

VT-701 Temperature Compensated Crystal Oscillator Previous Vectron Model VTC2

Vectron's VT-701 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, clipped sine wave output, analog temperature compensated oscillator, operating off either a 3.3 or 5.0 volt supply in a hermetically sealed 5x7 ceramic package.

Features

- CMOS Output
- Output Frequencies to 27 MHz
- Fundamental Crystal Design
- Optional VCXO Function available
- Gold over nickel contact pads
- Hermetically Sealed Ceramic SMD package
- Product is compliant to RoHS directive and fully compatible with lead free assembly

- **Applications**
- FPGA's
- A/D's, D/A's
- Broadband Access Head End
- Wireless Communications
- Base Stations
- Point to point radios
- Broadband Access
- Test Equipment

Block Diagram

Parameter	Symbol	Min.	Тур	Max	Units
Output Frequency	f _o	5		27	MHz
Supply Voltage ¹ , Ordering Option	V _{DD}		+3.3 or +5.0		Vdc
Supply Current	I _{DD}			10	mA
Operating Temperature, Ordering Option	T _{OP}	0/55, -10/	/60, -20/70, -30/	80, -40/85	°C
Stability Over T _{or} Ordering Option		±0.5, ±1.0, ±.	5, ±2.0, ±2.5, ±3	.0, ±4.0, ±5.0	ppm
Initial Accuracy, "No Adjust" Option				±1.0	ppm
Power Supply Stability				±0.3	ppm
Load Stability				±0.2	ppm
Aging				±1.0	ppm/yr
Pull Range, ordering option	TPR	:	±5, ±8, ±10, ±12	2	ppm
Control Voltage to reach Pull Range		0.5		2.5	V
Control Voltage Impedance		1			Mohm
Output Level ² Output Logic High Output Logic Low Output Logic High Drive Output Logic Low Drive	V _{OH} V _{OL} I _{OH} I _{OL}	0.8*V _{DD}		0.1*V _{DD} -4	V V mA mA
Output Load				15	pF
Phase Noise, 10.000MHz 10Hz 100Hz 1kHz 10kHz 100kHz			-92 -116 -137 -149 -154		dBc/Hz
Enable Disable ³ , Output Enbaled Output Disabled	V _{IH} V _{IL}	0.3* _{VDD}		0.7*V _{DD}	
Start Up Time				2	ms

1. The V-701 power supply pin should be filtered, eg, a 0.1 and 0.01 uf capacitor

2. The Output is DC coupled

3. Output is Enabled if E/D is left open

Outline Drawing

Recommended Pad Layout

Pad Layout mm

Table 2. I	Table 2. Pinout									
Pin #	Symbol	Function								
1	V _c	TCXO Control Voltage or Ground								
2,3,4	NC	Make No Connection								
5	GND	Electrical and Lid Ground								
6	f _o	Output Frequency								
7,8	NC	Make No Connection								
9	E/D	Enable Disable								
10	V _{DD}	Supply Voltage								

Test Circuit

VCXO Function

VCXO Feature: The VT-701 can be ordered with a VCXO function for applications were it will be used in a PLL, or the output frequency needs fine tune or calibration adjustments. This is a high impedance input, 1Mohm, and can be driven with an op-amp or terminated with adjustable resistors etc. **Pin 1 should not be left floating on the VCXO optional device.**

"No Adjust" Option: In applications were the VT-701 will not be used in a PLL, or the output frequency does not need fine tune adjustments, the best device to use would be a VT-701-xxx-xxx0. By using the "no adjust" option, the circuit is simplified as Vc does not need to be adjusted or set to a predetermined voltage and pin 1 should be grounded (pin 1 can be left open but should not be set to a voltage such as an RF signal or power supply voltage.

Maximum Ratings

Absolute Maximum Ratings and Handling Precautions

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Although ESD protection circuitry has been designed into the VT-701, proper precautions should be taken when handling and mounting, VI employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.

Table 3. Maximum Ratings			
Parameter	Symbol	Rating	Unit
Storage Temperature	T _{STORE}	-55/125	°C
Supply Voltage	V _{DD}	6	V
Control Voltage	V _c	0/V _{DD}	V
ESD, Human Body Model		1500	V
ESD, Charged Device Model		1000	V

Table 4. Environmental Compliance					
Parameter	Condition				
Mechanical Shock	MIL-STD-883 Method 2002				
Mechanical Vibration	MIL-STD-883 Method 2007				
Temperature Cycle	MIL-STD-883 Method 1010				
Solderability	MIL-STD-883 Method 2003				
Fine and Gross Leak	MIL-STD-883 Method 1014				
Resistance to Solvents	MIL-STD-883 Method 2015				
Moisture Sensitivity Level	MSL1				
Contact Pads	Gold over Nickel				

IR Compliance

Suggested IR Profile

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 5. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220C.

Table 5. Reflow Profile		
Parameter	Symbol	Value
PreHeat Time	ts	200 sec Max
Ramp Up	R _{UP}	3°C/sec Max
Time above 217°C	tL	150 sec Max
Time to Peak Temperature	tAMB-P	480 sec Max
Time at 260°C	tP	30 sec Max
Time at 240°C	tP2	60 sec Max
Ramp down	R _{dn}	6°C/sec Max

Solderprofile:

Tape & Reel

Table 6.	Table 6. Tape and Reel Information											
Tape Dimensions (mm)			Reel Dimensions (mm)									
w	F	Do	Ро	P1	А	В	с	D	N	W1	W2	#/Reel
16	7.5	1.5	4	8	180	1.5	13	20.2	60	16.4	20.4	1000

Table 7. Standard Frequencies (MHz) Standard Frequencies									
5.000*	6.400*	8.192	10.000	12.500*	12.800	13.000*	16.384	19.200	20.000
19.440	19.800	20.000	24.000	25.000	26.000	27.000			

Ordering Information

* Add **_SNPBDIP** for tin lead solder dip Example: VT-701-EAG-206A-19M200000_SNPBDIP

Revision History

Revision Date	Approved	Description
August 10, 2018	FB	Rev 0.4: Updated logo and contact information, added "SNPBDIP" ordering option

Microsemi Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 215-4996 email: sales.support@microsemi.com www.microsemi.com Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs, power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time, voice processing devices; RF solutions, discrete components, enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or moleved by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and torefy the same. The information provided by Microsemi any and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party ny patert rights, licenses, or any other IP drights, whether with regard to such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party ny patert rights, licenses, or any other IP drights, whether with regard to such information rise of by such information. Information risefform provided by such information. Information risefform any the regard to such information risefform any products and services at any time without notice.

©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.