

Introduction to Digital Design
Using Digilent FPGA Boards
─ Block Diagram / Verilog Examples

Richard E. Haskell
Darrin M. Hanna

Oakland University, Rochester, Michigan

LBE Books
Rochester Hills, MI

 ii

Copyright 2009 by LBE Books, LLC. All rights reserved.

ISBN 978-0-9801337-9-0

Online Version

Published by LBE Books, LLC
1202 Walton Boulevard
Suite 214
Rochester Hills, MI 48307

www.lbebooks.com

 iii

Preface

A major revolution in digital design has taken place over the past decade.
Field programmable gate arrays (FPGAs) can now contain over a million equivalent
logic gates and tens of thousands of flip-flops. This means that it is not possible to
use traditional methods of logic design involving the drawing of logic diagrams
when the digital circuit may contain thousands of gates. The reality is that today
digital systems are designed by writing software in the form of hardware
description languages (HDLs). The most common HDLs used today are VHDL and
Verilog. Both are in widespread use. When using these hardware description
languages the designer typically describes the behavior of the logic circuit rather
than writing traditional Boolean logic equations. Computer-aided design tools are
used to both simulate the Verilog or VHDL design and to synthesize the design to
actual hardware.

This book assumes no previous knowledge of digital design. We use 30
examples to show you how to get started designing digital circuits that you can
implement on a Xilinx Spartan3E FPGA using either the Digilent BASYS™ system
board that can be purchased from www.digilentinc.com for $59 or the Digilent
Nexys-2 board that costs $99. We will use Active-HDL from Aldec to design,
simulate, synthesize, and implement our digital designs. A free student edition of
Active-HDL is available from Aldec, Inc. (www.aldec.com). To synthesize your
designs to a Spartan3E FPGA you will need to download the free ISE WebPACK
from Xilinx, Inc. (www.xilinx.com). The Xilinx synthesis tools are called from
within the Aldec Active-HDL integrated GUI. We will use the ExPort utility to
download your synthesized design to the Spartan3E FPGA. ExPort is part of the
Adept software suite that you can download free from Digilent, Inc.
(www.digilentinc.com). A more complete book called Digital Design Using
Digilent FPGA Boards – Verilog / Active-HDL Edition is also available from
Digilent or LBE Books (www.lbebooks.com). This more comprehensive book
contains over 75 examples including examples of using the VGA and PS/2 ports.
Similar books that use VHDL are also available from Digilent or LBE Books.

 Many colleagues and students have influenced the development of this
book. Their stimulating discussions, probing questions, and critical comments are
greatly appreciated.

 Richard E. Haskell
 Darrin M. Hanna

 iv

Introduction to Digital Design

Using Digilent FPGA Boards
─ Block Diagram / Verilog Examples

Table of Contents

 Introduction – Digital Design Using FPGAs 1
Example 1 – Switches and LEDs 6
Example 2 – 2-Input Gates 11
Example 3 – Multiple-Input Gates 15
Example 4 – Equality Detector 20
Example 5 – 2-to-1 Multiplexer 22
Example 6 – Quad 2-to-1 Multiplexer 25
Example 7 – 4-to-1 Multiplexer 30
Example 8 – Clocks and Counters 37
Example 9 – 7-Segment Decoder 42
Example 10 – 7-Segment Displays: x7seg and x7segb 47
Example 11 – 2's Complement 4-Bit Saturator 55
Example 12 – Full Adder 60
Example 13 – 4-Bit Adder 65
Example 14 – N-Bit Adder 68
Example 15 – N-Bit Comparator 70
Example 16 – Edge-Triggered D Flip-Flop Available only in print vesion
Example 17 – D Flip-Flops in Verilog
Example 18 – Divide-by-2 Counter
Example 19 – Registers
Example 20 – N-Bit Register in Verilog
Example 21 – Shift Registers
Example 22 – Ring Counters
Example 23 – Johnson Counters
Example 24 – Debounce Pushbuttons
Example 25 – Clock Pulse
Example 26 – Arbitrary Waveform
Example 27 – Pulse-Width Modulation (PWM)
Example 28 – Controlling Position of a Servo
Example 29 – Scrolling the 7-Segment Display
Example 30 – Fibonacci Sequence

 v

Appendix A – Aldec Active-HDL Tutorial 109
Part 1: Project Setup 109
Part 2: Design Entry – sw2led.bde 113
Part 3: Synthesis and Implementation 116
Part 4: Program FPGA Board 120
Part 5: Design Entry – gates2.bde 122
Part 6: Simulation 128
Part 7: Design Entry – HDE 132
Part 8: Simulation – gates2 135

Appendix B – Number Systems Available only in print vesion

B.1 Counting in Binary and Hexadecimal
B.2 Positional Notation
B.3 Fractional Numbers
B.4 Number System Conversions
B.5 Negative Numbers

Appendix C – Basic Logic Gates
C.1 Truth Tables and Logic Equations
C.2 Positive and Negative Logic: De Morgan’s Theorem
C.3 Sum of Products Design
C.4 Product of Sums Design

Appendix D – Boolean Algebra and Logic Equations
D.1 Boolean Theorems
D.2 Karnaugh Maps

Appendix E – Verilog Quick Reference Guide 175

 Introduction 1

Introduction

Digital Design Using FPGAs

The first integrated circuits that were developed in the early 1960s contained less

that 100 transistors on a chip and are called small-scale integrated (SSI) circuits.
Medium-scale integrated (MSI) circuits, developed in the late 1960s, contain up to
several hundreds of transistors on a chip. By the mid 1970s large-scale integrated (LSI)
circuits containing several thousands of transistors had been developed. Very-large-scale
integrated (VLSI) circuits containing over 100,000 transistors had been developed by the
early 1980s. This trend has continued to the present day with 1,000,000 transistors on a
chip by the late 1980s, 10,000,000 transistors on a chip by the mid-1990s, over
100,000,000 transistors by 2004, and up to 1,000,000,000 transistors on a chip today.
This exponential growth in the amount of digital logic that can be packed into a single
chip has produced serious problems for the digital designer. How can an engineer, or
even a team of engineers, design a digital logic circuit that will end up containing
millions of transistors?

In Appendix C we show that any digital logic circuit can be made from only three
types of basic gates: AND, OR, and NOT. In fact, we will see that any digital logic
circuit can be made using only NAND gates (or only NOR gates), where each NAND or
NOR gate contains four transistors. These basic gates were provided in SSI chips using
various technologies, the most popular being transistor-transistor logic (TTL). These
TTL chips were the mainstay of digital design throughout the 1960s and 1970s. Many
MSI TTL chips became available for performing all types of digital logic functions such
as decoders, adders, multiplexers, comparators, and many others.

By the 1980s thousands of gates could fit on a single chip. Thus, several different
varieties of programmable logic devices (PLDs) were developed in which arrays
containing large numbers of AND, OR, and NOT gates were arranged in a single chip
without any predetermined function. Rather, the designer could design any type of
digital circuit and implement it by connecting the internal gates in a particular way. This
is usually done by opening up fuse links within the chip using computer-aided tools.
Eventually the equivalent of many PLDs on a single chip led to complex programmable
logic devices (CPLDs).

Field Programmable Gate Arrays (FPGAs)

A completely different architecture was introduced in the mid-1980’s that uses
RAM-based lookup tables instead of AND-OR gates to implement combinational logic.
These devices are called field programmable gate arrays (FPGAs). The device consists
of an array of configurable logic blocks (CLBs) surrounded by an array of I/O blocks.
The Spartan-3E from Xilinx also contains some blocks of RAM, 18 x 18 multipliers, as
well as Digital Clock Manager (DCM) blocks. These DCMs are used to eliminate clock
distribution delay and can also increase or decrease the frequency of the clock.

2 Introduction

Each CLB in the Spartan-3E FPGA contains four slices, each of which contains
two 16 x 1 RAM look-up tables (LUTs), which can implement any combinational logic
function of four variables. In addition to two look-up tables, each slice contains two D
flip-flops which act as storage devices for bits. The basic architecture of a Spartan-3E
FPGA is shown in Fig. 1.

The BASYS board from Digilent contains a Xilinx Spartan3E-100 TQ144 FPGA.

This chip contains 240 CLBs arranged as 22 rows and 16 columns. There are therefore
960 slices with a total of 1,920 LUTs and flip-flops. This part also contains 73,728 bits
of block RAM. Half of the LUTs on the chip can be used for a maximum of 15,360 bits
of distributed RAM.

By contrast the Nexys-2 board from Digilent contains a Xilinx Spartan3E-500
FG320 FPGA. This chip contains 1,164 CLBs arranged as 46 rows and 34 columns.
There are therefore 4,656 slices with a total of 9,312 LUTs and flip-flops. This part also
contains 368,640 bits of block RAM. Half of the LUTs on the chip can be used for a
maximum of 74,752 bits of distributed RAM.

In general, FPGAs can implement much larger digital systems than CPLDs as
illustrated in Table 1. The column labeled No. of Gates is really equivalent gates as we
have seen that FPGAs really don’t have AND and OR gates, but rather just RAM look-up
tables. (Each slice does include two AND gates and two XOR gates as part of carry and
arithmetic logic used when implementing arithmetic functions including addition and

LUT

LUT

FF

FF

Slice

LUT

LUT

FF

FF

Slice

LUT

LUT

FF

FF

Slice

LUT

LUT

FF

FF

Slice

CLB CLB

CLBCLB

IOBs

Figure 1 Architecture of a Spartan-3E FPGA

 Introduction 3

multiplication.) Note from Table 1 that FPGAs can have the equivalent of millions of
gates and tens of thousands of flip-flops.

Table 1 Comparing Xilinx CPLDs and FPGAs
Xilinx Part No. of Gates No. of I/Os No. of CLBs No. of Flip-flops Block RAM (bits)

CPLDs
9500 family 800 – 6,400 34 – 192 36 - 288

FPGAs
Spartan 5,000 – 40,000 77 – 224 100 – 784 360 – 2,016

Spartan II 15,000 – 200,000 86 – 284 96 – 1,176 642 – 5,556 16,384 – 57,344
Spartan IIE 23,000 – 600,000 182 – 514 384 – 3,456 2,082 – 15,366 32,768 – 294,912
Spartan 3 50,000 – 5,000,000 124 – 784 192 – 8,320 2,280 – 71,264 73,728 – 1,916,928

Spartan-3E 100,000 – 1,600,000 108 – 376 240 – 3,688 1,920 – 29,505 73,728 – 663,552
Virtex 57,906 – 1,124,022 180 – 512 384 – 6,144 2,076 – 26,112 32,768 – 131,072

Virtex E 71,693 – 4,074,387 176 – 804 384 – 16,224 1,888 – 66,504 65,536 – 851,968
Virtex-II 40,960 – 8,388,608 88 – 1,108 64 – 11,648 1,040 – 99,832 73,728 – 3,096,576

Modern Design of Digital Systems

The traditional way of designing digital circuits is to draw logic diagrams

containing SSI gates and MSI logic functions. However, by the late 1980s and early
1990s such a process was becoming problematic. How can you draw schematic diagrams
containing hundreds of thousands or millions of gates? As programmable logic devices
replaced TTL chips in new designs a new approach to digital design became necessary.
Computer-aided tools are essential to designing digital circuits today. What has become
clear over the last decade is that today’s digital engineer designs digital systems by
writing software! This is a major paradigm shift from the traditional method of designing
digital systems. Many of the traditional design methods that were important when using
TTL chips are less important when designing for programmable logic devices.

Today digital designers use hardware description languages (HDLs) to design
digital systems. The most widely used HDLs are VHDL and Verilog. Both of these
hardware description languages allow the user to design digital systems by writing a
program that describes the behavior of the digital circuit. The program can then be used
to both simulate the operation of the circuit and synthesize an actual implementation of
the circuit in a CPLD, an FPGA, or an application specific integrated circuit (ASIC).

Another recent trend is to design digital circuits using block diagrams or graphic
symbols that represent higher-level design constructs. These block diagrams can then be
compiled to produce Verilog or VHDL code. We will illustrate this method in this book.

We will use Active-HDL from Aldec for designing our digital circuits. This
integrated tool allows you to enter your design using either a block diagram editor (BDE)
or by writing Verilog or VHDL code using the hardware description editor (HDE). Once
your hardware has been described you can use the functional simulator to produce
waveforms that will verify your design. This hardware description can then be
synthesized to logic equations and implemented or mapped to the FPGA architecture.

4 Introduction

Figure 2 (a) BASYS board, (b) Nexys-2 Board

We include a tutorial for using Active-HDL in Appendix A. A free student version of
Active-HDL is available on their website.1 We will use Xilinx ISE for synthesizing our
VHDL designs. You can download a free version of ISETM WebPACKTM from the
Xilinx website.2 This WebPACKTM synthesis tool can be run from within the Aldec
Active-HDL development environment as shown in the tutorial in Appendix A. The
implementation process creates a .bit file that is downloaded to a Xilinx FPGA on the
BASYS board or Nexys-2 shown in Fig. 2. The BASYS board is available to students
for $59 from Digilent, Inc.3 This board includes a 100k-gate equivalent Xilinx
Spartan3E FPGA (250k-gate capacity is also available), 8 slide switches, 4 pushbutton
switches, 8 LEDs, and four 7-segment displays. The frequency of an on-board clock can
be set to 25 MHz, 50 MHz, or 100 MHz using a jumper. There are connectors that allow
the board to be interfaced to external circuits. The board also includes a VGA port and a
PS2 port. The use of these ports are described in a different book.4 Another more
advanced board, the Nexys-2 board, is also available to students for $99 from Digilent.
The Nexys-2 board is similar to the BASYS board except that it contains a 500k- or
1200k-gate equivalent Spartan 3E FPGA, a Hirose FX2 interface for additional add-on
component boards, 16 MB of cellular RAM, 16 MB of flash memory, a 50 MHz clock
and a socket for a second oscillator. The Nexys-2 is ideally suited for embedded
processors.

All of the examples in this book can be used on both the BASYS board and the
Nexys-2 board. The only difference is that you would use the file basys2.ucf to define
the pinouts on the BASYS board and you would use the file nexys2.ucf to define the
pinouts on the Nexys-2 board. Both of these files are available to download from
www.lbebooks.com. Table 2 shows the jumper settings you would use on the two
boards.

 (a) (b)

1 http://www.aldec.com/education/
2 http://www.xilinx.com
3 http://www.digilentinc.com
4 Digital Design Using Digilent FPGA Boards – Verilog / Active-HDL Edition; available
 from www.lbebooks.com.

 Introduction 5

Table 1.2 Board Jumper Settings

BASYS Boad Nexys-2 Board
Set the JP3 jumper to JTAG Set the POWER SELECT jumper to USB
Remove the JP4 jumper to select a 50 MHz
clock

Set the MODE jumper to JTAG

Verilog

Verilog is based on the C programming language but it is not C. Verilog is a

hardware description language that is designed to model digital logic circuits. It simply
has the same syntax as the C programming language but the way it behaves is different.
In this book we begin by using the Active-HDL block diagram editor to draw logic
circuits using basic gates. When you compile these block diagrams Active-HDL will
generate the corresponding Verilog code. The block diagram representing your logic
circuit can then be used as a module in a higher-level digital design. This higher-level
design can then be compiled to produce its corresponding Verilog code. This hierachical
block diagram editor will make it easy to design top-level designs.

Sometimes it will be easier to design a digital module by writing a Verilog
program directly rather than drawing it using gates. When you do this you can still use
the block diagram for this module in higher-level designs. We will illustrate this process
in many of our examples.

Just like any programming language, you can only learn Verilog by actually
writing Verilog programs and simulating the designs using a Verilog simulator that will
display the waveforms of the signals in your design. This is a good way to learn not only
Verilog but digital logic as well.

A companion book5 that uses VHDL instead of Verilog is available from Digilent
or www.lbebooks.com. More comprehensive Verilog and VHDL books are also
available.6,7

5 Introduction to Digital Design Using Digilent FPGA Boards – Block Diagram / VHDL Examples, LBE
Books, 2009.
6 Digital Design Using Digilent FPGA Boards – Verilog / Active-HDL Edition, LBE Books, 2009.
7 Digital Design Using Digilent FPGA Boards – VHDL / Active-HDL Edition, LBE Books, 2009.

6 Example 1

Example 1

Switches and LEDs

In this example we will show the basic structure of a Verilog program and how to

write logic equations for 2-input gates. Example 1a will show the simulation results
using Aldec Active-HDL and Example 1b will show how to synthesize the program to a
Xilinx FPGA on the BASYS or Nexys-2 board.

Prerequisite knowledge:
 None
Learned in this Example:
 Use of Aldec Active-HDL – Appendix A

1.1 Slide Switches

 The slide switches on the BASYS and
Nexys-2 boards are connected to pins on the
FPGA through a resistor R as shown in Fig. 1.1.
The value of R is 4.7 kΩ on the BASYS board
and 10 kΩ on the Nexys-2 board. When the slide
switch is down it is connected to ground and the
input sw[i] to the FPGA is read as a logic 0.
When the slide switch is up it is connected to 3.3
V and the input sw[i] to the FPGA is read as a
logic 1.

There are eight slide switches on the BASYS and Nexys-2 boards. The eight pin
numbers on the FPGA corresponding to the eight slide switches are given in a .ucf file.
The file basys2.ucf shown in Listing 1.1 defines the pin numbers for all I/O on the
BASYS board. Note that we have named the slide switches sw[i], i = 0:7, which
correspond to the switch labels on the board. We will always name the slide switches
sw[i] in our top-level designs so that we can use the basys2.ucf file without change.
Because the pin numbers on the Nexys-2 board are different from those on the BASYS
board we will use a different file called nexys2.ucf to define the pin numbers on the
Nexys-2 board. The names of the I/O ports, however, will be the same for both boards.
Therefore, all of the examples in this book can be used with either board by simply using
the proper .ucf file when implementing the design. Both of these .ucf files can be
downloaded from www.lbebooks.com.

1.2 LEDs

A light emitting diode (LED) emits light when current flows through it in the
positive direction as shown in Fig. 1.2. Current flows through the LED when the voltage

Figure 1.1 Slide switch connection

3.3 V

sw[i]
R

 Switches and LEDs 7

on the anode side (the wide side of the black triangle) is made higher than the voltage on
the cathode side (the straight line connected to the apex of the black triangle). When
current flows through a lighted LED the forward voltage across the LED is typically
between +1.5 and +2.0 volts. If voltage V2 in Fig. 1.2 is less than or equal to voltage V1
then no current can flow through the LED and therefore no light will be emitted. If
voltage V2 is greater than voltage V1 then current will flow through the resistor R and the
LED. The resistor is used to limit the amount of current that flows through the LED.
Typical currents needed to light LEDs range from 2 to 15 milliamps.

 Listing 1.1 basys2.ucf

Pin assignment for LEDs
NET "ld<7>" LOC = "p2" ;
NET "ld<6>" LOC = "p3" ;
NET "ld<5>" LOC = "p4" ;
NET "ld<4>" LOC = "p5" ;
NET "ld<3>" LOC = "p7" ;
NET "ld<2>" LOC = "p8" ;
NET "ld<1>" LOC = "p14" ;
NET "ld<0>" LOC = "p15" ;

Pin assignment for slide switches
NET "sw<7>" LOC = "p6";
NET "sw<6>" LOC = "p10";
NET "sw<5>" LOC = "p12";
NET "sw<4>" LOC = "p18";
NET "sw<3>" LOC = "p24";
NET "sw<2>" LOC = "p29";
NET "sw<1>" LOC = "p36";
NET "sw<0>" LOC = "p38";

Pin assignment for pushbutton switches
NET "btn<3>" LOC = "p41";
NET "btn<2>" LOC = "p47";
NET "btn<1>" LOC = "p48";
NET "btn<0>" LOC = "p69";

Pin assignment for 7-segment displays
NET "a_to_g<6>" LOC = "p25" ;
NET "a_to_g<5>" LOC = "p16" ;
NET "a_to_g<4>" LOC = "p23" ;
NET "a_to_g<3>" LOC = "P21" ;
NET "a_to_g<2>" LOC = "p20" ;
NET "a_to_g<1>" LOC = "p17" ;
NET "a_to_g<0>" LOC = "p83" ;
NET "dp" LOC = "p22" ;

NET "an<3>" LOC = "p26";
NET "an<2>" LOC = "p32";
NET "an<1>" LOC = "p33";
NET "an<0>" LOC = "p34";

Pin assignment for clock
NET "mclk" LOC = "p54";

8 Example 1

There are two different ways that an I/O
pin of an FPGA can be used to turn on an LED.
The first is to connect the FPGA pin to V2 in Fig.
1.2 and to connect V1 to ground. Bringing the pin
(V2) high will then turn on the LED. To turn off
the LED the output pin would be brought low.
This is the method used for the LEDs ld[7] – ld[0]
on the BASYS and Nexys-2 boards.

The second method is to connect the
FPGA pin to V1 in Fig. 1.2 and to connect V2 to
a constant voltage. Bringing the pin (V1) low
will then turn on the LED. To turn off the LED
the output pin would be brought high. This voltage should be equal to V2 to make sure
no current flows through the LED. This second method is the method used for the 7-
segment displays on the BASYS and Nexys-2 boards. Examples 9 and 10 will show how
to display hex digits on the 7-segment displays.

1.3 Connecting the Switches to the LEDs

Part 1 of the tutorial in Appendix A shows how to
connect the input switches to the output LEDs using the block
diagram editor (BDE) in Active-HDL. The result is shown in
Fig. 1.3.

Figure 1.2 Turning on an LED

V2
R LED

V2
R LED

V1 > V2
No current

Current
light

no light

V1 < V2

Figure 1.3 Connecting the eight switches to the eight LEDs

 Switches and LEDs 9

Compiling the file sw2led.bde generates the Verilog file sw2led.v shown in
Listing 1.2. Alternatively, by selecting the hardware description editor (HDE) the
module statement and port declarations are automatically generated but you will need to
write your own assign statement. This can lead to the simpler Verilog program shown in
Listing 1.3 where we have combined the module statement and port declarations in a
single module statement that conforms to the 2001 Verilog standard. This format makes
it easier to see the input and output signals. We can also write a single assign statement
to replace the two assign statements in Listing 1.2. It is unnecessary to define the
intermediate bus BUS7[7:0] and because sw and ld are the same size we don't need to
include the [7:0] in the assign statement.

 Listing 1.2 sw2led.v
// Title : sw2led
module sw2led (sw,ld) ;

// ------------ Port declarations --------- //
input [7:0] sw;
wire [7:0] sw;
output [7:0] ld;
wire [7:0] ld;

// ----------- Signal declarations -------- //
wire [7:0] BUS7;

// ----------- Terminals assignment --------//
// ---- Input terminals --- //
assign BUS7[7:0] = sw[7:0];

// ---- Output terminals --- //
assign ld[7:0] = BUS7[7:0];

endmodule

 Listing 1.3 sw2led2.v
// Title : sw2led2
module sw2led2 (
input wire [7:0] sw ,
output wire [7:0] ld
) ;

assign ld = sw;

endmodule

In Parts 2 and 3 of the tutorial in Appendix A we show how to synthesize,

implement, and download the design to the FPGA board. In summary, the steps you
follow to implement a digital design on the BASYS or Nexys-2 board are the following:

10 Example 1

1. Create a new project and design name.
2. Using the BDE create a logic diagram.
3. Save and compile the .bde file.
4. Optionally simulate the design (see Example 2).
5. Synthesize the design selecting the Spartan3E family and the 3s100etq144

device for the BASYS board and the 3s500efg320 device for the Nexys-2
board.

6. Implement the design using either basys2.ucf or nexys2.ucf as the custom
constraint file. Check Allow Unmatched LOC Constraints under
Translate and uncheck Do Not Run Bitgen under BitStream. Select JTAG
Clock as the start-up clock under Startup Options.

7. Use ExPort to download the .bit file to the FPGA board.

At this point the switches are connected to the LEDs. Turning on a switch will

light up the corresponding LED.

Problem

1.1 The four pushbuttons on the BASYS and Nexys-2 boards are connected to pins on

the FPGA using the circuit shown in Fig. 1.4. The value of R is 4.7 kΩ on the
BASYS board and 10 kΩ on the Nexys-2 board. When the pushbutton is up the
two resistors pull the input down to ground and the input btn(i) to the FPGA is read
as a logic 0. When the pushbutton is pressed the input is pulled up to 3.3 V and the
input btn(i) to the FPGA is read as a logic 1. Create a .bde file using Active-HDL
that will connect the four pushbuttons to the rightmost four LEDs. Compile and
implement the program. Download the .bit file to the FPGA board and test it by
pressing the pushbuttons.

btn(i)
R

R

3.3 V

Figure 1.4 Pushbutton connection

 2-Input Gates

11

Example 2

2-Input Gates

In this example we will design a circuit containing six different 2-input gates.

Example 2a will show the simulation results using Aldec Active-HDL and Example 2b
will show how to synthesize the program to a Xilinx FPGA on a Digilent board.

Prerequisite knowledge:
 Appendix C – Basic Logic Gates
 Appendix A – Use of Aldec Active-HDL

2.1 Generating the Design File gates2.bde

Part 4 of the tutorial in Appendix A shows how to connect two inputs a and b to
the inputs of six different gates using the block diagram editor (BDE) in Active-HDL.
The result is shown in Fig. 2.1. Note that we have named the outputs of the gates the
name of the gate followed by an underscore. Identifier names in Verilog can contain any
letter, digit, underscore _, or $. The identifier can not begin with a digit or be a keyword.
Verilog is case sensitive.

The name of this file is gates2.bde. When you compile this file the Verilog
program gates2.v shown in Listing 2.1 is generated. We have modified the module
statement to conform to the 2001 Verilog standard as described in Example 1.

Figure 2.1 Circuit diagram for Example 2

 Example 2

12

Listing 2.1 gates2.v
// Example 2a: gates2
module gates2 (
input wire a,
input wire b,
output wire and_,
output wire nand_,
output wire nor_,
output wire or_,
output wire xnor_,
output wire xor_
) ;

assign and_ = b & a;
assign nand_ = ~(b & a);
assign or_ = b | a;
assign nor_ = ~(b | a);
assign xor_ = b ^ a;
assign xnor_ = ~(b ^ a);

endmodule

The logic diagram in Fig. 2.1 contains six different gates. This logic circuit is
described by the Verilog program shown in Listing 2.1. The first line in Listing 2.1 is a
comment. Comments in Verilog follow the double slash //. All Verilog programs begin
with a module statement containing the name of the module (gates2 in this case) followed
by a list of all input and output signals together with their direction and type. We will
generally use lower case names for signals. The direction of the input and output signals
is given by the Verilog statements input, output, or inout (for a bi-directional signal).
The type of the signal can be either wire or reg. In Listing 2.1 all of the signals are of
type wire which you can think of as a wire in the circuit in Fig. 2.1 where actual voltages
could be measured. We will describe the reg type in Example 5.

To describe the output of each gate in Fig. 2.1 we simply write the logic equation
for that gate preceded by the keyword assign. These are concurrent assignment
statements which means that the statements can be written in any order.

2.2 Simulating the Design gates2.bde

Part 4 of the tutorial in Appendix A shows how to simulate this Verilog program
using Active-HDL. The simulation produced in Appendix A is shown in Fig. 2.2. Note
that the waveforms shown in Fig. 2.2 verify the truth tables for the six gates. Also note
that two clock stimulators were used for the inputs a and b. By making the period of the
clock stimulator for the input a twice the period of the clock stimulator for the input b all
four combinations of the inputs a and b will be generated in one period of the input a.

 2-Input Gates

13

Figure 2.2 Simulation of logic circuit in Fig. 2.1

2.3 Generating a Top-Level Design

Part 5 of the tutorial in Appendix A shows how to create a top-level design for the
gates2 circuit. In order to use the constraint files basys2.ucf or nexys2.ucf described in
Example 1 we must name the switch inputs sw[i] and the LED outputs ld[i]. This top-
level design, as created in Part 5 of Appendix A is shown in Fig. 2.3. The module gates2
in Fig. 2.3 contains the logic circuit shown in Fig. 2.1. Note that each wire connected to
a bus must be labeled to identify its connection to the bus lines.

Figure 2.3 Top-level design for Example 2

 Example 2

14

Compiling the top-level design shown in Fig. 2.3 will generate the Verilog
program shown in Listing 2.2. The inputs are now the two rightmost slide switches,
sw[1:0], and the outputs are the six right-most LEDs ld[5:0]. To associate these inputs
and outputs with the inputs a and b and the six output in the gates2 module in Fig. 2.1
and Listing 2.1 we use the Verilog instantiation statement

gates2 U1
(.a(sw[1]),
 .and_(ld[5]),
 .b(sw[0]),
 .nand_(ld[4]),
 .nor_(ld[3]),
 .or_(ld[2]),
 .xnor_(ld[1]),
 .xor_(ld[0])
);

This Verilog instantiation statement begins with the name of the module being

instantiated, in this case gates2 from Listing 2.1. This is followed by an arbitrary name
for this module in the top-level design. Here we call it U1. Then in parentheses the
inputs and outputs in Listing 2.1 are associated with corresponding inputs and outputs in
the top-level design in Fig. 2.3. Note that we connect the input a in Listing 2.1 to the
input sw[1] on the FPGA board. The input b in Listing 2.1 is connected to sw[0] and the
outputs and_, nand_, or_, nor_, xor_, and xnor_ are connected to the corresponding LED
outputs ld[5:0].

Follow the steps in the tutorial in Appendix A and implement this design on the
FPGA board. Note that when you change the settings of the two right-most slide
switches the LEDs will indicate the outputs of the six gates.

 Listing 2.2 gates2_top.v
// Example 2b: gates2_top
module gates2_top (sw,ld) ;
input wire [1:0] sw;
output wire [5:0] ld;

gates2 U1
(.a(sw[1]),
 .and_(ld[5]),
 .b(sw[0]),
 .nand_(ld[4]),
 .nor_(ld[3]),
 .or_(ld[2]),
 .xnor_(ld[1]),
 .xor_(ld[0])
);

 Multiple-Input Gates

15

Example 3

Multiple-Input Gates

In this example we will design a circuit containing multiple-input gates. We will

create a logic circuit containing 4-input AND, OR, and XOR gates. We will leave it as a
problem for you to create a logic circuit containing 4-input NAND, NOR, and XNOR
gates.

Prerequisite knowledge:
 Appendix C – Basic Logic Gates
 Appendix A – Use of Aldec Active-HDL

3.1 Behavior of Multiple-Input Gates

The AND, OR, NAND, NOR, XOR, and XNOR gates we
studied in Example 1 had two inputs. The basic definitions hold
for multiple inputs. A multiple-input AND gate is shown in Fig.
2.19. The output of an AND gate is HIGH only if all inputs are
HIGH. There are three ways we could describe this multiple-
input AND gate in Verilog. First we could simply write the
logic equation as
.
 assign z = x[1] & x[2] & ... & x[n]; (3.1)

Alternatively, we could use the & symbol as a reduction operator by writing

 assign z = &x; (3.2)

This produces the same result as the statement (3.1) with much less writing.
Finally, we could use the following gate instantiation statement for an AND gate.

and(z,x[1],x[2],...,x[n]); (3.3)

In this statement the first parameter in the parentheses is the name of the output port.
This is followed by a list of all input signals.

A multiple-input OR gate is shown in Fig. 3.2. The output of an OR gate is LOW
only if all inputs are LOW. Just as with the AND gate there are
three ways we can describe this multiple-input OR gate in
Verilog. We can write the logic equation as
.
 assign z = x[1] | x[2] | ... | x[n];

or we can use the | symbol as a reduction operator by writing

 assign z = |x;

Figure 3.1
Multiple-input AND gate.

Figure 3.2
Multiple-input OR gate.

x[1]
x[2]

x[n]

zAND

x[1]
x[2]

x[n]

zOR

 Example 3

16

or we can use the following gate instantiation statement for an OR gate.

 or(z,x[1],x[2],...,x[n]);

A multiple-input NAND gate is shown in Fig. 3.3. The output of a NAND gate is

LOW only if all inputs are HIGH. We can write the logic
equation as
.
 assign z = ~(x[1] & x[2] & ... & x[n]);

or we can use the ~& symbol as a reduction operator by
writing

 assign z = ~&x;

or we can use the following gate instantiation statement for an OR gate.

 nand(z,x[1],x[2],...,x[n]);

A multiple-input NOR gate is shown in Fig. 3.4. The output of a NOR gate is
HIGH only if all inputs are LOW. We can write the logic
equation as
.
 assign z = ~(x[1] | x[2] | ... | x[n]);

or we can use the ~| symbol as a reduction operator by
writing

 assign z = ~|x;

or we can use the following gate instantiation statement for an OR gate.

 nor(z,x[1],x[2],...,x[n]);

A multiple-input XOR gate is shown in Fig. 3.5.
What is the meaning of this multiple-input gate? Following
the methods we used for the previous multiple-input gates we
can write the logic equation as
.
 assign z = x[1] ^ x[2] ^ ... ^ x[n];

or we can use the ^ symbol as a reduction operator by writing

 assign z = ^x;

or we can use the following gate instantiation statement for an OR gate.

 xor(z,x[1],x[2],...,x[n]);

We will create a 4-input XOR gatge in this example to

determine its meaning but first consider the multiple-input
XNOR gate shown in Fig. 3.6. What is the meaning of this
multiple-input gate? (See the problelm at the end of this

Figure 3.3
Multiple-input NAND gate.

Figure 3.4
Multiple-input NOR gate.

Figure 3.5
Multiple-input XOR gate.

Figure 3.6
Multiple-input XNOR gate.

x[1]
x[2]

x[n]

zNAND

x[1]
x[2]

x[n]

zNOR

x[1]
x[2]

x[4]

zXORx[3]

x[1]
x[2]

x[n]

zXNOR

 Multiple-Input Gates

17

example for the answer.) Following the methods we used for the previous multiple-input
gates we can write the logic equation as
.
 assign z = ~(x[1] ^ x[2] ^ ... ^ x[n]);

or we can use the ~^ symbol as a reduction operator by writing

 assign z = ~^x;

or we can use the following gate instantiation statement for an XOR gate.

 xnor(z,x[1],x[2],...,x[n]);

3.2 Generating the Design File gates4.bde

Use the block diagram editor (BDE) in Active-HDL to create the logic circuit
called gates4.bde shown in Fig. 3.7. A simulation of this circuit is shown in Fig. 3.8.
From this simulation we see that the output of an XOR gate is HIGH only if the number
of HIGH inputs is ODD.

If you look at the file gates4.v that is generated when you compile gates4.bde you

will see that Active-HDL defines separate modules for the 4-input AND, OR, and XOR
gates and then uses a Verilog instantiation statement to "wire" them together.

Alternatively, we could use the HDE editor to write the simpler Verilog program
called gates4b.v shown in Listing 3.1 that uses reduction operators to implement the
three 4-input gates. This Verilog program will produce the same simulation as shown in
Fig. 3.8.

Figure 3.7 Block diagram for gates4.bde

 Example 3

18

 Listing 3.1: gates4b.v
// Example 2: 4-input gates
module gates4b (
input wire [3:0] x ,
output wire and4_ ,
output wire or4_ ,
output wire xor4_
);

assign and4_ = &x;
assign or4_ = |x;
assign xor4_ = ^x;

endmodule

3.3 Generating the Top-Level Design gates4_top.bde

Fig. 3.9 shows the block diagram of the top-level design gates4_top.bde. The

module gates4 shown in Fig. 3.9 contains the logic circuit shown in Fig. 3.4. If you
compile gates4_top.bde the Verilog program gates4_top.v shown in Listing 3.2 will be
generated. Compile, synthesize, implement, and download this design to the FPGA
board.

Figure 3.8 Simulation of the design gates4.bde shown in Fig. 3.7

Figure 3.9 Block diagram for the top-level design gates4_top.bde

 Multiple-Input Gates

19

 Listing 3.2: gates4_top.v

// Example 2: 4-input gates - top level
module gates4_top (
input wire [3:0] sw ,
output wire [2:0] ld
);

gates4 U1
(
 .and4_(ld[2]),
 .or4_(ld[1]),
 .x(sw),
 .xor4_(ld[0])
);

endmodule

Problem

3.1 Use the BDE to create a logic circuit containing 4-input NAND, NOR, and XNOR

gates. Simulate your design and verify that the output of an XNOR gate is HIGH
only if the number of HIGH inputs is EVEN. Create a top-level design that connects
the four inputs to the rightmost four slide switches and the three outputs to the three
rightmost LEDs. Implement your design and download it to the FPGA board.

3.2 The circuit shown at the right is for a 2 x 4 decoder.

Use the BDE to create this circuit and simulate it
using Active-HDL. Choose a counter stimulator for
x[1:0] that counts every 20 ns, set en to a forced
value of 1, and simulate it for 100 ns. Make a truth
table with (x[1], x[0]) as the inputs and y[0:3] as the
outputs. What is the behavior of this decoder?

x[1]

en

x[0]

y[0]

y[1]

y[2]

y[3]

 Example 4

20

0 0 1
0 1 0
1 0 0
1 1 1

zx yXNOR

x
y

z

z = ~(x ^ y)
z = x ~^ y

Example 4

Equality Detector

In this example we will design a 2-bit equality detector using two NAND gates

and an AND gate.

Prerequisite knowledge:
 Appendix C – Basic Logic Gates
 Appendix A – Use of Aldec Active-HDL

4.1 Generating the Design File eqdet2.bde

The truth table for a 2-input XNOR gate is shown in Fig. 4.1. Note that the
output z is 1 when the inputs x and y are equal. Thus, the XNOR gate can be used as a
1-bit equality detector.

By using two XNOR gates and an AND gate we can design a 2-bit equality
detector as shown in Fig. 4.2. Use the BDE to create the file eqdet2.bde using Active-
HDL.

Figure 4.1 The XNOR gate is a 1-bit equality detector

Figure 4.2 Block diagram of a 2-bit equality detector, eqdet2.bde

 Equality Detector

21

If you compile the file eqdet2.bde Active-HDL will generate the Verilog program
eqdet2.v shown in Listing 4.1. A simulation of eqdet2.bde is shown in Fig. 4.3. Note
that the output eq is 1 only if a[1:0] is equal to b[1:0].

 Listing 4.1: eqdet2.v

// Title : eqdet2
module eqdet2 (
input wire [1:0] a,
input wire [1:0] b,
output wire eq
) ;

wire eq1;
wire eq2;

assign eq1 = ~(b[1] ^ a[1]);
assign eq2 = ~(b[0] ^ a[0]);
assign eq = eq2 & eq1;

endmodule

Create a top-level design called eqdet2_top.bde that connects a[1:0] and b[1:0] to
the rightmost four slide switches and connects the output eq to ld[0]. Implement your
design and download it to the FPGA board.

Figure 4.3 Simulation of the 2-bit equality detector, eqdet2.bde

 Example 5

22

Example 5

2-to-1 Multiplexer: if Statement

In this example we will show how to design a 2-to-1 multiplexer and will

introduce the Verilog if statement. Section 5.1 will define a multiplexer and derive the
logic equations for a 2-to-1 multiplexer. Section 5.2 will illustrate the use of two
versions of the Verilog if statement.

Prerequisite knowledge:
 Karnaugh Maps – Appendix D
 Use of Aldec Active-HDL – Appendix A

5.1 Multiplexers

An n-input multiplexer (called a MUX) is an n-way digital switch that switches
one of n inputs to the output. A 2-input multiplexer is shown in Fig. 5.1. The switch is
controlled by the single control line s. This bit selects one of the two inputs to be
"connected" to the output. This means that the logical value of the output y will be the
same as the logical value of the selected input.

From the truth table in Fig. 5.1 we see that y = a if s = 0 and y = b if s = 1. The
Karnaugh map for the truth table in Fig. 5.1 is shown in Fig. 5.2. We see that the logic
equation for y is

y = ~s & a | s & b (5.1)

Note that this logic equation describes the
circuit diagram shown in Fig. 5.3.

Figure 5.1 A 2-to-1 multiplexer

2 x 1
MUX

a

b

y

s

s a b y
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

s
ab

1

0

1

00 01 11 10

1 1

1 1

y = ~s & a | s & b

Figure 5.2
K-map for a 2-to-1 multiplexer

 2-to-1 Multiplexer: if Statement

23

Use the BDE to create the block diagram mux21.bde shown in Fig. 5.3 that
implements logic equation (5.1). Compiling mux21.bde will generate a Verilog file,
mux21.v, that is equivalent to Listing 5.1. A simulation of mux21.bde is shown in Fig.
5.4. Note in the simulation that y = a if s = 0 and y = b if s = 1.

 Listing 5.1 Example5a.v

// Example 5a: 2-to-1 MUX using logic equations
module mux21a (
input wire a ,
input wire b ,
input wire s ,
output wire y
);

assign y = ~s & a | s & b;

endmodule

Figure 5.3 Block diagram for a 2-to-1 multiplexer, mux21.bde

Figure 5.4 Simulation of the 2-to-1 MUX in Fig. 5.3

 Example 5

24

5.2 The Verilog if statement

The behavior of the 2 x 1 multiplexer shown in Fig. 5.1 can be described by the

Verilog statements
 if(s == 0)
 y = a;
 else
 y = b;

The Verilog if statement must be cont ained in an always block as shown in Listing 5.2.
Note that y must be declared to be of type reg because it is assigned a value within the
always block. The notation @(*) in the always statement is equivalent to @(a,b,s) where
a, b, s is called the sensitivity list. Any time any of these input values change the if
statement within the always block is executed. The use of the * notation is a convenience
that prevents you from omitting any of the signals or inputs used in the always block. A
Verilog program can contain more than one always blocks, and these always blocks are
executed concurrently. The Verilog code in Listing 5.2 will be compiled to produce the
logic circuit shown in Fig. 5.3. A simulation of the Verilog code in Listing 5.2 will
produce the same waveform as shown in Fig. 5.4.

Listing 5.2 Example4b.v
// Example 4b: 2-to-1 MUX using if statement
module mux21b (
input wire a ,
input wire b ,
input wire s ,
output reg y
);

always @(*)
 if(s == 0)
 y = a;
 else
 y = b;

endmodule

Create a top-level design called mux21_top.bde that connects a and b to the

rightmost two slide switches, connects s to btn[0], and connects the output y to ld[0].
Implement your design and download it to the FPGA board. Test the operation of the
multiplexer by changing the position of the toggle switches and pressing pushbutton
btn[0].

 Quad 2-to-1 Multiplexer

25

Example 6

Quad 2-to-1 Multiplexer

In this example we will show how to design a quad 2-to-1 multiplexer. In Section

6.1 we will make the quad 2-to-1 multiplexer by wiring together four of the 2-to-1
multiplexers that we designed in Example 5. In Section 6.2 we will show how the quad
2-to-1 multiplexer can be designed using a single Verilog if statement. Finally, in
Section 6.3 we will show how to use a Verilog parameter to define a generic 2-to-1
multiplexer with arbitrary bus sizes.

Prerequisite knowledge:
 Example 5 – 2-to-1 Multiplexer

6.1 Generating the Design File mux42.bde

By using four instances of the 2-to-1 MUX, mux21.bde, that we designed in

Example 5, we can design a quad 2-to-1 multiplexer as shown in Fig. 6.1. Use the BDE
to create the file mux24.bde using Active-HDL. Note that you will need to add the file
mux21.bde to your project.

Figure 6.1 The quad 2-to-1 MUX, mux24.bde, contains four 2-to-1 MUXs

 Example 6

26

If you compile the file mux24.bde Active-HDL will generate the Verilog program
mux24.v shown in Listing 6.1. A simulation of mux24.bde is shown in Fig. 6.2. Note
that the output y[3:0] will be either a[3:0] or b[3:0] depending on the value of s.

Listing 6.1 Example6a.v
// Example 6a: mux24
module mux24 (
input wire s;
input wire [3:0] a;
input wire [3:0] b;
output wire [3:0] y;
) ;

mux21 U1
(.a(a[3]),
 .b(b[3]),
 .s(s),
 .y(y[3])
);

mux21 U2
(.a(a[2]),
 .b(b[2]),
 .s(s),
 .y(y[2])
);

mux21 U3
(.a(a[1]),
 .b(b[1]),
 .s(s),
 .y(y[1])
);

mux21 U4
(.a(a[0]),
 .b(b[0]),
 .s(s),
 .y(y[0])
);

endmodule

 Figure 6.2 Simulation of the quad 2-to-1 MUX in Fig. 6.1

 Quad 2-to-1 Multiplexer

27

Use the BDE to create the top-level design called mux21_top.bde shown in Fig.
6.3. Note that a[3:0] are connected to the four leftmost slide switches, b[3:0] are
connected to the rightmost four slide switches, and y[3:0] are connected to the rightmost
LEDs. Also note that s is connected to btn[0], and the input btn[0:0] must be declared as
an array, even though there is only one element, so that we can use the constraint file
basys2.ucf or nexys2.ucf without change. Implement your design and download it to the
FPGA board. Test the operation of the quad 2-to-1 multiplexer by setting the switch
values and pressing pushbutton btn[0].

If you compile the file mux24_top.bde Active-HDL will generate the Verilog
program mux24_top.v shown in Listing 6.2. A simulation of mux24_top.bde is shown in
Fig. 6.4.

Listing 6.2 Example6b.v
// Example 6b: mux24_top
module mux24_top (
input wire [0:0] btn;
input wire [7:0] sw;
output wire [3:0] ld;
) ;

mux24 U1
(.a(sw[7:4]),
 .b(sw[3:0]),
 .s(btn[0]),
 .y(ld)
);
endmodule

Figure 6.3 Top-level design for testing the quad 2-to-1 MUX

Figure 6.4 Simulation of mux24_top.bde in Fig. 6.1

 Example 6

28

6.2 A Quad 2-to-1 Multiplexer Using an if Statement

In Listing 5.2 of Example 5 we used a Verilog if statement to implement a 2-to-1

MUX. Listing 6.3 is a direct extension of Listing 5.2 where now the inputs and outputs
are 4-bit values rather that a single bit. The Verilog program shown in Listing 6.3 will
produce the same simulation as shown in Fig. 6.2. The module mux24b defined by the
Verilog program in Listing 6.3 could be used in place of the mux24 module in the top-
level design in Fig. 6.3

 Listing 6.3 mux24b.v
// Example 6c: Quad 2-to-1 mux using if statement
module mux24b(
input wire [3:0] a,
input wire [3:0] b,
input wire s,
output reg [3:0] y
);

always @(*)

if(s == 0)
 y = a;
 else
 y = b;

endmodule

6.3 Generic Multiplexers: Parameters

We can use the Verilog parameter statement to design a generic 2-to-1
multiplexer with input and output bus widths of arbitrary size. Listing 6.4 shows a
Verilog program for a generic 2-to-1 MUX.

Note the use of the parameter statement that defines the bus width N to have a
default value of 4. This value can be overridden when the multiplexer is instantiated as
shown in Listing 6.5 for an 8-line 2-to-1 multiplexer called M8. The parameter override
clause is automatically included in the module instantiation statement when you copy it
in Active-HDL as shown in Listing 6.5. We will always use upper-case names for
parameters. The simulation of Listing 6.5 is shown in Fig. 6.5.

If you compile the Verilog program mux2g.v shown in Listing 6.4 it will generate
a block diagram for this module when you go to BDE. If you right-click on the symbol
for mux2g and select Properties, you can change the default value of the parameter N by
selecting the Parameters tab and entering an actual value for N.

 Quad 2-to-1 Multiplexer

29

Listing 6.4 mux2g.v
// Example 6d: Generic 2-to-1 MUX using a parameter
module mux2g
#(parameter N = 4)
(input wire [N-1:0] a,
 input wire [N-1:0] b,
 input wire s,
 output reg [N-1:0] y
);

always @(*)

if(s == 0)
 y = a;
 else
 y = b;

endmodule

 Listing 6.5 mux28.v
// Example 6e: 8-line 2-to-1 MUX using a parameter
module mux28(
input wire [7:0] a,
input wire [7:0] b,
input wire s,
output wire [7:0] y
);

mux2g #(
 .N(8))
M8 (.a(a),
 .b(b),
 .s(s),
 .y(y)
);

 endmodule

Figure 6.5 Simulation result from the Verilog program in Listing 6.5

 Example 7

30

Example 7

4-to-1 Multiplexer

In this example we will show how to design a 4-to-1 multiplexer. In Section 7.1

we will make a 4-to-1 multiplexer by wiring together three of the 2-to-1 multiplexers that
we designed in Example 5. In Section 7.2 we will derive the logic equation for a 4-to-1
MUX. In Section 7.3 we will show how a 4-to-1 multiplexer can be designed using a
single Verilog case statement and in Section 7.4 we design a quad 4-to-1 multiplexer.

Prerequisite knowledge:
 Example 5 – 2-to-1 Multiplexer

7.1 Designing a 4-to-1 MUX Using 2-to-1 Modules

A 4-to-1 multiplexer has the truth table shown in Fig. 7.1 By
using three instances of the 2-to-1 MUX, mux21.bde, that we
designed in Example 5, we can design a 4-to-1 multiplexer as
shown in Fig. 7.2. Use the BDE to create the file mux41.bde
using Active-HDL. Note that you will need to add the file
mux21.bde to your project.

Figure 7.2 The 4-to-1 MUX, mux41.bde, contains four 2-to-1 MUXs

s1 s0 z
0 0 c0
0 1 c1
1 0 c2
1 1 c3

Figure 7.1

Truth table for a 4-to-1 MUX

 4-to-1 Multiplexer

31

In Fig. 7.2 when s[1] = 0 it is v, the output of U2 that gets through to z. If s[0] = 0
in U2 then it is c[0] that gets through to v and therefore to z. If s[0] = 1 in U2 then it is
c[1] that gets through to v and therefore to z.

If, on the other hand, s[1] = 1 in U1 then it is w, the output of U3 that gets through
to z. If s[0] = 0 in U3 then it is c[2] that gets through to w and therefore to z. If s[0] = 1
in U3 then it is c[3] that gets through to w and therefore to z. Thus you can see that the
circuit in Fig. 7.2 will implement the truth table in Fig. 7.1.

When you compile the file mux41.bde Active-HDL will generate the Verilog
program mux41.v shown in Listing 7.1. A simulation of mux41.bde is shown in Fig. 7.3.
Note that the output z will be one of the four inputs c[3:0] depending on the value of
s[1:0].

 Listing 7.1 mux41.v
// Example 7a: 4-to-1 MUX using module instantiation
module mux41 (
input wire [3:0] c ,
input wire [1:0] s ,
output wire z
);

// Internal signals
wire v; // output of mux M1
wire w; // output of mux M2

// Module instantiations
mux21 U1
(.a(v),
 .b(w),
 .s(s[1]),
 .y(z)
);

mux21 U2
(.a(c[0]),
 .b(c[1]),
 .s(s[0]),
 .y(v)
);

mux21 U3
(.a(c[2]),
 .b(c[3]),
 .s(s[0]),
 .y(w)
);
endmodule

If you were going to create this top-level design using HDE instead of BDE you
would begin by defining the inputs c[3:0] and s[1:0] and the output z and the two wires v
and w. You would then “wire” the three modules together using the three module
instantiation statements shown in Listing 7.1.

The easiest way to generate this module instantiation statement is to first compile
the file mux21.v from Example 5 using Active-HDL, expand the library icon (click the

 Example 7

32

plus sign), right click on mux21, and select Copy Verilog Instantiation as shown in Fig.
7.4. Paste this into your top-level mux41.v file.

Figure 7.4 Generating a module instantiation prototype

Figure 7.3 Simulation of the Verilog program in Listing 7.1

 4-to-1 Multiplexer

33

At this point you would have the statement

mux21 Label1 (.a(a),
 .b(b),
 .s(s),
 .y(y)
);

Make three copies of this prototype and change the name of Label1 to U1, U2,

and U3 in the three statements. Now you just “wire up” each input and output variable
by changing the values in the parentheses to the signal that it is connected to. For
example, the mux U1 input a is connected to the wire v so we would write .a(v). In a
similar way the mux input b is connected to wire w and the mux input s is connected to
input s[1]. The mux output y is connected to the output z in Fig. 7.2. Thus, the final
version of this module instantiation statement would be

mux21 U1 (.a(v),
 .b(w]),
 .s(s[1]),
 .y(z)
);

The other two modules, U2 and U3, are “wired up” using similar module

instantiation statements.

7.2 The Logic Equation for a 4-to-1 MUX

The 4-to-1 MUX designed in Fig. 7.2 can be represented by the logic symbol
shown in Fig. 7.5. This multiplexer acts like a digital switch in which one of the inputs
c[3:0] gets connected to the output z. The switch is controlled by the two control lines
s[1:0]. The two bits on these control lines select one of the four inputs to be "connected"
to the output. Note that we constructed this 4-to-1 multiplexer using three 2-to-1
multiplexers in a tree fashion as shown in Fig. 7.2.

Recall from Eq. (5.1) in Example 5 that the logic equation for a 2-to-1 MUX is
given by

y = ~s & a | s & b (7.1)

Figure 7.5 A 4-to-1 multiplexer

 Example 7

34

Applying this equation to the three 2-to-1 MUXs in Fig. 7.2 we can write the
equations for that 4 x 1 MUX as follows.

v = ~s0 & c0 | s0 & c1

w = ~s0 & c2 | s0 & c3

z = ~s1 & v | s1 & w

z = ~s1 & (~s0 & c0 | s0 & c1) | s1 & (~s0 & c2 | s0 & c3)

or
z = ~s1 & ~s0 & c0
 | ~s1 & s0 & c1 (7.2)
 | s1 & ~s0 & c2
 | s1 & s0 & c3

Equation (7.2) for z also follows from the truth table in Fig. 7.1. Note that the
tree structure in Fig. 7.2 can be expanded to implement an 8-to-1 multiplexer and a 16-to-
1 multiplexer.

A Verilog program that implements a 4-to-1 MUX using the logic equation (7.2)
is given in Listing 7.2. A simulation of this program will produce the same result as in
Fig. 7.3 (without the wire signals v and w).

 Listing 7.2 mux41b.v

// Example 7b: 4-to-1 MUX using logic equation
module mux41b (
input wire [3:0] c ,
input wire [1:0] s ,
output wire z
);

assign z = ~s[1] & ~s[0] & c[0]
 | ~s[1] & s[0] & c[1]
 | s[1] & ~s[0] & c[2]
 | s[1] & s[0] & c[3];

endmodule

7.3 4-to-1 Multiplexer: case Statement

The same 4-to-1 multiplexer defined by the Verilog program in Listing 7.2 can be
implemented using a Verilog case statement. The Verilog program shown in Listing 7.3
does this. The case statement in Listing 7.3 directly implements the definition of a 4-to-1
MUX given by the truth table in Fig. 7.1. The case statement is an example of a
procedural statement that must be within an always block. A typical line in the case
statement, such as

2: z = c[2];

 4-to-1 Multiplexer

35

will assign the value of c[2] to the output z when the input value s[1:0] is equal to 2
(binary 10). Note that the output z must be of type reg because its value is assigned
within an always clause.

In the case statement the alternative value preceding the colon in each line
represents the value of the case parameter, in this case the 2-bit input s. These values are
decimal values by default. If you want to write a hex value you precede the number with
‘h as in ‘hA which is a hex value A. Similarly, a binary number is preceded with a ‘b as
in ‘b1010 which has the same value (10) as ‘hA. Normally, binary numbers are preceded
with the number of bits in the number such as 4’b107. Using this notation, the number
8’b110011 will be the binary number 00110011.

 Listing 7.3 mux41c.v

// Example 7c: 4-to-1 MUX using case statement
module mux41c (
input wire [3:0] c ,
input wire [1:0] s ,
output reg z
);

always @(*)

case(s)
 0: z = c[0];
 1: z = c[1];
 2: z = c[2];
 3: z = c[3];
 default: z = c[0];
 endcase
endmodule

All case statements should include a default line as shown in Listing 7.3. This is

because all cases need to be covered and while it looks as if we covered all cases in
Listing 7.3, Verilog actually defines four possible values for each bit, namely 0 (logic
value 0), 1 (logic value 1), Z (high impedance), and X (unkown value).

A simulation of the program in Listing 7.3 will produce the same result as in Fig.
7.3 (without the wire signals v and w).

7.4 A Quad 4-to-1 Multiplexer

To make a quad 4-to-1 multiplexer we could combine four 4-to-1 MUXs as we

did for a quad 2-to-1 multiplexer module in Fig. 6.1 of Example 6. However, it will be
easier to modify the case statement program in Listing 7.3 to make a quad 4-to-1 MUX.
Because we will use it in Example 10 we will define a single 16-bit input x[15:0] and we
will multiplex the four hex digits making up this 16-bit value.

Listing 7.4 is a Verilog program for this quad 4-to-1 multiplexer. Note that the
four hex digits making up the 16-bit value of x[15:0] are multiplexed to the output z[3:0]
depending of the value of the control signal s[1:0]. A simulation of this quad 4-to-1
multiplexer is shown in Fig. 7.6 and its BDE symbol is shown in Fig. 7.7.

 Example 7

36

 Listing 7.4 mux44.v

// Example 7d: quad 4-to-1 MUX

module mux44 (
input wire [15:0] x ,
input wire [1:0] s ,
output reg [3:0] z
);

always @(*)

case(s)
 0: z = x[3:0];

 1: z = x[7:4];
 2: z = x[11:8];
 3: z = x[15:12];
 default: z = x[3:0];

 endcase

endmodule

Figure 7.7 A quad 4-to-1 multiplexer

Figure 7.6 Simulation of the quad 4-to-1 MUX in Listing 7.4

 Clocks and Counters

37

Example 8

Clocks and Counters

The Nexys-2 board has an onboard 50 MHz clock. The BASYS board has a

jumper that allows you to set the clock to 100 MHz, 50 MHz, or 25 MHz. All of the
examples in this book will assume an input clock frequency of 50 MHz. If you are using
the BASYS board you should remove the clock jumper, which will set the clock
frequency to 50 MHz. This 50 MHz clock signal is a square wave with a period of 20 ns.
The FPGA pin associated with this clock signal is defined in the constraints file
basys2.ucf or nexys2.ucf with the name mclk.

In this example we will show how to design an N-bit counter in Verilog and how
to use a counter to generate clock signals of lower frequencies.

Prerequisite knowledge:
 Appendix A – Use of Aldec Active-HDL

8.1 N-Bit Counter

The BDE symbol for an N-bit counter is shown in Fig. 8.1. If the input clr = 1
then all N of the outputs q[i] are cleared to zero asynchronously, i.e., regardless of the
value of the input clk. If clr = 0, then on the next rising edge of the clock input clk the N-
bit binary output q[N-1:0] will be incremented by 1. That is, on the rising edge of the
clock the N-bit binary output q[N-1:0] will count from 0 to N-1 and then wrap around to
0.

The Verilog program shown in Listing 8.1 was used to generate the symbol

shown in Fig. 8.1. Note that the sensitivity list of the always statement contains the
phrase

 posedge clk or posedge clr

This means that the if statement within the always block will execute whenever either clr
or clk goes high. If clr goes high then the output q[N-1:0] will go to zero. On the other
hand if clr = 0 and clk goes high then the output q[N-1:0] will be incremented by 1.

The default value of the parameter N in Listing 8.1 is 4. A simulation of this 4-bit
counter is shown in Fig. 8.2. Note that this counter counts from 0 to F and then wraps

Figure 8.1 An N-bit counter

 Example 8

38

Figure 8.2 Simulation of a 4-bit counter using Listing 8.1

around to 0. To instantiate an 8-bit counter from Listing 8.1 that would count from 0 –
255 (or 00 – FF hex) you would use an instantiation statement something like

counter #(
 .N(8))
cnt16 (.clr(clr),

.clk(clk),

.q(q)
);

You can also set the value of the parameter N from the block diagram editor (BDE) by
right-clicking on the symbol in Fig. 8.1 and selecting Properties and then the Parameters
tab.

Listing 8.1 counter.v
// Example 8a: N-bit counter
module counter
#(parameter N = 4)
(input wire clr ,
 input wire clk ,
 output reg [N-1:0] q
);

// N-bit counter
always @(posedge clk or posedge clr)
 begin
 if(clr == 1)
 q <= 0;
 else
 q <= q + 1;
 end

endmodule

 Clocks and Counters

39

In the simulation in Fig. 8.2 note that the output q[0] is a square wave at half the
frequency of the input clk. Similarly, the output q[1] is a square wave at half the
frequency of the input q[0], the output q[2] is a square wave at half the frequency of the
input q[1], and the output q[3] is a square wave at half the frequency of the input q[2].
Note how the binary numbers q[3:0] in Fig. 8.2 count from 0000 to 1111.

The simulation shown in Fig. 8.2 shows how we can obtain a lower clock
frequency by simply using one of the outputs q[i]. We will use this feature to produce a
24-bit clock divider in the next section.

8.2 Clock Divider

The simulation in Fig. 8.2 shows that the outputs q[i] of a counter are square

waves where the output q[0] has a frequency half of the clock frequency, the output q[1]
has a frequency half of q[0], etc. Thus, a counter can be used to divide the frequency f of
a clock, where the frequency of the output q(i) is 12i

if f += . The frequencies and
periods of the outputs of a 24-bit counter driven by a 50 MHz clock are shown in Table
8.1. Note in Table 8.1 that the output q[0] has a frequency of 25 MHz, the output q[17]
has a frequency of 190.73 Hz, and the output q[23] has a frequency of 2.98 Hz.

 Table 8.1 Clock divide frequencies
q[i] Frequency (Hz) Period (ms)

i 50000000.00 0.00002
0 25000000.00 0.00004
1 12500000.00 0.00008
2 6250000.00 0.00016
3 3125000.00 0.00032
4 1562500.00 0.00064
5 781250.00 0.00128
6 390625.00 0.00256
7 195312.50 0.00512
8 97656.25 0.01024
9 48828.13 0.02048

10 24414.06 0.04096
11 12207.03 0.08192
12 6103.52 0.16384
13 3051.76 0.32768
14 1525.88 0.65536
15 762.94 1.31072
16 381.47 2.62144
17 190.73 5.24288
18 95.37 10.48576
19 47.68 20.97152
20 23.84 41.94304
21 11.92 83.88608
22 5.96 167.77216
23 2.98 335.54432

 Example 8

40

The Verilog program shown in Listing 8.2 is a 24-bit counter that has three
outputs, a 25 MHz clock (clk25), a 190 Hz clock (clk190), and a 3 Hz clock (clk3). You
can modify this clkdiv module to produce any output frequency given in Table 8.1. We
will use such a clock divider module in many of our top-level designs.

Listing 8.2 clkdiv.v
// Example 8b: clock divider
module clkdiv (
input wire clk ,
input wire clr ,
output wire clk190 ,
output wire clk25 ,
output wire clk3
);
reg [23:0] q;

// 24-bit counter
always @(posedge clk or posedge clr)
 begin
 if(clr == 1)
 q <= 0;
 else
 q <= q + 1;
 end

assign clk190 = q[17]; // 190 Hz
assign clk25 = q[0]; // 25 MHz
assign clk3 = q[23]; // 3 Hz

endmodule

Note in Listing 8.2 that we define the internal signal q[23:0] of type reg. It must
be of type reg because its value is assigned within an always block. The BDE symbol
generated by compiling Listing 8.2 is shown in Fig. 8.3. You can edit either Listing 8.2
or the block diagram shown in Fig. 8.3 to bring out only the clock frequencies you need
in a particular design. For example, the top-level design shown in Fig. 8.4 will cause the
eight LEDs on the FPGA board to count in binary at a rate of about three counts per
second. The corresponding top-level Verilog program is shown in Listing 8.3.

Figure 8.3 A clock divider

 Clocks and Counters

41

Listing 8.3 count8_top.v
// Example 8c: count8_top
module count8_top (
input wire mclk;
input wire [3:3] btn;
output wire [7:0] ld;
) ;

wire clk3;

clkdiv U1
(.clk3(clk3),
 .clr(btn[3]),
 .mclk(mclk)
);

counter
#(.N(8))
U2
(.clk(clk3),
 .clr(btn[3]),
 .q(ld[7:0])
);

endmodule

Internally, a counter contains a collection of flip-flops. We saw in Fig. 1 of the

Introduction that each of the four slices in a CLB of a Spartan3E FPGA contains two
flip-flops. Such flip-flops are central to the operation of all synchronous sequential
circuits in which changes take place on the rising edge of a clock. The examples in the
second half of this book will involve sequential circuits beginning with an example of an
edge-triggered D flip-flop in Example 16.

Figure 8.4 Counting in binary on the eight LEDs

 Example 9

42

a b c d e f g

a b c d e f g

+3.3V

Common
Anode

Common
Cathode

a

b

c

d

e

f
g

Example 9

7-Segment Decoder

In this section we will show how to design a 7-segment decoder using Karnaugh

maps and write a Verilog program to implement the resulting logic equations. We will
also solve the same problem using a Verilog case statement.

Prerequisite knowledge:
 Karnaugh maps – Appendix D
 case statement – Example 7

LEDs – Example 1

9.1 7-Segment Displays

Seven LEDs can be arranged in a pattern to form different digits as shown in Fig.

9.1. Digital watches use similar 7-segment displays using liquid crystals rather than
LEDs. The red digits on digital clocks are LEDs. Seven segment displays come in two
flavors: common anode and common cathode. A common anode 7-segment display has
all of the anodes tied together while a common cathode 7-segment display has all the
cathodes tied together as shown in Fig. 9.1.

The BASYS and Nexys2 boards have four common-anode 7-segment displays.

This means that all the anodes are tied together and connected through a pnp transistor to
+3.3V. A different FPGA output pin is connected through a 100Ω current-limiting
resistor to each of the cathodes, a – g, plus the decimal point. In the common-anode case,
an output 0 will turn on a segment and an output 1 will turn it off. The table shown in

Figure 9.1 A 7-segment display contains seven light emitting diodes (LEDs)

 7-Segment Decoder

43

Fig. 9.2 shows output cathode values for each segment a – g needed to display all hex
values from 0 – F.

x a b c d e f g
0 0 0 0 0 0 0 1
1 1 0 0 1 1 1 1
2 0 0 1 0 0 1 0
3 0 0 0 0 1 1 0 1 = off
4 1 0 0 1 1 0 0
5 0 1 0 0 1 0 0 0 = on
6 0 1 0 0 0 0 0
7 0 0 0 1 1 1 1
8 0 0 0 0 0 0 0
9 0 0 0 0 1 0 0
A 0 0 0 1 0 0 0
b 1 1 0 0 0 0 0
C 0 1 1 0 0 0 1
d 1 0 0 0 0 1 0
E 0 1 1 0 0 0 0
F 0 1 1 1 0 0 0

Figure 9.2 Segment values required to display hex digits 0 – F

9.2 7-Segment Decoder: Logic Equations

The problem is to design a hex to 7-segment decoder, called hex7seg, that is
shown in Fig. 9.3. The input is a 4-bit hex
number, x[3:0], and the outputs are the 7-
segment values a – g given by the truth
table in Fig. 9.2. We can make a Karnaugh
map for each segment and then write logic
equations for the segments a – g. For
example, the K-map for the segment, e, is
shown in Figure 9.4.

 Figure 9.4 K-map for the segment e in the 7-segment decoder

hex7segx[3:0] a_to_g[6:0]

a

b

c

d

e

f
g

00 01 11 10

00

01

11

10

1

x3 x2
x1 x0

00 01 11 10

00

01

11

10

111

1

1
~x3 & x0

~x3 & x2 & ~x1

~x2 & ~x1 & x0

e = ~x3 & x0 | ~x3 & x2 & ~x1 | ~x2 & ~x1 & x0

Figure 9.3 A hex to 7-segment decoder

 Example 9

44

You can write the Karnaugh maps for the other six segments and then write the
Verilog program for the 7-segment decoder shown in Listing 9.1. A simulation of this
program is shown in Fig. 9.5. Note that the simulation agrees with the truth table in Fig.
9.2.

Listing 9.1 hex7seg_le.v
// Example 9a: Hex to 7-segment decoder; a-g active low
module hex7seg_le (
input wire [3:0] x ,
output wire [6:0] a_to_g
);

assign a_to_g[6] = ~x[3] & ~x[2] & ~x[1] & x[0] // a
 | ~x[3] & x[2] & ~x[1] & ~x[0]
 | x[3] & x[2] & ~x[1] & x[0]
 | x[3] & ~x[2] & x[1] & x[0];
assign a_to_g[5] = x[2] & x[1] & ~x[0] // b
 | x[3] & x[1] & x[0]
 | ~x[3] & x[2] & ~x[1] & x[0]
 | x[3] & x[2] & ~x[1] & ~x[0];
assign a_to_g[4] = ~x[3] & ~x[2] & x[1] & ~x[0] // c
 | x[3] & x[2] & x[1]
 | x[3] & x[2] & ~x[0];
assign a_to_g[3] = ~x[3] & ~x[2] & ~x[1] & x[0] // d
 | ~x[3] & x[2] & ~x[1] & ~x[0]
 | x[3] & ~x[2] & x[1] & ~x[0]
 | x[2] & x[1] & x[0];
assign a_to_g[2] = ~x[3] & x[0] // e
 | ~x[3] & x[2] & ~x[1]
 | ~x[2] & ~x[1] & x[0];
assign a_to_g[1] = ~x[3] & ~x[2] & x[0] // f
 | ~x[3] & ~x[2] & x[1]
 | ~x[3] & x[1] & x[0]
 | x[3] & x[2] & ~x[1] & x[0];
assign a_to_g[0] = ~x[3] & ~x[2] & ~x[1] // g
 | x[3] & x[2] & ~x[1] & ~x[0]
 | ~x[3] & x[2] & x[1] & x[0];
endmodule

 Figure 9.5 Simulation of the Verilog program in Listing 9.1

 7-Segment Decoder

45

9.3 7-Segment Decoder: case Statement

We can use a Verilog case statement to design the same 7-segment decoder that

we designed in Section 9.2 using Karnaugh maps. The Verilog program shown in Listing
9.2 is a hex-to-seven-segment decoder that converts a 4-bit input hex digit, 0 – F, to the
appropriate 7-segment codes, a – g. The case statement in Listing 9.2 directly
implements the truth table in Fig. 9.2. Recall that a typical line in the case statement,
such as

3: a_to_g = 7'b0000110;

will assign the 7-bit binary value, 0000110, to the 7-bit array, a_to_g, when the input
hex value x[3:0] is equal to 3 (0011). In the array a_to_g the value a_to_g[6]
corresponds to segment a and the value a_to_g[0] corresponds to segment g. Recall that
in Verilog a string of binary bits is preceded by n’b, where n is the number of binary bits
in the string.

In the case statement the value preceding the colon in each line represents the
value of the case parameter, in this case the 4-bit input x. Also note that hex values such
as A are written as ‘hA.

Recall that all case statements should include a default line as shown in Listing
9.2. This is because all cases need to be covered and while it looks as if we covered all
cases in Listing 6.2, Verilog actually defines four possible values for each bit, namely 0
(logic value 0), 1 (logic value 1), Z (high impedance), and X (unkown value).

A simulation of Listing 9.2 will produce the same results as shown in Fig. 9.5. It
should be clear from this example that using the Verilog case statement is often easier
than solving for the logic equations using Karnaugh maps.

To test the 7-segment displays on the FPGA board you could create the design
hex7seg_top.bde shown in Fig. 9.6. This design uses the Verilog program hex7seg.v
from Listing 9.2 and produces a top-level Verilog program hex7seg_top.v equivalent to
Listing 9.3. Each of the four digits on the 7-segment display is enabled by one of the
active low signals an[3:0] and all digits share the same a_to_g[6:0] signals. If an[3:0] =
0000 then all digits are enabled and display the same hex digit. This is what we do in
Fig. 9.6 and Listing 9.3. Making the output dp = 1 will cause the decimal points to be
off. You should be able to display all of the hex digits from 0 – F by changing the four
rightmost switches.

 Figure 9.6 Top-level design for testing hex7seg

 Example 9

46

 Listing 9.2 hex7seg.v

// Example 9b: Hex to 7-segment decoder; a-g active low
module hex7seg (
input wire [3:0] x ,
output reg [6:0] a_to_g
);

always @(*)
 case(x)
 0: a_to_g = 7'b0000001;
 1: a_to_g = 7'b1001111;
 2: a_to_g = 7'b0010010;
 3: a_to_g = 7'b0000110;
 4: a_to_g = 7'b1001100;
 5: a_to_g = 7'b0100100;
 6: a_to_g = 7'b0100000;
 7: a_to_g = 7'b0001111;
 8: a_to_g = 7'b0000000;
 9: a_to_g = 7'b0000100;
 'hA: a_to_g = 7'b0001000;
 'hb: a_to_g = 7'b1100000;
 'hC: a_to_g = 7'b0110001;
 'hd: a_to_g = 7'b1000010;
 'hE: a_to_g = 7'b0110000;
 'hF: a_to_g = 7'b0111000;
 default: a_to_g = 7'b0000001; // 0
 endcase
endmodule

 Listing 9.3 hex7seg_top.v
// Example 9c: hex7seg_top
module hex7seg_top (
input wire [3:0] sw ,
output wire [6:0] a_to_g ,
output wire [3:0] an ,
output wire dp
);

assign an = 4'b0000; // all digits on
assign dp = 1; // dp off

hex7seg D4 (.x(sw),
 .a_to_g(a_to_g)
);

endmodule

 7-Segment Displays: x7seg and x7segb

47

Example 10

7-Segment Displays:
x7seg and x7segb

In this example we will show how to display different hex values on the four 7-

segment displays.

Prerequisite knowledge:
 Karnaugh maps – Appendix D
 case statement – Example 7

LEDs – Example 1

10.1 Multiplexing 7-Segment Displays

We saw in Example 9 that the a_to_g[6:0] signals go to all of the 7-segment
displays and therefore in that example all of the digits displayed the same value. How
could we display a 4-digit number such as 1234 that contains different digits? To see
how we might do this, consider the BDE circuit shown in Fig. 10.2. Instead of enabling
all four digits at once by setting an[3:0] = 0000 as we did in Fig. 9.6 we connect an[3:0]
to the NOT of the four pushbuttons btn[3:0]. Thus, a digit will only be enabled when the
corresponding pushbutton is being pressed.

The quad 4-to-1 multiplexer, mux44, from Listing 7.4 is used to display the 16-bit
number x[15:0] as a 4-digit hex value on the 7-segment displays. When you press btn[0]
if the control signal s[1:0] is 00 then x[3:0] becomes the input to the hex7seg module and
the value of x[3:0] will be displayed on digit 0. Similarly if you press btn[1] and the
control signal s[1:0] is 01 then x[7:4] becomes the input to the hex7seg module and the
value of x[7:4] will be displayed on digit 1. We can make the value of s[1:0] depend on
the value of btn[3:0] using the truth table in Fig. 10.1. From this truth table we can write
the following logic equations for s[1] and s[0].

s[1] = btn[2] | btn[3];
s[0] = btn[1] | btn[3];

The two OR gates in Fig. 10.2 will implement these logic equations for s[1:0].

btn[3] btn[2] btn[1] btn[0] s[1] s[0]
 0 0 0 0 X X
 0 0 0 1 0 0
 0 0 1 0 0 1
 0 1 0 0 1 0
 1 0 0 0 1 1

 Figure 10.1 Truth table for generating s[1:0] in Fig. 10.2

 Example 10

48

The Verilog program created by compiling mux7seg.bde in Fig. 10.1 is equivalent
to the Verilog program shown in Listing 10.1. If you implement the design mux7seg.bde
shown in Fig. 10.2 and download the .bit file to the FPGA board, then when you press
buttons 0, 1, 2, and 3 the digits 4, 3, 2, and 1 will be displayed on digits 0, 1, 2, and 3
respectively. Try it.

 Listing 10.1 mux7seg.v
// Example 10a: mux7seg
module mux7seg (
input wire [3:0] btn,
output wire [6:0] a_to_g,
output wire [3:0] an
);

wire [3:0] digit;
wire [1:0] s;
wire [15:0] x;

assign x = 'h1234;

hex7seg U1
(.a_to_g(a_to_g), .x(digit));

mux44 U2
(.s(s), .x(x), .z(digit));

assign s[0] = btn[3] | btn[1];
assign s[1] = btn[3] | btn[2];
assign an = ~btn;

endmodule

Figure 10.2 BDE circuit mux7seg.bde for multiplexing the four 7-segment displays

 7-Segment Displays: x7seg and x7segb

49

10.2 7-Segment Displays: x7seg

We saw in Section 10.1 that to display a 16-bit hex value on the four 7-segment
displays we must multiplex the four hex digits. You can only make it appear that all four
digits are on by multiplexing them fast enough (greater than 30 times per second) so that
your eyes retain the values. This is the same way that your TV works where only a
single picture element (pixel) is on at any one time, but the entire screen is refreshed 30
times per second so that you perceive the entire image. To do this the value of s[1:0] in
Fig. 10.2 must count from 0 to 3 continually at this fast rate. At the same time the value
of the outputs an[3:0] must be synchronized with s[1:0] so as to enable the proper digit at
the proper time. A circuit for doing this is shown in Fig. 10.3. The outputs an[3:0] will
satisfy the truth table in Fig. 10.4. Note that each output an[i] is just the maxterm M[i] of
q[1:0].

q[1] q[0] an[3] an[2] an[1] an[0]
 0 0 1 1 1 0
 0 1 1 1 0 1
 1 0 1 0 1 1
 1 1 0 1 1 1

A simulation of x7seg.bde is shown in Fig. 10.5. Note how the an[3:0] output
selects one digit at a time to display the value 1234 on the 7-segment displays. When
x7seg.bde is compiled it creates a Verilog program that is equivalent to Listing 10.2. The
top-level design shown in Fig. 10.6 can be used to test the x7seg module on the FPGA
board. The Verilog program corresponding to this top-level design is given in Listing
10.3. Note that the x7seg module requires a 190 Hz clock generated by the clock divider
module clkdiv from Example 8.

Figure 10.3 BDE circuit x7seg.bde for displaying x[15:0] on the four 7-segment displays

Figure 10.4 Truth table for generating an[3:0] in Fig. 10.3

 Example 10

50

 Listing 10.2 x7seg.v
// Example 10b: x7seg
module x7seg (
input wire cclk,
input wire clr,
input wire [15:0] x,
output wire [6:0] a_to_g,
output wire [3:0] an
);
wire nq0;
wire nq1;
wire [3:0] digit;
wire [1:0] q;
assign nq1 = ~(q[1]);
assign nq0 = ~(q[0]);
assign an[0] = q[0] | q[1];
assign an[1] = nq0 | q[1];
assign an[2] = q[0] | nq1;
assign an[3] = nq0 | nq1;

hex7seg U1
(.a_to_g(a_to_g),.x(digit));

mux44 U2
(.s({q[1:0]}),.x(x),.z(digit));

counter
#(.N(2)) U3
(.clk(cclk),.clr(clr),.q(q[1:0]));

endmodule

Figure 10.5 Simulation of the x7segb.bde circuit in Fig. 10.3

 7-Segment Displays: x7seg and x7segb

51

 Listing 10.3 x7seg_top.v
// Example 10c: x7seg_top
module x7seg_top (
input wire mclk,
input wire [3:3] btn,
output wire dp,
output wire [6:0] a_to_g,
output wire [3:0] an
);

wire clk190;
wire [15:0] x;

assign x = 'h1234;
assign dp = 1;

clkdiv U1
(.clk190(clk190),
 .clr(btn[3]),
 .mclk(mclk)
);

x7seg U3
(.a_to_g(a_to_g),
 .an(an),
 .cclk(clk190),
 .clr(btn[3]),
 .x(x)
);

endmodule

10.3 7-Segment Displays: x7segb

When implementing the circuit for x7seg in Fig. 10.3 we must add separate
Verilog files to the project for the modules counter, hex7seg and mux44. Alternatively,
we can include separate always blocks within a single Verilog file. A variation of x7seg,

Figure 10.6 Top-level design for testing x7seg

 Example 10

52

called x7segb, that displays leading zeros as blanks is shown in Listing 10.4. This is
done by writing logic equations for aen[3:0] that depend on the values of x[15:0]. For
example, aen[3] will be 1 (and thus digit 3 will not be blank) if any one of the top four
bits of x[15:0] is 1. Similarly, aen[2] will be 1 if any one of the top eight bits of x[15:0]
is 1, and aen[1] will be 1 if any one of the top twelve bits of x[15:0] is 1. Note that
aen[0] is always 1 so that digit 1 will always be displayed even if it is zero.

To test the module x7segb you can run the top-level design shown in Listing 10.4
that will display the value of x on the 7-segment displays where x is defined by the
following statement:

assign x = {sw,btn[2:0],5'b01010}; // digit 0 = A

The curly brackets {--,--} are used for concatenation in Verilog. In this case we form the
16-bit value of x by concatenating the eight switches, the three right-most pushbuttons,
and the five bits 01010. Note that if all switches are off an A will be displayed on digit 0
with three leading blanks. Turning on the switches and pushing the three right-most
pushbuttons will display various hex numbers – always with leading blanks.

Listing 10.4 x7segb.v
// Example 10d: x7segb - Display 7-seg with leading blanks
// input cclk should be 190 Hz
module x7segbc (
input wire [15:0] x ,
input wire cclk ,
input wire clr ,
output reg [6:0] a_to_g ,
output reg [3:0] an ,
output wire dp
);

reg [1:0] s;
reg [3:0] digit;
wire [3:0] aen;

assign dp = 1;
// set aen[3:0] for leading blanks
assign aen[3] = x[15] | x[14] | x[13] | x[12];
assign aen[2] = x[15] | x[14] | x[13] | x[12]
 | x[11] | x[10] | x[9] | x[8];
assign aen[1] = x[15] | x[14] | x[13] | x[12]
 | x[11] | x[10] | x[9] | x[8]
 | x[7] | x[6] | x[5] | x[4];
assign aen[0] = 1; // digit 0 always on

// Quad 4-to-1 MUX: mux44
always @(*)
 case(s)
 0: digit = x[3:0];
 1: digit = x[7:4];
 2: digit = x[11:8];
 3: digit = x[15:12];
 default: digit = x[3:0];
 endcase

 7-Segment Displays: x7seg and x7segb

53

Listing 10.4 (cont.) x7segb.v
// 7-segment decoder: hex7seg
always @(*)
 case(digit)
 0: a_to_g = 7'b0000001;
 1: a_to_g = 7'b1001111;
 2: a_to_g = 7'b0010010;
 3: a_to_g = 7'b0000110;
 4: a_to_g = 7'b1001100;
 5: a_to_g = 7'b0100100;
 6: a_to_g = 7'b0100000;
 7: a_to_g = 7'b0001111;
 8: a_to_g = 7'b0000000;
 9: a_to_g = 7'b0000100;
 'hA: a_to_g = 7'b0001000;
 'hb: a_to_g = 7'b1100000;
 'hC: a_to_g = 7'b0110001;
 'hd: a_to_g = 7'b1000010;
 'hE: a_to_g = 7'b0110000;
 'hF: a_to_g = 7'b0111000;
 default: a_to_g = 7'b0000001; // 0
 endcase

// Digit select
always @(*)
 begin
 an = 4'b1111;
 if(aen[s] == 1)
 an[s] = 0;
 end

// 2-bit counter
always @(posedge cclk or posedge clr)
 begin
 if(clr == 1)
 s <= 0;
 else
 s <= s + 1;
 end

endmodule

 Example 10

54

 Listing 10.5 x7segb_top.v
// Example 10e: x7seg_top
module x7segb_top (
input wire clk ,
input wire [3:0] btn ,
input wire [7:0] sw ,
output wire [6:0] a_to_g ,
output wire [3:0] an ,
output wire dp
);

wire [15:0] x;

// concatenate switches and 3 buttons
assign x = {sw,btn[2:0],5'b01010}; // digit 0 = A

x7segb X2 (.x(x),
 .clk(clk),
 .clr(btn[3]),
 .a_to_g(a_to_g),
 .an(an),
 .dp(dp)
);

endmodule

 2's Complement 4-Bit Saturator

55

Example 11

2's Complement 4-Bit Saturator

In this example we will design a circuit that converts a 6-bit signed number to a 4-

bit output that gets saturated at -8 and +7.

Prerequisite knowledge:
 Basic Gates – Appendix C
 Equality Detector – Example 6

Quad 2-to-1 Multiplexer – Example 6
7-Segment Displays – Example 10

11.1 Creating the Design sat4bit.bde

Figure 11.1 shows a circuit called sat4bit.bde that was described in the November

2001 issue of NASA Tech Briefs. The circuit will take a 6-bit two’s complement number
with a signed value between –32 and +31 and convert it to a 4-bit two’s complement
number with a signed value between –8 and +7. Negative input values less than –8 will
be saturated at –8. Positive input values greater than +7 will be saturated at +7.

Note that the two XNOR gates and the AND gate form an equality detector whose
output s is 1 when x[3], x[4], and x[5] are all equal (see Example 4). This will be the case
when the 6-bit input number x[5:0] is between -8 and +7. In this case output y[3:0] of the
quad 2-to-1 MUX will be connected to the input x[3:0]. If the top three bits of x[5:0] are
not equal and x[5] is 1 then the input value will be less than -8 and the output y[3:0] of
the quad 2-to-1 MUX will be saturated at -8. On the other hand if the top three bits of
x[5:0] are not equal and x[5] is 0 then the input value will be greater than +7 and the
output y[3:0] of the quad 2-to-1 MUX will be saturated at +7.

Figure 11.1 Circuit diagram for sat4bit.bde

 Example 11

56

 Listing 11.1 sat4bit.v
// Example 11a: sat4bit
module sat4bit (
input wire [5:0] x,
output wire [3:0] y
);

wire c0;
wire c1;
wire s;
wire xi;

assign c1 = ~(x[4] ^ x[3]);
assign xi = ~(x[5]);
assign c0 = ~(x[5] ^ x[4]);
assign s = c0 & c1;

mux24 U1
(.a({x[5],xi,xi,xi}),
 .b(x[3:0]),
 .s(s),
 .y(y)
);

endmodule

A top-level design that can be used to test sat4bit is shown in Fig. 11.2. The

module x7segb11 is a modification of Listing 10.4 that will display only values between
-8 and +7 on the 7-segment display. Listing 11.2 shows the Verilog program for the
module x7segb11. The input to x7segb11 is the 4-bit output y[3:0] from sat4bit. Note
that only the two rightmost 7-segment display are enabled. The two leftmost displays are
always blank. The hex7seg always block in Listing 11.2 has been modified to display the
magnitude of the signed value of y[3:0] – 0 to 8. The preceding 7-segment display will
either be blank or display a minus sign. The quad 4-to-1 MUX and the new 2-to-1 MUX
are used to display the minus sign when aen[1] is enabled if y[3] is 1; i.e., if y is negative.

 Figure 11.2 Top-level design sat4bit_top.bde for testing sat4bit

 2's Complement 4-Bit Saturator

57

 Listing 11.2 x7segb11.v
// Example 11b: x7segb11 - test sat4bit
module x7segb11 (
input wire [3:0] y ,
input wire cclk ,
input wire clr ,
output reg [6:0] a_to_g ,
output reg [3:0] an ,
output wire dp
);

reg msel;
reg [6:0] a_g0;
wire [6:0] a_g1;
reg [1:0] s;
reg [3:0] digit;
wire [3:0] aen;

assign a_g1 = 7'b1111110; // minus sign
assign dp = 1;
assign aen[3] = 0; // digit 3 always off
assign aen[2] = 0; // digit 2 always off
assign aen[1] = y[3]; // digit 1 on if negative
assign aen[0] = 1; // digit 0 always on

// Quad 4-to-1 MUX: mux44
always @(*)
 case(s)
 0: msel = 0;
 1: msel = 1; // display minus sign
 2: msel = 0;
 3: msel = 0;
 default: msel = 0;
 endcase

// 7-segment decoder: hex7seg
always @(*)
 case(y)
 0: a_g0 = 7'b0000001;
 1: a_g0 = 7'b1001111;
 2: a_g0 = 7'b0010010;
 3: a_g0 = 7'b0000110;
 4: a_g0 = 7'b1001100;
 5: a_g0 = 7'b0100100;
 6: a_g0 = 7'b0100000;
 7: a_g0 = 7'b0001111;
 8: a_g0 = 7'b0000000; // -8
 9: a_g0 = 7'b0001111; // -7
 'hA: a_g0 = 7'b0100000; // -6
 'hb: a_g0 = 7'b0100100; // -5
 'hC: a_g0 = 7'b1001100; // -4
 'hd: a_g0 = 7'b0000110; // -3
 'hE: a_g0 = 7'b0010010; // -2
 'hF: a_g0 = 7'b1001111; // -1
 default: a_g0 = 7'b0000001; // 0
 endcase

 Example 11

58

 Listing 11.2 (cont.) x7segb11.v
// 2-to-1 MUX
always @(*)
 begin
 if(msel == 1)
 a_to_g = a_g1;
 else
 a_to_g = a_g0;
 end

// Digit select
always @(*)
 begin
 an = 4'b1111;
 if(aen[s] == 1)
 an[s] = 0;
 end

// 2-bit counter
always @(posedge cclk or posedge clr)
 begin
 if(clr == 1)
 s <= 0;
 else
 s <= s + 1;
 end

endmodule

The Verilog program corresponding to the top-level design in Fig. 11.2 is given in

Listing 11.3. Download this top-level design to the FPGA board and observe the output
on the 7-segment display for different 6-bit switch inputs.

 2's Complement 4-Bit Saturator

59

 Listing 11.3 sat4bit_top.v
// Example 11c: sat4bit_top
module sat4bit_top (
input wire mclk,
input wire [3:3] btn,
input wire [5:0] sw,
output wire dp,
output wire [6:0] a_to_g,
output wire [3:0] an,
output wire [5:0] ld
);

wire clk190;
wire [3:0] y;

assign ld = sw;

sat4bit U1
(.x(sw),
 .y(y)
);

x7segb11 U2
(.a_to_g(a_to_g),
 .an(an),
 .cclk(clk190),
 .clr(btn[3]),
 .dp(dp),
 .y(y)
);

clkdiv U3
(.clk190(clk190),
 .clr(btn[3]),
 .mclk(mclk)
);

endmodule

 Example 12

60

Example 12

Full Adder

In this example we will design a full adder circuit.

Prerequisite knowledge:
 Basic Gates – Appendix C
 Karnaugh Maps – Appendix D

7-Segment Displays – Example 10

12.1 Half Adder

The truth table for a half adder is shown in Fig. 12.1. In this table bit a is added
to bit b to produce the sum bit s and the carry bit c. Note that if you add 1 to 1 you get 2,
which in binary is 10 or 0 with a carry bit. The BDE logic diagram, halfadd.bde, for a
half adder is also shown in Fig. 12.1. Note that the sum s is just the exclusive-or of a and
b and the carry c is just a & b. The Verilog program corresponding to the circuit in Fig.
12.1 is shown in Listing 12.1. A simulation of halfadd.bde is shown in Fig. 12.2.

 Listing 12.1 halfadd.v

// Example 12a: halfadd
module halfadd (
input wire a,
input wire b,
output wire c,
output wire s
) ;

assign s = b ^ a;
assign c = b & a;

endmodule

Figure 12.1 Truth table and logic diagram halfadd.bde for a half-adder

a b s c
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

 Full Adder

61

12.2 Full Adder

When adding binary numbers we need to consider the carry from one bit to the
next. Thus, at any bit position we will be adding three bits: ai, bi and the carry-in ci from
the addition of the two bits to the right of the current bit position. The sum of these three
bits will produce a sum bit, si, and a carry-out, ci+1, which will
be the carry-in to the next bit position to the left. This is called a
full adder and its truth table is shown in Fig. 12.3. The results of
the first seven rows in this truth table can be inferred from the
truth table for the half adder given in Fig. 12.1. In all of these
rows only two 1's are ever added together. The last row in Fig.
12.3 adds three 1's. The result is 3, which in binary is 11, or 1
plus a carry.

From the truth table in Fig. 12.3 we can write a sum of
products expression for si as

 si = ~ci & ~ai & bi
 | ~ci & ai & ~bi (12.1)
 | ci & ~ai & ~bi
 | ci & ai & bi

We can use the distributive law to factor out ~ci from the first two product terms and ci
from the last two product terms in Eq. (12.1) to obtain

 si = ~ci & (~ai & bi | ai & ~bi)
 | ci & (~ai & ~bi | ai & bi) (12.2)

which can be written in terms of XOR and XNOR operations as

si = ~ci & (ai ^ bi) | ci & ~(ai ^ bi) (12.3)

which further reduces to

Figure 12.3
Truth table for a full adder

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

ai bi si c i+1c i

Figure 12.2 Simulation of the half-adder in Fig. 12.1

 Example 12

62

 si = ci ^ (ai ^ bi) (12.4)

Fig. 12.4 shows the K-map for ci+1 from the truth table in Fig. 12.3. The map
shown in Fig. 12.4a leads to the reduced form for ci+1 given by

 ci+1 = ai & bi | ci & bi | ci & ai (12.5)

While this is the reduced form, a more convenient form can be written from Fig. 12.4b as
follows:

 ci+1 = ai & bi | ci & ~ai & bi | ci & ai & ~bi
 = ai & bi | ci & (~ai & bi | ai & ~bi)
 = ai & bi | ci & (ai ^ bi) (12.6)

From Eqs. (12.4) and (12.6) we can draw the logic diagram for a full adder as shown in
Fig. 12.5. Comparing this diagram to that for a half adder in Fig. 12.1 it is clear that a
full adder can be made from two half adders plus an OR gate as shown in Fig. 12.6.

Figure 12.5 Logic diagram for a full adder

Figure 12.6 A full adder can be made from two half adders plus an OR gate

1

0

1

00 01 11 10

1

1

1

c
a b
i

i i

c i

a i

1

0

1

00 01 11 10

1

1

1

c
a b
i

i i

c i

a i
(a) (b)

b i b i

a

b

s

c

c i+1

i
i

i

i

half-adder

half-addera

b

i

i

c i

c i+1

s i

s

c
c

s

Figure 12.4 K-maps for ci+1 for full adder in Fig. 6.2

 Full Adder

63

From Fig. 12.6 we can create a BDE design, fulladd.bde, as shown in Fig. 12.7.
The Verilog program resulting from compiling this design is equivalent to that shown in
Listing 12.2. A simulation of this full adder is shown in Fig. 12.8. Note that the outputs
agree with the truth table in Fig. 12.3.

 Listing 12.2 fulladd.v
// Example 12b: fulladd
module fulladd (
input wire a,
input wire b,
input wire cin,
output wire cout,
output wire s
) ;

wire c1;
wire c2;
wire s1;

assign cout = c2 | c1;

halfadd U1
(.a(a),
 .b(b),
 .c(c1),
 .s(s1)
);
halfadd U2
(.a(s1),
 .b(cin),
 .c(c2),
 .s(s)
);

endmodule

Figure 12.7 Block diagram fulladd.bde for a full adder

 Example 12

64

Figure 12.8 Simulation of the full adder in Fig. 12.7 and Listing 12.2

 4-Bit Adder

65

Example 13

4-Bit Adder

In this example we will design a 4-bit adder.

Prerequisite knowledge:
 Basic Gates – Appendix C
 Karnaugh Maps – Appendix D

Full Adder – Example 12

13.1 4-Bit Adder

Four of the full adders in Fig. 12.7 can be combined to form a 4-bit adder as

shown in Fig. 13.1. Note that the full adder for the least significant bit will have a carry-
in of zero while the remaining bits get their carry-in from the carry-out of the previous
bit. The final carry-out, is the cout for the 4-bit addition. The Verilog program
corresponding to the 4-bit adder in Fig. 13.1 is given in Listing 13.1.

Figure 13.1 Block diagram adder4.bde for a 4-bit adder

 Example 13

66

 Listing 13.1 adder4.v
// Example 13a: adder4
module adder4 (
input wire cin;
input wire [3:0] a;
input wire [3:0] b;
output wire cout;
output wire [3:0] s;
) ;

wire c1;
wire c2;
wire c3;

fulladd U1
(.a(a[2]),
 .b(b[2]),
 .cin(c2),
 .cout(c3),
 .s(s[2])
);

fulladd U2
(.a(a[3]),
 .b(b[3]),
 .cin(c3),
 .cout(cout),
 .s(s[3])
);

fulladd U3
(.a(a[1]),
 .b(b[1]),
 .cin(c1),
 .cout(c2),
 .s(s[1])
);

fulladd U4
(.a(a[0]),
 .b(b[0]),
 .cin(cin),
 .cout(c1),
 .s(s[0])
);

endmodule

A simulation of the 4-bit adder in Fig. 13.1 and Listing 13.1 is shown in Fig. 13.2.

The value of a is incremented from 0 to F and is added to the hex value B. The sum s is
always equal to a + b. Note that the carry flag, cout, is equal to 1 when the correct
unsigned answer exceeds 15 (or F).

We can test the adder4 module from Fig. 13.1 and Listing 13.1 on the FPGA
board by combining it with the x7segb module from Listing 10.4 in Example 10 and the
clkdiv module from Listing 8.2 from Example 8 to produce the top-level design shown in
Listing 13.2. The 4-bit number sw[7:4] will be displayed on the first (left-most) 7-

 4-Bit Adder

67

segment display. The 4-bit number sw[3:0] will be displayed on the second 7-segment
display. These two numbers will be added and the 4-bit sum will be displayed on the
fourth (right-most) 7-segment display and the carry bit will be displayed on the third 7-
segment display. Try it.

Listing 13.2 adder4_top.v
// Example 13b: adder4_top
module adder4_top (
input wire mclk ,
input wire [3:3] btn ,
input wire [7:0] sw ,
output wire [6:0] a_to_g ,
output wire [3:0] an ,
output wire dp ,
output wire [7:0] ld
);

wire clk190, clr, c4, cin;
wire [15:0] x;
wire [3:0] sum;

assign cin = 0;
assign x = {sw,3'b000,c4,sum};
assign clr = btn[3];
assign ld = sw;

adder4 U1 (.cin(cin),.a(sw[7:4]),.b(sw[3:0]),
 .cout(c4),.s(sum));

clkdiv U2 (.mclk(mclk),.clr(clr),.clk190(clk190));

x7segb U3 (.x(x),.cclk(clk190),.clr(clr),
 .a_to_g(a_to_g),.an(an),.dp(dp));

endmodule

Figure 13.2 Simulation of the 4-bit adder in Fig. 13.1 and Listing 13.1

 Example 14

68

Example 14

N-Bit Adder

In this example we will design a N-bit adder.

Prerequisite knowledge:
4-Bit Adder – Example 13

14.1 4-Bit Adder: Behavioral Statements

It would be convenient to be able to make a 4-bit adder (or any size adder) by just

using a + sign in a Verilog statement. In fact, we can! When you write a + b in a Verilog
program the compiler will produce a full adder of the type we designed in Example 12.
The only question is how to create the output carry bit. The trick is to add a leading 0 to
a and b and then make a 5-bit temporary variable to hold the sum as shown in Listing
14.1. The most-significant bit of this 5-bit sum will be the carry flag.

A simulation of this program is shown in Fig. 14.1. Compare this with Fig. 13.2.

Listing 14.1 adder4b.v
// Example 14a: 4-bit behavioral adder
module adder4b (
input wire [3:0] a ,
input wire [3:0] b ,
output reg [3:0] s ,
output reg cf
);
reg [4:0] temp;

always @(*)
 begin
 temp = {1'b0,a} + {1'b0,b};

s = temp[3:0];
 cf = temp[4];
 end
endmodule

 Figure 14.1 Simulation of the Verilog program in Listing 14.1

 N-Bit Adder

69

14.2 N - Bit Adder: Behavioral Statements

Listing 14.2 shows an N-bit adder that uses a parameter statement. This is a

convenient adder to use when you don’t need the carry flag. An example of using this as
an 8-bit adder is shown in the simulation in Fig. 14.2. Note that when the sum exceeds
FF it simply wraps around and the carry flag is lost.

Listing 14.2 adder.v
// Example 14b: N-bit adder
module adder
#(parameter N = 8)
(input wire [N-1:0] a,
 input wire [N-1:0] b,
 output reg [N-1:0] y
);

always @(*)
 begin
 y = a + b;
 end
endmodule

The top-level design shown in Fig. 14.3 can be used to test this N-bit adder on the

FPGA board. In this case we are adding two 4-bit switch settings and observing the sum
on the 7-segment display. To set the parameter N to 4 right-click on the adder symbol,
select Properties and click on the Parameter tab. Set the actual value of N to 4.

Figure 14.2 Simulation of the Verilog program in Listing 14.2

Figure 14.3 Top-level design for testing the N-bit adder on the FPGA board

 Example 15

70

Example 15

N-Bit Comparator

In this example we will design a N-bit comparator.

Prerequisite knowledge:
N-Bit Adder – Example 14

15.1 N-Bit Comparator Using Relational Operators

The easiest way to implement a comparator in Verilog is to use the relational and
logical operators shown in Table 15.1. An example of using these to implement an N-bit
comparator is shown in Listing 15.1. A simulation of this program for the default value
of N = 8 is shown in Fig. 15.1.

Note in the always block in Listing 15.1 we set the values of gt, eq, and lt to zero
before the if statements. This is important to make sure that each output has a value
assigned to it. If you don’t do this then Verilog will assume you don’t want the value to
change and will include a latch in your system. Your circuit will then not be a
combinational circuit.

Table 15.1 Relational and Logical Operators
Operator Meaning

== Logical equality
!= Logical inequality
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
! Logical negation
&& Logical AND
|| Logical OR

 Figure 15.1 Simulation of the Verilog program in Listing 15.1

 N-Bit Comparator

71

Listing 15.1 comp.v
// Example 17: N-bit comparator using relational operators
module comp
#(parameter N = 8)
(input wire [N-1:0] x,
 input wire [N-1:0] y,
 output reg gt,
 output reg eq,
 output reg lt
);

always @(*)
begin
 gt = 0;
 eq = 0;
 lt = 0;
 if(x > y)
 gt = 1;
 if(x == y)
 eq = 1;
 if(x < y)
 lt = 1;
end

endmodule

You can test this comparator on the FPGA board by creating the BDE block
diagram comp4_top.bde shown in Fig. 15.2. To make this a 4-bit comparator right-click
on the comp symbol, select Properties, click on the Parameters tab, and set the actual
value of N to 4. You will be comparing the 4-bit number x[3:0] on the left four switches
with the 4-bit number y[3:0] on the right four switches. The three LEDs ld[4:2] will
detect the outputs gt, eq, and lt. We selected these three LEDs because on the BASYS
board they are three different colors. Compile the design comp4_top.bde, implement it,
and download the .bit file to the FPGA board. Test the comparator by changing the
switch settings.

Figure 15.2 Top-level design comp4_top.bde to test a 4-bit comparator

 Example 15

72

 Aldec Active-HDL Tutorial 109

Appendix A

Aldec Active-HDL Tutorial

Part 1: Project Setup

Start the program by double-clicking the Active-HDL icon on the desktop.

Select Create new workspace and click OK.

Browse to the directory where you want the project saved, type Example1 for the
workspace name and click OK.

110 Appendix A

Select Create an Empty Design with Design Flow and click Next.

Click Flow Settings

Select HDL Synthesis

Select Xilinx
ISE/WebPack 8.1 XST VHDL/Verilog

Press Select

 Aldec Active-HDL Tutorial 111

Select Implementation

Choose Xilinx
ISE/WebPack 8.1

Press Select

Select Xilinx9X SPARTAN3E for Family

Click Ok

112 Appendix A

Select VERILOG for the Default HDL
Language

Click Next

 Type swled for the design name

and click Next.

Click Finish.

 Aldec Active-HDL Tutorial 113

Part 2: Design Entry – sw2led.bde

Click on BDE.

Click Next.

Select Verilog
and Click Next

114 Appendix A

Click out.

Click Finish.

Type sw2led
and click Next.

Click New.

Click New.

Type sw
Set array
indexes to 7:0

Type ld
Set array
indexes to 7:0

 Aldec Active-HDL Tutorial 115

This will generate a block diagram (schematic) template with the input and output ports
displayed.

You will need to select the output port by dragging the mouse with
the left mouse button down and move the output port to the left.

Select the bus icon and connect the input sw[7:0] to the output ld[7:0] as shown.

Click Save

116 Appendix A

Part 3: Synthesis and Implementation

Click design flow

Click
synthesis options

Right-click on sw2led.bde
and select Compile

 Aldec Active-HDL Tutorial 117

Pull down menu and select sw2led for Top-level Unit.

Click Ok.

Click synthesis

After synthesis is complete, click Close.

BASYS Board:
Select 3s100etq144 for Device from pull down list.
Nexys2 Board:
Select 3s500efg320 for Device from pull down list.

Check Verilog

118 Appendix A

Click implementation
options

Select
Custom constraint file

Browse and select the file basys2.ucf
or nexys2.ucf available at www.lbebooks.com

 Aldec Active-HDL Tutorial 119

Select Translate and check
 Allow Unmatched LOC Constraints.

 Shift for more options…. Select BitStream and
uncheck Do Not Run Bitgen.

Click Ok

 Select Startup Options and select JTAG Clock
 for the FPGA Start-up Clock.

120 Appendix A

Click
implementation

Part 4: Program FPGA Board

To program the Spartan3E on the BASYS or Nexys-2 boards we will use the

ExPort tool that is part of the the Adept Suite available free from Digilent at
http://www.digilentinc.com/Software/Adept.cfm?Nav1=Software&Nav2=Adept
Double-click the ExPort icon on the desktop.

Click Initialize Chain

When implementation is complete click Close.

 Aldec Active-HDL Tutorial 121

Click Browse and go to Example1->swled->implement->ver1->rev1->sw2led.bit
Select sw2led.bit

Your program is now running on the board. Change the switches and watch the LEDs.

Click Program Chain

122 Appendix A

Part 5: Design Entry – gates2.bde

Click on BDE.

Click Next.

Select Verilog
and Click Next

 Aldec Active-HDL Tutorial 123

Type gates2
and click Next.

Click New.

 Type a.

Click New.
 Type b.

124 Appendix A

Click Finish.

Click New.
 Type and_.

Continue to click New and add the outputs nand_, or_, nor_, xor_, and xnor_.

Click out.

 Aldec Active-HDL Tutorial 125

This will generate a block diagram (schematic) template with the input and output ports
displayed.

Select the output ports by dragging the mouse with the left
mouse button down and move the output ports to the left.

Click the Show Symbols Toolbox icon

Click + on
Built-in symbols

126 Appendix A

Grab the and2 symbol with the mouse and drag it to the output port and_

Grab the symbols for nand2, or2, nor2, xor2, and xnor2 and drag them to the
appropriate output port, moving the output ports down as necessary.

 Aldec Active-HDL Tutorial 127

Select the wire icon and connect the gate inputs to a and b as shown.

Click Save

Right-click on gates2.bde
and select Compile

128 Appendix A

Part 6: Simulation

Click Choose, select gates2 as the top-level design, and click Add.

Click design flow and then Click functional simulation options

Click here to select
design files

Select gates2.bde
Click > and Click OK

Click OK

 Aldec Active-HDL Tutorial 129

Click Use Default Waveform

Click OK

Click functional simulation

130 Appendix A

The waveform window will automatically come up with the simulation already
initialized. Make sure the order is a, b, and_, nand_, or_, nor_, xor_, xnor (grab and
drag if necessary). Right-click on a and select Stimulators.

Select Clock and set Frequency to 25 MHz

Click Apply

 Aldec Active-HDL Tutorial 131

Click on b, select Clock and set Frequency to 50 MHz

Click Apply

Click Close

Set simulation time to 200 ns
 Click here to run simulation

 Click Zoom to Fit.

132 Appendix A

Part 7: Design Entry - HDE

Click on HDE.

Select Verilog
and Click OK.

Click Next.

Type gates2
and click Next.

 Aldec Active-HDL Tutorial 133

Click New. Type a.

Click New.
 Type b.

Click New.
 Type z.

Set Array Indexes
 to 5:0.

 Click out.

 Click Finish.

134 Appendix A

This will generate a Verilog template with the input and output signals filled in. Delete
all the comments and replace them with the single comment

// Example 1: 2-input gates

Edit the module, input, output, and wire statements to conform to the 2001 Verilog
standard as shown (see Listing 2.1 in Example 1).

Delete these
comments.

Delete these
statements.

 Aldec Active-HDL Tutorial 135

Click Save

Part 8: Simulation – gates2

Click design flow and then Click functional simulation options

Click here to select design files
Select gates2.v,
click > to move
and then Click Ok

Click on + and then
Right-click on
gates2.v and select
Compile

2

3

Type in these six
assign statements
(see Listing 2.1 of
Example 1)

1

136 Appendix A

Click Choose, select gates2 as the top-level design, and click Add.

Click Use Default Waveform

Click Ok

Click Ok

 Aldec Active-HDL Tutorial 137

Click functional simulation

The waveform window will automatically come up with the simulation already
initialized. Make sure the order is a, b, z (grab and drag if necessary).
Right-click on a and select Stimulators.

138 Appendix A

Select Clock and set Frequency to 25 MHz

Click Apply

Click on b, select Clock and set Frequency to 50 MHz

Click Apply

Click Close

 Aldec Active-HDL Tutorial 139

Set simulation time to 50 ns

 Click here to run simulation

Click + sign to show all elements of z.
 Study the waveforms for various magnifications.
 To print out this waveform you can detach it by clicking >> here and then
press Alt Prnt Scrn to copy it to the clipboard. Then paste it in a .doc file and print.

Appendix E

Verilog Quick Reference Guide
Category Definition Example

Identifer Names Can contain any letter, digit, underscore _, or $
Can not begin with a digit or be a keyword
Case sensitive

q0
Prime_number
lteflg

Signal Values 0 = logic value 0
1 = logic value 1
z or Z = high impedance
x or X = unknown value

Numbers d = decimal
b = binary
h = hexadecimal
o = octal

35 (default decimal)
4‘b1001
8’a5 = 8’b10100101

Parameters Associates an identifer name with a value that
can be overridden with the defparam statement

#(parameter N = 8)

Local parameters Associates an identifer name with a constant that
cannot be directly overridden

localparam [1:0] s0 = 2’b00,
 s1 = 2’b01, s2 = 2’b10;

Nets and Variables
Types

wire (used to connect one logic element to
another)
reg (variables assigned values in always block)
integer (useful for loop control variables)

wire [3:0] d;
wire led;
reg [7:0] q;
integer k;

Module module module_name
[#(parameter_port_list)]
(port_dir_type_name,{ port_dir_type_name }
);
[wire declarations]
[reg declarations]
[assign assignments]
[always blocks]

endmodule

module register
#(parameter N = 8)
(input wire load ,
input wire clk ,
input wire clr ,
input wire [N-1:0] d ,
output reg [N-1:0] q

);

always @(posedge clk or posedge clr)
if(clr == 1)
 q <= 0;
else if(load)
 q <= d;

endmodule

Logic operators ~ (NOT)
& (AND)
| (OR)
~(&) (NAND)
~(|) (NOR)
^ (XOR)
~^ (XNOR

assign z = ~y;
assign c = a & b;
assign z = x | y;
assign w = ~(u & v);
assign r = ~(s | t);
assign z = x ^ y;
assign d = a ~^ b;

Reduction operators & (AND)
| (OR)
~& (NAND)
~| (NOR)
^ (XOR)
~^ (XNOR

assign c = &a;
assign z = |y;
assign w = ~&v;
assign r = ~|t;
assign z = ^y;
assign d = ~^b;

Arithmetic operators + (addition)
- (subtraction)
* (multiplication)
/ (division)
% (mod)

count <= count + 1;
q <= q – 1;

Verilog Quick Reference Guide (cont.)
Relational operators ==, !=, >, <, >=, <=, ===, !== assign lteflg = (a <= b);

assign eq = (a == b);
if(clr == 1)

Shift operators << (shift left)
>> (shift right)

c = a << 3;
c = a >> 4;

always block always @(<sensitivity list>)
always @(*)

always @(*)
begin
 s = a ^ b;
 c = a & b;
end

if statement if(expression1)
begin
 statement;
end
else if (expression2)
begin
 statement;
end
else
begin
 statement;
end

if(s == 0)
 y = a;
else
 y = b;

case statement case(expression)
 alternative1: begin
 statement;
 end
 alternative2: begin
 statement;
 end
 [default: begin
 statement;
 end
endcase

case(s)
 0: y = a;
 1: y = b;
 2: y = c;
 3: y = d;
 default: y = a;
endcase

for loop for(initial_index; terminal_index; increment)
begin
 statement;
end

for(i=2; i<=4; i=i+1)
 z = z & x[i];

Assignment operator = (blocking)
<= (non-blocking)

z = z & x[i];
count <= count + 1;

Module instantiation Module_name instance_name(.port_name(expr)
 {,.port_name([expr])});

hex7seg d7R(.d(y),
 .a_to_g(a_to_g)
);

Parameter override defparam instance_name.parameter_name = val; defparam Reg.N = 16;

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

