
 
1.1 The four pushbuttons on the BASYS and Nexys-2 boards are connected to pins on 

the FPGA using the circuit shown in Fig. 1.4.  The value of R is 4.7 kΩ on the 
BASYS board and 10 kΩ on the Nexys-2 board.  When the pushbutton is up the 
two resistors pull the input down to ground and the input btn(i) to the FPGA is read 
as a logic 0.  When the pushbutton is pressed the input is pulled up to 3.3 V and the 
input btn(i) to the FPGA is read as a logic 1.  Create a .bde file using Active-HDL 
that will connect the four pushbuttons to the rightmost four LEDs.  Compile and 
implement the program.  Download the .bit file to the FPGA board and test it by 
pressing the pushbuttons. 

 
 

 
 
 
 
 

btn(i)
R

R

3.3 V

Figure 1.4  Pushbutton connection  
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Example 2 
  

2-Input Gates 
  
 

 
In this example we will design a circuit containing six different 2-input gates.  

Example 2a will show the simulation results using Aldec Active-HDL and Example 2b 
will show how to synthesize the program to a Xilinx FPGA on a Digilent board.   

 
Prerequisite knowledge: 
 Appendix C – Basic Logic Gates 
 Appendix A – Use of Aldec Active-HDL  

 
2.1  Generating the Design File gates2.bde 
 

Part 4 of the tutorial in Appendix A shows how to connect two inputs a and b to 
the inputs of six different gates using the block diagram editor (BDE) in Active-HDL.  
The result is shown in Fig. 2.1.  Note that we have named the outputs of the gates the 
name of the gate followed by an underscore.  Identifier names in Verilog can contain any 
letter, digit, underscore _, or $.  The identifier can not begin with a digit or be a keyword.  
Verilog is case sensitive.  

The name of this file is gates2.bde.  When you compile this file the Verilog 
program gates2.v shown in Listing 2.1 is generated.  We have modified the module 
statement to conform to the 2001 Verilog standard as described in Example 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 2.1  Circuit diagram for Example 2  
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Listing 2.1 gates2.v 
// Example 2a: gates2 
module gates2 ( 
input wire a, 
input wire b, 
output wire and_, 
output wire nand_, 
output wire nor_, 
output wire or_, 
output wire xnor_, 
output wire xor_  
) ; 
 
assign and_ = b & a; 
assign nand_ = ~(b & a); 
assign or_ = b | a; 
assign nor_ = ~(b | a); 
assign xor_ = b ^ a; 
assign xnor_ = ~(b ^ a); 
 
endmodule 

 
 

The logic diagram in Fig. 2.1 contains six different gates.  This logic circuit is 
described by the Verilog program shown in Listing 2.1.  The first line in Listing 2.1 is a 
comment.  Comments in Verilog follow the double slash //.  All Verilog programs begin 
with a module statement containing the name of the module (gates2 in this case) followed 
by a list of all input and output signals together with their direction and type.  We will 
generally use lower case names for signals.  The direction of the input and output signals 
is given by the Verilog statements input, output, or inout (for a bi-directional signal).  
The type of the signal can be either wire or reg.  In Listing 2.1 all of the signals are of 
type wire which you can think of as a wire in the circuit in Fig. 2.1 where actual voltages 
could be measured.  We will describe the reg type in Example 5. 

To describe the output of each gate in Fig. 2.1 we simply write the logic equation 
for that gate preceded by the keyword assign.  These are concurrent assignment 
statements which means that the statements can be written in any order. 

 
 
2.2  Simulating the Design gates2.bde 
 

Part 4 of the tutorial in Appendix A shows how to simulate this Verilog program 
using Active-HDL.  The simulation produced in Appendix A is shown in Fig. 2.2.  Note 
that the waveforms shown in Fig. 2.2 verify the truth tables for the six gates.  Also note 
that two clock stimulators were used for the inputs a and b.  By making the period of the 
clock stimulator for the input a twice the period of the clock stimulator for the input b all 
four combinations of the inputs a and b will be generated in one period of the input a. 
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Figure 2.2  Simulation of logic circuit in Fig. 2.1  

 
 

2.3  Generating a Top-Level Design 
 

Part 5 of the tutorial in Appendix A shows how to create a top-level design for the 
gates2 circuit.  In order to use the constraint files basys2.ucf or nexys2.ucf described in 
Example 1 we must name the switch inputs sw[i] and the LED outputs ld[i].  This top-
level design, as created in Part 5 of Appendix A is shown in Fig. 2.3.  The module gates2 
in Fig. 2.3 contains the logic circuit shown in Fig. 2.1.  Note that each wire connected to 
a bus must be labeled to identify its connection to the bus lines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3  Top-level design for Example 2  
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Compiling the top-level design shown in Fig. 2.3 will generate the Verilog 
program shown in Listing 2.2.  The inputs are now the two rightmost slide switches, 
sw[1:0], and the outputs are the six right-most LEDs ld[5:0].  To associate these inputs 
and outputs with the inputs a and b and the six output in the gates2 module in Fig. 2.1 
and Listing 2.1 we use the Verilog instantiation statement 

 
gates2 U1 
( .a(sw[1]), 
 .and_(ld[5]), 
 .b(sw[0]), 
 .nand_(ld[4]), 
 .nor_(ld[3]), 
 .or_(ld[2]), 
 .xnor_(ld[1]), 
 .xor_(ld[0]) 
); 

 
This Verilog instantiation statement begins with the name of the module being 

instantiated, in this case gates2 from Listing 2.1.  This is followed by an arbitrary name 
for this module in the top-level design.  Here we call it U1.  Then in parentheses the 
inputs and outputs in Listing 2.1 are associated with corresponding inputs and outputs in 
the top-level design in Fig. 2.3.  Note that we connect the input a in Listing 2.1 to the 
input sw[1] on the FPGA board.  The input b in Listing 2.1 is connected to sw[0] and the 
outputs and_, nand_, or_, nor_, xor_, and xnor_ are connected to the corresponding LED 
outputs ld[5:0].   

Follow the steps in the tutorial in Appendix A and implement this design on the 
FPGA board.  Note that when you change the settings of the two right-most slide 
switches the LEDs will indicate the outputs of the six gates. 

 
 

 Listing 2.2 gates2_top.v 
// Example 2b: gates2_top 
module gates2_top (sw,ld) ; 
input wire [1:0] sw; 
output wire [5:0] ld; 
 
gates2 U1 
( .a(sw[1]), 
 .and_(ld[5]), 
 .b(sw[0]), 
 .nand_(ld[4]), 
 .nor_(ld[3]), 
 .or_(ld[2]), 
 .xnor_(ld[1]), 
 .xor_(ld[0]) 
); 
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Example 3 
  

Multiple-Input Gates 
  
 

 
In this example we will design a circuit containing multiple-input gates.  We will 

create a logic circuit containing 4-input AND, OR, and XOR gates.  We will leave it as a 
problem for you to create a logic circuit containing 4-input NAND, NOR, and XNOR 
gates.     

 
Prerequisite knowledge: 
 Appendix C – Basic Logic Gates 
 Appendix A – Use of Aldec Active-HDL  

 
3.1  Behavior of Multiple-Input Gates 
 

The AND, OR, NAND, NOR, XOR, and XNOR gates we 
studied in Example 1 had two inputs.  The basic definitions hold 
for multiple inputs.  A multiple-input AND gate is shown in Fig. 
2.19.  The output of an AND gate is HIGH only if all inputs are 
HIGH.  There are three ways we could describe this multiple-
input AND gate in Verilog.  First we could simply write the 
logic equation as 
.   
 assign z = x[1] & x[2] & ... & x[n];  (3.1) 
 

Alternatively, we could use the & symbol as a reduction operator by writing  
 
 assign z = &x;      (3.2) 
 

This produces the same result as the statement (3.1) with much less writing.  
Finally, we could use the following gate instantiation statement for an AND gate. 
 

and(z,x[1],x[2],...,x[n]);    (3.3) 
  

In this statement the first parameter in the parentheses is the name of the output port.  
This is followed by a list of all input signals. 

A multiple-input OR gate is shown in Fig. 3.2.  The output of an OR gate is LOW 
only if all inputs are LOW.  Just as with the AND gate there are 
three ways we can describe this multiple-input OR gate in 
Verilog.  We can write the logic equation as 
.   
 assign z = x[1] | x[2] | ... | x[n]; 
   

or we can use the | symbol as a reduction operator by writing  
 
 assign z = |x;       

Figure 3.1   
Multiple-input AND gate. 

Figure 3.2   
Multiple-input OR gate. 

x[1]
x[2]

x[n]

zAND

x[1]
x[2]

x[n]

zOR
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or we can use the following gate instantiation statement for an OR gate. 
 
 or(z,x[1],x[2],...,x[n]); 

     
A multiple-input NAND gate is shown in Fig. 3.3.  The output of a NAND gate is 

LOW only if all inputs are HIGH.  We can write the logic 
equation as 
.   
 assign z = ~(x[1] & x[2] & ... & x[n]); 
   

or we can use the ~& symbol as a reduction operator by 
writing  
 
 assign z = ~&x;     
  

or we can use the following gate instantiation statement for an OR gate. 
 
 nand(z,x[1],x[2],...,x[n]); 
 

A multiple-input NOR gate is shown in Fig. 3.4.  The output of a NOR gate is 
HIGH only if all inputs are LOW.  We can write the logic 
equation as 
.   
 assign z = ~(x[1] | x[2] | ... | x[n]); 
   

or we can use the ~| symbol as a reduction operator by 
writing  
 
 assign z = ~|x; 
       

or we can use the following gate instantiation statement for an OR gate. 
 
 nor(z,x[1],x[2],...,x[n]); 
 

A multiple-input XOR gate is shown in Fig. 3.5.  
What is the meaning of this multiple-input gate?  Following 
the methods we used for the previous multiple-input gates we 
can write the logic equation as 
.   
 assign z = x[1] ^ x[2] ^ ... ^ x[n]; 
   

or we can use the ^ symbol as a reduction operator by writing  
 
 assign z = ^x; 
       

or we can use the following gate instantiation statement for an OR gate. 
 
 xor(z,x[1],x[2],...,x[n]); 

 
We will create a 4-input XOR gatge in this example to 

determine its meaning but first consider the multiple-input 
XNOR gate shown in Fig. 3.6.  What is the meaning of this 
multiple-input gate?  (See the problelm at the end of this 

Figure 3.3   
Multiple-input NAND gate. 

Figure 3.4   
Multiple-input NOR gate. 

Figure 3.5   
Multiple-input XOR gate. 

Figure 3.6   
Multiple-input XNOR gate. 

x[1]
x[2]

x[n]

zNAND

x[1]
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x[n]
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x[1]
x[2]

x[4]

zXORx[3]
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example for the answer.) Following the methods we used for the previous multiple-input 
gates we can write the logic equation as 
.   
 assign z = ~(x[1] ^ x[2] ^ ... ^ x[n]); 
   

or we can use the ~^ symbol as a reduction operator by writing  
 
 assign z = ~^x; 
       

or we can use the following gate instantiation statement for an XOR gate. 
 
 xnor(z,x[1],x[2],...,x[n]); 
 

 
3.2  Generating the Design File gates4.bde 
 

Use the block diagram editor (BDE) in Active-HDL to create the logic circuit 
called gates4.bde shown in Fig. 3.7.  A simulation of this circuit is shown in Fig. 3.8.  
From this simulation we see that the output of an XOR gate is HIGH only if the number 
of HIGH inputs is ODD.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If you look at the file gates4.v that is generated when you compile gates4.bde you 

will see that Active-HDL defines separate modules for the 4-input AND, OR, and XOR 
gates and then uses a Verilog instantiation statement to "wire" them together. 

Alternatively, we could use the HDE editor to write the simpler Verilog program 
called gates4b.v shown in Listing 3.1 that uses reduction operators to implement the 
three 4-input gates.  This Verilog program will produce the same simulation as shown in 
Fig. 3.8. 

 

Figure 3.7  Block diagram for gates4.bde
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  Listing 3.1:  gates4b.v 
// Example 2: 4-input gates 
module gates4b ( 
input wire [3:0] x , 
output wire and4_ , 
output wire or4_ , 
output wire xor4_  
); 
 
assign and4_ = &x;  
assign or4_ = |x; 
assign xor4_ = ^x; 
 
endmodule 

 
 
3.3  Generating the Top-Level Design gates4_top.bde 

 
Fig. 3.9 shows the block diagram of the top-level design gates4_top.bde.  The 

module gates4 shown in Fig. 3.9 contains the logic circuit shown in Fig. 3.4.  If you 
compile gates4_top.bde the Verilog program gates4_top.v shown in Listing 3.2 will be 
generated.  Compile, synthesize, implement, and download this design to the FPGA 
board. 

  
 
 
 
 
 
 
 
 
 
 

Figure 3.8  Simulation of the design gates4.bde shown in Fig. 3.7 

Figure 3.9  Block diagram for the top-level design gates4_top.bde 
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  Listing 3.2:  gates4_top.v 

// Example 2: 4-input gates - top level 
module gates4_top ( 
input wire [3:0] sw , 
output wire [2:0] ld   
); 
 
gates4 U1 
( 
 .and4_(ld[2]), 
 .or4_(ld[1]), 
 .x(sw), 
 .xor4_(ld[0]) 
); 
 
endmodule 

 
 
Problem 
 
3.1 Use the BDE to create a logic circuit containing 4-input NAND, NOR, and XNOR 

gates.  Simulate your design and verify that the output of an XNOR gate is HIGH 
only if the number of HIGH inputs is EVEN.  Create a top-level design that connects 
the four inputs to the rightmost four slide switches and the three outputs to the three 
rightmost LEDs.  Implement your design and download it to the FPGA board. 

     
3.2 The circuit shown at the right is for a 2 x 4 decoder.  

Use the BDE to create this circuit and simulate it 
using Active-HDL.  Choose a counter stimulator for 
x[1:0] that counts every 20 ns, set en to a forced 
value of 1, and simulate it for 100 ns.  Make a truth 
table with (x[1], x[0]) as the inputs and y[0:3] as the 
outputs.  What is the behavior of this decoder? 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

x[1]

en

x[0]

y[0]

y[1]

y[2]

y[3]
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z = x ~^ y

Example 4 
  

Equality Detector 
  
 

 
In this example we will design a 2-bit equality detector using two NAND gates 

and an AND gate. 
 

Prerequisite knowledge: 
 Appendix C – Basic Logic Gates 
 Appendix A – Use of Aldec Active-HDL  

 
4.1   Generating the Design File eqdet2.bde 
 

The truth table for a 2-input XNOR gate is shown in Fig. 4.1.  Note that the 
output z is 1 when the inputs x and y are equal.  Thus, the XNOR gate can be used as a   
1-bit equality detector. 
 
 
 
 
 
 
 
 
 
 

By using two XNOR gates and an AND gate we can design a 2-bit equality 
detector as shown in Fig. 4.2.  Use the BDE to create the file eqdet2.bde using Active-
HDL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1  The XNOR gate is a 1-bit equality detector 

Figure 4.2  Block diagram of a 2-bit equality detector, eqdet2.bde 
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If you compile the file eqdet2.bde Active-HDL will generate the Verilog program 
eqdet2.v shown in Listing 4.1.  A simulation of eqdet2.bde is shown in Fig. 4.3.  Note 
that the output eq is 1 only if a[1:0] is equal to b[1:0]. 
 
 
  Listing 4.1:  eqdet2.v 

// Title       : eqdet2 
module eqdet2 ( 
input wire [1:0] a, 
input wire [1:0] b, 
output wire eq  
) ; 
 
wire eq1; 
wire eq2; 
 
assign eq1 = ~(b[1] ^ a[1]); 
assign eq2 = ~(b[0] ^ a[0]); 
assign eq = eq2 & eq1; 
 
endmodule 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Create a top-level design called eqdet2_top.bde that connects a[1:0] and b[1:0] to 
the rightmost four slide switches and connects the output eq to ld[0].  Implement your 
design and download it to the FPGA board. 
 
 
 
 
 
 

Figure 4.3  Simulation of the 2-bit equality detector, eqdet2.bde 
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Example 5 
  

2-to-1 Multiplexer: if Statement 
 

 
In this example we will show how to design a 2-to-1 multiplexer and will 

introduce the Verilog if statement.  Section 5.1 will define a multiplexer and derive the 
logic equations for a 2-to-1 multiplexer.  Section 5.2 will illustrate the use of two 
versions of the Verilog if statement. 

 
Prerequisite knowledge: 
 Karnaugh Maps – Appendix D 
 Use of Aldec Active-HDL – Appendix A 

 
5.1  Multiplexers 
 

An n-input multiplexer (called a MUX) is an n-way digital switch that switches 
one of n inputs to the output.  A 2-input multiplexer is shown in Fig. 5.1.  The switch is 
controlled by the single control line s.  This bit selects one of the two inputs to be 
"connected" to the output.  This means that the logical value of the output y will be the 
same as the logical value of the selected input.  

From the truth table in Fig. 5.1 we see that y = a if s = 0 and y = b if s = 1.  The 
Karnaugh map for the truth table in Fig. 5.1 is shown in Fig. 5.2.  We see that the logic 
equation for y is 

 
y =  ~s & a | s & b   (5.1) 

 
Note that this logic equation describes the 
circuit diagram shown in Fig. 5.3. 
 

    
 

  

 
 
 
 
 
 
 

 
 

 
 
 

Figure 5.1  A 2-to-1 multiplexer 
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y = ~s & a | s & b

Figure 5.2   
K-map for a 2-to-1 multiplexer 
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Use the BDE to create the block diagram mux21.bde shown in Fig. 5.3 that 
implements logic equation (5.1).  Compiling mux21.bde will generate a Verilog file, 
mux21.v, that is equivalent to Listing 5.1.  A simulation of mux21.bde is shown in Fig. 
5.4.  Note in the simulation that y = a if s = 0 and y = b if s = 1.   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
  Listing 5.1  Example5a.v 

// Example 5a: 2-to-1 MUX using logic equations 
module mux21a (  
input wire a , 
input wire b , 
input wire s , 
output wire y   
); 
 
assign y = ~s & a | s & b; 
 
endmodule 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Figure 5.3  Block diagram for a 2-to-1 multiplexer, mux21.bde 

Figure 5.4  Simulation of the 2-to-1 MUX in Fig. 5.3 
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5.2  The Verilog if statement 
 
The behavior of the 2 x 1 multiplexer shown in Fig. 5.1 can be described by the 

Verilog statements 
   if(s == 0) 
         y = a; 
   else 
         y = b; 

  
The Verilog if statement must be cont ained in an always block as shown in Listing 5.2.  
Note that y must be declared to be of type reg because it is assigned a value within the 
always block.  The notation @(*) in the always statement is equivalent to @(a,b,s) where 
a, b, s is called the sensitivity list.  Any time any of these input values change the if 
statement within the always block is executed.  The use of the * notation is a convenience 
that prevents you from omitting any of the signals or inputs used in the always block.  A 
Verilog program can contain more than one always blocks, and these always blocks are 
executed concurrently.  The Verilog code in Listing 5.2 will be compiled to produce the 
logic circuit shown in Fig. 5.3.  A simulation of the Verilog code in Listing 5.2 will 
produce the same waveform as shown in Fig. 5.4. 

 
 

Listing 5.2  Example4b.v 
// Example 4b: 2-to-1 MUX using if statement 
module mux21b (  
input wire a , 
input wire b , 
input wire s , 
output reg y   
);  
  
always @(*) 
   if(s == 0) 
  y = a; 
   else 
  y = b;    
 
endmodule 

 
 
Create a top-level design called mux21_top.bde that connects a and b to the 

rightmost two slide switches, connects s to btn[0], and connects the output y to ld[0].  
Implement your design and download it to the FPGA board.  Test the operation of the 
multiplexer by changing the position of the toggle switches and pressing pushbutton 
btn[0]. 
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Example 6 
  

Quad 2-to-1 Multiplexer 
 
In this example we will show how to design a quad 2-to-1 multiplexer.  In Section 

6.1 we will make the quad 2-to-1 multiplexer by wiring together four of the 2-to-1 
multiplexers that we designed in Example 5.  In Section 6.2 we will show how the quad 
2-to-1 multiplexer can be designed using a single Verilog if statement.  Finally, in 
Section 6.3 we will show how to use a Verilog parameter to define a generic 2-to-1 
multiplexer with arbitrary bus sizes. 

 
Prerequisite knowledge: 
 Example 5 – 2-to-1 Multiplexer 

 
6.1   Generating the Design File mux42.bde 

 
By using four instances of the 2-to-1 MUX, mux21.bde, that we designed in 

Example 5, we can design a quad 2-to-1 multiplexer as shown in Fig. 6.1.  Use the BDE 
to create the file mux24.bde using Active-HDL.  Note that you will need to add the file 
mux21.bde to your project. 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.1  The quad 2-to-1 MUX, mux24.bde, contains four 2-to-1 MUXs 
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If you compile the file mux24.bde Active-HDL will generate the Verilog program 
mux24.v shown in Listing 6.1.  A simulation of mux24.bde is shown in Fig. 6.2.  Note 
that the output y[3:0] will be either a[3:0] or b[3:0] depending on the value of s. 
 

Listing 6.1  Example6a.v 
// Example 6a: mux24 
module mux24 ( 
input wire s; 
input wire [3:0] a; 
input wire [3:0] b; 
output wire [3:0] y; 
) ; 
 
mux21 U1 
( .a(a[3]), 
 .b(b[3]), 
 .s(s), 
 .y(y[3]) 
); 
 
mux21 U2 
( .a(a[2]), 
 .b(b[2]), 
 .s(s), 
 .y(y[2]) 
); 
 
mux21 U3 
( .a(a[1]), 
 .b(b[1]), 
 .s(s), 
 .y(y[1]) 
); 
 
mux21 U4 
( .a(a[0]), 
 .b(b[0]), 
 .s(s), 
 .y(y[0]) 
); 
 
endmodule 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6.2  Simulation of the quad 2-to-1 MUX in Fig. 6.1 
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Use the BDE to create the top-level design called mux21_top.bde shown in Fig. 
6.3.  Note that a[3:0] are connected to the four leftmost slide switches, b[3:0] are 
connected to the rightmost four slide switches, and y[3:0] are connected to the rightmost 
LEDs.  Also note that s is connected to btn[0], and the input btn[0:0] must be declared as 
an array, even though there is only one element, so that we can use the constraint file 
basys2.ucf or nexys2.ucf without change.  Implement your design and download it to the 
FPGA board.  Test the operation of the quad 2-to-1 multiplexer by setting the switch 
values and pressing pushbutton btn[0]. 

If you compile the file mux24_top.bde Active-HDL will generate the Verilog 
program mux24_top.v shown in Listing 6.2.  A simulation of mux24_top.bde is shown in 
Fig. 6.4.   

 
 
 
 
 
 
 
 
 
 
 

 
Listing 6.2  Example6b.v 
// Example 6b: mux24_top 
module mux24_top ( 
input wire [0:0] btn; 
input wire [7:0] sw; 
output wire [3:0] ld; 
) ; 
 
mux24 U1 
( .a(sw[7:4]), 
 .b(sw[3:0]), 
 .s(btn[0]), 
 .y(ld) 
); 
endmodule 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3  Top-level design for testing the quad 2-to-1 MUX  

Figure 6.4  Simulation of mux24_top.bde in Fig. 6.1 
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6.2  A Quad 2-to-1 Multiplexer Using an if Statement 
 
In Listing 5.2 of Example 5 we used a Verilog if statement to implement a 2-to-1 

MUX.  Listing 6.3 is a direct extension of Listing 5.2 where now the inputs and outputs 
are 4-bit values rather that a single bit.  The Verilog program shown in Listing 6.3 will 
produce the same simulation as shown in Fig. 6.2.  The module mux24b defined by the 
Verilog program in Listing 6.3 could be used in place of the mux24 module in the top-
level design in Fig. 6.3 

 
 

   Listing 6.3  mux24b.v 
// Example 6c: Quad 2-to-1 mux using if statement 
module mux24b( 
input wire [3:0] a, 
input wire [3:0] b, 
input wire s, 
output reg [3:0] y  
); 
   
always @(*) 

if(s == 0) 
    y = a; 
 else 
    y = b;    
 
endmodule 

 
 
 
6.3  Generic Multiplexers: Parameters  
 

We can use the Verilog parameter statement to design a generic 2-to-1 
multiplexer with input and output bus widths of arbitrary size.  Listing 6.4 shows a 
Verilog program for a generic 2-to-1 MUX.   

Note the use of the parameter statement that defines the bus width N to have a 
default value of 4.  This value can be overridden when the multiplexer is instantiated as 
shown in Listing 6.5 for an 8-line 2-to-1 multiplexer called M8.  The parameter override 
clause is automatically included in the module instantiation statement when you copy it 
in Active-HDL as shown in Listing 6.5. We will always use upper-case names for 
parameters.  The simulation of Listing 6.5 is shown in Fig. 6.5. 

If you compile the Verilog program mux2g.v shown in Listing 6.4 it will generate 
a block diagram for this module when you go to BDE.  If you right-click on the symbol 
for mux2g and select Properties, you can change the default value of the parameter N by 
selecting the Parameters tab and entering an actual value for N. 
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Listing 6.4  mux2g.v 
// Example 6d: Generic 2-to-1 MUX using a parameter 
module mux2g 
#(parameter N = 4) 
(input wire [N-1:0] a, 
 input wire [N-1:0] b, 
 input wire s, 
 output reg [N-1:0] y 
); 
   
always @(*) 

if(s == 0) 
    y = a; 
 else 
    y = b;    
 
endmodule 

 
 

            Listing 6.5  mux28.v 
// Example 6e: 8-line 2-to-1 MUX using a parameter 
module mux28( 
input wire [7:0] a, 
input wire [7:0] b, 
input wire s, 
output wire [7:0] y 
); 
   
mux2g #( 
 .N(8)) 
M8 (.a(a), 
 .b(b), 
 .s(s), 
 .y(y) 
); 

 
 endmodule 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 6.5   Simulation result from the Verilog program in Listing 6.5 
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Example 7 
  

4-to-1 Multiplexer 
 
In this example we will show how to design a 4-to-1 multiplexer.  In Section 7.1 

we will make a 4-to-1 multiplexer by wiring together three of the 2-to-1 multiplexers that 
we designed in Example 5.  In Section 7.2 we will derive the logic equation for a 4-to-1 
MUX.  In Section 7.3 we will show how a 4-to-1 multiplexer can be designed using a 
single Verilog case statement and in Section 7.4 we design a quad 4-to-1 multiplexer. 

 
Prerequisite knowledge: 
 Example 5 – 2-to-1 Multiplexer 

 
7.1   Designing a 4-to-1 MUX Using 2-to-1 Modules 
 
A 4-to-1 multiplexer has the truth table shown in Fig. 7.1  By 
using three instances of the 2-to-1 MUX, mux21.bde, that we 
designed in Example 5, we can design a 4-to-1 multiplexer as 
shown in Fig. 7.2.  Use the BDE to create the file mux41.bde 
using Active-HDL.  Note that you will need to add the file 
mux21.bde to your project. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2  The 4-to-1 MUX, mux41.bde, contains four 2-to-1 MUXs 

s1 s0 z 
0 0 c0 
0 1 c1 
1 0 c2 
1 1 c3 

 
Figure 7.1   

Truth table for a 4-to-1 MUX 
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In Fig. 7.2 when s[1] = 0 it is v, the output of U2 that gets through to z.  If s[0] = 0 
in U2 then it is c[0] that gets through to v and therefore to z.  If s[0] = 1 in U2 then it is 
c[1] that gets through to v and therefore to z. 

If, on the other hand, s[1] = 1 in U1 then it is w, the output of U3 that gets through 
to z.  If s[0] = 0 in U3 then it is c[2] that gets through to w and therefore to z.  If s[0] = 1 
in U3 then it is c[3] that gets through to w and therefore to z.  Thus you can see that the 
circuit in Fig. 7.2 will implement the truth table in Fig. 7.1. 

When you compile the file mux41.bde Active-HDL will generate the Verilog 
program mux41.v shown in Listing 7.1.  A simulation of mux41.bde is shown in Fig. 7.3.  
Note that the output z will be one of the four inputs c[3:0] depending on the value of 
s[1:0]. 

 
 

 Listing 7.1  mux41.v 
// Example 7a: 4-to-1 MUX using module instantiation 
module mux41 (  
input wire [3:0] c , 
input wire [1:0] s , 
output wire z   
); 
 
// Internal signals 
wire v; // output of mux M1 
wire w; // output of mux M2 
 
// Module instantiations 
mux21 U1 
( .a(v), 
 .b(w), 
 .s(s[1]), 
 .y(z) 
); 
 
mux21 U2 
( .a(c[0]), 
 .b(c[1]), 
 .s(s[0]), 
 .y(v) 
); 
 
mux21 U3 
( .a(c[2]), 
 .b(c[3]), 
 .s(s[0]), 
 .y(w) 
); 
endmodule 

 
 

If you were going to create this top-level design using HDE instead of BDE you 
would begin by defining the inputs c[3:0] and s[1:0] and the output z and the two wires v 
and w.  You would then “wire” the three modules together using the three module 
instantiation statements shown in Listing 7.1.   

The easiest way to generate this module instantiation statement is to first compile 
the file mux21.v from Example 5 using Active-HDL, expand the library icon (click the 
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plus sign), right click on mux21, and select Copy Verilog Instantiation as shown in Fig. 
7.4.  Paste this into your top-level mux41.v file. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 7.4  Generating a module instantiation prototype 

Figure 7.3  Simulation of the Verilog program in Listing 7.1 
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At this point you would have the statement 
 

mux21 Label1 (.a(a), 
 .b(b), 
 .s(s), 
 .y(y) 
); 

 
Make three copies of this prototype and change the name of Label1 to U1, U2, 

and U3 in the three statements.  Now you just “wire up” each input and output variable 
by changing the values in the parentheses to the signal that it is connected to.  For 
example, the mux U1 input a is connected to the wire v so we would write .a(v).  In a 
similar way the mux input b is connected to wire w and the mux input s is connected to 
input s[1].  The mux output y is connected to the output z in Fig. 7.2.  Thus, the final 
version of this module instantiation statement would be 
 

mux21 U1 (.a(v), 
 .b(w]), 
 .s(s[1]), 
 .y(z) 
); 

 
The other two modules, U2 and U3, are “wired up” using similar module 

instantiation statements.   
 

 
7.2   The Logic Equation for a 4-to-1 MUX 
 

The 4-to-1 MUX designed in Fig. 7.2 can be represented by the logic symbol 
shown in Fig. 7.5.  This multiplexer acts like a digital switch in which one of the inputs 
c[3:0] gets connected to the output z.  The switch is controlled by the two control lines 
s[1:0].  The two bits on these control lines select one of the four inputs to be "connected" 
to the output.  Note that we constructed this 4-to-1 multiplexer using three 2-to-1 
multiplexers in a tree fashion as shown in Fig. 7.2.  

 
 
 
 
 
 
 
 
 
 
 
 

Recall from Eq. (5.1) in Example 5 that the logic equation for a 2-to-1 MUX is 
given by 

 
y =  ~s & a | s & b   (7.1) 

 

Figure 7.5  A 4-to-1 multiplexer 
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Applying this equation to the three 2-to-1 MUXs in Fig. 7.2 we can write the 
equations for that 4 x 1 MUX  as follows. 
 

v = ~s0 & c0 | s0 & c1 
  
w = ~s0 & c2 | s0 & c3 
  
z = ~s1 & v | s1 & w 
 
z = ~s1 & (~s0 & c0 | s0 & c1) | s1 & (~s0 & c2 | s0 & c3) 
 

or 
z = ~s1 & ~s0 & c0  
  | ~s1 &  s0 & c1      (7.2) 
  |  s1 & ~s0 & c2  
  |  s1 &  s0 & c3 
 
 

Equation (7.2) for z also follows from the truth table in Fig. 7.1.  Note that the 
tree structure in Fig. 7.2 can be expanded to implement an 8-to-1 multiplexer and a 16-to-
1 multiplexer. 

A Verilog program that implements a 4-to-1 MUX using the logic equation (7.2) 
is given in Listing 7.2.  A simulation of this program will produce the same result as in 
Fig. 7.3 (without the wire signals v and w).   
 
  Listing 7.2  mux41b.v 

// Example 7b: 4-to-1 MUX using logic equation 
module mux41b (  
input wire [3:0] c , 
input wire [1:0] s , 
output wire z   
); 
 
assign z = ~s[1] & ~s[0] & c[0] 
    | ~s[1] &  s[0] & c[1] 
    |  s[1] & ~s[0] & c[2] 
    |  s[1] &  s[0] & c[3]; 
  
endmodule 

 
 
7.3  4-to-1 Multiplexer: case Statement 
 

The same 4-to-1 multiplexer defined by the Verilog program in Listing 7.2 can be 
implemented using a Verilog case statement.  The Verilog program shown in Listing 7.3 
does this.  The case statement in Listing 7.3 directly implements the definition of a 4-to-1 
MUX given by the truth table in Fig. 7.1.  The case statement is an example of a 
procedural statement that must be within an always block.  A typical line in the case 
statement, such as 

     
2: z = c[2]; 
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will assign the value of c[2] to the output z when the input value s[1:0] is equal to 2 
(binary 10).   Note that the output z must be of type reg because its value is assigned 
within an always clause.  

In the case statement the alternative value preceding the colon in each line 
represents the value of the case parameter, in this case the 2-bit input s.  These values are 
decimal values by default.  If you want to write a hex value you precede the number with 
‘h as in ‘hA which is a hex value A.  Similarly, a binary number is preceded with a ‘b as 
in ‘b1010 which has the same value (10) as ‘hA.  Normally, binary numbers are preceded 
with the number of bits in the number such as 4’b107.  Using this notation, the number 
8’b110011 will be the binary number 00110011.   
 
  Listing 7.3  mux41c.v 

// Example 7c:  4-to-1 MUX using case statement 
module mux41c (  
input wire [3:0] c , 
input wire [1:0] s , 
output reg z   
); 
 
always @(*) 

case(s) 
  0: z = c[0]; 
  1: z = c[1]; 
  2: z = c[2]; 
  3: z = c[3]; 
       default: z = c[0];   
 endcase  
endmodule 

 
 
All case statements should include a default line as shown in Listing 7.3.  This is 

because all cases need to be covered and while it looks as if we covered all cases in 
Listing 7.3, Verilog actually defines four possible values for each bit, namely 0 (logic 
value 0), 1 (logic value 1), Z (high impedance), and X (unkown value). 

A simulation of the program in Listing 7.3 will produce the same result as in Fig. 
7.3 (without the wire signals v and w). 
  

 
7.4  A Quad 4-to-1 Multiplexer 

 
To make a quad 4-to-1 multiplexer we could combine four 4-to-1 MUXs as we 

did for a quad 2-to-1 multiplexer module in Fig. 6.1 of Example 6.  However, it will be 
easier to modify the case statement program in Listing 7.3 to make a quad 4-to-1 MUX.  
Because we will use it in Example 10 we will define a single 16-bit input x[15:0] and we 
will multiplex the four hex digits making up this 16-bit value. 

Listing 7.4 is a Verilog program for this quad 4-to-1 multiplexer.  Note that the 
four hex digits making up the 16-bit value of x[15:0] are multiplexed to the output z[3:0] 
depending of the value of the control signal s[1:0].  A simulation of this quad 4-to-1 
multiplexer is shown in Fig. 7.6 and its BDE symbol is shown in Fig. 7.7. 
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  Listing 7.4  mux44.v 

// Example 7d: quad 4-to-1 MUX 

module mux44 (   
input wire [15:0] x , 
input wire [1:0] s , 
output reg [3:0] z   
); 
 
always @(*) 

case(s) 
    0: z = x[3:0]; 

     1: z = x[7:4]; 
     2: z = x[11:8]; 
     3: z = x[15:12]; 
     default: z = x[3:0];   

 endcase 
 
endmodule 

 
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.7  A quad 4-to-1 multiplexer 

Figure 7.6  Simulation of the quad 4-to-1 MUX in Listing 7.4 
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Example 8 
  

Clocks and Counters 
 
 
The Nexys-2 board has an onboard 50 MHz clock.  The BASYS board has a 

jumper that allows you to set the clock to 100 MHz, 50 MHz, or 25 MHz.  All of the 
examples in this book will assume an input clock frequency of 50 MHz.  If you are using 
the BASYS board you should remove the clock jumper, which will set the clock 
frequency to 50 MHz.  This 50 MHz clock signal is a square wave with a period of 20 ns.  
The FPGA pin associated with this clock signal is defined in the constraints file 
basys2.ucf or nexys2.ucf with the name mclk. 

In this example we will show how to design an N-bit counter in Verilog and how 
to use a counter to generate clock signals of lower frequencies. 

 
Prerequisite knowledge: 
 Appendix A – Use of Aldec Active-HDL  

 
8.1   N-Bit Counter 
 

The BDE symbol for an N-bit counter is shown in Fig. 8.1.  If the input clr = 1 
then all N of the outputs q[i] are cleared to zero asynchronously, i.e., regardless of the 
value of the input clk.  If clr = 0, then on the next rising edge of the clock input clk the N-
bit binary output q[N-1:0] will be incremented by 1.  That is, on the rising edge of the 
clock the N-bit binary output  q[N-1:0] will count from 0 to N-1 and then wrap around to 
0. 

 
 
 
 
 
 
 
 
 
The Verilog program shown in Listing 8.1 was used to generate the symbol 

shown in Fig. 8.1.  Note that the sensitivity list of the always statement contains the 
phrase 

 posedge clk or posedge clr 
 

This means that the if statement within the always block will execute whenever either clr 
or clk goes high.  If clr goes high then the output q[N-1:0] will go to zero.  On the other 
hand if clr = 0 and clk goes high then the output q[N-1:0] will be incremented by 1. 

The default value of the parameter N in Listing 8.1 is 4.  A simulation of this 4-bit 
counter is shown in Fig. 8.2.  Note that this counter counts from 0 to F and then wraps 

Figure 8.1  An N-bit counter 
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Figure 8.2  Simulation of a 4-bit counter using Listing 8.1 

around to 0.  To instantiate an 8-bit counter from Listing 8.1 that would count from 0 – 
255 (or 00 – FF hex) you would use an instantiation statement something like 
 

counter #( 
 .N(8)) 
cnt16 (.clr(clr), 

.clk(clk), 

.q(q) 
  ); 
 

You can also set the value of the parameter N from the block diagram editor (BDE) by 
right-clicking on the symbol in Fig. 8.1 and selecting Properties and then the Parameters 
tab. 
 

Listing 8.1  counter.v 
// Example 8a: N-bit counter 
module counter  
#(parameter N = 4)  
(input wire clr , 
 input wire clk , 
 output reg [N-1:0] q  
); 
 
//   N-bit counter 
always @(posedge clk or posedge clr) 
  begin 
    if(clr == 1) 
  q <= 0; 
    else  
  q <= q + 1; 
  end 
 
endmodule 
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In the simulation in Fig. 8.2 note that the output q[0] is a square wave at half the 
frequency of the input clk.  Similarly, the output q[1] is a square wave at half the 
frequency of the input q[0], the output q[2] is a square wave at half the frequency of the 
input q[1], and the output q[3] is a square wave at half the frequency of the input q[2].  
Note how the binary numbers q[3:0] in Fig. 8.2 count from 0000 to 1111.  

The simulation shown in Fig. 8.2 shows how we can obtain a lower clock 
frequency by simply using one of the outputs q[i].  We will use this feature to produce a 
24-bit clock divider in the next section. 

  
 

8.2   Clock Divider 
 
The simulation in Fig. 8.2 shows that the outputs q[i] of a counter are square 

waves where the output q[0] has a frequency half of the clock frequency, the output q[1] 
has a frequency half of q[0], etc.  Thus, a counter can be used to divide the frequency f of 
a clock, where the frequency of the output q(i) is 12i

if f += .  The frequencies and 
periods of the outputs of a 24-bit counter driven by a 50 MHz clock are shown in Table 
8.1.  Note in Table 8.1 that the output q[0] has a frequency of 25 MHz, the output q[17] 
has a frequency of 190.73 Hz, and the output q[23] has a frequency of 2.98 Hz. 
 
 

          Table 8.1  Clock divide frequencies 
q[i] Frequency (Hz) Period (ms) 

i 50000000.00 0.00002
0 25000000.00 0.00004
1 12500000.00 0.00008
2 6250000.00 0.00016
3 3125000.00 0.00032
4 1562500.00 0.00064
5 781250.00 0.00128
6 390625.00 0.00256
7 195312.50 0.00512
8 97656.25 0.01024
9 48828.13 0.02048

10 24414.06 0.04096
11 12207.03 0.08192
12 6103.52 0.16384
13 3051.76 0.32768
14 1525.88 0.65536
15 762.94 1.31072
16 381.47 2.62144
17 190.73 5.24288
18 95.37 10.48576
19 47.68 20.97152
20 23.84 41.94304
21 11.92 83.88608
22 5.96 167.77216
23 2.98 335.54432
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The Verilog program shown in Listing 8.2 is a 24-bit counter that has three 
outputs, a 25 MHz clock (clk25), a 190 Hz clock (clk190), and a 3 Hz clock (clk3).  You 
can modify this clkdiv module to produce any output frequency given in Table 8.1.  We 
will use such a clock divider module in many of our top-level designs. 

   
 

Listing 8.2  clkdiv.v 
// Example 8b: clock divider 
module clkdiv (   
input wire clk , 
input wire clr , 
output wire clk190 , 
output wire clk25 ,  
output wire clk3  
); 
reg [23:0] q; 
 
//  24-bit counter 
always @(posedge clk or posedge clr) 
  begin 
    if(clr == 1) 
     q <= 0; 
    else  
     q <= q + 1; 
  end 
 
assign clk190 = q[17]; // 190 Hz 
assign clk25 = q[0];    // 25 MHz 
assign clk3 = q[23];  // 3 Hz 
 
endmodule 

 
 

Note in Listing 8.2 that we define the internal signal q[23:0] of type reg.  It must 
be of type reg because its value is assigned within an always block.  The BDE symbol 
generated by compiling Listing 8.2 is shown in Fig. 8.3.  You can edit either Listing 8.2 
or the block diagram shown in Fig. 8.3 to bring out only the clock frequencies you need 
in a particular design.  For example, the top-level design shown in Fig. 8.4 will cause the 
eight LEDs on the FPGA board to count in binary at a rate of about three counts per 
second.  The corresponding top-level Verilog program is shown in Listing 8.3. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8.3  A clock divider 
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Listing 8.3  count8_top.v 
// Example 8c: count8_top 
module count8_top (  
input wire mclk; 
input wire [3:3] btn; 
output wire [7:0] ld; 
) ; 
 
wire clk3; 
 
clkdiv U1 
( .clk3(clk3), 
 .clr(btn[3]), 
 .mclk(mclk) 
); 
 
counter 
#( .N(8)) 
U2 
( .clk(clk3), 
 .clr(btn[3]), 
 .q(ld[7:0]) 
); 
 
endmodule 

  
 
Internally, a counter contains a collection of flip-flops.  We saw in Fig. 1 of the 

Introduction that each of the four slices in a CLB of a Spartan3E FPGA contains two 
flip-flops.  Such flip-flops are central to the operation of all synchronous sequential 
circuits in which changes take place on the rising edge of a clock.  The examples in the 
second half of this book will involve sequential circuits beginning with an example of an 
edge-triggered D flip-flop in Example 16. 

 
 
 
 
 

Figure 8.4  Counting in binary on the eight LEDs 
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Example 9 
  

7-Segment Decoder 
 
 
In this section we will show how to design a 7-segment decoder using Karnaugh 

maps and write a Verilog program to implement the resulting logic equations.  We will 
also solve the same problem using a Verilog case statement.   

 
Prerequisite knowledge: 
 Karnaugh maps – Appendix D  
 case statement – Example 7  

LEDs – Example 1 
 

9.1   7-Segment Displays 
 
Seven LEDs can be arranged in a pattern to form different digits as shown in Fig. 

9.1.  Digital watches use similar 7-segment displays using liquid crystals rather than 
LEDs.  The red digits on digital clocks are LEDs.  Seven segment displays come in two 
flavors: common anode and common cathode.  A common anode 7-segment display has 
all of the anodes tied together while a common cathode 7-segment display has all the 
cathodes tied together as shown in Fig. 9.1.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The BASYS and Nexys2 boards have four common-anode 7-segment displays.  

This means that all the anodes are tied together and connected through a pnp transistor to 
+3.3V.  A different FPGA output pin is connected through a 100Ω current-limiting 
resistor to each of the cathodes, a – g, plus the decimal point.  In the common-anode case, 
an output 0 will turn on a segment and an output 1 will turn it off.  The table shown in 

Figure 9.1  A 7-segment display contains seven light emitting diodes (LEDs) 
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Fig. 9.2 shows output cathode values for each segment a – g needed to display all hex 
values from 0 – F. 
 
 

x  a b c d e f g 
0  0 0 0 0 0 0 1 
1  1 0 0 1 1 1 1 
2  0 0 1 0 0 1 0 
3  0 0 0 0 1 1 0 1 = off 
4  1 0 0 1 1 0 0 
5  0 1 0 0 1 0 0 0 = on  
6  0 1 0 0 0 0 0 
7  0 0 0 1 1 1 1 
8  0 0 0 0 0 0 0 
9  0 0 0 0 1 0 0 
A  0 0 0 1 0 0 0 
b  1 1 0 0 0 0 0 
C  0 1 1 0 0 0 1 
d  1 0 0 0 0 1 0 
E  0 1 1 0 0 0 0 
F  0 1 1 1 0 0 0   

 
Figure 9.2  Segment values required to display hex digits 0 – F  

 
 
9.2   7-Segment Decoder: Logic Equations 
 

The problem is to design a hex to 7-segment decoder, called hex7seg, that is 
shown in Fig. 9.3.  The input is a 4-bit hex 
number, x[3:0], and the outputs are the 7-
segment values a – g given by the truth 
table in Fig. 9.2.  We can make a Karnaugh 
map for each segment and then write logic 
equations for the segments a – g.  For 
example, the K-map for the segment, e, is 
shown in Figure 9.4.  
 
 

 
 
 
 
 
 
 
 
 
 

 Figure 9.4  K-map for the segment e in the 7-segment decoder  
 

hex7segx[3:0] a_to_g[6:0]

a

b

c

d

e

f
g

00 01 11 10

00

01

11

10

1

x3 x2
x1 x0

00 01 11 10

00

01

11

10

111

1

1
~x3 & x0

~x3 & x2 & ~x1

~x2 & ~x1 & x0

e = ~x3 & x0 | ~x3 & x2 & ~x1 | ~x2 & ~x1 & x0

Figure 9.3  A hex to 7-segment decoder  
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You can write the Karnaugh maps for the other six segments and then write the 
Verilog program for the 7-segment decoder shown in Listing 9.1.  A simulation of this 
program is shown in Fig. 9.5.  Note that the simulation agrees with the truth table in Fig. 
9.2. 

 
 

Listing 9.1  hex7seg_le.v 
// Example 9a: Hex to 7-segment decoder; a-g active low 
module hex7seg_le ( 
input wire [3:0] x , 
output wire [6:0] a_to_g  
); 
 
assign a_to_g[6] = ~x[3] & ~x[2] & ~x[1] & x[0]  // a   
   | ~x[3] & x[2] & ~x[1] & ~x[0] 
   | x[3] & x[2] & ~x[1] & x[0] 
   | x[3] & ~x[2] & x[1] & x[0]; 
assign a_to_g[5] = x[2] & x[1] & ~x[0]   // b   
   | x[3] & x[1] & x[0] 
   | ~x[3] & x[2] & ~x[1] & x[0] 
   | x[3] & x[2] & ~x[1] & ~x[0]; 
assign a_to_g[4] = ~x[3] & ~x[2] & x[1] & ~x[0] // c 
   | x[3] & x[2] & x[1]  
   | x[3] & x[2] & ~x[0]; 
assign a_to_g[3] = ~x[3] & ~x[2] & ~x[1] & x[0]  // d   
   | ~x[3] & x[2] & ~x[1] & ~x[0] 
   | x[3] & ~x[2] & x[1] & ~x[0] 
   | x[2] & x[1] & x[0]; 
assign a_to_g[2] = ~x[3] & x[0]    // e   
   | ~x[3] & x[2] & ~x[1]  
   | ~x[2] & ~x[1] & x[0]; 
assign a_to_g[1] = ~x[3] & ~x[2] & x[0]   // f   
   | ~x[3] & ~x[2] & x[1]  
   | ~x[3] & x[1] & x[0]  
   | x[3] & x[2] & ~x[1] & x[0]; 
assign a_to_g[0] = ~x[3] & ~x[2] & ~x[1]   // g 
   | x[3] & x[2] & ~x[1] & ~x[0] 
   | ~x[3] & x[2] & x[1] & x[0]; 
endmodule 

 
 
 

 
 Figure 9.5  Simulation of the Verilog program in Listing 9.1  
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9.3  7-Segment Decoder: case Statement  
  
We can use a Verilog case statement to design the same 7-segment decoder that 

we designed in Section 9.2 using Karnaugh maps.  The Verilog program shown in Listing 
9.2 is a hex-to-seven-segment decoder that converts a 4-bit input hex digit, 0 – F, to the 
appropriate 7-segment codes, a – g.  The case statement in Listing 9.2 directly 
implements the truth table in Fig. 9.2.  Recall that a typical line in the case statement, 
such as 

     
3: a_to_g = 7'b0000110; 

  

will assign the 7-bit binary value, 0000110, to the 7-bit array, a_to_g, when the input 
hex value x[3:0] is equal to 3 (0011).  In the array a_to_g the value a_to_g[6] 
corresponds to segment a and the value a_to_g[0] corresponds to segment g.  Recall that 
in Verilog a string of binary bits is preceded by n’b, where n is the number of binary bits 
in the string.   

In the case statement the value preceding the colon in each line represents the 
value of the case parameter, in this case the 4-bit input x.  Also note that hex values such 
as A are written as ‘hA. 

Recall that all case statements should include a default line as shown in Listing 
9.2.  This is because all cases need to be covered and while it looks as if we covered all 
cases in Listing 6.2, Verilog actually defines four possible values for each bit, namely 0 
(logic value 0), 1 (logic value 1), Z (high impedance), and X (unkown value). 

A simulation of Listing 9.2 will produce the same results as shown in Fig. 9.5.  It 
should be clear from this example that using the Verilog case statement is often easier 
than solving for the logic equations using Karnaugh maps. 

To test the 7-segment displays on the FPGA board you could create the design 
hex7seg_top.bde shown in  Fig. 9.6.  This design uses the Verilog program hex7seg.v 
from Listing 9.2 and produces a top-level Verilog program hex7seg_top.v equivalent to 
Listing 9.3.  Each of the four digits on the 7-segment display is enabled by one of the 
active low signals an[3:0] and all digits share the same a_to_g[6:0] signals.  If an[3:0] = 
0000 then all digits are enabled and display the same hex digit.  This is what we do in 
Fig. 9.6 and Listing 9.3.  Making the output dp = 1 will cause the decimal points to be 
off.  You should be able to display all of the hex digits from 0 – F by changing the four 
rightmost switches.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 Figure 9.6  Top-level design for testing hex7seg  
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   Listing 9.2  hex7seg.v 

// Example 9b: Hex to 7-segment decoder; a-g active low 
module hex7seg ( 
input wire [3:0] x , 
output reg [6:0] a_to_g  
); 
  
always @(*) 
   case(x) 
  0: a_to_g = 7'b0000001; 
  1: a_to_g = 7'b1001111; 
  2: a_to_g = 7'b0010010; 
  3: a_to_g = 7'b0000110; 
  4: a_to_g = 7'b1001100; 
  5: a_to_g = 7'b0100100; 
  6: a_to_g = 7'b0100000; 
  7: a_to_g = 7'b0001111; 
  8: a_to_g = 7'b0000000; 
  9: a_to_g = 7'b0000100; 
       'hA: a_to_g = 7'b0001000; 
  'hb: a_to_g = 7'b1100000; 
  'hC: a_to_g = 7'b0110001; 
  'hd: a_to_g = 7'b1000010; 
  'hE: a_to_g = 7'b0110000; 
  'hF: a_to_g = 7'b0111000; 
  default: a_to_g = 7'b0000001;  // 0 
   endcase 
endmodule  

 
  
 

   Listing 9.3  hex7seg_top.v 
// Example 9c: hex7seg_top 
module hex7seg_top (   
input wire [3:0] sw , 
output wire [6:0] a_to_g , 
output wire [3:0] an , 
output wire dp   
); 
 
assign an = 4'b0000;  // all digits on 
assign dp = 1;    // dp off 
 
hex7seg D4 (.x(sw), 
 .a_to_g(a_to_g) 
); 
 
endmodule 
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Example 10 
  

7-Segment Displays: 
x7seg and x7segb 

 
 
In this example we will show how to display different hex values on the four 7-

segment displays.   
 

Prerequisite knowledge: 
 Karnaugh maps – Appendix D  
 case statement – Example 7  

LEDs – Example 1 
 

 
10.1  Multiplexing 7-Segment Displays 
 

We saw in Example 9 that the a_to_g[6:0] signals go to all of the 7-segment 
displays and therefore in that example all of the digits displayed the same value.  How 
could we display a 4-digit number such as 1234 that contains different digits?  To see 
how we might do this, consider the BDE circuit shown in Fig. 10.2.  Instead of enabling 
all four digits at once by setting an[3:0] = 0000 as we did in Fig. 9.6 we connect an[3:0] 
to the NOT of the four pushbuttons btn[3:0].  Thus, a digit will only be enabled when the 
corresponding pushbutton is being pressed. 

The quad 4-to-1 multiplexer, mux44, from Listing 7.4 is used to display the 16-bit 
number x[15:0] as a 4-digit hex value on the 7-segment displays.  When you press btn[0] 
if the control signal s[1:0] is 00 then x[3:0] becomes the input to the hex7seg module and 
the value of x[3:0] will be displayed on digit 0.  Similarly if you press btn[1] and the 
control signal s[1:0] is 01 then x[7:4] becomes the input to the hex7seg module and the 
value of x[7:4] will be displayed on digit 1.  We can make the value of s[1:0] depend on 
the value of btn[3:0] using the truth table in Fig. 10.1.  From this truth table we can write 
the following logic equations for s[1] and s[0]. 
 

s[1] = btn[2] | btn[3]; 
s[0] = btn[1] | btn[3]; 

  
The two OR gates in Fig. 10.2 will implement these logic equations for s[1:0]. 
 
 

btn[3]  btn[2]  btn[1]  btn[0] s[1]  s[0] 
 0    0    0    0  X  X 
 0    0    0    1  0  0 
 0    0    1    0  0  1 
 0    1    0    0  1  0 
 1    0    0    0  1  1 

 
 Figure 10.1  Truth table for generating s[1:0] in Fig. 10.2  
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The Verilog program created by compiling mux7seg.bde in Fig. 10.1 is equivalent 
to the Verilog program shown in Listing 10.1.  If you implement the design mux7seg.bde 
shown in Fig. 10.2 and download the .bit file to the FPGA board, then when you press 
buttons 0, 1, 2, and 3 the digits 4, 3, 2, and 1 will be displayed on digits 0, 1, 2, and 3 
respectively.  Try it. 
 

   Listing 10.1  mux7seg.v 
// Example 10a: mux7seg 
module mux7seg ( 
input wire [3:0] btn, 
output wire [6:0] a_to_g, 
output wire [3:0] an  
); 
 
wire [3:0] digit; 
wire [1:0] s; 
wire [15:0] x; 
 
assign x = 'h1234; 
 
hex7seg U1 
( .a_to_g(a_to_g), .x(digit)); 
 
mux44 U2 
( .s(s), .x(x), .z(digit)); 
 
assign s[0] = btn[3] | btn[1]; 
assign s[1] = btn[3] | btn[2]; 
assign an = ~btn; 
 
endmodule 

 

Figure 10.2  BDE circuit mux7seg.bde for multiplexing the four 7-segment displays  
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10.2  7-Segment Displays: x7seg  
 

We saw in Section 10.1 that to display a 16-bit hex value on the four 7-segment 
displays we must multiplex the four hex digits. You can only make it appear that all four 
digits are on by multiplexing them fast enough (greater than 30 times per second) so that 
your eyes retain the values.  This is the same way that your TV works where only a 
single picture element (pixel) is on at any one time, but the entire screen is refreshed 30 
times per second so that you perceive the entire image.  To do this the value of s[1:0] in 
Fig. 10.2 must count from 0 to 3 continually at this fast rate.  At the same time the value 
of the outputs an[3:0] must be synchronized with s[1:0] so as to enable the proper digit at 
the proper time.  A circuit for doing this is shown in Fig. 10.3.  The outputs an[3:0] will 
satisfy the truth table in Fig. 10.4.  Note that each output an[i] is just the maxterm M[i] of 
q[1:0]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

q[1]  q[0] an[3]  an[2]  an[1]  an[0] 
 0  0  1    1    1    0 
 0  1  1    1    0    1 
 1  0  1    0    1    1 
 1  1  0    1    1    1 

 
 
 

A simulation of x7seg.bde is shown in Fig. 10.5.  Note how the an[3:0] output 
selects one digit at a time to display the value 1234 on the 7-segment displays.  When 
x7seg.bde is compiled it creates a Verilog program that is equivalent to Listing 10.2.  The 
top-level design shown in Fig. 10.6 can be used to test the x7seg module on the FPGA 
board.  The Verilog program corresponding to this top-level design is given in Listing 
10.3.  Note that the x7seg module requires a 190 Hz clock generated by the clock divider 
module clkdiv from Example 8. 
 

Figure 10.3  BDE circuit x7seg.bde for displaying x[15:0] on the four 7-segment displays  

Figure 10.4  Truth table for generating an[3:0] in Fig. 10.3  
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   Listing 10.2  x7seg.v 
// Example 10b: x7seg 
module x7seg ( 
input wire cclk, 
input wire clr, 
input wire [15:0] x, 
output wire [6:0] a_to_g, 
output wire [3:0] an  
); 
wire nq0; 
wire nq1; 
wire [3:0] digit; 
wire [1:0] q; 
assign nq1 = ~(q[1]); 
assign nq0 = ~(q[0]); 
assign an[0] = q[0] | q[1]; 
assign an[1] = nq0 | q[1]; 
assign an[2] = q[0] | nq1; 
assign an[3] = nq0 | nq1; 
 
hex7seg U1 
( .a_to_g(a_to_g),.x(digit)); 
 
mux44 U2 
( .s({q[1:0]}),.x(x),.z(digit)); 
 
counter 
#( .N(2)) U3 
( .clk(cclk),.clr(clr),.q(q[1:0])); 
 
endmodule 

 
 

Figure 10.5  Simulation of the x7segb.bde circuit in Fig. 10.3  
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   Listing 10.3  x7seg_top.v 
// Example 10c: x7seg_top 
module x7seg_top ( 
input wire mclk, 
input wire [3:3] btn, 
output wire dp, 
output wire [6:0] a_to_g, 
output wire [3:0] an  
); 
 
wire clk190; 
wire [15:0] x; 
 
assign  x = 'h1234; 
assign dp = 1; 
 
clkdiv U1 
( .clk190(clk190), 
 .clr(btn[3]), 
 .mclk(mclk) 
); 
 
x7seg U3 
( .a_to_g(a_to_g), 
 .an(an), 
 .cclk(clk190), 
 .clr(btn[3]), 
 .x(x) 
); 
 
endmodule 

 
 
10.3  7-Segment Displays: x7segb 
 

When implementing the circuit for x7seg in Fig. 10.3 we must add separate 
Verilog files to the project for the modules counter, hex7seg and mux44.  Alternatively, 
we can include separate always blocks within a single Verilog file.  A variation of x7seg, 

Figure 10.6  Top-level design for testing x7seg  
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called x7segb, that displays leading zeros as blanks is shown in Listing 10.4.  This is 
done by writing logic equations for aen[3:0] that depend on the values of x[15:0].  For 
example, aen[3] will be 1 (and thus digit 3 will not be blank) if any one of the top four 
bits of x[15:0] is 1.  Similarly, aen[2] will be 1 if any one of the top eight bits of x[15:0] 
is 1, and aen[1] will be 1 if any one of the top twelve bits of x[15:0] is 1.  Note that 
aen[0] is always 1 so that digit 1 will always be displayed even if it is zero. 

To test the module x7segb you can run the top-level design shown in Listing 10.4 
that will display the value of x on the 7-segment displays where x is defined by the 
following statement:  
 

assign x = {sw,btn[2:0],5'b01010}; // digit 0 = A 

 
The curly brackets {--,--} are used for concatenation in Verilog.  In this case we form the 
16-bit value of x by concatenating the eight switches, the three right-most pushbuttons, 
and the five bits 01010.  Note that if all switches are off an A will be displayed on digit 0 
with three leading blanks.  Turning on the switches and pushing the three right-most 
pushbuttons will display various hex numbers – always with leading blanks. 
 
 

Listing 10.4  x7segb.v 
// Example 10d: x7segb - Display 7-seg with leading blanks 
// input cclk should be 190 Hz 
module x7segbc (   
input wire [15:0] x , 
input wire cclk , 
input wire clr , 
output reg [6:0] a_to_g , 
output reg [3:0] an , 
output wire dp   
); 
 
reg [1:0] s; 
reg [3:0] digit;   
wire [3:0] aen; 
 
assign dp = 1; 
// set aen[3:0] for leading blanks 
assign aen[3] = x[15] | x[14] | x[13] | x[12];    
assign aen[2] = x[15] | x[14] | x[13] | x[12] 
    | x[11] | x[10] | x[9] | x[8]; 
assign aen[1] = x[15] | x[14] | x[13] | x[12] 
    | x[11] | x[10] | x[9] | x[8] 
    | x[7] | x[6] | x[5] | x[4]; 
assign aen[0] = 1; // digit 0 always on 
    
// Quad 4-to-1 MUX: mux44 
always @(*) 
 case(s) 
  0: digit = x[3:0]; 
  1: digit = x[7:4]; 
  2: digit = x[11:8]; 
  3: digit = x[15:12]; 
       default: digit = x[3:0];   
 endcase  
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Listing 10.4 (cont.)  x7segb.v 
// 7-segment decoder: hex7seg 
always @(*) 
   case(digit) 
  0: a_to_g = 7'b0000001; 
  1: a_to_g = 7'b1001111; 
  2: a_to_g = 7'b0010010; 
  3: a_to_g = 7'b0000110; 
  4: a_to_g = 7'b1001100; 
  5: a_to_g = 7'b0100100; 
  6: a_to_g = 7'b0100000; 
  7: a_to_g = 7'b0001111; 
  8: a_to_g = 7'b0000000; 
  9: a_to_g = 7'b0000100; 
  'hA: a_to_g = 7'b0001000; 
  'hb: a_to_g = 7'b1100000; 
  'hC: a_to_g = 7'b0110001; 
  'hd: a_to_g = 7'b1000010; 
  'hE: a_to_g = 7'b0110000; 
  'hF: a_to_g = 7'b0111000; 
  default: a_to_g = 7'b0000001;  // 0 
   endcase 
 
// Digit select 
always @(*) 
 begin 
     an = 4'b1111; 
     if(aen[s] == 1) 
      an[s] = 0; 
 end 
     
// 2-bit counter 
always @(posedge cclk or posedge clr) 
 begin  
  if(clr == 1) 
   s <= 0; 
  else 
   s <= s + 1; 
 end 
  
endmodule 
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   Listing 10.5  x7segb_top.v 
// Example 10e: x7seg_top 
module x7segb_top (   
input wire clk , 
input wire [3:0] btn , 
input wire [7:0] sw , 
output wire [6:0] a_to_g , 
output wire [3:0] an , 
output wire dp   
); 
 
wire [15:0] x; 
 
// concatenate switches and 3 buttons 
assign x = {sw,btn[2:0],5'b01010}; // digit 0 = A 
 
x7segb X2 (.x(x), 
 .clk(clk), 
 .clr(btn[3]), 
 .a_to_g(a_to_g), 
 .an(an), 
 .dp(dp) 
); 
 
endmodule 
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Example 11 
  

2's Complement 4-Bit Saturator 
 
 
In this example we will design a circuit that converts a 6-bit signed number to a 4-

bit output that gets saturated at -8 and +7.   
 

Prerequisite knowledge: 
 Basic Gates – Appendix C  
 Equality Detector – Example 6  

Quad 2-to-1 Multiplexer – Example 6  
7-Segment Displays – Example 10 
 

 
11.1  Creating the Design sat4bit.bde 

 
Figure 11.1 shows a circuit called sat4bit.bde that was described in the November 

2001 issue of NASA Tech Briefs.  The circuit will take a 6-bit two’s complement number 
with a signed value between –32 and +31 and convert it to a 4-bit two’s complement 
number with a signed value between –8 and +7.  Negative input values less than –8 will 
be saturated at –8.  Positive input values greater than +7 will be saturated at +7. 

Note that the two XNOR gates and the AND gate form an equality detector whose 
output s is 1 when x[3], x[4], and x[5] are all equal (see Example 4).  This will be the case 
when the 6-bit input number x[5:0] is between -8 and +7.  In this case output y[3:0] of the 
quad 2-to-1 MUX will be connected to the input x[3:0].  If the top three bits of x[5:0] are 
not equal and x[5] is 1 then the input value will be less than -8 and the output y[3:0] of 
the quad 2-to-1 MUX will be saturated at -8.  On the other hand if the top three bits of 
x[5:0] are not equal and x[5] is 0 then the input value will be greater than +7 and the 
output y[3:0] of the quad 2-to-1 MUX will be saturated at +7.   

     

 
 

Figure 11.1  Circuit diagram for sat4bit.bde  
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   Listing 11.1  sat4bit.v 
// Example 11a: sat4bit 
module sat4bit ( 
input wire [5:0] x, 
output wire [3:0] y  
); 
 
wire c0; 
wire c1; 
wire s; 
wire xi; 
 
assign c1 = ~(x[4] ^ x[3]); 
assign xi = ~(x[5]); 
assign c0 = ~(x[5] ^ x[4]); 
assign s = c0 & c1; 
 
mux24 U1 
( .a({x[5],xi,xi,xi}), 
 .b(x[3:0]), 
 .s(s), 
 .y(y) 
); 
 
endmodule 

 
 
A top-level design that can be used to test sat4bit is shown in Fig. 11.2.  The 

module x7segb11 is a modification of Listing 10.4 that will display only values between  
-8 and +7 on the 7-segment display.  Listing 11.2 shows the Verilog program for the 
module x7segb11.  The input to x7segb11 is the 4-bit output y[3:0] from sat4bit.  Note 
that only the two rightmost 7-segment display are enabled.  The two leftmost displays are 
always blank.  The hex7seg always block in Listing 11.2 has been modified to display the 
magnitude of the signed value of y[3:0] – 0 to 8.  The preceding 7-segment display will 
either be blank or display a minus sign.  The quad 4-to-1 MUX and the new 2-to-1 MUX 
are used to display the minus sign when aen[1] is enabled if y[3] is 1; i.e., if y is negative. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 11.2  Top-level design sat4bit_top.bde for testing sat4bit  
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   Listing 11.2  x7segb11.v 
// Example 11b: x7segb11 - test sat4bit 
module x7segb11 (   
input wire [3:0] y , 
input wire cclk , 
input wire clr , 
output reg [6:0] a_to_g , 
output reg [3:0] an , 
output wire dp   
); 
 
reg msel; 
reg [6:0] a_g0; 
wire [6:0] a_g1; 
reg [1:0] s; 
reg [3:0] digit;   
wire [3:0] aen; 
 
assign a_g1 = 7'b1111110;  // minus sign 
assign dp = 1; 
assign aen[3] = 0; // digit 3 always off   
assign aen[2] = 0;   // digit 2 always off 
assign aen[1] = y[3];   // digit 1 on if negative 
assign aen[0] = 1; // digit 0 always on 
    
// Quad 4-to-1 MUX: mux44 
always @(*) 
 case(s) 
  0: msel = 0; 
  1: msel = 1;  // display minus sign 
  2: msel = 0;    
  3: msel = 0; 
       default: msel = 0;   
 endcase  
 
// 7-segment decoder: hex7seg 
always @(*) 
   case(y) 
  0: a_g0 = 7'b0000001; 
  1: a_g0 = 7'b1001111; 
  2: a_g0 = 7'b0010010; 
  3: a_g0 = 7'b0000110; 
  4: a_g0 = 7'b1001100; 
  5: a_g0 = 7'b0100100; 
  6: a_g0 = 7'b0100000; 
  7: a_g0 = 7'b0001111; 
  8: a_g0 = 7'b0000000;  // -8 
  9: a_g0 = 7'b0001111;  // -7 
  'hA: a_g0 = 7'b0100000;  // -6 
  'hb: a_g0 = 7'b0100100;  // -5 
  'hC: a_g0 = 7'b1001100;  // -4 
  'hd: a_g0 = 7'b0000110;  // -3 
  'hE: a_g0 = 7'b0010010;  // -2 
  'hF: a_g0 = 7'b1001111;  // -1 
  default: a_g0 = 7'b0000001;  // 0 
   endcase 
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   Listing 11.2 (cont.)  x7segb11.v 
// 2-to-1 MUX 
always @(*) 
 begin  
  if(msel == 1) 
   a_to_g = a_g1; 
  else 
   a_to_g = a_g0; 
 end 
  
// Digit select 
always @(*) 
 begin 
     an = 4'b1111; 
     if(aen[s] == 1) 
      an[s] = 0; 
 end 
     
// 2-bit counter 
always @(posedge cclk or posedge clr) 
 begin  
  if(clr == 1) 
   s <= 0; 
  else 
   s <= s + 1; 
 end 
  
endmodule 

 
 
 
The Verilog program corresponding to the top-level design in Fig. 11.2 is given in 

Listing 11.3.  Download this top-level design to the FPGA board and observe the output 
on the 7-segment display for different 6-bit switch inputs. 
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   Listing 11.3  sat4bit_top.v 
// Example 11c: sat4bit_top 
module sat4bit_top ( 
input wire mclk, 
input wire [3:3] btn, 
input wire [5:0] sw, 
output wire dp, 
output wire [6:0] a_to_g, 
output wire [3:0] an, 
output wire [5:0] ld  
); 
 
wire clk190; 
wire [3:0] y; 
 
assign ld = sw; 
 
sat4bit U1 
( .x(sw), 
 .y(y) 
); 
 
x7segb11 U2 
( .a_to_g(a_to_g), 
 .an(an), 
 .cclk(clk190), 
 .clr(btn[3]), 
 .dp(dp), 
 .y(y) 
); 
 
clkdiv U3 
( .clk190(clk190), 
 .clr(btn[3]), 
 .mclk(mclk) 
); 
 
endmodule 
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Example 12 
  

Full Adder 
 
 
In this example we will design a full adder circuit.   
 

Prerequisite knowledge: 
 Basic Gates – Appendix C  
 Karnaugh Maps – Appendix D  

7-Segment Displays – Example 10 
 
12.1   Half Adder 
 

The truth table for a half adder is shown in Fig. 12.1.  In this table bit a is added 
to bit b to produce the sum bit s and the carry bit c.  Note that if you add 1 to 1 you get 2, 
which in binary is 10 or 0 with a carry bit.  The BDE logic diagram, halfadd.bde, for a 
half adder is also shown in Fig. 12.1.  Note that the sum s is just the exclusive-or of a and 
b and the carry c is just a & b.  The Verilog program corresponding to the circuit in Fig. 
12.1 is shown in Listing 12.1.  A simulation of halfadd.bde is shown in Fig. 12.2. 

 
 
 
 

 
 
 
 

 
 
    Listing 12.1  halfadd.v 

// Example 12a: halfadd 
module halfadd ( 
input wire a, 
input wire b, 
output wire c, 
output wire s  
) ; 
 
assign s = b ^ a; 
assign c = b & a; 
 
endmodule 

 

Figure 12.1  Truth table and logic diagram halfadd.bde for a half-adder 

a b s c 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 
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12.2   Full Adder 
 

When adding binary numbers we need to consider the carry from one bit to the 
next.  Thus, at any bit position we will be adding three bits: ai, bi and the carry-in ci from 
the addition of the two bits to the right of the current bit position.  The sum of these three 
bits will produce a sum bit, si, and a carry-out, ci+1, which will 
be the carry-in to the next bit position to the left.  This is called a 
full adder and its truth table is shown in Fig. 12.3.  The results of 
the first seven rows in this truth table can be inferred from the 
truth table for the half adder given in Fig. 12.1.  In all of these 
rows only two 1's are ever added together.  The last row in Fig. 
12.3 adds three 1's.  The result is 3, which in binary is 11, or 1 
plus a carry.     

From the truth table in Fig. 12.3 we can write a sum of 
products expression for si as 

 
 si =  ~ci & ~ai &  bi  
     | ~ci &  ai & ~bi        (12.1) 
     |  ci & ~ai & ~bi  
     |  ci &  ai &  bi  

 
We can use the distributive law to factor out ~ci from the first two product terms and ci 
from the last two product terms in Eq. (12.1) to obtain 
 

 si =  ~ci & (~ai &  bi | ai & ~bi)  
     |  ci & (~ai & ~bi | ai &  bi)   (12.2) 

 
which can be written in terms of XOR and XNOR operations as 
 

si = ~ci & (ai ^ bi) | ci & ~(ai ^ bi)  (12.3) 

 
which further reduces to  

Figure 12.3   
Truth table for a full adder 

0  0  0   0  0
0  0  1   1  0
0  1  0   1  0
0  1  1   0  1
1  0  0   1  0
1  0  1   0  1
1  1  0   0  1
1  1  1   1  1

ai bi si c i+1c i

Figure 12.2  Simulation of the half-adder in Fig. 12.1 
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 si = ci ^ (ai ^ bi)     (12.4) 

 

Fig. 12.4 shows the K-map for ci+1 from the truth table in Fig. 12.3.  The map 
shown in Fig. 12.4a leads to the reduced form for ci+1 given by 

 
 ci+1 =  ai & bi | ci & bi | ci & ai    (12.5) 
 

While this is the reduced form, a more convenient form can be written from Fig. 12.4b as 
follows: 

 ci+1  = ai & bi | ci & ~ai & bi | ci & ai & ~bi 
      = ai & bi | ci & (~ai & bi | ai & ~bi) 
      = ai & bi | ci & (ai ^ bi)   (12.6) 
 

 
 
       
 
 
 
 
 
 
 
 
From Eqs. (12.4) and (12.6) we can draw the logic diagram for a full adder as shown in 
Fig. 12.5.  Comparing this diagram to that for a half adder in Fig. 12.1 it is clear that a 
full adder can be made from two half adders plus an OR gate as shown in Fig. 12.6. 

 
 
  
 
 
 
 
 
 

 
Figure 12.5  Logic diagram for a full adder 

 
 
         
 
 
 
 

 
Figure 12.6  A full adder can be made from two half adders plus an OR gate 
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From Fig. 12.6 we can create a BDE design, fulladd.bde, as shown in Fig. 12.7.  
The Verilog program resulting from compiling this design is equivalent to that shown in 
Listing 12.2.  A simulation of this full adder is shown in Fig. 12.8.  Note that the outputs 
agree with the truth table in Fig. 12.3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Listing 12.2  fulladd.v 
// Example 12b: fulladd 
module fulladd ( 
input wire a, 
input wire b, 
input wire cin, 
output wire cout, 
output wire s  
) ; 
 
wire c1; 
wire c2; 
wire s1; 
 
assign cout = c2 | c1; 
 
halfadd U1 
( .a(a), 
 .b(b), 
 .c(c1), 
 .s(s1) 
); 
halfadd U2 
( .a(s1), 
 .b(cin), 
 .c(c2), 
 .s(s) 
); 
 
endmodule 

 
 
 
 
 

Figure 12.7  Block diagram fulladd.bde for a full adder  
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Figure 12.8  Simulation of the full adder in Fig. 12.7 and Listing 12.2 
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Example 13 
  

4-Bit Adder 
 
 
In this example we will design a 4-bit adder.   
 

Prerequisite knowledge: 
 Basic Gates – Appendix C  
 Karnaugh Maps – Appendix D  

Full Adder – Example 12 
 
13.1   4-Bit Adder 

 
Four of the full adders in Fig. 12.7 can be combined to form a 4-bit adder as 

shown in Fig. 13.1.  Note that the full adder for the least significant bit will have a carry-
in of zero while the remaining bits get their carry-in from the carry-out of the previous 
bit.  The final carry-out, is the cout for the 4-bit addition.  The Verilog program 
corresponding to the 4-bit adder in Fig. 13.1 is given in Listing 13.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.1  Block diagram adder4.bde for a 4-bit adder 
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   Listing 13.1  adder4.v 
// Example 13a: adder4 
module adder4 ( 
input wire cin; 
input wire [3:0] a; 
input wire [3:0] b; 
output wire cout; 
output wire [3:0] s; 
) ; 
 
wire c1; 
wire c2; 
wire c3; 
 
fulladd U1 
( .a(a[2]), 
 .b(b[2]), 
 .cin(c2), 
 .cout(c3), 
 .s(s[2]) 
); 
 
fulladd U2 
( .a(a[3]), 
 .b(b[3]), 
 .cin(c3), 
 .cout(cout), 
 .s(s[3]) 
); 
 
fulladd U3 
( .a(a[1]), 
 .b(b[1]), 
 .cin(c1), 
 .cout(c2), 
 .s(s[1]) 
); 
 
fulladd U4 
( .a(a[0]), 
 .b(b[0]), 
 .cin(cin), 
 .cout(c1), 
 .s(s[0]) 
); 
 
endmodule 

 
 
A simulation of the 4-bit adder in Fig. 13.1 and Listing 13.1 is shown in Fig. 13.2.  

The value of a is incremented from 0 to F and is added to the hex value B.  The sum s is 
always equal to a + b.  Note that the carry flag, cout, is equal to 1 when the correct 
unsigned answer exceeds 15 (or F).   

We can test the adder4 module from Fig. 13.1 and Listing 13.1 on the FPGA 
board by combining it with the x7segb module from Listing 10.4 in Example 10 and the 
clkdiv module from Listing 8.2 from Example 8 to produce the top-level design shown in 
Listing 13.2.  The 4-bit number sw[7:4] will be displayed on the first (left-most) 7-
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segment display.  The 4-bit number sw[3:0] will be displayed on the second 7-segment 
display.  These two numbers will be added and the 4-bit sum will be displayed on the 
fourth (right-most) 7-segment display and the carry bit will be displayed on the third 7-
segment display.  Try it. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Listing 13.2 adder4_top.v 
// Example 13b: adder4_top 
module adder4_top (   
input wire mclk , 
input wire [3:3] btn , 
input wire [7:0] sw , 
output wire [6:0] a_to_g , 
output wire [3:0] an , 
output wire dp , 
output wire [7:0] ld   
); 
 
wire clk190, clr, c4, cin; 
wire [15:0] x; 
wire [3:0] sum; 
 
assign cin = 0; 
assign x = {sw,3'b000,c4,sum}; 
assign clr = btn[3]; 
assign ld = sw; 
 
adder4 U1 (.cin(cin),.a(sw[7:4]),.b(sw[3:0]), 
 .cout(c4),.s(sum)); 
 
clkdiv U2 (.mclk(mclk),.clr(clr),.clk190(clk190)); 
 
x7segb U3 (.x(x),.cclk(clk190),.clr(clr), 
 .a_to_g(a_to_g),.an(an),.dp(dp)); 
 
endmodule 

 
 

Figure 13.2  Simulation of the 4-bit adder in Fig. 13.1 and Listing 13.1 
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Example 14 
  

N-Bit Adder 
 
In this example we will design a N-bit adder.   
 

Prerequisite knowledge: 
4-Bit Adder – Example 13 

 
14.1   4-Bit Adder: Behavioral Statements 

 
It would be convenient to be able to make a 4-bit adder (or any size adder) by just 

using a + sign in a Verilog statement.  In fact, we can!  When you write a + b in a Verilog 
program the compiler will produce a full adder of the type we designed in Example 12.  
The only question is how to create the output carry bit.  The trick is to add a leading 0 to 
a and b and then make a 5-bit temporary variable to hold the sum as shown in Listing 
14.1.  The most-significant bit of this 5-bit sum will be the carry flag.  

A simulation of this program is shown in Fig. 14.1.  Compare this with Fig. 13.2. 
 
 
Listing 14.1 adder4b.v 
// Example 14a:  4-bit behavioral adder 
module adder4b (  
input wire [3:0] a , 
input wire [3:0] b , 
output reg [3:0] s , 
output reg cf   
); 
reg [4:0] temp; 
 
always @(*) 
   begin 
     temp = {1'b0,a} + {1'b0,b}; 

s = temp[3:0]; 
  cf = temp[4]; 
   end   
endmodule 
 

 

 
 
 
 

 Figure 14.1  Simulation of the Verilog program in Listing 14.1  
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14.2  N - Bit Adder: Behavioral Statements 
 
Listing 14.2 shows an N-bit adder that uses a parameter statement.  This is a 

convenient adder to use when you don’t need the carry flag.  An example of using this as 
an 8-bit adder is shown in the simulation in Fig. 14.2.  Note that when the sum exceeds 
FF it simply wraps around and the carry flag is lost.  
 

Listing 14.2 adder.v 
// Example 14b:  N-bit adder 
module adder 
#(parameter N = 8) 
(input wire [N-1:0] a, 
 input wire [N-1:0] b, 
 output reg [N-1:0] y 
); 
  
always @(*) 
   begin 
      y = a + b; 
   end 
endmodule 
 
 
 
 
 
 
 

 
 
 
 

 
The top-level design shown in Fig. 14.3 can be used to test this N-bit adder on the 

FPGA board.  In this case we are adding two 4-bit switch settings and observing the sum 
on the 7-segment display.  To set the parameter N to 4 right-click on the adder symbol, 
select Properties and click on the Parameter tab.  Set the actual value of N to 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.2  Simulation of the Verilog program in Listing 14.2  
 

Figure 14.3  Top-level design for testing the N-bit adder on the FPGA board  
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Example 15 
  

N-Bit Comparator 
 

 
In this example we will design a N-bit comparator.   
 

Prerequisite knowledge: 
N-Bit Adder – Example 14 

 
15.1   N-Bit Comparator Using Relational Operators 
 

The easiest way to implement a comparator in Verilog is to use the relational and 
logical operators shown in Table 15.1.  An example of using these to implement an N-bit 
comparator is shown in Listing 15.1.  A simulation of this program for the default value 
of N = 8 is shown in Fig. 15.1. 

Note in the always block in Listing 15.1 we set the values of gt, eq, and lt to zero 
before the if statements.  This is important to make sure that each output has a value 
assigned to it.  If you don’t do this then Verilog will assume you don’t want the value to 
change and will include a latch in your system.  Your circuit will then not be a 
combinational circuit.   

 
 

Table 15.1  Relational and Logical Operators 
Operator Meaning 

== Logical equality 
!= Logical inequality 
< Less than 
<= Less than or equal 
> Greater than 
>= Greater than or equal 
! Logical negation 
&& Logical AND 
|| Logical OR 

 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 15.1  Simulation of the Verilog program in Listing 15.1  
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Listing 15.1  comp.v 
// Example 17: N-bit comparator using relational operators 
module comp 
#(parameter N = 8)  
(input wire [N-1:0] x, 
 input wire [N-1:0] y, 
 output reg gt, 
 output reg eq, 
 output reg lt 
); 
 
always @(*) 
begin 
 gt = 0; 
 eq = 0; 
 lt = 0; 
 if(x > y) 
  gt = 1; 
 if(x == y) 
  eq = 1; 
 if(x < y) 
  lt = 1; 
end 
  
endmodule 

 
 
 

You can test this comparator on the FPGA board by creating the BDE block 
diagram comp4_top.bde shown in Fig. 15.2.  To make this a 4-bit comparator right-click 
on the comp symbol, select Properties, click on the Parameters tab, and set the actual 
value of N to 4.  You will be comparing the 4-bit number x[3:0] on the left four switches 
with the 4-bit number y[3:0] on the right four switches.  The three LEDs ld[4:2] will 
detect the outputs gt, eq, and lt.  We selected these three LEDs because on the BASYS 
board they are three different colors.  Compile the design comp4_top.bde, implement it, 
and download the .bit file to the FPGA board.  Test the comparator by changing the 
switch settings. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.2  Top-level design comp4_top.bde to test a 4-bit comparator  
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Appendix A 
  

Aldec Active-HDL Tutorial 
  

Part 1: Project Setup 
 
Start the program by double-clicking the Active-HDL icon on the desktop. 
   
Select Create new workspace and click OK. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Browse to the directory where you want the project saved, type Example1 for the 
workspace name and click OK. 
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Select Create an Empty Design with Design Flow and click Next. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Click Flow Settings 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Select HDL Synthesis 
 
 
 
Select Xilinx 
ISE/WebPack 8.1 XST VHDL/Verilog 
 
 
 

Press Select 
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Select Implementation 
 
 
 
 

 
 
 
 
 

Choose Xilinx 
ISE/WebPack 8.1 
 
 
Press Select 
 
 
 
 
 
 
 
 
 
 
 
Select Xilinx9X SPARTAN3E for Family 
 
 
 
  
 
 

Click Ok 
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Select VERILOG for the Default HDL 
Language 
 
 
 
 
 
 
 

Click Next 
 
 
 
 
 
 
 Type swled for the design name  
 
 

and click Next. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Click Finish. 
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Part 2: Design Entry – sw2led.bde 
 
 
 
Click on BDE. 
 
  
 
 
 
 
 
 
 
 
Click Next. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Select Verilog 
and Click Next 
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Click out. 

Click Finish. 

 
Type sw2led 
and click Next. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Click New. 
 

        
     

 
 
 
 
 
 
  
 
 
 
 
Click New.  
                        
 
 
 
   
 
 
 
 
 
 
 
 
 

Type sw 
Set array 
indexes to 7:0 

Type ld 
Set array 
indexes to 7:0 
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This will generate a block diagram (schematic) template with the input and output ports 
displayed.   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

You will need to select the output port by dragging the mouse with 
the left mouse button down and move the output port to the left. 

Select the bus icon and connect the input sw[7:0] to the output ld[7:0] as shown. 

Click Save 



116 Appendix A 

   

 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Part 3: Synthesis and Implementation 
 
Click design flow 
 
 
 
Click 
synthesis options 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Right-click on sw2led.bde 
and select Compile 
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Pull down menu and select sw2led for Top-level Unit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Click Ok. 
 
Click synthesis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After synthesis is complete, click Close. 
 
 

BASYS Board: 
Select 3s100etq144 for Device from pull down list. 
Nexys2 Board: 
Select 3s500efg320 for Device from pull down list. 

Check Verilog 
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Click implementation 
options 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Select 
Custom constraint file 

Browse and select the file basys2.ucf 
or nexys2.ucf available at www.lbebooks.com  
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Select Translate and check  
                  Allow Unmatched LOC Constraints. 

                                 Shift for more options…. Select BitStream and 
uncheck Do Not Run Bitgen. 

Click Ok 

 Select Startup Options and select JTAG Clock 
 for the FPGA Start-up Clock. 
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Click 
implementation 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Part 4: Program FPGA Board 

 
To program the Spartan3E on the BASYS or Nexys-2 boards we will use the 

ExPort tool that is part of the the Adept Suite available free from Digilent at 
http://www.digilentinc.com/Software/Adept.cfm?Nav1=Software&Nav2=Adept  
Double-click the ExPort icon on the desktop. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Click Initialize Chain  

When implementation is complete click Close. 
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Click Browse and go to Example1->swled->implement->ver1->rev1->sw2led.bit 
Select sw2led.bit 

  
 
 
 
 
  

      
     

 
 
 
 
 
 
 
 
 
Your program is now running on the board.  Change the switches and watch the LEDs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Click Program Chain  
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Part 5: Design Entry – gates2.bde 
 
 
 
Click on BDE. 
 
  
 
 
 
 
 
 
 
 
 
 
Click Next. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Select Verilog 
and Click Next 
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Type gates2 
and click Next. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Click New. 
 

 Type a. 
   
   
     

 
 
 
 
 
 
  
 
Click New.  
            Type b.  
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Click Finish. 

 
 
 
Click New. 
          Type and_. 
 
 
                    
            

                                                                                           
                                           
                                                                              

 
 
 
 
 
      
        
Continue to click New and add the outputs nand_, or_, nor_, xor_, and xnor_. 
 
 
 
 
 
 
  

Click out. 
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This will generate a block diagram (schematic) template with the input and output ports 
displayed.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Select the output ports by dragging the mouse with the left 
mouse button down and move the output ports to the left. 

Click the Show Symbols Toolbox icon 

Click + on 
Built-in symbols 
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Grab the and2 symbol with the mouse and drag it to the output port and_ 

Grab the symbols for nand2, or2, nor2, xor2, and xnor2 and drag them to the 
appropriate output port, moving the output ports down as necessary. 
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Select the wire icon and connect the gate inputs to a and b as shown. 

Click Save 

Right-click on gates2.bde 
and select Compile 
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Part 6: Simulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Click Choose, select gates2 as the top-level design, and click Add. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Click design flow and then Click functional simulation options 

Click here to select  
design files 

Select gates2.bde 
Click > and Click OK 

Click OK 
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Click Use Default Waveform 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Click OK 
 
 
Click functional simulation 
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The waveform window will automatically come up with the simulation already 
initialized.  Make sure the order is a, b, and_, nand_, or_, nor_, xor_, xnor (grab and 
drag if necessary).  Right-click on a and select Stimulators. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Select Clock and set Frequency to 25 MHz 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Click Apply 
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Click on b, select Clock and set Frequency to 50 MHz 
  
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
Click Apply 
 
Click Close 

Set simulation time to 200 ns 
   Click here to run simulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Click Zoom to Fit. 
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Part 7: Design Entry - HDE 
 
 
 
Click on HDE. 
 
Select Verilog  
and Click OK. 
 
 
 
 
 
 
 
 
 
Click Next. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Type gates2 
and click Next. 
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Click New. Type a. 
    
       
 
 
 
 
 
 
  
 
Click New.  
            Type b.  
    
      
 
 
 
   
 
 
 
 
 
 
 
Click New. 
  Type z. 
 
 
                  
  

Set Array  Indexes 
         to 5:0. 
                                                                                             
                                                                                                                                                             Click out.                                  
 
 
 
   
             Click Finish. 
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This will generate a Verilog template with the input and output signals filled in.  Delete 
all the comments and replace them with the single comment 

// Example 1: 2-input gates 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Edit the module, input, output, and wire statements to conform to the 2001 Verilog 
standard as shown (see Listing 2.1 in Example 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Delete these 
comments.

Delete these 
statements. 
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Click Save 
 
 
 
 
 

 
 
 
 
 
 
Part 8: Simulation – gates2 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Click design flow and then Click functional simulation options 

Click here to select design files 
Select gates2.v, 
click > to move 
and then Click Ok 

Click on + and then 
Right-click on 
gates2.v and select 
Compile 

2 

3 

Type in these six 
assign statements 
(see Listing 2.1 of 
Example 1) 

1 
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Click Choose, select gates2 as the top-level design, and click Add. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Click Use Default Waveform 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Click Ok 

Click Ok 
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Click functional simulation 
 

 
 
 
 
 
 
 
 
 

 
 
The waveform window will automatically come up with the simulation already 
initialized.  Make sure the order is a, b, z (grab and drag if necessary). 
Right-click on a and select Stimulators. 
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Select Clock and set Frequency to 25 MHz 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Click Apply 

 
Click on b, select Clock and set Frequency to 50 MHz 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Click Apply 
 
Click Close 
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Set simulation time to 50 ns 
 
  Click here to run simulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Click + sign to show all elements of z.        
                          Study the waveforms for various magnifications. 
                  To print out this waveform you can detach it by clicking >> here and then 
press Alt Prnt Scrn to copy it to the clipboard.  Then paste it in a .doc file and print. 
 
 
 
 



  

   

Appendix E 
  

Verilog Quick Reference Guide 
Category Definition Example 

Identifer Names Can contain any letter, digit, underscore _, or $ 
Can not begin with a digit or be a keyword 
Case sensitive 

q0 
Prime_number 
lteflg 

Signal Values 0 = logic value 0 
1 = logic value 1 
z  or Z = high impedance 
x or X = unknown value 

 

Numbers d = decimal 
b = binary 
h = hexadecimal 
o = octal 

35 (default decimal) 
4‘b1001  
8’a5 = 8’b10100101 
 

Parameters Associates an identifer name with a value that 
can be overridden with the defparam statement 

#(parameter N = 8) 
  

Local parameters Associates an identifer name with a constant that 
cannot be directly overridden 

localparam [1:0] s0 = 2’b00, 
     s1 = 2’b01, s2 = 2’b10; 

Nets and Variables 
Types 

wire  (used to connect one logic element to 
another) 
reg  (variables assigned values in always block) 
integer   (useful for loop control variables) 

wire [3:0] d; 
wire led; 
reg [7:0] q; 
integer k; 

Module module module_name 
[#(parameter_port_list)] 
(port_dir_type_name,{ port_dir_type_name } 
); 
[wire declarations] 
[reg declarations] 
[assign assignments] 
[always blocks] 
 
endmodule 

module register 
#(parameter N = 8) 
(input wire load , 
input wire clk , 
input wire clr , 
input wire [N-1:0] d , 
output reg [N-1:0] q  

); 

always @(posedge clk or posedge clr) 
if(clr == 1) 
 q <= 0; 
else if(load) 
 q <= d; 

endmodule 

Logic operators ~   (NOT) 
&  (AND) 
|  (OR) 
~(&)  (NAND) 
~(|)  (NOR) 
^  (XOR) 
~^  (XNOR 

assign z = ~y; 
assign c = a & b; 
assign z = x | y; 
assign w = ~(u & v); 
assign r = ~(s | t); 
assign z = x ^ y; 
assign d = a ~^ b; 

Reduction operators &  (AND) 
|  (OR) 
~&  (NAND) 
~|  (NOR) 
^  (XOR) 
~^  (XNOR 

assign c = &a; 
assign z = |y; 
assign w = ~&v; 
assign r = ~|t; 
assign z = ^y; 
assign d = ~^b; 

Arithmetic operators +  (addition) 
-  (subtraction) 
*  (multiplication) 
/  (division) 
%  (mod) 

count <= count + 1; 
q <= q – 1; 

 
 



   

 

Verilog Quick Reference Guide (cont.)   
Relational operators ==, !=, >, <, >=, <=, ===, !== assign lteflg = (a <= b); 

assign eq = (a == b); 
if(clr == 1) 

Shift operators <<  (shift left) 
>>  (shift right) 

c = a << 3; 
c = a >> 4; 

always block always @(<sensitivity list>) 
always @(*) 

always @(*) 
begin 
  s = a ^ b; 
  c = a & b; 
end 

if statement if(expression1) 
begin 
    statement; 
end 
else if (expression2) 
begin 
    statement; 
end 
else 
begin 
    statement; 
end 

if(s == 0) 
   y = a; 
else 
   y = b; 

case statement case(expression) 
   alternative1: begin 
                             statement; 
                        end 
   alternative2: begin 
                             statement; 
                        end 
   [default:       begin 
                             statement; 
                        end 
endcase 

case(s) 
   0: y = a; 
   1: y = b; 
   2: y = c; 
   3: y = d; 
   default: y = a; 
endcase 
 

for loop for(initial_index; terminal_index; increment) 
begin 
    statement; 
end 

for(i=2; i<=4; i=i+1) 
    z = z & x[i]; 
 

Assignment operator =  (blocking) 
<=  (non-blocking) 

z = z & x[i]; 
count <= count + 1; 

Module instantiation Module_name instance_name(.port_name(expr) 
   {,.port_name([expr])}); 

hex7seg d7R(.d(y), 
            .a_to_g(a_to_g) 
); 

Parameter override defparam instance_name.parameter_name = val; defparam  Reg.N = 16; 
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