

MAAM-011290 Rev. V3

Features

- Gain: 20 dB
- Saturated Power: 20 dBm
- Output IP3: 32 dBm
- High Reverse Isolation: 47 dB
- 50 Ω Matched Input and Output
- +5 V Supply @ 107 mA
- Integrated Capacitors on RF Input and Output
- 3 mm 12-Lead AQFN Package
- RoHS* Compliant

Applications

- Microwave Radio
- VSAT
- Aerospace & Defense
- Test & Measurement

Description

The MAAM-011290 is a 5 - 20 GHz MMIC amplifier with 20 dB small signal gain, P_{SAT} of 20 dBm and high reverse isolation of 47 dB. The component requires only a single positive power supply.

Ordering Information

Part Number	Package
MAAM-011290-TR0500	500 piece reel
MAAM-011290-001SMB	Sample Board

Functional Schematic

Pin Configuration^{1,2}

Pin #	Function
1, 5, 6, 10, 12	No Connection
2	RF Input
3, 7, 9	Ground
4	Gate Voltage Not Used
8	RF Output
11	Drain Voltage

1. MACOM recommends connecting all no connection pins to ground.

2. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

1

MAAM-011290

Rev. V3

Electrical Specifications: Freq. = 5 - 20 GHz, $T_A = 25^{\circ}C$, $V_{DD} = 5 V$, $Z_0 = 50 \Omega$

Parameter	Test Condition	Units	Min.	Тур.	Max.
Small Signal Gain	5 GHz 10 GHz 15 GHz 18 GHz 20 GHz	dB	17.5 18.5 — 17.0 —	19.5 20.5 20.0 19.0 18.0	_
Small Signal Gain Variation	—	dB	—	±2.5	—
Input Return Loss	_	dB	—	10	—
Output Return Loss	_	dB	—	13	—
P1dB	5 GHz 10 GHz 15 GHz 18 GHz 20 GHz	dBm	18.0 18.0 — 18.0 —	19.5 20.0 20.0 20.0 20.0 20.0	_
P _{SAT}	5 GHz 10 GHz 15 GHz 20 GHz	dBm	_	19.5 20.0 20.0 19.0	_
Output IP3	10 dBm Pout per Tone 5 GHz 10 GHz 15 GHz 20 GHz	dBm	_	32 29 28 30	_
Noise Figure	5 GHz 10 GHz 15 GHz 20 GHz	dB	—	4 4 4 5	—
V _{DD} Drain Supply	_	V	—	5	—
Supply Current		mA		110	135

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MAAM-011290 Rev. V3

Absolute Maximum Ratings^{3,4}

Parameter	Absolute Maximum
RF Power In	10 dBm
V _{DD} Supply Voltage	6 V
Supply Current	150 mA
Junction Temperature ^{5,6}	+150°C
Operating Temperature	-40C to +85°C
Storage Temperature	-65°C to +165°C

3. Exceeding any one or combination of these limits may cause permanent damage to this device.

4. MACOM does not recommend sustained operation near these survivability limits.

5. Operating at nominal conditions with $T_J \le +150^{\circ}C$ will ensure MTTF > 1 x 10⁶ hours.

6. Junction Temperature (T_J) = T_C + Θjc * (V * I) Typical thermal resistance (Θjc) = 59°C/W.
a) For T_C = +25°C, T_J = 57°C @ 5 V, 107 mA
b) For T_C = +85°C, T_J = 120°C @ 5 V, 120 mA

Maximum Operation Conditions

Parameter	Maximum
RF Power In	5 dBm
V _{DD} Supply Voltage	4 - 5 V
Supply Current	120 mA
Junction Temperature ^{5,6}	+150°C
Operating Temperature	-40C to +85°C

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 1B greater than 500 V HBM devices.

Application Schematic

Operating Conditions

Recommended biasing conditions are $V_D = 5 V$ and $V_G = 0 V$ open circuit.

Simply perform the following for bias:

1. Set V_G = Open Circuit

DC blocking is not required on the RF input or RF output since blocking capacitors are provided internally. Use 0.01 μ F and 1 μ F bypass capacitors on the V_D node and a 0.01 μ F capacitor on the V_G node. Place the 0.01 μ F bypass capacitors as close as possible to the chip.

3

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

MAAM-011290 Rev. V3

Evaluation Board

10 mils Rogers RO4350B with 1 oz. copper

Evaluation Board Parts List

Part	Value	Case Style
C1, C3	0.01 µF	0402
C2	1 µF	0402
C4	NA	NA

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MAAM-011290 Rev. V3

Typical Performance Curves V_D = 5 V

Input Return Loss

Isolation

5

Output Return Loss

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MAAM-011290 Rev. V3

Typical Performance Curves $V_D = 4$ and 5 V Gain 25 20 S21 (dB) 15 10 -5 \ 4 ۱ 5 0 0 5 10 15 20 25 Frequency (GHz)

Input Return Loss

Isolation $\begin{pmatrix} 0 \\ -20 \\ -20 \\ -4 \\ 0 \\ -60 \\ -80 \\ 0 \\ 5 \\ -80 \\$

Output Return Loss

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MAAM-011290 Rev. V3

7

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

MAAM-011290

Rev. V3

3 mm 12-Lead AQFN Package

Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is NiPdAu

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

MAAM-011290 Rev. V3

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

⁹

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.