

150 MHz pixel rate HDMI 1.3 transmitter with 3 \times 8-bit video inputs, HDCP and CEC support

Rev. 01 — 15 February 2010

Preliminary data sheet

1. General description

TDA19989 is a very low power and very small size High-Definition Multimedia Interface (HDMI) v. 1.3a transmitter. It is backward compatible DVI 1.0 and can be connected to any DVI 1.0 and HDMI sink.

This device is primarily intended for mobile applications like Digital Video Camera (DVC), Digital Still Camera (DSC), Portable Multimedia Player (PMP), Mobile Phone and Ultra-Mobile Personal Computer (UM PC) where size and very low power are mandatory for battery autonomy.

It allows mixing 3×8 -bit RGB or YCbCr video stream with a pixel rate up to 150 MHz together with one S/PDIF or one I²S-bus audio streams with an audio sampling rate up to 192 kHz.

In order to be compatible with most applications, TDA19989 integrates a full programmable input formatter and color space conversion block. The video input formats accepted are YCbCr 4 :4 : 4 (up to 3×8 -bit), YCbCr 4 : 2 : 2 semi-planar (up to 2×12 -bit) and YCbCr 4 : 2 : 2 compliant with ITU656 (up to 1×12 -bit). In case of ITU656-like format, the input pixel clock can be made active on one (SDR mode) or both edges (DDR mode).

TDA19989 includes a HDCP 1.3 compliant cipher block. The HDCP key are stored internally in a non-volatile OTP memory for maximum security.

This device provides additional embedded feature like CEC (Consumer Electronic Control). CEC is a single bidirectional wire that transmits CEC commands (like Standby from remote control) over the home appliance network connected through this wire. This eliminates the need of any additional device to handle this feature thus improving BOM (Bill Of Materials) of the whole system and enable the connected devices (CEC enabled) to be controlled by only one remote control.

TDA19989 supports xvYCC HDMI 1.3a feature.

It can be switched to very low power Standby or Sleep modes to save power when HDMI is not used.

TDA19989 includes I²C-bus master interface for DDC-bus communication for EDID reading and HDCP purpose.

This device can be controlled or configured via I²C-bus interface.

HDMI 1.3 transmitter with HDCP and CEC support

2. Features

- Compliance:
 - DVI 1.0
 - HDMI 1.3a
 - ◆ EIA/CEA-861B
 - ◆ CEC (HDMI 1.3)
 - SimplayHD
 - ◆ HDCP 1.3
- Video:
 - xvYCC HDMI 1.3 feature
 - ◆ Video formats with a pixel rate up to 150 MHz:
 - RGB 4 : 4 : 4
 - YCbCr 4 : 4 : 4
 - YCbCr 4 : 2 : 2 semi-planar
 - YCbCr 4 : 2 : 2 ITU656
 - Maximum resolution: 1080p for TV
 - 1600 \times 1200 at 60 Hz for PC (UXGA60)
 - 720p/1080i in ITU656
 - Programmable color space converter: RGB to YCbCr YCbCr to RGB
 - Programmable input formatter and upsampler/interpolator allows input of any of the 4:4:4,4:2:2 semi-planar, 4:2:2 ITU656-like formats
 - Horizontal synchronization, vertical synchronization and Data Enable (DE) inputs or VREF, HREF and FREF could be used for input data synchronization
 - Pixel clock input can be made active on one or both edges (selectable by I²C-bus)
 - Repetition of video samples as required by HDMI specification
- Audio:
 - 2 × I²S-bus 2 channels and S/PDIF; audio data rate up to 192 kHz per input for both standards
- Deals with multiple levels of HDCP receivers and repeaters

HDMI 1.3 transmitter with HDCP and CEC support

- Internal SHA-1 calculation
- System operation:
 - Master DDC-bus interface for EDID read
 - Controllable via l²C-bus
 - Downstream availability through the use of hot plug detect (HPD) and receiver detection (RxSense)
 - Deals with multiple levels of receivers and repeaters
- Package:
 - TFBGA64
 - ◆ Size 4.5 × 4.5 × 0.95 mm
- Power management:
 - External voltage supplies 1.8 V
 - Low power
 - Flexible power modes
- Miscellaneous:
 - POR (Power-On Reset)
 - ◆ Audio and video inputs LV-CMOS 1.8 V compatible and LV-CMOS 3.3 V tolerant
 - ◆ 250 MHz to 1.5 GHz TMDS transmitter operation

3. Applications

- Digital Video Camera (DVC)
- Digital Still Camera (DSC)
- Portable Multimedia Player (PMP)
- Mobile Phone
- Ultra-Mobile Personal Computer (UM PC)

4. Ordering information

Type number	Package							
	Name	Description	Version					
TDA19989AET	TFBGA64	plastic thin fine-pitch ball grid array package; 64 balls	SOT962-3					

5. Block diagram

Preliminary data sheet

Rev. 01 — 15 February 2010

4 of 47

6. Pinning information

6.1 Pinning

	TDA19989
ball A1 index area	1 2 3 4 5 6 7 8
AB	00000000
C D	0000000
E	0000000
G	
	001aal266 Transparent top view
Fig 3. Pin configuration (TFBGA64)	

6.2 Pin description

Symbol	Pin	Type <mark>[1]</mark>	Description
ACLK	H5	I	audio clock input
AP0	G5	I	audio port 0 input
AP1	F5	I	audio port 1 input
HPD	E6	I	hot plug detect; 5 V tolerant
EXT_SWING	E7	0	TMDS output swing adjustment; place resistor (R_{EXT_SWING} = 10 k $\Omega \pm$ 1 %) between this pin and analog ground.
DSDA	F6	I/O	DDC-bus data input/output; 5 V tolerant
DSCL	F7	I	DDC-bus clock input; 5 V tolerant
VCLK	D4	I	input video pixel clock
HSYNC/HREF	F4	I	input horizontal synchronization or reference input
VSYNC/VREF	G4	I	input vertical synchronization or reference input
DE/FREF	H4	I	data enable or field reference input
CSCL	B5	Ι	I ² C-bus clock input; 1.8 V to 3.3 V tolerant
CSDA	A5	I/O	I ² C-bus data input/output; 1.8 V to 3.3 V tolerant
INT	B6	I/O	interrupt HDMI output (open-drain); this pin is used as Dual function pin selectable through l ² C-bus. In calibration mode only this pin is used as input for 10 ms \pm 1 % calibration pulse. In operation mode this pin is used to warn the external microprocessor that a special event has occurred for HDMI or CEC
TX0-	E8	0	negative data channel 0 for TMDS output
TX0+	D8	0	positive data channel 0 for TMDS output
TX1-	C8	0	negative data channel 1 for TMDS output

HDMI 1.3 transmitter with HDCP and CEC support

		onconti	
Symbol	Pin	Type <mark>[1]</mark>	Description
TX1+	B8	0	positive data channel 1 for TMDS output
TX2–	A7	0	negative data channel 2 for TMDS output
TX2+	A6	0	positive data channel 2 for TMDS output
TXC-	G8	0	negative clock channel for TMDS output
TXC+	F8	0	positive clock channel for TMDS output
CEC	H7	I/O	CEC connection (open-drain) to HDMI connector
OSC_IN/AP3	H6	I	input connected to the external oscillator circuit or external clock source/audio port 3 input
AP2	G6	Ι	audio port 2 input
VPA[0]	C1	I	video port A input bit 0 (LSB)
VPA[1]	B1	I	video port A input bit 1
VPA[2]	B2	I	video port A input bit 2
VPA[3]	A2	I	video port A input bit 3
VPA[4]	B3	I	video port A input bit 4
VPA[5]	A3	I	video port A input bit 5
VPA[6]	B4	I	video port A input bit 6
VPA[7]	A4	I	video port A input bit 7 (MSB)
VPB[0]	E3	I	video port B input bit 0 (LSB)
VPB[1]	E2	I	video port B input bit 1
VPB[2]	E1	I	video port B input bit 2
VPB[3]	D1	I	video port B input bit 3
VPB[4]	D2	I	video port B input bit 4
VPB[5]	D3	I	video port B input bit 5
VPB[6]	C2	I	video port B input bit 6
VPB[7]	C3	I	video port B input bit 7 (MSB)
VPC[0]	H3	I	video port C input bit 0 (LSB)
VPC[1]	H2	I	video port C input bit 1
VPC[2]	G3	I	video port C input bit 2
VPC[3]	G2	I	video port C input bit 3
VPC[4]	G1	I	video port C input bit 4
VPC[5]	F1	I	video port C input bit 5
VPC[6]	F2	I	video port C input bit 6
VPC[7]	F3	I	video port C input bit 7 (MSB)
V _{DDA(TMDS)(1V8)}	A8, C7	Р	TMDS analog supply voltage (1.8 V)
V _{DDD(IO)(1V8)}	E4	Р	I/O digital supply voltage (1.8 V)
V _{DDA} (PLL)(1V8)	C6	Ρ	PLL analog supply voltage (1.8 V), this PLL provides the clock for the serializer
V _{DDA(1V8)}	G7, H8	Ρ	analog supply voltage (1.8 V), is used for parallel-to-serial shift register and miscellaneous blocks
V _{DDDC}	E5	Р	core digital supply voltage (1.8 V)

Table 2.	Pin descriptioncontinued							
Symbol	Pin	Type ^[1]	Description					
V _{DDDC}	D5	Р	core digital supply voltage (1.8 V)					
V _{SSD}	B7, C4, C5	G	digital ground supply voltage, is used for digital core; I/O					
V_{SSA}	D6, D7	G	analog ground supply voltage, is used for PLL; serializer, transmitter, and parallel-to-serial shift register					

[1] P = power supply, G = ground, I = input, O = output.

7. Functional description

TDA19989 is designed to convert digital data (video and audio) provided by Set-Top Boxes (STB), Digital Video Camera (DVC), Digital Still Camera (DSC), Portable Multimedia Player (PMP) or DVD into an HDMI output, which can be used by a TV with either an HDMI or DVI input.

The video data input formats are:

- RGB 4 : 4 : 4
- YCbCr 4 : 4 : 4
- YCbCr 4 : 2 : 2 semi-planar
- YCbCr 4 : 2 : 2 ITU656-like

TDA19989 is able to output HDMI with the formats:

- RGB 4 : 4 : 4
- YCbCr 4 : 4 : 4
- YCbCr 4 : 2 : 2

It can also handle audio formats:

- two l²S-bus channels
- one S/PDIF channel

TDA19989 is also designed to support CEC protocol. For more details about CEC, refer to *HDMI 1.3a specification*.

7.1 System clock

The system clock section has a PLL serializer.

It is a system clock generator which enables the stream produced by the encoder to be transmitted on the HDMI data channel at ten times, or above, the sampling rate.

7.2 Video input formatter

7.2.1 Description

TDA19989 has three video input ports VPA[0] to VPA[7], VPB[0] to VPB[7] and VPC[0] to VPC[7].

TDA19989 can accept any of the following video input modes (see Table 6):

- RGB, with 8-bit for each component
- YCbCr 4 : 4 : 4, with 8-bit for each component
- YCbCr 4: 2: 2 semi-planar, with up to 12-bit for each component (YCbCr)
- YCbCr 4 : 2 : 2 ITU656, with up to 12-bit data depth

TDA19989 can be set to latch data at either rising or falling edge, or both.

7.2.2 Internal assignment

The aim of the video input processor is to internally map the incoming data to the corresponding mode, which can be handled by the video processing. The internal signal named VP[23:0] is assigned depending on the input mode as defined below.

Table 3. Internal assignment

Internal assignment								
Internal port	RGB	YCbCr 4 : 4 : 4	YCbCr 4 : 2 : 2 semi-planar	YCbCr 4 : 2 : 2 ITU656				
VP[23]	G[7]	Y[7]	Y[11]	YCbCr[11]				
VP[22]	G[6]	Y[6]	Y[10]	YCbCr[10]				
VP[21]	G[5]	Y[5]	Y[9]	YCbCr[9]				
VP[20]	G[4]	Y[4]	Y[8]	YCbCr[8]				
VP[19]	G[3]	Y[3]	Y[7]	YCbCr[7]				
VP[18]	G[2]	Y[2]	Y[6]	YCbCr[6]				
VP[17]	G[1]	Y[1]	Y[5]	YCbCr[5]				
VP[16]	G[0]	Y[0]	Y[4]	YCbCr[4]				
VP[15]	B[7]	Cb[7]	Y[3]	YCbCr[3]				
VP[14]	B[6]	Cb[6]	Y[2]	YCbCr[2]				
VP[13]	B[5]	Cb[5]	Y[1]	YCbCr[1]				
VP[12]	B[4]	Cb[4]	Y[0]	YCbCr[0]				

TDA19989

HDMI 1.3 transmitter with HDCP and CEC support

Internal assignment									
Internal port	RGB	YCbCr 4 : 4 : 4	YCbCr 4 : 2 : 2 semi-planar	YCbCr 4 : 2 : 2 ITU656					
VP[11]	B[3]	Cb[3]	CbCr[11]	1					
VP[10]	B[2]	Cb[2]	CbCr[10]						
VP[9]	B[1]	Cb[1]	CbCr[9]						
VP[8]	B[0]	Cb[0]	CbCr[8]						
VP[7]	R[7]	Cr[7]	CbCr[7]						
VP[6]	R[6]	Cr[6]	CbCr[6]						
VP[5]	R[5]	Cr[5]	CbCr[5]						
VP[4]	R[4]	Cr[4]	CbCr[4]						
VP[3]	R[3]	Cr[3]	CbCr[3]						
VP[2]	R[2]	Cr[2]	CbCr[2]						
VP[1]	R[1]	Cr[1]	CbCr[1]						
VP[0]	R[0]	Cr[0]	CbCr[0]						

The device can swap and invert, in the event of a little endian stream, the incoming video data using I²C-bus registers VIP_CNTRL_0, VIP_CNTRL_1 and VIP_CNTRL_2 (page 00h) to match the expectation of the video processing block. Table 4 shows the behavior of SWAP_A[2:0] of VIP_CNTRL_0 register, whose function is to map the 4 MSBs VP[23:20] to the incoming video port.

HDMI 1.3 transmitter with HDCP and CEC support

External assignment	External assignment		Internal a	Internal assignment								
Pin number	Pin name	value	Internal port	RGB	YCbCr 4:4:4	YCbCr semi-p	4 : 2 : 2 Ianar	YCbCr 4 ITU656	1:2:2			
F3	VPC[7]	000b	VP[23]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]	
F2	VPC[6]		VP[22]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]	
F1	VPC[5]		VP[21]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]	
G1	VPC[4]		VP[20]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]	
G2	VPC[3]	001b	VP[23]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]	
G3	VPC[2]		VP[22]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]	
H2	VPC[1]		VP[21]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]	
H3	VPC[0]		VP[20]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]	
C3	VPB[7]	010b	VP[23]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]	
C2	VPB[6]		VP[22]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]	
D3	VPB[5]		VP[21]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]	
D2	VPB[4]		VP[20]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]	
D1	VPB[3]	011b	VP[23]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]	
E1	VPB[2]		VP[22]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]	
E2	VPB[1]		VP[21]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]	
E3	VPB[0]		VP[20]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]	
A4	VPA[7]	100b	VP[23]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]	
B4	VPA[6]		VP[22]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]	
A3	VPA[5]		VP[21]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]	
B3	VPA[4]		VP[20]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]	
A2	VPA[3]	101b	VP[23]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]	
B2	VPA[2]		VP[22]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]	
B1	VPA[1]		VP[21]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]	
C1	VPA[0]		VP[20]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]	

Table 4. Video input swap to VP[23:20]

In the same way:

- SWAP_B[2:0] is used to map incoming video port to the internal port VP[19:16].
- SWAP_C[2:0] is used to map incoming video port to the internal port VP[15:12].
- SWAP_D[2:0] is used to map incoming video port to the internal port VP[11:8].
- SWAP_E[2:0] is used to map incoming video port to the internal port VP[7:4].
- SWAP_F[2:0] is used to map incoming video port to the internal port VP[3:0].

The device expects to receive big endian incoming data. However, in cases where the input digital stream to the chip is little endian, the use of the mirror bit of the same register can help to re-order the input bits as described in <u>Table 5</u>.

HDMI 1.3 transmitter with HDCP and CEC support

Table 5. TDA19989 input/o	utput capability	
Bit setting	Internal port	To be mapped to
MIRR_A = 1	VP[23]	VPC[0]
SWAP_A[2:0] = 1	VP[22]	VPC[1]
	VP[21]	VPC[2]
	VP[20]	VPC[3]
$MIRR_B = 1$	VP[19]	VPC[4]
$SWAP_B[2:0] = 0$	VP[18]	VPC[5]
	VP[17]	VPC[6]
	VP[16]	VPC[7]
$MIRR_C = 1$	VP[15]	VPB[0]
SWAP_C[2:0] = 3	VP[14]	VPB[1]
	VP[13]	VPB[2]
	VP[12]	VPB[3]
MIRR_D = 1	VP[11]	VPB[4]
SWAP_D[2:0] = 2	VP[10]	VPB[5]
	VP[9]	VPB[6]
	VP[8]	VPB[7]
$MIRR_E = 1$	VP[7]	VPA[4]
SWAP_E[2:0] = 5	VP[6]	VPA[5]
	VP[5]	VPA[6]
	VP[4]	VPA[7]
MIRR_F = 1	VP[3]	VPA[0]
SWAP_F[2:0] = 4	VP[2]	VPA[1]
	VP[1]	VPA[2]
	VP[0]	VPA[3]

When input ports are not used, it is possible to deactivate them via the l^2 C-bus with the appropriate set of registers ENA_VP_0, ENA_VP_1 and ENA_VP_2 on page 00h.

7.2.3 Input format mappings

Table 6 gives more information concerning input format supported.

Table 6. Inputs of video input formatter

Color space	Format	Channels	Sync type	Rising edge	Falling edge	Double edge	Transmission input format	Max. pixel clock (MHz)	Max. input format	Comments	Reference			
RGB 4:4:4	3×8 -bit	3 × 8-bit	3 × 8-bit	3 × 8-bit	3×8 -bit	external	Х			-	150	-		Section 7.2.3.1
					Х		-	150	-					
			embedded	Х			-	150	-					
					Х		-	150	-					
YCbCr	4:4:4	3×8 -bit	external	Х			-	150	-		Section 7.2.3.2			
					Х		-	150	-					
			embedded	Х			-	150	-					
					Х		-	150	-					
YCbCr	4:2:2	: 2 up to 1 × 12-bit ITU656-like		Х			ITU656-like	54.054	480p/576p		Section 7.2.3.3			
			U656-like					148.5	720p/1080i					
					Х		ITU656-like	54.054	480p/576p					
								148.5	720p/1080i					
						Х	ITU656-like	74.25	720p/1080i	double edge	Section 7.2.3.4			
			embedded	Х			ITU656-like	54.054	480p/576p		Section 7.2.3.5			
								148.5	720p/1080i					
					Х		ITU656-like	54.054	480p/576p					
								148.5	720p/1080i					
						Х	ITU656-like	74.25	720p/1080i	double edge	Section 7.2.3.6			
		up to 2×8 -bit	external	Х			SMPTE293M	148.5	1080p		Section 7.2.3.7			
		semi-planar	i-planar		Х		SMPTE293M	148.5	1080p					
			embedded	Х			SMPTE293M	148.5	1080p		Section 7.2.3.8			
					Х		SMPTE293M	148.5	1080p					

TDA19989

© NXP B.V. 2010. All rights reserved. 12 of 47

HDMI 1.3 transmitter with HDCP and CEC support

7.2.3.1 RGB 4 : 4 : 4 external synchronization (rising edge)

Table 7.RGB (3×8 -bit) external synchronization input (rising edge) mappingRegister VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 45h; VIP_CNTRL_2 = 01h.

Video port A		Video port B		Video port	С	Control		
Pin	RGB 4 : 4 : 4	Pin	n RGB 4 : 4 : 4		RGB 4 : 4 : 4 Pin RGB 4 : 4 : 4		RGB 4 : 4 : 4	
VPA[0]	B[0]	VPB[0]	G[0]	VPC[0]	R[0]	HSYNC/HREF	used	
VPA[1]	B[1]	VPB[1]	G[1]	VPC[1]	R[1]	VSYNC/VREF	used	
VPA[2]	B[2]	VPB[2]	G[2]	VPC[2]	R[2]	DE/FREF	used	
VPA[3]	B[3]	VPB[3]	G[3]	VPC[3]	R[3]			
VPA[4]	B[4]	VPB[4]	G[4]	VPC[4]	R[4]			
VPA[5]	B[5]	VPB[5]	G[5]	VPC[5]	R[5]			
VPA[6]	B[6]	VPB[6]	G[6]	VPC[6]	R[6]			
VPA[7]	B[7]	VPB[7]	G[7]	VPC[7]	R[7]			

7.2.3.2 YCbCr 4 : 4 : 4 external synchronization (rising edge)

Table 8.YCbCr 4 : 4 : 4 (3×8 -bit) external synchronization input (rising edge) mappingRegister VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 45h; VIP_CNTRL_2 = 01h.

Video po	ort A	Video po	ort B	Video po	ort C	Control	
Pin	YCbCr 4 : 4 : 4	Pin	YCbCr 4 : 4 : 4	Pin	YCbCr 4 : 4 : 4	Pin	YCbCr 4 : 4 : 4
VPA[0]	Cb[0]	VPB[0]	Y[0]	VPC[0]	Cr[0]	HSYNC/HREF	used
VPA[1]	Cb[1]	VPB[1]	Y[1]	VPC[1]	Cr[1]	VSYNC/VREF	used
VPA[2]	Cb[2]	VPB[2]	Y[2]	VPC[2]	Cr[2]	DE/FREF	used
VPA[3]	Cb[3]	VPB[3]	Y[3]	VPC[3]	Cr[3]		
VPA[4]	Cb[4]	VPB[4]	Y[4]	VPC[4]	Cr[4]		
VPA[5]	Cb[5]	VPB[5]	Y[5]	VPC[5]	Cr[5]		
VPA[6]	Cb[6]	VPB[6]	Y[6]	VPC[6]	Cr[6]		
VPA[7]	Cb[7]	VPB[7]	Y[7]	VPC[7]	Cr[7]		

TDA19989_1

HDMI 1.3 transmitter with HDCP and CEC support

7.2.3.3 YCbCr 4 : 2 : 2 ITU656-like external synchronization (rising edge)

Table 9.	YCbCr 4 : 2 : 2 ITU656-like external synchronization input (rising edge) mapping
Register V	<pre>/IP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.</pre>

Video p	ort A				Video p	ort B				Control	
Pin	YCbCr	4:2:2	(ITU656-	like)	Pin	YCbCr	4:2:2((ITU656-I	ike)	Pin	YCbCr 4 : 2 : 2
VPA[0]	Cb[0]	Y ₀ [0]	Cr[0]	Y ₁ [0]	VPB[0]	Cb[4]	Y ₀ [4]	Cr[4]	Y ₁ [4]	HSYNC/HREF	used
VPA[1]	Cb[1]	Y ₀ [1]	Cr[1]	Y ₁ [1]	VPB[1]	Cb[5]	Y ₀ [5]	Cr[5]	Y ₁ [5]	VSYNC/VREF	used
VPA[2]	Cb[2]	Y ₀ [2]	Cr[2]	Y ₁ [2]	VPB[2]	Cb[6]	Y ₀ [6]	Cr[6]	Y ₁ [6]	DE/FREF	used
VPA[3]	Cb[3]	Y ₀ [3]	Cr[3]	Y ₁ [3]	VPB[3]	Cb[7]	Y ₀ [7]	Cr[7]	Y ₁ [7]		
VPA[4]	-	-	-	-	VPB[4]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]		
VPA[5]	-	-	-	-	VPB[5]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]		
VPA[6]	-	-	-	-	VPB[6]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]		
VPA[7]	-	-	-	-	VPB[7]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]		

HDMI 1.3 transmitter with HDCP and CEC support

7.2.3.4 YCbCr 4 : 2 : 2 ITU656-like external synchronization (double edge)

Table 10. YCbCr 4 : 2 : 2 ITU656-like external synchronization input (double edge) mapping *Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.*

Video p	ort A				Video p	Video port B					Control		
Pin	YCbCr	4:2:2	(ITU656	-like)	Pin	Pin YCbCr 4 : 2 : 2 (ITU656-like)				Pin	YCbCr 4 : 2 : 2		
VPA[0]	Cb[0]	Y ₀ [0]	Cr[0]	Y ₁ [0]	VPB[0]	Cb[4]	Y ₀ [4]	Cr[4]	Y ₁ [4]	HSYNC/HREF	used		
VPA[1]	Cb[1]	Y ₀ [1]	Cr[1]	Y ₁ [1]	VPB[1]	Cb[5]	Y ₀ [5]	Cr[5]	Y ₁ [5]	VSYNC/VREF	used		
VPA[2]	Cb[2]	Y ₀ [2]	Cr[2]	Y ₁ [2]	VPB[2]	Cb[6]	Y ₀ [6]	Cr[6]	Y ₁ [6]	DE/FREF	used		
VPA[3]	Cb[3]	Y ₀ [3]	Cr[3]	Y ₁ [3]	VPB[3]	Cb[7]	Y ₀ [7]	Cr[7]	Y ₁ [7]				
VPA[4]	-	-	-	-	VPB[4]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]				
VPA[5]	-	-	-	-	VPB[5]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]				
VPA[6]	-	-	-	-	VPB[6]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]				
VPA[7]	-	-	-	-	VPB[7]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]				

7.2.3.5 YCbCr 4 : 2 : 2 ITU656-like embedded synchronization (rising edge)

 Table 11.
 YCbCr 4 : 2 : 2 ITU656-like embedded synchronization input (rising edge) mappings

 Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.

Video p	ort A				Video port B					Control	
Pin	YCbCr	4:2:2	(ITU656	-like)	Pin	YCbCr	4:2:2	(ITU656-	·like)	Pin	YCbCr 4 : 2 : 2
VPA[0]	Cb[0]	Y ₀ [0]	Cr[0]	Y ₁ [0]	VPB[0]	Cb[4]	Y ₀ [4]	Cr[4]	Y ₁ [4]	HSYNC/HREF	not used
VPA[1]	Cb[1]	Y ₀ [1]	Cr[1]	Y ₁ [1]	VPB[1]	Cb[5]	Y ₀ [5]	Cr[5]	Y ₁ [5]	VSYNC/VREF	not used
VPA[2]	Cb[2]	Y ₀ [2]	Cr[2]	Y ₁ [2]	VPB[2]	Cb[6]	Y ₀ [6]	Cr[6]	Y ₁ [6]	DE/FREF	not used
VPA[3]	Cb[3]	Y ₀ [3]	Cr[3]	Y ₁ [3]	VPB[3]	Cb[7]	Y ₀ [7]	Cr[7]	Y ₁ [7]		
VPA[4]	-	-	-	-	VPB[4]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]		
VPA[5]	-	-	-	-	VPB[5]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]		
VPA[6]	-	-	-	-	VPB[6]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]		
VPA[7]	-	-	-	-	VPB[7]	Cb[11]	Y ₀ [11]	Cr11]	Y ₁ [11]		

HDMI 1.3 transmitter with HDCP and CEC support

7.2.3.6 YCbCr 4 : 2 : 2 ITU656-like embedded synchronization (double edge)

 Table 12.
 YCbCr 4 : 2 : 2 ITU656-like embedded synchronization input (double edge) mapping

 Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.

Video p	ort A				Video port B					Control	
Pin	YCbCr	4:2:2	(ITU656	-like)	Pin	YCbCr	4:2:2	(ITU656-	like)	Pin	YCbCr 4 : 2 : 2
VPA[0]	Cb[0]	Y ₀ [0]	Cr[0]	Y ₁ [0]	VPB[0]	Cb[4]	Y ₀ [4]	Cr[4]	Y ₁ [4]	HSYNC/HREF	not used
VPA[1]	Cb[1]	Y ₀ [1]	Cr[1]	Y ₁ [1]	VPB[1]	Cb[5]	Y ₀ [5]	Cr[5]	Y ₁ [5]	VSYNC/VREF	not used
VPA[2]	Cb[2]	Y ₀ [2]	Cr[2]	Y ₁ [2]	VPB[2]	Cb[6]	Y ₀ [6]	Cr[6]	Y ₁ [6]	DE/FREF	not used
VPA[3]	Cb[3]	Y ₀ [3]	Cr[3]	Y ₁ [3]	VPB[3]	Cb[7]	Y ₀ [7]	Cr[7]	Y ₁ [7]		
VPA[4]	-	-	-	-	VPB[4]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]		
VPA[5]	-	-	-	-	VPB[5]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]		
VPA[6]	-	-	-	-	VPB[6]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]		
VPA[7]	-	-	-	-	VPB[7]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]		

HDMI 1.3 transmitter with HDCP and CEC support

7.2.3.7 YCbCr 4 : 2 : 2 semi-planar external synchronization (rising edge)

Table 13. YCbCr 4 : 2 : 2 semi-planar external synchronization input (rising edge) mapping Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 14h.

Video po	ort A		Video p	Video port B			ort C		Control		
Pin	Pin YCbCr 4 : 2 : 2 semi-planar		Pin		YCbCr 4 : 2 : 2 semi-planar		YCbCr 4 : 2 : 2 semi-planar		Pin	YCbCr 4 : 2 : 2	
VPA[0]	Y ₀ [0]	Y ₁ [0]	VPB[0]	Y ₀ [4]	Y ₁ [4]	VPC[0]	Cb[4]	Cr[4]	HSYNC/HREF	used	
VPA[1]	Y ₀ [1]	Y ₁ [1]	VPB[1]	Y ₀ [5]	Y ₁ [5]	VPC[1]	Cb[5]	Cr[5]	VSYNC/VREF	used	
VPA[2]	Y ₀ [2]	Y ₁ [2]	VPB[2]	Y ₀ [6]	Y ₁ [6]	VPC[2]	Cb[6]	Cr[6]	DE/FREF	used	
VPA[3]	Y ₀ [3]	Y ₁ [3]	VPB[3]	Y ₀ [7]	Y ₁ [7]	VPC[3]	Cb[7]	Cr[7]			
VPA[4]	Cb[0]	Cr[0]	VPB[4]	Y ₀ [8]	Y ₁ [8]	VPC[4]	Cb[8]	Cr[8]			
VPA[5]	Cb[1]	Cr[1]	VPB[5]	Y ₀ [9]	Y ₁ [9]	VPC[5]	Cb[9]	Cr[9]			
VPA[6]	Cb[2]	Cr[2]	VPB[6]	Y ₀ [10]	Y ₁ [10]	VPC[6]	Cb[10]	Cr[10]			
VPA[7]	Cb[3]	Cr[3]	VPB[7]	Y ₀ [11]	Y ₁ [11]	VPC[7]	Cb[11]	Cr[11]			

Fig 11. Pixel encoding YCbCr 4 : 2 : 2 semi-planar external input synchronization (rising edge)

7.2.3.8 YCbCr 4 : 2 : 2 semi-planar embedded synchronization (rising edge)

Table 14.	YCbCr 4 : 2 : 2 semi-planar embedded synchronization input (rising edge) mapping
Register V	$IP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 14h.$

Video p	ort A		Video p	ort B		Video po	ort C		Control	
Pin	YCbCr 4 semi-pla		Pin	YCbCr 4 semi-pla		Pin	YCbCr 4 semi-pla		Pin	YCbCr 4 : 2 : 2
VPA[0]	Y ₀ [0]	Y ₁ [0]	VPB[0]	Y ₀ [4]	Y ₁ [4]	VPC[0]	Cb[4]	Cr[4]	HSYNC/HREF	not used
VPA[1]	Y ₀ [1]	Y ₁ [1]	VPB[1]	Y ₀ [5]	Y ₁ [5]	VPC[1]	Cb[5]	Cr[5]	VSYNC/VREF	not used
VPA[2]	Y ₀ [2]	Y ₁ [2]	VPB[2]	Y ₀ [6]	Y ₁ [6]	VPC[2]	Cb[6]	Cr[6]	DE/FREF	not used
VPA[3]	Y ₀ [3]	Y ₁ [3]	VPB[3]	Y ₀ [7]	Y ₁ [7]	VPC[3]	Cb[7]	Cr[7]		
VPA[4]	Cb[0]	Cr[0]	VPB[4]	Y ₀ [8]	Y ₁ [8]	VPC[4]	Cb[8]	Cr[8]		
VPA[5]	Cb[1]	Cr[1]	VPB[5]	Y ₀ [9]	Y ₁ [9]	VPC[5]	Cb[9]	Cr[9]		
VPA[6]	Cb[2]	Cr[2]	VPB[6]	Y ₀ [10]	Y ₁ [10]	VPC[6]	Cb[10]	Cr[10]		
VPA[7]	Cb[3]	Cr[3]	VPB[7]	Y ₀ [11]	Y ₁ [11]	VPC[7]	Cb[11]	Cr[11]		

HDMI 1.3 transmitter with HDCP and CEC support

7.2.4 Synchronization

TDA19989 can be synchronized with extraction of the sync information from embedded sync (SAV/EAV) codes inside the video stream or with external HSYNC/VSYNC inputs.

7.2.4.1 Timing extraction generator

Synchronization signals can be extracted from Start Active Video (SAV) and End Active Video (EAV) in case of embedded synchronization in the data stream.

Synchronization signals can be embedded in YCbCr 4 : 2 : 2 ITU656 (up to 1×12 -bit) and YCbCr 4 : 2 : 2 semi-planar (up to 2×12 -bit).

7.2.4.2 Data enable generator

TDA19989 contains a Data Enable (DE) generator; this can generate an internal DE signal for a system which does not provide one.

7.3 Input and output video format

Due to the flexible video input formatter, TDA19989 can accept a large range of input formats. This flexibility allows TDA19989 to be compatible with the maximum possible number of MPEG decoders. Moreover, these input formats may be changed in many ways (color space converter, upsampler, downsampler) before it is transmitted across the HDMI link. Table 15 gives the possible inputs and outputs.

Input			Output		
Color space	Format	Channels	Color space	Format	Channels
RGB	4:4:4	3×8 -bit	RGB	4:4:4	3×8 -bit
			YCbCr	4:4:4	3×8 -bit
			YCbCr	4:2:2	2×12 -bit
YCbCr	4:4:4	3×8 -bit	RGB	4:4:4	3×8 -bit
			YCbCr	4:4:4	3×8 -bit
			YCbCr	4:2:2	2×12 -bit
YCbCr	4:2:2	up to 1×12 -bit	RGB	4:4:4	3×8 -bit
		semi-planar	YCbCr	4:4:4	3×8 -bit
			YCbCr	4:2:2	2×12 -bit

Input			Output				
Color space	Format	Channels	Color space	Format	Channels		
YCbCr 4:2:2		up to 2×12 -bit	RGB	4:4:4	3×8 -bit		
		semi-planar	YCbCr	4:4:4	3×8 -bit		
			YCbCr	4:2:2	2×12 -bit		

Table 15. Use of color space converter, upsampler and downsampler ... continued

7.4 Upsampler

The incoming YCbCr 4 : 2 : 2 (2 × 12-bit) data stream format could be upsampled into YCbCr 4 : 4 : 4 (3 × 8-bit) data stream by repeating or linearly interpolating the chrominance pixels.

7.5 Color space converter

The color space converter is used to convert input video data from one type to another color space (e.g. RGB to YCbCr and YCbCr to RGB). This block can be bypassed and each coefficient is programmable via the I²C-bus register.

$$\begin{bmatrix} Y \setminus G \\ Cr \setminus R \\ Cb \setminus B \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \times \begin{pmatrix} Y \\ R/Cr \\ B/Cb \end{bmatrix} + \begin{bmatrix} Oin_{G/Y} \\ Oin_{R/Cr} \\ Oin_{B/Cb} \end{bmatrix} + \begin{bmatrix} Oout_{Y \setminus G} \\ Oout_{Cr \setminus R} \\ Oout_{Cb \setminus B} \end{bmatrix}$$
(1)

7.6 Gamut-related metadata

Gamut-related metadata is an enhanced colorimetry beyond the default standard with higher definition colorimetries. Profile P0 is supported, which means that only one packet per video field is sent. Color gamut boundary data are defined the standards:

- xvYCC601 (IEC 61966-2-4 SD) (using YCbCr)
- xvYCC709 (IEC 61966-2-4 HD) (using YCbCr)

Remark: Gamut-related metadata is an HDMI 1.3a feature.

7.7 Downsampler

This block works only with YCbCr input format; the filters downsample the Cb and Cr signals by a factor of 2. A delay is added on the Y channel, which corresponds to the pipeline delay of the filters, to put the Y channel in phase with the Cb-Cr channel.

7.8 Audio input format

TDA19989 is compatible with the following audio features described in the HDMI 1.3 specification:

- S/PDIF
- I²S-bus up to four stereo channels

TDA19989 can carry audio in I²S-bus format (one stereo to two stereo channels) or in S/PDIF format through one audio pin named AP1. S/PDIF or I²S-bus format can be selected via the I²C-bus. Only one audio format can be used at a time: either S/PDIF or I²S-bus. Table 16 shows the audio port allocation and Section 7.8.3 gives more details.

Audio port	Input configuration						
	S/PDIF	l ² S-bus					
AP0	·-	WS (word select)					
AP1	S/PDIF input	I ² S-bus channel 0					
AP2	S/PDIF input	I ² S-bus channel 1					
AP3	MCLK						
ACLK	-	SCK (I ² S-bus clock)					

All audio ports are LV-CMOS 1.8 V compatible and LV-CMOS 3.3 V tolerant. It is possible to deactivate unused ports via I²C-bus with ENA_AP register on page 00h for both audio and clock inputs.

7.8.1 S/PDIF

In this format TDA19989 supports 2-channel uncompressed PCM data (IEC 60958) layout 0, or compressed bit stream up to 8 multi channels (Dolby Digital, DTS, AC3 etc.) layout 1.

Only one S/PDIF input can be used at the same time. The selection is done by register.

TDA19989 is able to recover the original clock from the S/PDIF signal (no need of external clock). In addition, it can also use an external clock to decode the S/PDIF signal.

7.8.2 I²S-bus

There are $2 \times I^2S$ -bus stereo input, which enables 2 uncompressed audio channels to be carried. The I²S-bus input interface receives an I²S-bus signal including serial data, word select and serial clock.

Typical waveforms for the I^2S -bus signals at $64f_s$ are given by Figure 13.

HDMI 1.3 transmitter with HDCP and CEC support

The l²S-bus input interface can receive up to 24-bit wide audio samples via the serial data input with a clock frequency of at least 32 times the input sample frequency f_s .

Audio samples with a precision better than 24-bit are truncated to 24-bit. If the input clock has a frequency of $32f_s$, only 16-bit audio-samples can be received. In this case, the 8 LSBs will be set to 0. If the input clock has a frequency of $64f_s$ and is left justified or Philips, the audio word is truncated to 24-bit format and other bits padded with zeros. If the input clock has a frequency of $64f_s$ and is right justified, audio sample size has to be specified via software drivers.

The serial data signal carries the serial baseband audio data, sample by sample left/right interleaved.

The word select signal indicates whether left or right channel information is transferred over the serial data line.

HDMI 1.3 transmitter with HDCP and CEC support

7.8.3 Audio port internal assignment

The aim of the internal audio input assignment is to internally map any of the incoming data from the audio port AP1 or AP2 to I²S-bus channel 0 or S/PDIF internal ports by setting the appropriate I²C-bus register.

7.9 Power management

TDA19989 HDMI and CEC cores can be independently powered down by the I²C-bus register. In Standby mode all activities are reduced by switching off all PLLs, HDMI and CEC cores and disconnecting the biasing structure of the output stage. TDA19989 has a very low power consumption, which is suitable for portable applications.

Table 17 gives the typical power consumption of the device in different configurations.

Typical power	Configuration	Comment			
400 μW	Standby mode:	default configuration: after power-up; PLLs			
	• I ² C-bus ON	HDMI and CEC cores are OFF; can be switched ON via I ² C-bus register			
1.3 mW	Sleep mode without CEC:	no sink connected; CEC is OFF			
	 HDMI interruption (HPD, RxSense only) 				
1.8 mW	Sleep mode with CEC:	no sink connected; CEC is ON			
	 HDMI interruption (HPD, RxSense only) 				
	 CEC interruption 				
90 mW	Low power 1080i mode:	sink connected; CEC is OFF; 30 % activity on			
	 Video format 1080i 	video input ports			
	• Video input RGB 4 : 4 : 4				
	No CEC				
155 mW	Full speed mode:	all blocks enabled and running; 30 % activity on			
	 Video format 1080p 	video input ports			

7.10 Interrupt controller

Pin INT is used to alert the system microcontroller that a critical event concerning the HDMI or CEC has occurred. The software provided with the device read a status register (I²C-bus) to determine which block between HDMI and CEC has caused the interruption before processing it. Some of theses interrupts are maskable. The interrupt types are described in Table 18.

Interrupt domain	Interrupt name	Definition	Maskable feature	
HDCP	rO	r0 = R'0 check done	maskable	
	pj	pj = P'j check fails		
	sha-1	V = V' check success		
	bstatus	bstatus available		
	bcaps	bcaps available		
	tO	HDCP goes to initial state		
	security	HDCP encryption is off or blue screen removed	not maskable	
HPD	hpd	transition on HPD input	maskable	
RxSense	rx_sense	transition on RxSense	maskable	
Interrupt	sw_intsoftware	test purpose (output an interrupt signal)	maskable	
EDID	edid_block_rd	EDID block read finished	maskable	
CEC	cec_int	CEC message received	not maskable	

7.10.1 Hot plug/unplug detect

The hot plug detect (HPD) pin is 5 V input tolerant. The HPD signal, when asserted, tells the transmitter that the receiver is connected. When changing from LOW-to-HIGH, TDA19989 has to read the EDID of the receiver in order to select the video format that the receiver can handle.

7.10.2 Receiver sensitivity

TDA19989 has the capability to sense the receiver connectivity and working behavior. This feature (RxSense) detects the presence of the 50 Ω pull-up resistor R_T on the TMDS clock channel of the downstream side.

HDMI 1.3 transmitter with HDCP and CEC support

As long as the receiver is connected to the transmitter and powered-up, bit RXS_FIL is set to logic 1.

As soon as the cable is unplugged or receiver side powered off (assuming in this case that V_{CC} is switched off), the RxSense generates an interrupt inside TDA19989, changing the value of bit RXS_FIL to logic 0 (See <u>Table 19</u>). This allows the application to stop sending unnecessary video content.

This feature is very useful when the receiver recovers from an off-state and does not generate a HPD transition HIGH-to-LOW-to-HIGH. In this particular case, RxSense will generate an interrupt so that the chip restarts sending video.

Average voltage (Vinp_rxs + Vinn_rxs) / 2	bit RXS_FIL: receiver powered on	bit RXS_FIL: receiver powered off
$V \ge 1 V$	1	0
0.8 V < V < 1 V	undefined	0
$V \le 0.8 V$	0	0

Table 19. Receiver detection according to averaged terminal voltage

Remark: According to the HDMI specification, only the HPD interrupt allows the application to read the EDID. The RxSense interrupt is not mandatory to initialize the EDID reading procedure.

7.11 HDCP processing

7.11.1 High-bandwidth digital content protection

TDA19989 contains an HDCP function, which encrypts the transmitted stream content (both video and audio). This function can be enabled and disabled via the I²C-bus.

The keys can be stored internally in OTP non-volatile memory or can be loaded via the I²C-bus. As the keys are stored internally, the security is maximized.

7.11.1.1 Repeater function

TDA19989 can be used in a repeater device according to the *HDCP specification*, *Rev 1.3*. TDA19989 is able to store the KSV list of a maximum of 127 devices in a register memory.

7.11.1.2 SHA-1

To deal with repeater, a SHA-1 calculation is performed by the transmitter and by the downstream repeater. For security purposes and in order to relieve the microcontroller, the SHA-1 has been implemented within TDA19989.

This calculation is worked out after the transmitter has loaded the KSV list (see *HDCP specification, Rev 1.3*). If SHA-1 calculated by transmitter equals the SHA-1 calculated by repeater, then an interrupt is sent.

7.12 CEC

TDA19989 with its embedded CEC block provides a complete solution to enable Consumer Electronic Control (CEC) in product (DSC, DVC, PMP, UM PC). This eliminates the need of any additional device to handle this feature thus improving BOM (Bill Of Materials). CEC capability allows AV products (CEC enable) to communicate together over the home appliance network which could be controlled using only one remote control.

The CEC block manages low level transactions (compliant to CEC timing specification) over the one bidirectional line. It translates CEC protocol in I²C-bus for the host processor and vice versa. It manages CEC message reception and transmission compliant to CEC protocol and provides the message to the system microcontroller (host processor).

For power consumption optimization purpose CEC could be enable or disable through I²C-bus register. The following sections describe CEC:

- Features
- Clocking scheme

7.12.1 Features

- Receive and transmit CEC messages to host processor
- Supports multiple CEC logical addresses
- Supports CEC messages up to 16 bytes long
- Programmable retry count
- Comprehensive arbitration and collision handling

7.12.2 Clock

CEC clock must be running in Sleep mode (with CEC) to wake up TDA19989 using CEC specific message as described in *"HDMI specification 1.3a"*.

CEC module can be clocked using:

- External clock:
 - 12 MHz crystal \pm 1 %.
- Internal clock:
 - FRO (Free Running Oscillator). FRO frequency varies and in the range from 12.64 MHz to 12.9 MHz. See Figure 16.

CEC operates normally (i.e. matches the timing requested CEC specification) if and only if its clock frequency is set to 12 MHz.

Calibration procedure is completely handled by the software delivered together with the device, it has the following steps:

- · Host processor set TDA19989 in calibration mode
- Host processor generates a negative pulse of 10 ms ± 1 % on INT pin
- Host processor deselects the calibration mode when it is completed, the chip is ready to operate

CEC clock calibration must be performed at each power-up and each time TDA19989 moves from Standby or Sleep (without CEC) state to normal operating mode.

Non successful calibration will lead to CEC signal not matching timings specification; as a consequence, CEC will not be functional.

7.12.3 CEC interrupt

Pin INT is used by TDA19989 to warn the host processor that HDMI or CEC events (CEC message is available to read) have occurred.

Software interrupt status register reads determine which block between HDMI or CEC has raised the interruption before processing it.

7.12.4 Power-On Reset (POR)

After power-up, TDA19989 is activated by internal reset from POR module. This is used to set TDA19989 to a known state.

7.12.5 Repeater function

TDA19989 can be used in a repeater device according to HDMI 1.3a.

7.13 HDMI core

7.13.1 Output TMDS buffers

7.13.1.1 Digitally controlled signal amplitude

The TMDS signal output peak-to-peak voltage (Vswing) is programmable by the software using I²C-bus register vswing_crtl[3:0]. Vswing varies from 370 mV to 640 mV with \pm 5 % accuracy in 18 mV steps according to the following formula:

Vswing = 370 mV + 18 mV × vswing_ctrl[3:0]

An external resistor (10 k $\Omega\pm$ 1 %) must be connected between pin EXT_SWING and analog ground.

7.13.2 Pixel repetition

To transmit video formats with pixel rates below 25 megasamples per second or to increase the number of audio sample packets in each frame, TDA19989 uses pixel repetition to increase the transmitted pixel clock (see Table 20).

PR[3]	PR[2]	PR[1]	PR[0]	Pixel repetition factor
0	0	0	0	no repetition: pixel sent once
0	0	0	1	2 times: pixel repeated once
0	0	1	0	3 times
0	0	1	1	4 times
0	1	0	0	5 times
0	1	0	1	6 times
0	1	1	0	7 times
0	1	1	1	8 times
1	0	0	0	9 times
1	0	0	1	10 times
others				reserved

Table 20. Pixel repetition

7.13.3 DDC-bus channel

The DDC-bus pins DSDA and DSCL are 5 V tolerant and can work at standard mode (100 kHz). The DDC-bus is used as a master interface when reading the EDID.

When the device is power-off, DSDA and DSCL ports:

- become in high-impedance
- can withstand 5 V from the sink

7.14 E-EDID

7.14.1 E-EDID reading

As a master interface for the EDID process, the DDC-bus is compliant with the I²C-bus specification and has the possibility of repeat/start condition to enable quick access to the EDID content, as well as the possibility of reading a large EDID (with the use of segment pointer).

TDA19989 has a whole I²C-bus page (page 09h) dedicated to the EDID where one block (128 bytes) can be stored. The block can be read by the system microcontroller to determine the supported video and audio format of the downstream site.

Remark: When the block is read by TDA19989, it generates an interrupt to warn the main processor that the chip is ready to transmit the content. Once the content is read out by the main processor, it can allow other blocks to be read if required.

7.14.2 HDMI and DVI receiver discrimination

This information is located in the E-EDID receiver part, in the 'vendor-specific data block' within the first CEA EDID timing extension.

If the 24-bit IEEE Registration Identifier contains the value 00 0C03h, then the receiver will support HDMI, otherwise the device will be treated as a DVI device.

However, even through TDA19989 have directly access to that information, it is the task of the host processor to ask to switch from DVI to HDMI mode.

8. I²C-bus interface and register definitions

8.1 I²C-bus protocol

The I²C-bus pins CSDA and CSCL are 1.8 V and 3.3 V tolerant. Both Fast mode (400 kHz) and Standard mode (100 kHz) are supported.

The registers of TDA19989 can be accessed via the I²C-bus. All registers are R/W except for those which are confidential.

HDMI and CEC cores I²C-bus addresses are given in Table 21 and Table 22.

Table 21.HDMI core I²C-bus address

HDMI core address								
A6	A5	A4	A3	A2	A1	A0	R/W	
1	1	1	0	0	0	0	0/1	

Table 22. CEC core I²C-bus address

CEC core address									
A6	A5	A4	A3	A2	A1	A0	R/W		
0	1	1	0	1	0	0	0/1		

For read access, the master writes the address of TDA19989 HDMI or CEC core, and the subaddress to access the specific register and then the data.

8.2 Memory page management

The I²C-bus memory is split into several pages for HDMI core only, and the selection between pages is made with common register CURPAGE_ADR. It is only necessary to write in this register once to change the current page. So multiple read or write operations in the same page need a write register CURPAGE_ADR once at the beginning.

The following memory pages are available for TDA19989:

- Page 00h: general control
- Page 02h: PLL settings
- Page 09h: EDID control page
- Page 10h: information frames and packets
- Page 11h: audio settings and content info packets
- Page 12h: HDCP and OTP'
- Page 13h: gamut-related metadata packets

The CEC core does not need memory page mechanism due to its reduced number of registers.

8.3 ID version

The ID version readable via I²C-bus is defined by the concatenation of VERSION MSB and VERSION registers. The ID version value is 212h.

8.4 Clock stretching

Clock stretching pauses a transaction by holding the CSCL line LOW. The transaction cannot continue until the line is released HIGH again.

For example: on the byte level, a device may be able to receive bytes of data at a fast rate, but needs more time to store a received byte or prepare another byte to be transmitted. Slaves can then hold the CSCL line LOW after reception and acknowledgment of a byte to force the master into a wait state until the slave is ready for the next byte transfer; see Table 31.

Clock stretching must be supported by I²C-bus master especially when CEC feature of TDA19989 is used. If CEC feature of TDA19989 is not used, I²C-bus master does not need to support clock stretching.

Input format 9.

In Table 23 the port VPA has been mapped to C_b (YCbCr space)/B (RGB space), VPB has been mapped to Y (YCbCr space)/G (RGB space) and VPC has been mapped to Cr (YCbCr space)/R (RGB space).

L: recommer	nd tield to LOW	voltage, e.g. g	round						
Input pins	Signal	RGB	YCbCr						
	4:4:4 4:4:4 4:2:2 (semi-planar)		(semi-planar)	4 : 2 : 2 (ITU 656-like)					
Video port /	4								
VPA[0]	Cb[0]/B[0]	B[0]	Cb[0]	Y ₀ [0]	Y ₁ [0]	Cb[0]	Y ₀ [0]	Cr[0]	Y ₁ [0]
VPA[1]	Cb[1]/B[1]	B[1]	Cb[1]	Y ₀ [1]	Y ₁ [1]	Cb[1]	Y ₀ [1]	Cr[1]	Y ₁ [1]
VPA[2]	Cb[2]/B[2]	B[2]	Cb[2]	Y ₀ [2]	Y ₁ [2]	Cb[2]	Y ₀ [2]	Cr[2]	Y ₁ [2]
VPA[3]	Cb[3]/B[3]	B[3]	Cb[3]	Y ₀ [3]	Y ₁ [3]	Cb[3]	Y ₀ [3]	Cr[3]	Y ₁ [3]
VPA[4]	Cb[4]/B[4]	B[4]	Cb[4]	Cb[0]	Cr[0]	L	L	L	L
VPA[5]	Cb[5]/B[5]	B[5]	Cb[5]	Cb[1]	Cr[1]	L	L	L	L
VPA[6]	Cb[6]/B[6]	B[6]	Cb[6]	Cb[2]	Cr[2]	L	L	L	L
VPA[7]	Cb[7]/B[7]	B[7]	Cb[7]	Cb[3]	Cr[3]	L	L	L	L
Video port l	3								
VPB[0]	Y[0]/G[0]	G[0]	Y[0]	Y ₀ [4]	Y ₁ [4]	Cb[4]	Y ₀ [4]	Cr[4]	Y ₁ [4]
VPB[1]	Y[1]/G[1]	G[1]	Y[1]	Y ₀ [5]	Y ₁ [5]	Cb[5]	Y ₀ [5]	Cr[5]	Y ₁ [5]
VPB[2]	Y[2]/G[2]	G[2]	Y[2]	Y ₀ [6]	Y ₁ [6]	Cb[6]	Y ₀ [6]	Cr[6]	Y ₁ [6]
VPB[3]	Y[3]/G[3]	G[3]	Y[3]	Y ₀ [7]	Y ₁ [7]	Cb[7]	Y ₀ [7]	Cr[7]	Y ₁ [7]
VPB[4]	Y[4]/G[4]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]
VPB[5]	Y[5]/G[5]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]

Table 23. Input format

Preliminary data sheet

TDA19989 1

[.]

HDMI 1.3 transmitter with HDCP and CEC support

L: recommend tield to LOW voltage, e.g. ground										
Input pins	Signal	RGB	YCbCr							
		4:4:4	4:4:4	4:2:2	(semi-planar)	4:2:2	(ITU 656-I	ike)		
VPB[6]	Y[6]/G[6]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]	
VPB[7]	Y[7]/G[7]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]	
Video port	C									
VPC[0]	Cr[0]/R[0]	R[0]	Cr[0]	Cb[4]	Cr[4]	L	L	L	L	
VPC[1]	Cr[1]/R[1]	R[1]	Cr[1]	Cb[5]	Cr[5]	L	L	L	L	
VPC[2]	Cr[2]/R[2]	R[2]	Cr[2]	Cb[6]	Cr[6]	L	L	L	L	
VPC[3]	Cr[3]/R[3]	R[3]	Cr[3]	Cb[7]	Cr[7]	L	L	L	L	
VPC[4]	Cr[4]/R[4]	R[4]	Cr[4]	Cb[8]	Cr[8]	L	L	L	L	
VPC[5]	Cr[5]/R[5]	R[5]	Cr[5]	Cb[9]	Cr[9]	L	L	L	L	
VPC[6]	Cr[6]/R[6]	R[6]	Cr[6]	Cb[10]	Cr[10]	L	L	L	L	
VPC[7]	Cr[7]/R[7]	R[7]	Cr[7]	Cb[11]	Cr[11]	L	L	L	L	

Table 23. Input format continued

9.1 Timing parameters for video supported

TDA19989 supports all EIA/CEA-861B standards and ATSC video input formats.

EIA/CEA-861b Video code	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
59.94 Hz systems	S						
1 (VGA)	640 × 480p	59.9401	800	525	31.469	25.175	1
2, 3	720 × 480p	59.9401	858	525	31.469	27.000	1
4	1280 × 720p	59.9401	1650	750	44.955	74.175	1
5	1920 × 1080i	59.9401	2200	1125	33.716	74.175	1
6, 7 (NTSC)	1440 imes 480i	59.9401	1716	525	15.734	27.000	2
8, 9	$1440 \times 240p$	59.9401	1716	262	15.734	27.000	2
8, 9	$1440 \times 240p$	59.9401	1716	263	15.734	27.000	2
10, 11	$2880\times\mathbf{480i}$	59.9401	3452	525	15.734	54.000	4 <u>[1]</u>
12, 13	2880 × 240p	59.9401	3452	262	15.734	54.000	4 <u>[1]</u>
12, 13	2880 × 240p	59.9401	3452	263	15.734	54.000	4 <u>[1]</u>
14, 15	1440 × 480p	59.9401	1716	525	31.469	54.000	2
16	1920 × 1080p	60.000	2200	1125	67.432	148.350	1
60 Hz systems							
1 (VGA)	640 × 480p	60.000	800	525	31.500	25.200	1
2, 3	720 × 480p	60.000	858	525	31.500	27.027	1
4	1280 × 720p	60.000	1650	750	45.000	74.250	1
5	1920 × 1080i	60.000	2200	1125	33.750	74.250	1
6, 7 (NTSC)	1440 × 480i	60.000	1716	525	15.750	27.027	2
8, 9	1440 × 240p	60.000	1716	262	15.750	27.027	2
8, 9	$1440 \times 240p$	60.000	1716	263	15.750	27.027	2

Table 24. Timing parameters for EIA/CEA-861B

NXP Semiconductors

TDA19989

HDMI 1.3 transmitter with HDCP and CEC support

EIA/CEA-861b Video code	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
10, 11	2880 × 480i	60.000	3452	525	15.750	54.054	4 <u>[1]</u>
12, 13	2880 × 240p	60.000	3452	262	15.750	54.054	4 <u>[1]</u>
12, 13	$2880 \times 240p$	60.000	3452	263	15.750	54.054	4 <u>[1]</u>
14, 15	1440 × 480p	60.000	1716	525	31.500	54.054	2
16	1920 × 1080p	60.000	2200	1125	67.500	148.50	1
50 Hz systems							
17, 18	720 × 576p	50.000	864	625	31.250	27.000	1
19	1280 × 720p	50.000	1980	750	37.500	74.250	1
20	1920 × 1080i	50.000	2640	1125	28.125	74.250	1
21, 22 (PAL)	1440 × 576i	50.000	1728	625	15.625	27.000	2
23, 24	1440 × 288p	50.000	1728	312	15.625	27.000	2
23, 24	1440 imes 288p	50.000	1728	313	15.625	27.000	2
23, 24	1440 imes 288p	50.000	1728	314	15.625	27.000	2
25, 26	$2880\times\mathbf{576i}$	50.000	3456	625	15.625	54.000	4 <u>[1]</u>
27, 28	2880 × 288p	50.000	3456	312	15.625	54.000	4 <u>[1]</u>
27, 28	$2880\times288p$	50.000	3456	313	15.625	54.000	4 <u>[1]</u>
27, 28	720 × 288p	50.000	3456	314	15.625	54.000	4
29, 30	1440 × 576p	50.000	1728	625	31.250	54.000	2
31	1920 × 1080p	50.000	2640	1125	56.250	148.50	1
Various systems							
32	1920 × 1080p	23.976	2750	1125	26.973	74.175824	1
32	1920 × 1080p	24	2750	1125	27	74.25	1
33	1920 × 1080p	25	2640	1125	28.125	74.25	1
34	1920 × 1080p	29.97	2200	1125	33.716	74.175824	1
34	1920 × 1080p	30	2200	1125	33.75	74.25	1

Table 24. Timing parameters for EIA/CEA-861B ... continued

[1] Format can also be defined with a repetition factor of up to 10.

Table 25. Timing parameters for ATSC DTV standards, which are not defined in EIA/CEA-861B

Standard	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
SMPTE-296M	$1280\times720\text{p}$	30.000	3300	750	22.500	74.250	1
SMPTE-296M	1280 × 720p	29.970	3300	750	22.478	74.175	1
SMPTE-296M	1280 × 720p	25.000	3960	750	18.750	74.250	1
SMPTE-296M	$1280\times720\text{p}$	23.976	4125	750	17.982	74.175	1

HDMI 1.3 transmitter with HDCP and CEC support

9.2 Timing parameters for PC standards supported

TDA19989 can support all major PC Standards up to 150 MHz.

Table 26. Timing parameters for PC standards below 150 MHz

Standard	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
	640 × 350p	85.080	832	445	37.861	31.500	-
	640 × 400p	85.080	832	445	37.861	31.500	-
	720 imes 400 p	85.039	936	446	37.927	35.500	-
0.31M3	640 × 480p	59.940	800	525	31.469	25.175	-
VGA	640 × 480p	72.809	832	520	37.861	31.500	-
	640 × 480p	75.000	840	500	37.500	31.500	-
	640 × 480p	85.008	832	509	43.269	36.000	-
0.48M3	800 × 600p	56.250	1024	625	35.156	36.000	-
SVGA	800 × 600p	60.317	1056	628	37.879	40.000	-
	800 × 600p	72.188	1040	666	48.077	50.000	-
	800 × 600p	75.000	1056	625	46.875	49.500	-
	800 imes 600 p	85.061	1048	631	53.674	56.250	-
0.48M3-R	800 × 600p	119.972	960	636	76.302	73.250	-
0.41M9	848 × 480p	60.000	1088	517	31.020	33.750	-
0.79M3	1024 × 768p	60.004	1344	806	48.363	65.000	-
XGA	$1024 \times 768p$	70.069	1328	806	56.476	75.000	-
	$1024 \times 768p$	75.029	1312	800	60.023	78.750	-
	$1024 \times 768p$	84.997	1376	808	68.677	94.500	-
	1024 × 768i	86.957	1264	817	35.522	44.900	-
0.79M3-R XGA	1024 × 768p	119.989	1184	813	97.551	115.500	-
1.00M3	1152 × 864p	75.000	1600	900	67.500	108.000	-
0.98M9-R	1280 × 768p	59.995	1440	790	47.396	68.250	-
	1280 × 768p	119.798	1440	813	97.396	140.250	-
0.98M9	1280 × 768p	59.870	1664	798	47.776	79.500	-
	1280 imes 768 p	74.893	1696	805	60.289	102.250	-
	1280 × 768p	84.837	1712	809	68.633	117.500	-
1.02MA-R	1280 × 800p	59.910	1440	823	49.306	71.000	-
	1280 × 800p	119.909	1440	847	101.563	146.250	-
1.02MA	1280 × 800p	59.810	1680	831	49.702	83.500	-
	1280 × 800p	74.934	1696	838	62.795	106.500	-
	1280 × 800p	84.880	1712	843	71.554	122.500	-
1.23M3	1280 × 960p	60.000	1800	1000	60.000	108.000	-
	1280 × 960p	85.002	1728	1011	85.938	148.500	-
1.31M4	1280 × 1024p	60.020	1688	1066	63.981	108.000	-
SXGA	$1280 \times 1024 p$	75.025	1688	1066	79.976	135.000	-
1.04M9	1360 × 768p	60.015	1792	795	47.712	85.500	-
1.04M9-R	1360 × 768p	119.967	1520	813	97.533	148.250	-

TDA19989_1

NXP Semiconductors

TDA19989

HDMI 1.3 transmitter with HDCP and CEC support

Standard	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
1.47M3-R	$1400\times1050p$	59.948	1560	1080	64.744	101.000	-
1.47M3	$1400\times1050p$	59.978	1864	1089	65.317	121.750	-
1.29MA-R	$1440\times900p$	59.901	1600	926	55.469	88.750	-
1.29MA	$1440 \times 900p$	59.887	1904	934	55.935	106.500	-
	$1440\times900p$	74.984	1936	942	70.635	136.750	-
1.76MA-R	$1680\times1050p$	59.883	1840	1080	64.674	119.000	-
1.76MA	$1680\times1050p$	59.954	2240	1089	65.290	146.250	-
-							

Table 26. Timing parameters for PC standards below 150 MHz ... continued

10. Limiting values

Table 27. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DDA(TMDS)(1V8)}	TMDS analog supply voltage (1.8 V)		-0.5	+2.5	V
V _{DDA(PLL)(1V8)}	PLL analog supply voltage (1.8 V)		-0.5	+2.5	V
V _{DDA(1V8)}	analog supply voltage (1.8 V)		-0.5	+2.5	V
V _{DDD(IO)(1V8)}	I/O digital supply voltage (1.8 V)		-0.5	+2.5	V
V _{DDDC}	core digital supply voltage		-0.5	+2.5	V
ΔV_{DD}	supply voltage difference		-2	+2	V
V _{ESD}	electrostatic discharge voltage	EIA/JESD22-A114 (HBM)	<u>[1]</u> –2500	+2500	V
		EIA/JESD22-C101-C (FCDM)	[<u>2]</u> 1000	-	V

[1] On TMDS outputs.

[2] It withstands class III of JEDEC classification.

11. Thermal characteristics

Table 28.Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air; JEDEC 4L board	-	56.9	-	K/W
R _{th(j-c)}	thermal resistance from junction to case		-	15.1	-	K/W
T _{stg}	storage temperature		-	-	+150	°C
T _{amb}	ambient temperature		-20	-	+85	°C
Tj	junction temperature		-	-	+125	°C

HDMI 1.3 transmitter with HDCP and CEC support

12. Static characteristics

Table 29. Supplies

 $T_{amb} = -20$ °C to +85 °C; without HDCP; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DDDC}	core digital supply voltage		[1]	1.7	1.8	1.9	V
V _{DDA(TMDS)(1V8)}	TMDS analog supply voltage (1.8 V)			1.7	1.8	1.9	V
V _{DDA(PLL)(1V8)}	PLL analog supply voltage (1.8 V)	PLL analog and serializer		1.7	1.8	1.9	V
V _{DDA(1V8)}	analog supply voltage (1.8 V)			1.7	1.8	1.9	V
V _{DDD(IO)(1V8)}	I/O digital supply voltage (1.8 V)			1.7	1.8	1.9	V
I _{DDD(1V8)}	digital supply current (1.8 V)		[2]	30	42	60	μΑ
I _{DDA(sum)} (1V8)	sum analog supply current (1.8 V)	$I_{DDA(sum)(1V8)} =$ $I_{DDA(TMDS)(1V8)} + I_{DDA(1V8)}$	[2]	15	19	22	mA
I _{DDA(PLL)(1V8)}	PLL analog supply current (1.8 V)		[2]	7	8	9	mA
I _{DDD(IO)(1V8)}	input/output digital supply current (1.8 V)		[2]	-	40	-	μΑ
I _{DDDC(1V8)}	core digital supply current (1.8 V)		[2]	50	60	70	mA
			[3]	25	32	40	mA
P _{cons}	power consumption		[2]	-	155	180	mW
			[3]	-	90	105	mW
		Sleep mode with CEC		-	1.8	4	mW
		Sleep mode without CEC		-	1.3	2	mW
		Standby mode		-	400	600	μW
P _{tot}	total power dissipation		[4]	-	265	300	mW
			[5]	-	220	260	mW

[1] see <u>Table 6</u>.

[2] Input format: 1080p, any color space; output format: 1080p any color space: 30 % activity on video input ports.

[3] Input format: 1080i YCbCr 4 : 2 : 2; output format: YCbCr 4 : 2 : 2; CEC feature disable: 30 % activity on video input ports.

[4] Same as Table note [2] with TMDS output current added.

[5] Same as <u>Table note [3]</u> with TMDS output current added.

HDMI 1.3 transmitter with HDCP and CEC support

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	erant CMOS 1.8 V and CMOS PC[n], VCLK, DE	3.3 V tolerant digital input pin	s HSYNC, VS	SYNC, APn,	ACLK, VPA	[n],
V _{IL}	LOW-level input voltage	-	0	-	0.75	V
V _{IH}	HIGH-level input voltage	-	1.4	-	-	V
IIL	LOW-level input current		-2	-	+2	μA
I _{IH}	HIGH-level input current		-2	-	+2	μΑ
Ci	input capacitance		-	4.5	-	pF
5 V toleran	t input pin HPD					
V _{IL}	LOW-level input voltage	-	0	-	0.8	V
V _{IH}	HIGH-level input voltage	-	2	-	-	V
Ci	input capacitance		-	4.5	-	pF
CMOS 1.8	V and CMOS 3.3 V tolerant d	igital input/output pin INT				
V _{IL}	LOW-level input voltage	-	0	-	0.85	V
V _{IH}	HIGH-level input voltage	-	1.4	-	-	V
V _{OL}	LOW-level output voltage	$C_L = 10 \text{ pF}; I_{OL} = 2 \text{ mA}$	0	-	0.4	V
5 V toleran	t master bus: DDC-bus pins	DSDA, DSCL ^[1]				
V _{OL}	LOW-level output voltage		0	-	0.4	V
V _{IL}	LOW-level input voltage		0	-	0.6	V
V _{IH}	HIGH-level input voltage		1.4	-	5.5	V
1.8 V to 3.3	3 V tolerant slave bus: I ² C-bu	is input/output pins CSCL, CSE)A[1]			
V _{OL}	LOW-level output voltage		0	-	0.4	V
V _{IL}	LOW-level input voltage		0	-	0.6	V
V _{IH}	HIGH-level input voltage		1.4	-	5.5	V
CEC input	/output ^[2] pin					
V _{OL}	LOW-level output voltage		0	-	0.4	V
V _{OH}	HIGH-level output voltage		2.5	-	3.6	V
V _{IL}	LOW-level input voltage		0	-	0.60	V
V _{IH}	HIGH-level input voltage		2.5	-	3.6	V
V _{hys(i)}	input hysteresis voltage		[2] _	0.27	-	V
TMDS outp	out pins: TX0–, TX0+, TX1–, T	X1+, TX2–, TX2+, TXC– and TX	(C+			
V _{O(dif)}	differential output voltage	$R_{EXT SWING}$ = 10 k $\Omega \pm$ 1 %	400	505	600	mV

[1] See Section 7.1 and refer to the PC-bus specification version 2.1 (document order number 9398 393 40011).

[2] For information, input hysteresis is normally supplied by the microprocessor input circuit: in this circumstance, external hysteresis circuitry is not needed.

13. Dynamic characteristics

Table 31. Timing characteristics

 $T_{amb} = -20$ °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Clock inpu	t: pin VCLK					
f _{clk(max)}	maximum clock frequency	-	-	-	148.5	MHz
t _{su(D)}	data input set-up time	see Figure 18 and 19	1.5	-	-	ns
t _{h(D)}	data input hold time	see Figure 18 and 19	1	-	-	ns
δ_{clk}	clock duty cycle	positive edge	[<u>1]</u> 30	50	70	%
f _{clk}	clock frequency	CEC	-	12	-	MHz
DDC-bus:	pins DSDA, DSCL (5 V toleran	t) master bus ^[2]				
f _{SCL}	SCL frequency	Standard mode	-	-	100	kHz
Ci	capacitance for each I/O pir	l	-	7	-	pF
I ² C-bus: pi	ns CSCL, CSDA (5 V tolerant)	slave bus ^[2]				
f _{SCL}	SCL frequency	Standard mode	-	-	100	kHz
		Fast mode	-	-	400	kHz
t _{stretch}	stretch time	CEC	-	80	-	μS
CEC input/	′output[<u>3]</u>					
t _r	rise time	10 % to 90 %	-	-	50	μS
t _f	fall time	10 % to 90 %	-	-	2	μS
TMDS outp	out pins: TXC- and TXC+					
f _{clk(max)}	maximum clock frequency	on the TMDS link	-	-	148.5	MHz
TMDS outp	out pins: TX0–, TX0+, TX1–, TX	(1+, TX2- and TX2+				
f _{clk(max)}	maximum clock frequency		-	-	1.485	GHz

$$\label{eq:clk} \begin{split} [1] \quad \delta_{\text{clk}} = t_{\text{clk}(\text{H})} \,/ \, \big(t_{\text{clk}(\text{H})} + t_{\text{clk}(\text{L})} \big). \end{split}$$

[2] See Section 7.1 and refer to the l^2 C-bus specification version 2.1 (document order number 9398 393 40011).

[3] For details about CEC electrical specification, see HDMI 1.3a specification.

NXP Semiconductors

TDA19989

HDMI 1.3 transmitter with HDCP and CEC support

14. Application information

14.1 Transmitter connection with external world

Figure 20 and Figure 21 refer to a simple receiver application. However, TDA19989 can be part of a repeater application as described in *"HDMI specification 1.3a"*.

HDMI 1.3 transmitter with HDCP and CEC support

15. Package outline

Fig 22. Package outline SOT962-3 (TFBGA64)

HDMI 1.3 transmitter with HDCP and CEC support

16. Abbreviations

Table 32.	Abbreviations
Acronym	Description
AC3	Active Coding-3
ACP	Audio Content Protection
ACR	Audio Clock Recovery
ATSC	Advanced Television Systems Committee
AV	Audio Video
BOM	Bill Of Materials
CEA	Consumer Electronics Association
CEC	Consumer Electronics Control
CTS/N	Clock Time Stamp integer divider
DDC	Display Data Channel
DDR	Double Data Rate
DE	Data Enable
DSC	Digital Still Camera
DTS	Digital Transmission System
DTV	Desk Top Video
DVC	Digital Video Camera
DVD	Digital Versatile Disc
DVI	Digital Visual Interface
EAV	End Active Video
EDID	Extended Display Identification Data
E-EDID	Enhanced Extended Display Identification Data
EIA	Electronic Industries Alliance
FCDM	Field Charged Device Model
FIFO	First In, First Out
FREF	Field REFerence
FRO	Free Running Oscillator
HBM	Human Body Model
HDCP	High-bandwidth Digital Content Protection
HDMI	High-Definition Multimedia Interface
HPD	Hot Plug Detection
HREF	Horizontal REFerence
HSYNC	Horizontal SYNChronization
LSB	Least Significant Bit
LV-CMOS	Low Voltage Complementary Metal-Oxide Semiconductor
MPEG	Moving Picture Experts Group
MSB	Most Significant Bit
OTP	One Time Programming
PC	Personal Computer
PCB	Printed Circuit Board

HDMI 1.3 transmitter with HDCP and CEC support

Table 32.	Abbreviations continued
Acronym	Description
PCM	Pulse Code Modulation
PLL	Phase-Locked Loop
PMP	Portable Multimedia Player
POR	Power-On Reset
RGB	R = red, G = green, B = blue
SAV	Start Active Video
SDR	Single Data Rate
SMPTE	Society of Motion Picture and Television Engineers
S/PDIF	Sony/Philips Digital Interface
STB	Set-Top Box
TMDS	Transition Minimized Differential Signalling
UM PC	Ultra-Mobile Personal Computer
UXGA60	Ultra Extended Graphics Array
VHREF	Vertical Horizontal REFerence
VREF	Vertical REFerence
VSYNC	Vertical SYNChronization
YCbCr	Y = luminance, Cb = Chroma component blue, Cr = Chroma component red
WS	Word Select

17. Revision history

Table 33. Revision hist	ory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
TDA19989_1	20100215	Preliminary data sheet	-	-

HDMI 1.3 transmitter with HDCP and CEC support

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless the data sheet of an NXP Semiconductors product expressly states that the product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

HDMI 1.3 transmitter with HDCP and CEC support

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

18.4 Licenses

Purchase of NXP ICs with HDMI technology

Use of an NXP IC with HDMI technology in equipment that complies with the HDMI standard requires a license from HDMI Licensing LLC, 1060 E. Arques Avenue Suite 100, Sunnyvale CA 94085, USA, e-mail: admin@hdmi.org.

18.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

HDMI 1.3 transmitter with HDCP and CEC support

20. Tables

Table 1.	Ordering information
Table 2.	Pin description
Table 3.	Internal assignment
Table 4.	Video input swap to VP[23:20]
Table 5.	TDA19989 input/output capability11
Table 6.	Inputs of video input formatter12
Table 7.	RGB (3 ¥ 8-bit) external synchronization input
	(rising edge) mapping13
Table 8.	YCbCr4:4:4(3¥8-bit) external synchronization
	input (rising edge) mapping13
Table 9.	YCbCr 4 : 2 : 2 ITU656-like external
	synchronization input (rising edge) mapping14
Table 10.	YCbCr 4 : 2 : 2 ITU656-like external
	synchronization input (double edge) mapping .15
Table 11.	YCbCr 4 : 2 : 2 ITU656-like embedded
	synchronization input (rising edge) mappings .15
Table 12.	YCbCr 4 : 2 : 2 ITU656-like embedded
	synchronization input (double edge) mapping .16
Table 13.	YCbCr 4 : 2 : 2 semi-planar external
	synchronization input (rising edge) mapping17
Table 14.	YCbCr 4 : 2 : 2 semi-planar embedded
	synchronization input (rising edge) mapping17
Table 15.	Use of color space converter, upsampler and
	downsampler
Table 16.	Audio port configuration
Table 17.	TDA19989 typical power consumption in
	different configurations
Table 18.	Interruptions
Table 19.	Receiver detection according to averaged
	terminal voltage24
Table 20.	Pixel repetition
Table 21.	HDMI core I ² C-bus address
Table 22.	CEC core I ² C-bus address
Table 23.	Input format
Table 24.	Timing parameters for EIA/CEA-861B31
Table 25.	Timing parameters for ATSC DTV standards,
	which are not defined in EIA/CEA-861B32
Table 26.	Timing parameters for PC standards below
	150 MHz
Table 27.	Limiting values
Table 28.	Thermal characteristics
Table 29.	Supplies
Table 30.	Digital inputs and outputs
Table 31.	Timing characteristics
Table 32.	Abbreviations
Table 33.	Revision history42

continued >>

HDMI 1.3 transmitter with HDCP and CEC support

21. Figures

Fig 1.	TDA19989 high-level block diagram2
Fig 2.	TDA19989 Block diagram4
Fig 3.	Pin configuration (TFBGA64)
Fig 4.	Internal assignment of VP[23:0]8
Fig 5.	Pixel encoding RGB 4 : 4 : 4 external
	synchronization input (rising edge)13
Fig 6.	Pixel encoding YCbCr 4 : 4 : 4 external
	synchronization input (rising edge)14
Fig 7.	Pixel encoding YCbCr 4 : 2 : 2 ITU656-like
	external synchronization input (rising edge)14
Fig 8.	Pixel encoding YCbCr 4 : 2 : 2 ITU656-like
	external synchronization input (double edge)15
Fig 9.	Pixel encoding YCbCr 4 : 2 : 2 ITU656-like
	embedded synchronization input (rising edge)16
Fig 10.	Pixel encoding YCbCr 4 : 2 : 2 ITU656-like
	embedded synchronization input (double edge) .16
Fig 11.	Pixel encoding YCbCr 4 : 2 : 2 semi-planar
	external input synchronization (rising edge)17
Fig 12.	Pixel encoding YCbCr 4 : 2 : 2 semi-planar
	embedded synchronization input (rising edge)18
Fig 13.	I ² S-bus formats21
Fig 14.	Audio input swap to I ² S-bus channel 0 or
	S/PDIF
Fig 15.	Receiver sensitivity detection24
Fig 16.	Modules involved in CEC clock calibration
	process
Fig 17.	I ² C-bus access
Fig 18.	Set-up and hold time definition diagram for
	single-edge clock mode
Fig 19.	Set-up and hold time definition diagram for
	double-edge clock mode
Fig 20.	Connecting TDA19989 transmitter using
	external clock source
Fig 21.	Connecting TDA19989 transmitter using
	internal FRO for CEC
Fig 22.	Package outline SOT962-3 (TFBGA64)40

continued >>

NXP Semiconductors

TDA19989

HDMI 1.3 transmitter with HDCP and CEC support

22. Contents

1	General description 1	
2	Features 2	
3	Applications 3	
4	Ordering information 3	
5	Block diagram 4	
6	Pinning information	
6.1	Pinning	
6.2	Pin description	
7	Functional description 7	
7.1	System clock	
7.2	Video input formatter	
7.2.1	Description	
7.2.2	Internal assignment	
7.2.3	Input format mappings 12	
7.2.3.1	RGB 4 : 4 : 4 external synchronization	
	(rising edge)	
7.2.3.2	YCbCr 4: 4: 4 external synchronization	
	(rising edge)	
7.2.3.3	YCbCr 4 : 2 : 2 ITU656-like external	
	synchronization (rising edge) 14	
7.2.3.4	YCbCr 4 : 2 : 2 ITU656-like external	
	synchronization (double edge) 15	
7.2.3.5	YCbCr 4 : 2 : 2 ITU656-like embedded	
7000	synchronization (rising edge)	
7.2.3.6	YCbCr 4 : 2 : 2 ITU656-like embedded	
7.2.3.7	synchronization (double edge)	
1.2.3.1	synchronization (rising edge)	
7.2.3.8	YCbCr 4 : 2 : 2 semi-planar embedded	
7.2.5.0	synchronization (rising edge)	
7.2.4	Synchronization	
7.2.4.1	Timing extraction generator	
7.2.4.2	Data enable generator 18	
7.3	Input and output video format	
7.4	Upsampler	
7.5	Color space converter	
7.6	Gamut-related metadata	
7.7	Downsampler	
7.8	Audio input format 19	
7.8.1	S/PDIF	
7.8.2	l ² S-bus	
7.8.3	Audio port internal assignment	
7.9	Power management	
7.10	Interrupt controller	
7.10.1	Hot plug/unplug detect	
7.10.2 7.11	Receiver sensitivity	
1.11	HDCP processing 25	

7.11.1	High-bandwidth digital content protection	25
7.11.1.1	Repeater function	25
7.11.1.2	-	25
7.12	CEC	25
7.12.1	Features	25
7.12.2	Clock	26
7.12.3	CEC interrupt	26
7.12.4	Power-On Reset (POR)	27
7.12.5	Repeater function	27
7.13	HDMI core	27
7.13.1	Output TMDS buffers	27
7.13.1.1		27
7.13.2	Pixel repetition	27
7.13.3	DDC-bus channel.	27
7.14	E-EDID.	28
7.14.1	E-EDID reading	28
7.14.2	HDMI and DVI receiver discrimination	28
8	I ² C-bus interface and register definitions	29
8.1	I ² C-bus protocol	29
8.2	Memory page management	29
8.3	ID version.	30
8.4	Clock stretching	30
9	Input format	30
9.1	Timing parameters for video supported	31
9.2	Timing parameters for PC standards	
	supported	33
10	Limiting values	34
11	Thermal characteristics	34
12	Static characteristics	35
13	Dynamic characteristics	37
14	Application information	39
14.1	Transmitter connection with external world	39
15	Package outline	40
16	Abbreviations	41
17	Revision history	42
18	Legal information	43
18.1	Data sheet status	43
18.2	Definitions	43
18.3	Disclaimers	43
18.4	Licenses	44
18.5	Trademarks	44
19	Contact information	44
20	Tables	45
21	Figures	46
22	Contents	47

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

founded by

Date of release: 15 February 2010 Document identifier: TDA19989_1