



# Operator's Manual WaveSurfer 510 Oscilloscopes



## WaveSurfer 510 Oscilloscope Operator's Manual

© 2019 Teledyne LeCroy, Inc. All rights reserved.

Unauthorized duplication of Teledyne LeCroy, Inc. documentation materials is strictly prohibited. Clients are permitted to duplicate and distribute Teledyne LeCroy, Inc. documentation for internal educational purposes.

Teledyne LeCroy is a trademark of Teledyne LeCroy, Inc., Inc. Other product or brand names are trademarks or requested trademarks of their respective holders. Information in this publication supersedes all earlier versions. Specifications are subject to change without notice.

928228 Rev C January, 2019

# **Contents**

| About This Manual                   | iv |
|-------------------------------------|----|
| Safety                              | iv |
| Oscilloscope Overview and Set Up    | 1  |
| Front of Oscilloscope               |    |
| Side of Oscilloscope                | 2  |
| Back of Oscilloscope                | 3  |
| Front Panel                         | 4  |
| Signal Interfaces                   | 6  |
| Probes                              | 7  |
| Powering On/Off                     | 7  |
| Software Activation                 | 8  |
| Language Selection                  | 8  |
| Connecting to Other Devices/Systems | 9  |
| Using MAUI                          | 11 |
| Touch Screen                        | 11 |
| MAUI with OneTouch                  | 17 |
| Working With Traces                 | 23 |
| Zooming                             | 27 |
| Print/Screen Capture                | 29 |
| Acquisition                         | 31 |
| Auto Setup                          | 31 |
| Vertical                            | 32 |
| Digital (Mixed Signal)              | 36 |
| Timebase                            | 39 |
| Trigger                             | 47 |
| Display                             | 57 |
| Display Set Up                      |    |
| Persistence Display                 | 60 |
| Cursors                             | 63 |
| Cursor Types                        |    |
| Apply and Position Cursors          |    |
| Standard Cursors Dialog             |    |
| XY Cursors Dialog                   | 66 |

# WaveSurfer 510 Oscilloscope Operator's Manual

| Measure                         | 67         |
|---------------------------------|------------|
| Parameter Set Up                | 68         |
| List of Standard Measurements   | 71         |
| Measure Table                   | 75         |
| Using Trends                    | 76         |
| Math                            | 77         |
| Math Function Set Up            | 77         |
| List of Standard Math Operators | 7 <u>9</u> |
| Average Function                | 81         |
| ERes Function                   | 83         |
| FFT Function                    | 85         |
| Rescale Function                | 87         |
| Math Dialog                     | 92         |
| Memory                          | 93         |
| Saving Memories                 |            |
| Restoring Memories              | 94         |
| Analysis Tools                  | 95         |
| WaveScan                        |            |
| PASS/FAIL Testing               | 99         |
| Saving Data (File Functions)    | 101        |
| Save                            |            |
| Recall                          | 107        |
| LabNotebook                     |            |
| Report Generator                | 114        |
| Share                           | 115        |
| Print                           | 116        |
| Email & Report Settings         | 117        |
| Using the File Browser          | 118        |
| Utilities                       | 121        |
| Utilities Dialog                |            |
| Disk Utilities                  | 127        |
| Preferences Dialogs             | 128        |
| Maintenance                     | 133        |
| Restart/Reboot Instrument       |            |
| Restore Default Setup           |            |
| Changing Screen Settings        |            |

| Touch Screen Calibration        | 134 |
|---------------------------------|-----|
| Software and File Management    | 134 |
| X-StreamDSO Firmware Update     | 135 |
| Switching Windows Users         | 136 |
| Technical Support               | 137 |
| Returning a Product for Service |     |
| Index                           | 139 |

# **About This Manual**

Thank you for purchasing a Teledyne LeCroy WaveSurfer oscilloscope. We're certain you'll be pleased with the detailed features unique to our instruments.

This manual covers the operation and maintenance of all instruments in the MAUI WaveSurfer series, although WaveSurfer510 is shown here. With the introduction of later versions of the 64-bit MAUI software, particularly version 8.3 and later, the graphical user interface on some instruments looked very different from what was offered on earlier instruments and included different touch screen capabilities. Despite the difference in appearance, however, the functionality is the same unless otherwise stated. Where there are differences or limitations in capabilities, these are explained in the text.

Documentation for using optional packages sold for Teledyne LeCroy instruments can be downloaded from teledynelecroy.com/support/techlib.

Our website maintains the most current product specifications and should be checked for updates. Detailed specifications are listed on the product datasheet.



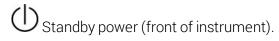
**Note:** Specifications are subject to change without notice.

# Safety

Observe generally accepted safety procedures in addition to the precautions listed here. The overall safety of any system incorporating this product is the responsibility of the assembler of the system.

# **Symbols**

These symbols appear on the instrument or in documentation to alert you to important safety concerns:


Caution of potential damage to instrument or Warning of potential bodily injury. Refer to manual. Do not proceed until the information is fully understood and conditions are met.



Caution, high voltage; risk of electric shock or burn.







#### **Precautions**

Use indoors only.

**Use only within the operational environment listed**. Do not use in wet or explosive atmospheres.

Maintain ground. The AC inlet ground is connected directly to the frame of the instrument. To avoid electric shock, connect only to a mating outlet with a safety ground contact.



Caution: Interrupting the protective conductor inside or outside the oscilloscope, or disconnecting the safety ground terminal, creates a hazardous situation. Intentional interruption is prohibited.

Connect and disconnect properly. Do not connect/disconnect probes, test leads, or cables while they are connected to a live voltage source.

Observe all terminal ratings. Do not apply a voltage to any input that exceeds the maximum rating of that input. Refer to the body of the instrument for maximum input ratings.

Use only power cord shipped with this instrument and certified for the country of use.

Keep product surfaces clean and dry. See Cleaning.

Do not remove the covers or inside parts. Refer all maintenance to qualified service personnel.

**Exercise care when lifting.** Use the built-in carrying handle.

Do not operate with suspected failures. Do not use the product if any part is damaged. Obviously incorrect measurement behaviors (such as failure to calibrate) might indicate hazardous live electrical quantities. Cease operation immediately and secure the instrument from inadvertent use.

# **Operating Environment**

Temperature: 5 °C to 40 °C

Humidity: Maximum relative humidity 90% up to 31 °C,

decreasing linearly to 50% relative humidity at 40 °C.

Altitude: Up to 10,000 ft 3,048 m at or below 30 °C.

# **Measuring Terminal Ratings (C1-C4 and Ext)**

Maximum Input Voltage: 50 Ω coupling ≤ 5 Vrms

> 1 M $\Omega$  coupling  $\leq$  400 Vpk max. (Peak AC  $\leq$  10 kHz + DC) derating at 14 dB/decade from 10 kHz to 2 MHz,

10 Vpk max. above 2 MHz



Caution: Measuring terminals have no rated measurement category per IEC/EN 61010-1:2010. Measuring terminals are not intended to be connected directly to supply mains.

# Cooling

The instrument relies on forced air cooling with internal fans and vents. Take care to avoid restricting the airflow to any part. In a benchtop configuration, leave a minimum of 15 cm (6 inches) around the sides between the instrument and the nearest object. The feet provide adequate bottom clearance. Follow rackmount instructions for proper rack spacing.



Caution: Do not block the cooling vents.

The instrument also has internal fan control circuitry that regulates the fan speed based on the ambient temperature. This is performed automatically after start-up.

# Cleaning

Clean only the exterior of the instrument using a soft cloth moistened with water or an isopropyl alcohol solution. Do not use harsh chemicals or abrasive elements. Under no circumstances submerge the instrument or allow moisture to penetrate it. Dry the instrument thoroughly before connecting a live voltage source.



Caution: Unplug the power cord before cleaning. Do not attempt to clean internal parts.

#### **Power**

The instrument automatically adapts to the line voltage; manual voltage selection is not required.

**AC Power**: 100-240 Vrms (± 10%) AC power source at 50/60 Hz (± 5%)

100-120 Vrms (± 10%) AC power source at 400 Hz (± 5%)

Maximum Consumption: \* 375 W (375 VA)

Nominal Consumption: 285 W (285VA)

Standby Consumption 10 W

The provided power cord mates to a compatible power inlet on the instrument for making line voltage and safety ground connections. The AC inlet ground is connected directly to the frame of the instrument. For adequate protection again electric shock, connect to a mating outlet with a safety ground contact.



**Caution:** Use only the power cord provided with your instrument. Interrupting the protective conductor (inside or outside the case), or disconnecting the safety ground terminal, creates a hazardous situation. Intentional interruption is prohibited.

<sup>\*</sup> All PC peripherals and active probes installed on four channels.

# **Oscilloscope Overview and Set Up**

# **Front of Oscilloscope**



- A. Touch screen display
- B. Front panel
- C. Stylus holder
- D. Power button
- E. Channel inputs (C1-C4)
- F. External trigger input

- G. Auxiliary output
- H. USB port
- I. Ground and Calibration output terminals
- J. LBUS input
- K. Tilting feet

# **Side of Oscilloscope**



- A. HDMI port for external monitor
- B. DisplayPort port for external monitor
- C. USB 3.1 ports (4)
- D. Ethernet ports (2) for connecting to LAN or remote control
- E. Audio in/out (mic and speaker) for connecting external audio devices

# **Back of Oscilloscope**



- A. Built-in carrying handle
- B. AC power inlet
- C. Kensington lock

## **Front Panel**



Front panel controls duplicate functionality available through the touch screen and are described here only briefly.

Knobs on the front panel function one way if turned and another if pushed like a button. The first label describes the knob's "turn" action, the second label its "push" action. Actions performed from the front panel always apply to the active trace.

Many buttons light to show the active traces and functions.

# Trigger Controls

**Level knob** changes the trigger threshold level (V). The level is shown on the Trigger descriptor box. Pushing the knob sets the trigger level to the 50% point of the input signal.

**READY indicator** lights when the trigger is armed. **TRIG'D indicator** is lit momentarily when a trigger occurs.

Setup opens/closes the Trigger Setup dialog.

**Auto** sweeps after a preset time, even if the trigger conditions are not met.

**Normal** sweeps each time the trigger signal meets the trigger conditions.

**Single** sets Single trigger mode. The first press readies the oscilloscope to trigger. The second press arms and triggers the oscilloscope once (single-shot acquisition) when the input signal meets the trigger conditions.

**Stop** pauses acquisition. If you boot up the instrument with the trigger in Stop mode, a "No trace available" message is shown. Press the Auto button to display a trace.

#### Horizontal Controls

The **Delay knob** changes the Trigger Delay value (S) when turned. Push the knob to return Delay to zero.

The Horizontal Adjust knob sets the Time/division (S) of the acquisition system when the trace source is an input channel. The Time/div value is shown on the Timebase descriptor box. When using this control, the instrument allocates memory as needed to maintain the highest sample rate possible for the timebase setting. When the trace is a zoom, memory or math function, turn the knob to change the horizontal scale of the trace, effectively "zooming" in or out. By default, values adjust in 1, 2, 5 step increments. Push the knob to adjust scale in fine increments; push it again to return to stepped increments.

#### Vertical Controls

**Offset knob** adjusts the zero level of the trace (making it appear to move up/down relative to the center axis). The voltage value appears on the trace descriptor box. Push the knob to return Offset to zero.

**Vertical knob** sets the Vertical Gain (V/div) or Scale (for math, memory, and zoom traces). The voltage value appears on the trace descriptor box. Push the knob to toggle between variable (fine) and standard (1, 2, 5, 10-step) increments.

**Channel (number) buttons** turn on a channel that is off, or activate a channel that is already on. When the channel is active, pushing its channel button turns it off. A lit button shows the active channel.

**Dig button** enables digital input through the Digital Leadset on instruments with the Mixed Signal option.

# Math, Zoom, and Mem(ory) Buttons

The **Zoom** button creates a quick zoom for each open channel trace. Touch the zoom trace descriptor box to display the zoom controls.

The **Math** and **Mem**(ory) buttons open the corresponding setup dialogs.

If a Zoom, Math or Memory trace is active, the button illuminates to indicate that the Vertical and Horizontal knobs will now control that trace.

#### Cursor Controls

Cursors identify specific voltage and time values on a waveform. The white cursor markers help make these points more visible. A readout of the values appears on the trace descriptor box. There are five preset cursor types, each with a unique appearance on the display. These are described in more detail in the <u>Cursors</u> section.

**Type** selects the cursor type. Continue pressing to cycle through all cursor until the desired type is found. The type "Off" turns off the cursor display.

Cursor knob repositions the selected cursor when turned. Push it to select a different cursor to adjust.

## Adjust and Intensity Controls

The front panel **Adjust knob** changes the value in active (highlighted) data entry fields that do not have dedicated knobs. Pushing the Adjust knob toggles between coarse (large increment) or fine (small increment) adjustments.

When more data is available than can actually be displayed, the **Intensity** button helps to visualize significant events by applying an algorithm that dims less frequently occurring samples. This feature can also be accessed from the <u>Display Setup dialog</u>.

#### Miscellaneous Controls

Auto Setup performs an Auto Setup.

**Default Setup** restores the factory default configuration.

#### WaveSurfer 510 Oscilloscope Operator's Manual

**Print** captures the entire screen and outputs it according to your <u>Print settings</u>. It can also be configured to <u>output a LabNotebook entry</u>.

Touch Screen enables/disables touch screen functionalilty.

Clear Sweeps resets the acquisition counter and any cumulative measurements.

**Decode** opens the Serial Decode dialog if you have serial data decoder options installed.

WaveScan opens the WaveScan dialog.

Spectrum opens the Spectrum Analyzer dialog if you have that option installed.

History opens the History Mode dialog.

# Signal Interfaces

MAUI instruments offer a variety of interfaces for using probes or other devices to input analog or digital signals. See the oscilloscope product page at teledynelecroy.com for a list of compatible input devices.

## **ProBus Interface**

The ProBus interface contains a 6-pin power and communication connection and a BNC signal connection to the probe, with sense rings for detecting passive probes. It offers both  $50~\Omega$  and  $1~M\Omega$  input impedance and provides probe power and control for a wide range of probes such as high impedance passive probes, high impedance active probes, current probes, high voltage probes, and differential probes.

The following models utilize the ProBus interface:

| Model              | Channels | Input |
|--------------------|----------|-------|
| All WaveSurfer 510 | 1 to 4   | -     |

The ProBus interface completely integrates the probe with the channel. Upon connecting a Teledyne LeCroy probe, the probe type is recognized and some setup information, such as input coupling and attenuation, is performed automatically. This information is displayed on the Probe Dialog, behind the Channel (Cn) dialog. System (probe plus instrument) gain settings are automatically calculated and displayed based on the probe attenuation.

The ProBus interface may have a BNC-terminated cable connected directly to it. Depending on the BNC connector used and the oscilloscope design, it is rated for up to 4 GHz with 50  $\Omega$  coupling, or up to 1 GHz for 1 M $\Omega$  coupling.

# **Other Analog Inputs**

REF In can be used to input an external reference clock signal.

**EXT** can be used to input an external trigger pulse.

These inputs have a simple BNC interface with no power supply. See your product datasheet for voltage and frequency ratings, as they vary by model.

# **Mixed Signal Input**

The MS-250 and MS-500 Mixed Signal Solutions are complete systems that add digital acquisition and triggering capabilities to WaveSurfer 510 oscilloscopes equipped with the LBUS interface. The MS-250 enables input of up to 18 lines of digital data; the MS-500 comes in two models enabling input of either 18 or 36 lines.

See the MDA-250 Operator's Manual and MDA-500 Operator's Manual for detailed instructions.

## **Probes**

The oscilloscope is compatible with the included passive probes and most Teledyne LeCroy active probes that are rated for the instrument's bandwidth. Probe specifications and documentation are available at teledynelecroy.com/probes.

## **Passive Probes**

The passive probes supplied are matched to the input impedance of the instrument but may need further compensation. Follow the directions in the probe instruction manual to compensate the frequency response of the probes.

## **Active Probes**

Teledyne LeCroy offers a variety of active probes for use with your oscilloscope:

- Single-Ended active probes can measure voltages at high frequencies. Use of an active probe requires a test point and a ground point. The ground (also called earth) acts as a zero reference for the test point measurement.
- **Differential Probes** are like two probes in one. Instead of measuring a test point in relation to a ground point, differential probes measure the difference in voltage of two test points.

Most active probes match probe to oscilloscope response automatically using probe response data stored in an on-board EEPROM. This ensures the best possible combined probe plus oscilloscope channel frequency response without the need to perform any de-embedding procedure.

Be aware that many active probes require a minimum oscilloscope firmware version to be fully operational. See the probe documentation.

# Powering On/Off



Press the **Power button** to turn on the instrument. The X-Stream application loads automatically when you use the Power button.

The safest way to power down the oscilloscope is to use the **File > Shutdown** menu option, which will always execute a proper shut down process and preserve settings. Quickly pressing the Power button should also execute a proper shut down, but holding the Power button will execute a "hard" shut down (as on a computer), which we do not recommend doing because it does not allow the Windows operating system to close properly, and setup data may be lost. Never power off by pulling the power cord from the socket, or by powering off a connected power strip or battery without first shutting down properly.

#### WaveSurfer 510 Oscilloscope Operator's Manual

The Power button does not disconnect the instrument from the AC power supply. The only way to fully power down the instrument is to unplug the AC power cord.

We recommend unplugging the instrument if it will remain unused for a long period of time.



**Caution:** Do not change the instrument's Windows® Power Options setting from the default Never to System Standby or System Hibernate. Doing so can cause the system to fail.



Caution: Do not power on or calibrate with a signal attached.

# **Software Activation**

The operating software (firmware and standard applications) is active upon delivery. At power-up, the instrument loads the software automatically.

Free firmware updates are available periodically from the Teledyne LeCroy website at:

teledynelecroy.com/support/softwaredownload

Registered users can receive an email notification when a new update is released. Follow the instructions in <u>Firmware Update</u> to download and install the software.

If you decide to purchase an option, you will receive a license key via email that activates the optional features. See <u>Options</u> for instructions on activating optional software packages.

# **Language Selection**

To change the language of the oscilloscope application:

- 1. Go to **Utilities > Preference Setup > Preferences** and make a **Language** selection.
- 2. Follow the prompt to restart the application.

You can also select by touching the Language icon when it appears to the far right of the menu bar upon start up.

# **Connecting to Other Devices/Systems**

Use the menu options listed below to configure connections to other devices.

#### LAN

The instrument is preset to accept a DHCP network address over a TCP/IP connection. Connect a cable from the Ethernet port on the side panel to a network access device. Go to Utilities > Utilities Setup > Remote to find the IP address.

To assign a static IP address, choose Net Connections from the Remote dialog. Use the standard Windows networking dialogs to configure the device address.

Choose File > File Sharing and open the Email & Report Settings dialog to configure email settings.

# **Audio/USB Peripherals**

Connect the device to the appropriate port on the front or side of the instrument. These connections are "plug-and-play" and do not require any additional configuration.

#### **Printer**

MAUI oscilloscopes support USB printers compatible with the instrument's Windows OS. Go to File > Print Setup and select Printer to configure printer settings. Select Properties to open the Windows Print dialog.

#### **External Monitor**

You may operate the instrument using the built-in touch screen or attach an external monitor for extended desktop operation. See your product datasheet for the supported monitor resolution.

Connect the monitor cable to a video output on the instrument. You can use an adaptor if the monitor cable has a different interface. Go to Display > Display Setup > Open Monitor Control Panel to configure the display. Be sure to select the instrument as the primary monitor.

To use the Extend Grids feature, configure the second monitor to extend, not duplicate, the oscilloscope display. If the external monitor is touch screen enabled, the MAUI user interface can be controlled through touch on the external monitor.



**Note:** The oscilloscope display utilizes Fujitsu touch-screen drivers. Because of conflicts, external monitors with Fujitsu drivers can not be used to control the system, only as displays.

#### Remote Control

Go to Utilities > Utilities Setup > Remote to <u>configure remote control</u>. Connect the oscilloscope to the network/controller using the cable type required by your selection.

- VICP(TCP/IP) and VXI-11(LXI) over Ethernet are supported standard.
- GPIB is supported with the use of the optional USB-GPIB adapter.

#### WaveSurfer 510 Oscilloscope Operator's Manual



**Note:** If using TCP/IP, you can connect over the LAN or directly to the controller. Be sure the oscilloscope is on the same subnet as the controller. Depending on the host, you may need to use a cross-over cable to make a direct connection.

### **Reference Clock**

To input/output a reference clock signal, connect to the other instrument. Go to Timebase > Horizontal Setup > to configure the clock.

# **Auxiliary Output**

To output signal from the instrument to another device, connect a BNC cable from Aux Out to the other device. Go to Utilities > Utilities Setup > Aux Output to configure the output.

# **Using MAUI**

MAUI, the Most Advanced User Interface, is Teledyne LeCroy's unique oscilloscope user interface. MAUI is designed for touch—all important controls for vertical, horizontal, and trigger are only one touch away.

# **Touch Screen**

The touch screen is the principal viewing and control center. The entire display area is active: use your finger or a stylus (not included) to touch, drag, swipe, or draw a selection box.

Many controls that display information also work as "buttons" to access other functions. If you have a mouse installed, you can click anywhere you can touch to activate a control; in fact, you can alternate between clicking and touching, whichever is convenient for you.

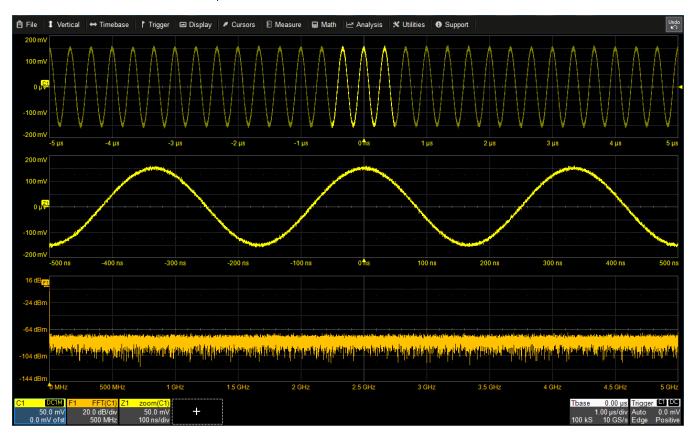
The touch screen is divided into the following major control groups:



#### Menu Bar

The top of the window contains a complete menu of functions. Making a selection here changes the dialogs displayed at the bottom of the screen.

While many operations can also be performed from the front panel or launched via the descriptor boxes, the menu bar is the best way to access dialogs for Save/Recall (File) functions, Display functions, Status, LabNotebook, Pass/Fail setup, optional Analysis packages, and Utilities/Preferences setup.


If an action can be "undone", the **Undo** button restores the oscilloscope to the prior state.

#### Grid

The grid displays the waveform traces. Every grid is 8 Vertical divisions representing the full number of 256 Vertical levels possible at the current resolution and 10 Horizontal divisions each representing acquisition time. The value represented by Vertical and Horizontal divisions depends on the Vertical and Horizontal scale of the traces that appear on the grid.

## Multi-Grid Display

The screen can be divided into multiple grid configurations, each grid showing different types and numbers of traces (in Auto Grid mode, it will divide automatically as needed). Regardless of the number and orientation of grids, every grid always represents the same number of Vertical levels. Therefore, absolute Vertical measurement precision is maintained.



Different types of traces opening in a multi-grid display.

#### Grid Indicators

These indicators appear around or on the grid to mark important points on the display. They are matched to the color of the trace to which they apply. When multiple traces appear on the same grid, indicators refer to the *foreground* trace—the one that appears on top of the others.



Axis labels mark the times/units represented by a grid division. They update dynamically as you pan the trace or change the Vertical/Horizontal scale. Originally shown in absolute values, the labels change to show delta from 0 (center) when the number of significant digits grows too large. The number of labels that appear on each grid depends on the total number of grids open. To remove them, go to Display > Display Setup and deselect Axis Labels.



**Trigger Time**, a small triangle along the bottom (horizontal) edge of the grid, shows the time of the trigger. Unless Horizontal Delay is set, this indicator is at the zero (center) point of the grid. Delay time is shown at the top right of the Timebase descriptor box.



**Pre/Post-trigger Delay**, a small arrow to the bottom left or right of the grid, indicates that a pre- or post-trigger Delay has shifted the Trigger Position indicator to a point in time not displayed on the grid. All Delay values are shown on the Timebase Descriptor Box.



**Trigger Level** at the right edge of the grid tracks the trigger voltage level. If you change the trigger level when in Stop trigger mode, or in Normal or Single mode without a valid trigger, a hollow triangle of the same color appears at the new trigger level. The trigger level indicator is not shown if the triggering channel is not displayed.

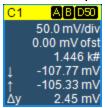


**Zero Volts Level** is located at the left edge of the grid. One appears for each open trace on the grid, sharing the number and color of the trace.



<u>Cursor</u> markers appear over the grid to indicate specific voltage and time values on the waveform. Drag-and-drop cursor markers to quickly reposition them.

## Grid Intensity


You can adjust the brightness of the grid lines by going to **Display > Display Setup** and entering a new **Grid Intensity** percentage. The higher the number, the brighter and bolder the grid lines.

# **Descriptor Boxes**

Trace descriptor boxes appear just beneath the grid whenever a trace is turned on. They function to:

- Inform—descriptors summarize the current trace settings and its activity status.
- Navigate—touch the descriptor box once to activate the trace, again to open the setup dialog.
- Configure—drag-and-drop descriptor boxes to change source or copy setups.

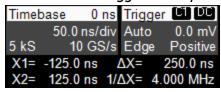
#### Trace Descriptor Box



Channel trace descriptor boxes correspond to analog signal inputs. They show (clockwise from top left): Channel Number, Pre-processing list, Coupling, Vertical Scale (gain) setting, Vertical Offset setting, Sweeps Count (when averaging), Vertical Cursor positions, and Number of Segments (when in Sequence mode).

Codes are used to indicate pre-processing that has been applied to the input. The short form is used when several processes are in effect.

#### Pre-processing Symbols on Descriptor Boxes


| Pre-Processing Type    | Long Form               | Short Form       |
|------------------------|-------------------------|------------------|
| Coupling               | DC50, DC1M, AC1M or GND | D50, D1, A1 or G |
| Bandwidth Limiting     | BWL                     | В                |
| Averaging              | AVG                     | A                |
| (Sinx)/x Interpolation | SINX                    | S                |
| Deskew                 | DSQ                     | DQ               |
| Noise Filter (ERes)    | FLT                     | F                |
| Inversion              | INV                     | 1                |

If you are interleaving channels, channel descriptor boxes will show the channel's overall acquisition status: trigger only, active, or not active.



Similar descriptor boxes appear for math (Fn), zoom (Zn), memory (Mn) and sensor (SEn) traces (if your system includes a SAM40 Sensor Acquisition Module). These descriptor boxes show any Horizontal scaling that differs from the signal timebase. Units will be automatically adjusted for the type of trace.

#### Timebase and Trigger Descriptor Boxes



The Timebase descriptor box shows: (clockwise from top right) Horizontal Delay, Time/div, Sample Rate, Number of Samples and Sampling Mode (blank when in real-time mode).

The Trigger descriptor box shows: (clockwise from top right) Source and Coupling, Level (V), Slope/Polarity, Type and Mode.

Horizontal (time) cursor readout, including the time between cursors and the frequency, is shown beneath the TimeBase and Trigger descriptor boxes. See the <u>Cursors</u> section for more information.

# **Dialogs**

Dialogs appear at the bottom of the display for entering setup data. The top dialog will be the main entry point for the selected functionality. For convenience, related dialogs appear as a series of tabs behind the main dialog. Touch the tab to open the dialog.



## Right-Hand Subdialogs

At times, your selections will require more settings than can fit on one dialog, or the task invites further action, such as zooming a new trace. In that case, subdialogs will appear to the right of the dialog. These subdialog settings always apply to the object that is being configured on the left-hand dialog.

#### Action Toolbar

Several setup dialogs contain a toolbar at the bottom of the dialog. These buttons enable you to perform commonplace tasks—such as turning on a measurement—without having to leave the underlying dialog. Toolbar actions always apply to the active trace.



Measure opens the Measure pop-up to set measurement parameters on the active trace.

**Zoom** creates a zoom trace of the active trace.

Math opens the Math pop-up to apply math functions to the active trace and create a new math trace.

**Decode** opens the main Serial Decode dialog where you configure and apply serial data decoders and triggers. This button is only active if you have serial data software options installed.

**Store** loads the active trace into the corresponding memory location (C1, F1 and Z1 to M1; C2, F2 and Z2 to M2, etc.).

**Find Scale** performs a vertical scaling that fits the waveform into the grid.

**Label** opens the Label pop-up to annotate the active trace.

#### WaveSurfer 510 Oscilloscope Operator's Manual

# Message Bar

At the bottom of the oscilloscope display is a narrow message bar. The current date and time are displayed at the far right. Status, error, or other messages are also shown at the far left, where "Teledyne LeCroy" normally appears.

🛕 Input has invalid points

You will see the word "Processing..." highlighted with red at the right of the message bar when the oscilloscope is processing your last acquisition or calculating.

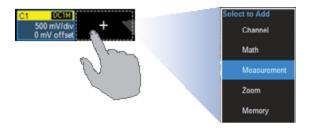
Processing ...

This will be especially evident when you change an acquisition setting that affects the ADC configuration while in Normal or Auto trigger mode, such as changing the Vertical Scale, Offset, or Bandwidth. Traces may briefly disappear from the display while the oscilloscope is processing.

# **MAUI** with OneTouch

Touch, drag, swipe, pinch and flick can be used to create and change setups with one touch. Just as you change the display by using the setup dialogs, you can change the setups by moving different display objects. Use the setup dialogs to refine OneTouch actions to precise values.

As you drag & drop objects, valid targets are outlined with a white box. When you're moving over invalid targets, you'll see the "Null" symbol ( Ø ) under your finger tip or cursor.


#### **Turn On**

To turn on a new channel, math, memory, or zoom trace, drag any descriptor box of the same type to the Add New ("+") box. The next trace in the series will be added to the display at the default settings. It is now the active trace.



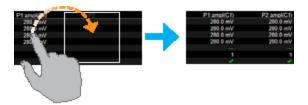
If there is no descriptor box of the desired type on the screen to drag, touch the Add New box and choose the trace type from the pop-up menu.

To turn on the Measure table when it is closed, touch the Add New box and choose Measurement.



## **Activate**

Touch a trace or its descriptor box to *activate* it and bring it to the *foreground*. When the descriptor box appears highlighted in blue, front panel controls and touch screen gestures apply to that trace.




# **Copy Setups**

To copy the setup of one trace to another of the same type (e.g., channel to channel, math to math), dragand-drop the source descriptor box onto the target descriptor box.

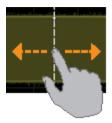


To copy the setup of a measurement (Pn), drag-and-drop the source column onto the target column of the Measure table.

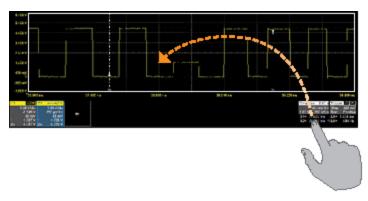



# **Change Source**

To **change the source of a trace**, drag-and-drop the descriptor box of the desired source onto the target descriptor box. You can also drop it on the Source field of the target setup dialog.

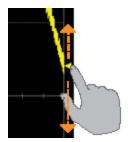



To change the source of a measurement, drag-and-drop the descriptor box of the desired source onto the parameter (Pn) column of the Measure table.

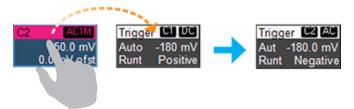



#### **Position Cursors**

To **change cursor measurement time/level**, drag cursor markers to new positions on the grid. The cursor readout will update immediately.




To place horizontal cursors on zooms or other calculated traces where the source Horizontal Scale has forced cursors off the grid, drag the cursor readout from below the Timebase descriptor to the grid where you wish to place the cursors. The cursors are set at the 2.5 and 7.5 divisions of the grid. Cursors on the source traces adjust position accordingly.




# **Change Trigger**

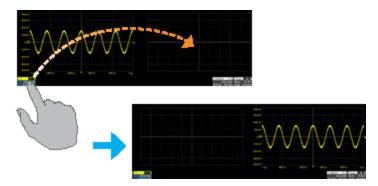
To **change the trigger level**, drag the Trigger Level indicator to a new position on the Y axis. The Trigger descriptor box will show the new voltage Level.



To **change the trigger source channel**, drag-and-drop the desired channel (Cn) descriptor box onto the Trigger descriptor box. The trigger will revert to the coupling and slope/polarity last set on that channel.



# **Store to Memory**


To store a trace to internal memory, drag-and-drop its trace descriptor box onto the target memory (Mn) descriptor box.



# **Move Trace**

To move a trace to a different grid, drag-and-drop the trace descriptor box onto the target grid.

This feature is not available on WaveSurfer 510.



# Scroll

To **scroll long lists of values** or readout tables, swipe the selection dialog or table in an up or down direction.

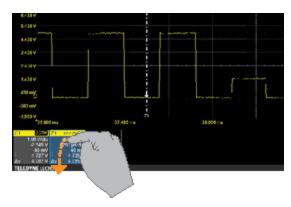


# **Pan/Swipe Trace**

To **pan a trace**, activate it to bring it to the forefront, then drag the waveform trace right/left or up/down. If it is the source of any other trace, that trace will move, as well.

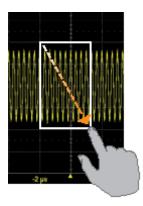
For channel traces, the Timebase descriptor box will show the new Horizontal Delay value. For other traces, the zoom factor controls show the new Horizontal Center.






Tip: If you are using the multi-zoom feature, all time-locked traces will pan together.

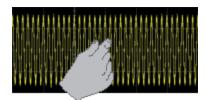
To pan at an accelerated rate, **swipe** the trace right/left or up/down.


# **Turn Off**

To **turn off a trace**, flick the trace descriptor box toward the bottom of the screen.



#### Zoom


To **create a new zoom trace**, touch then drag diagonally to draw a selection box around the portion of the trace you want to zoom. Touch the Zn descriptor box to open the zoom factor controls and adjust the zoom exactly.



To "zoom in" on any trace, unpinch two fingers over the trace horizontally.



To "zoom out" on any trace, pinch two fingers over the trace horizontally.





Note: Pinch to Zoom is not available on LabMaster models.



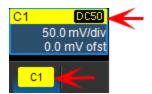
**Note:** Pinch gestures do not create a separate zoom (Zn) trace, they only adjust the Horizontal Scale. When you pinch a channel (Cn) trace, the Timebase for all channels changes. If the trace is the source of any other, all its dependent traces change, as well.

# **Working With Traces**

Traces are the visible representations of waveforms that appear on the display grid. They may show live inputs (Cn, Digitaln), a math function applied to a waveform (Fn), a stored memory of a waveform (Mn), a zoom of a waveform (Zn), or the processing results of special analysis software.

Traces are a touch screen object like any other and can be manipulated. They can be panned, moved, labeled, zoomed and captured in different visual formats for printing/reporting.

Each visible trace will have a <u>descriptor box</u> summarizing its principal configuration settings. See <u>OneTouch Help</u> for more information about how you can use traces and trace descriptor boxes to modify your configurations.


#### **Active Trace**

Although several traces may be open, only one trace is *active* and can be adjusted using front panel controls and touch screen gestures. A highlighted descriptor box indicates which trace is active. All actions apply to that trace until you activate another. Touch the trace descriptor box to make it the active trace (and the foreground trace in that grid).



Active trace descriptor (left), inactive trace descriptor (right).

Whenever you activate a trace, the dialog at the bottom of the screen automatically switches to the appropriate setup dialog.



Active descriptor box matches active dialog tab.

# **Foreground Trace**

Since multiple traces can be opened on the same grid, the trace shown on top of the others is the *foreground* trace. Grid indicators (matched to the input channel color) represent values for the foreground trace.

Touch a trace or its descriptor box to bring it to the foreground. This also makes it the active trace.

Note that a *foreground* trace may not be the same as the *active* trace. A trace in a separate grid may subsequently become the active trace, but the indicators on a given grid will still represent the foreground trace in that group.

# **Turning On/Off Traces**

## Turn On/Off Analog Trace

From the front panel, press the **Channel button**.

From the touch screen, choose **Vertical > Channel x Setup**.

To turn off a trace, press the front panel Channel button a second time, or from the touch screen, do any of the following:

- If the instrument has OneTouch, flick the trace descriptor box toward the bottom of the screen.
- From the Context menu select Off.
- Clear the "Trace On" box on the Channel Setup or Cn dialogs.

## Turn On/Off Digital Trace

From the touch screen, choose **Vertical > Digitaln Setup** then check **Group** on the Digitaln dialog.

Turn off the trace the same as you would an analog trace.

# Turn On/Off Zoom Trace

See Creating Zooms.

# Turn On/Off Other Trace

To turn on traces, use the respective setup dialogs (Math, Memory, etc.).

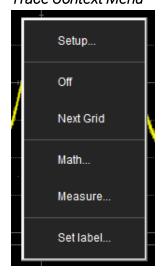
Turn off the trace the same as you would an analog trace.

# **Adjusting Traces**

To adjust Vertical Scale (gain or sensitivity) and Vertical Offset, just activate the trace and use the front panel Vertical knobs. To make other adjustments—such as channel pre-processing or the math function rescaling—touch the trace descriptor box twice to open the appropriate setup dialog.


## Adjusting Trace Settings

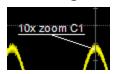



Many entries can be made by selecting from the pop-up that appears when you touch a control. When an entry field appears highlighted in blue after touching, it is *active* and can be adjusted by turning the front panel knobs. Fields that don't have a dedicated knob (as do Vertical Level and Horizontal Delay) can be modified using the Adjust knob.

If you have a keyboard installed, you can type entries in an active (highlighted) data entry field. Or, you can touch again, then "type" the entry by touching keys on the virtual keypad or keyboard.

To use the virtual keypad, touch the soft keys exactly as you would a calculator. When you touch OK, the calculated value is entered in the field.

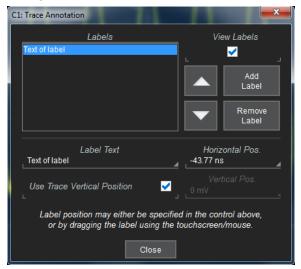



#### Trace Context Menu



The trace context menu is a pop-up menu of actions to apply to a trace, such as turn off, measure or label.

To open the trace context menu, touch and hold on the trace descriptor box until a white circle appears (or right-click with a mouse).


# **Labeling Traces**



The Label function gives you the ability to add custom annotations to the trace display. Once placed, labels can be moved to new positions or hidden while remaining associated with the trace.

#### Create Label

1. Select **Label** from the context menu, or touch the **Label** Action toolbar button on the trace setup dialog.



- 2. On the Trace Annotation pop-up, touch Add Label.
- 3. Enter the Label Text.
- 4. Optionally, enter the **Horizontal Pos.** and **Vertical Pos.** (in same units as the trace) at which to place the label. The default position is 0 ns horizontal. **Use Trace Vertical Position** places the label immediately above the trace.

#### Reposition Label

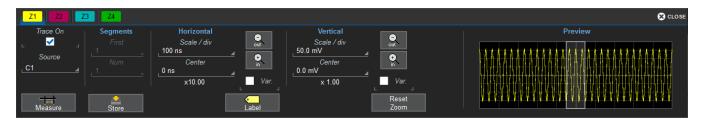
Drag-and-drop labels to reposition them, or change the position settings on the Trace Annotation pop-up.

#### Edit/Remove Label

On the Trace Annotation pop-up, select the **Label** from the list. Change the settings as desired, or touch **Remove Label** to delete it.

Clear View labels to hide all labels. They will remain in the list.

# **Zooming**


Zooms magnify a selected region of a trace by altering the Horizontal Scale relative to the source trace.

<u>Zooms may be created</u> in several ways, using either the front panel or the touch screen. You can adjust zooms the same as any other trace using the front panel Vertical and Horizontal knobs or the touch screen zoom factor controls. All enabled zooms open in the same grid at the same scale.

The current settings for each zoom trace can be seen on the Zn dialogs.

# **Zn Dialog**

Each Zn dialog reflects the center and scale for that zoom. Use it to adjust the zoom magnification.



#### Trace Controls

Trace On shows/hides the zoom trace. It is selected by default when the zoom is created.

**Source** lets you change the source for this zoom to any channel, math, or memory trace while maintaining all other settings.

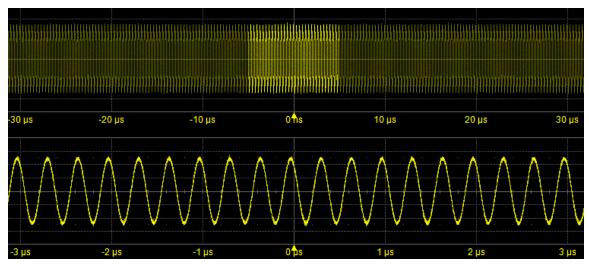
#### Segment Controls

These controls are used in Sequence Sampling Mode.

#### Zoom Factor Controls

- Out and In buttons increase/decrease zoom magnification and consequently change the Horizontal and Vertical Scale settings. Touch either button until you've achieved the desired level.
- Var.checkbox enables zooming in single increments.
- Horizontal Scale/div sets the time represented by each horizontal division of the grid. It is the equivalent of Time/div in channel traces.
- Vertical Scale/div sets the voltage level represented by each vertical division of the grid; it's the equivalent of V/div in channel traces.
- Horizontal/Vertical Center sets the time/voltage at the center of the grid. The horizontal center is the same for all zoom traces.
- Reset Zoom returns the zoom to x1 magnification.




**Tip:** On WaveSurfer oscilloscopes, all zooms are displayed in the same grid at the same horizontal scale. To view traces at different scales, always turn off one zoom before turning on another.

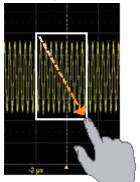
# **Creating Zooms**

Any type of trace can be zoomed by creating a new zoom trace (Zn) following the procedures here. Zoom traces open in the same grid, with the zoomed portion of the source trace highlighted.



**Note:** On most instruments with OneTouch, traces can be "zoomed" by pinching/unpinching two fingers over the trace, but this method does not create a separate zoom trace. With channel traces, pinching will alter the acquisition timebase and the scale of all traces. Create a separate zoom trace if you do not wish to do this.




Zoomed area of original trace highlighted. Zoom in new grid below.

#### Quick Zoom

Use the **front panel Zoom button** to quickly create one zoom trace for each displayed channel trace. Quick zooms are created at the same vertical scale as the source trace and 10:1 horizontal magnification.

To turn off the guick zooms, press the Zoom button again.

# Manually Create Zoom



To manually create a zoom, touch-and-drag diagonally to draw a selection box around any part of the source trace.

The zoom will resize the selected area to fit the full width of the grid. The degree of vertical and horizontal magnification, therefore, depends on the size of the rectangle that you draw.

Alternatively, with OneTouch you can drag any Zn descriptor box over the **Add New box**, or touch the Add New box and choose Zoom from the pop-up menu. The next available zoom trace opens with its Zn dialog displayed for you to modify scale as needed.

Finally, you can create a Zoom math function. This method creates a new Fn trace, rather than a new Zn trace, but it can be rescaled in the same manner. It is a way to create more zooms than you have Zn slots available on your instrument.

### Adjust Zoom Scale

The zoom's Horizontal units will differ from the signal timebase because the zoom is showing a calculated scale, not a measured level. This allows you to adjust the zoom factor using the front panel knobs or the zoom factor controls however you like without affecting the timebase (a characteristic shared with math and memory traces).

#### Close Zoom

New zooms are turned on and visible by default. If the display becomes too crowded, you can close a particular zoom and the zoom settings are saved in its Zn slot, ready to be turned on again when desired.

To close the zoom, right-click (touch-and-hold until the white circle appears) on the zoom descriptor box, then from the context menu choose **Off**.

## **Print/Screen Capture**

The **front panel Print button** captures an image of the touch screen and outputs it according to your Print settings. It can be used to save a LabNotebook, create an image file of waveform traces, or send the image to a networked printer, etc.

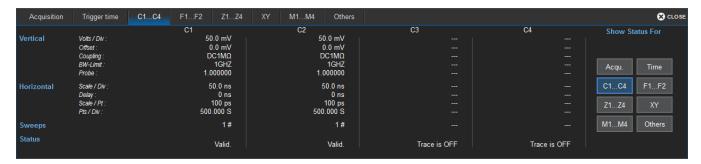


icon at the right of the Print dialog will also execute your print setting.

Print may be used as a screen capture tool by going to File > Print Setup and selecting to print to File, then choosing a graphical format and naming scheme with your Screen Image Preferences. Once configured, just press the Print button or Printer icon, and optionally annotate the image.

You can also use the touch screen to generate a screen capture by choosing File > Save > Screen image and touching Save Now at the right of the dialog. The file is saved using your latest Screen Image Preferences settings.

| WaveSurfer 510 Oscilloscope Operator's Manual |  |  |  |  |  |
|-----------------------------------------------|--|--|--|--|--|
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |
|                                               |  |  |  |  |  |


# **Acquisition**

The acquisition settings include everything required to produce a visible trace on screen and an acquisition record that may be saved for later processing and analysis:

- Vertical axis scale at which to show the input signal, and probe characteristics that affect the signal
- Horizontal axis scale at which to represent time, sampling mode and sampling rate
- Acquisition trigger mechanism

Optional acquisition settings include bandwidth filters and pre-processing effects, vertical offset, and horizontal trigger delay, all of which affect the appearance and position of the waveform trace.

All current acquisition settings can be viewed through the various Status dialogs. Access them by choosing the Status option from the Vertical, Timebase, Trigger, Math, or Analysis menus.



## **Auto Setup**

Auto Setup configures the essential acquisition settings based on the first input signal it finds, starting with C1. If nothing is connected to C1, it searches C2 and so forth until it finds a signal. Vertical Scale (V/div), Offset, Timebase (Time/div), and Trigger are set to an Edge trigger on the first, non-zero-level amplitude, with the entire waveform visible for at least 10 cycles over 10 horizontal divisions.

To run Auto Setup:

- 1. Press the front panel **Auto Setup button**, or choose **Auto Setup** from the Vertical, Timebase, or Trigger menus (these all perform the same function).
- 2. To confirm, press the Auto Setup button again, or use the touch screen display.

After running Auto Setup, you'll see the words "Auto Setup" next to an Undo button at the far right of the menu bar. This allows you to restore the settings in place prior to the Auto Setup.



**Caution:** You will undo all new measurements or math function definitions entered since the Auto Setup when you Undo the Auto Setup.

## Vertical

Vertical, also called Channel, settings usually relate to voltage level and control traces along the Y axis.




**Note:** While Digital settings can be accessed through the Vertical menu on Mixed Signal oscilloscopes, they are handled quite differently. See <u>Digital</u>.

The amount of voltage displayed by one vertical division of the grid, or Vertical Scale (V/div), is most quickly adjusted by using the front panel **Vertical knob**. The Cn descriptor box always shows the current Vertical Scale setting.

Detailed configuration for each trace is done on the <u>Cn dialogs</u>. Once configured, channel traces can be quickly turned on/off or modified using the <u>Channel Setup dialog</u>.

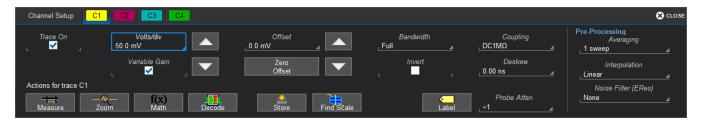
## **Channel Setup Dialog**

Use the Channel Setup dialog to quickly make basic Vertical settings for all analog input channels. To access the Channel Setup dialog, choose **Vertical > Channel Setup** from the menu bar.



To turn on/off the channel trace, select/deselect the checkbox.

To change any other Vertical settings, touch the input field and enter the new value.


You can also touch Copy Channel Setup and select the channels to Copy From and Copy To.



**Tip:** On instruments with OneTouch, you can copy settings from one channel to another just by dragging the source channel descriptor box onto the target channel descriptor box.

## Cn (Channel) Dialog

Full vertical setup is done on the Cn dialog. To access it, choose **Vertical > Channeln Setup** from the menu bar, or touch the **Channel descriptor box**.



The Cn dialog contains:

- Vertical settings for Scale (V/div), Offset, Coupling, Bandwidth, and probe Attenuation
- Units/Rescale settings
- Pre-processing settings, such as Noise Filter and Interpolation.

If a Teledyne LeCroy probe is connected, its Probe dialog appears to the right of the Cn dialog.

### Vertical Settings

The **Trace On** checkbox turns on/off the channel trace.

**Vertical Scale** sets the gain (sensitivity) in the selected Vertical units, Volts by default. Select **Variable Gain** for fine adjustment or leave the checkbox clear for fixed 1, 2, 5, 10-step adjustments.

Offset adds a defined value of DC offset to the signal as acquired by the input channel. This may be helpful in order to display a signal on the grid while maximizing the vertical height (gain) of the signal. A negative value of offset will "subtract" a DC voltage value from the acquired signal (and move the trace down on the grid) whereas a positive value will do the opposite. Touch **Zero Offset** to return to zero.

A variety of Bandwidth filters are available. To limit bandwidth, select a filter from this field.

**Coupling** may be set to DC 50  $\Omega$ , DC1M, AC1M or GROUND.



**Caution:** The maximum input voltage depends on the input used. Limits are displayed on the body of the instrument. Whenever the voltage exceeds this limit, the coupling mode automatically switches to GROUND. You then have to manually reset the coupling to its previous state. While the unit does provide this protection, damage can still occur if extreme voltages are applied.

#### Probe Attenuation

Probe **Attenuation** values for third-party probes may be entered manually on the C*n* dialog. The instrument will detect it is a third-party probe and display these fields.

When a Teledyne LeCroy probe is connected to a channel input, the Attenuation field becomes a button to access the Probe dialog, a tab added to the right of the Cn tab. Enter Attenuation on the Probe dialog.

### Pre-Processing Settings

Pre-processing functions modify the acquired signal prior to display, math and measurement processing.

### **Averaging**

Average performs continuous averaging, the repeated addition, with unequal weight, of successive source waveforms. It is particularly useful for reducing noise on signals drifting very slowly in time or amplitude. The most recently acquired waveform has more weight than all the previously acquired ones: the continuous average is dominated by the statistical fluctuations of the most recently acquired waveform. The weight of old waveforms in the continuous average gradually tends to zero (following an exponential rule) at a rate that decreases as the weight increases.

### Interpolation

Interpolate applies (Sinx)/x interpolation to the waveform. The selection of None or Linear applies Linear interpolation, which inserts a straight line between sample points and is best used to reconstruct straightedged signals such as square waves. (Sinx)/x interpolation, on the other hand, is suitable for reconstructing curved or irregular wave shapes, especially when the sample rate is 3 to 5 times the system bandwidth. Choose an upsample factor of 2 or more points. The Interpolation setting is disabled.



Note: 10 point Sinx/x interpolation can be set via IEEE 488.2 remote control or COM Automation.

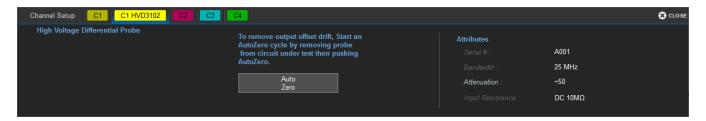
#### Deskew

**Deskew** adjusts the horizontal time offset by the amount entered in order to compensate for propagation delays caused by different probes or cable lengths. The valid range is dependent on the current timebase setting. The Deskew pre-processing setting and the Deskew math function perform the same action.

#### ERes / Noise Filter

Noise Filter applies Enhanced Resolution (ERes) filtering to increase vertical resolution, allowing you to distinguish closely spaced voltage levels. The tradeoff is reduced bandwidth. ERes functions similarly to smoothing the signal with a simple, moving-average filter. It is best used on single-shot acquisitions, acquisitions where the data record is slowly repetitive (and you cannot use averaging), or to reduce noise when your signal is noticeably noisy but you do not need to perform noise measurements. It also may be used when performing high-precision voltage measurements and zooming with high vertical gain, for example. ERes is disabled.

#### Inversion


**Invert** changes the apparent polarity of the signal, substituting an equivalent negative value for a positive one, and vice versa, so that the waveform appears to be "flipped" on screen.

## **Probe Dialog**

The Probe Dialog immediately to the right of the Cn dialog displays the probe attributes and (depending on the probe type) allows you to AutoZero, DeGauss and make tip selection for probes from the touch screen. Other settings may appear, as well, depending on the probe model.



Caution: Remove probes from the circuit under test before initializing Auto Zero or DeGauss.



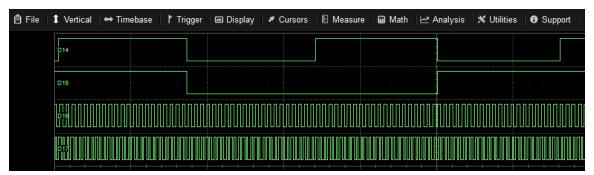
**Power On** initiates power to active probes via the oscilloscope interface.

**LED Active** turns on AutoColor ID if the probe has this feature. The LED on the probe body will light in the color of the channel to which the probe is connected.

**Auto Zero** corrects for DC offset drifts that naturally occur from thermal effects in the amplifier of active probes. Teledyne LeCroy probes incorporate Auto Zero capability to remove the DC offset from the probe's amplifier output to improve the measurement accuracy.

The **Degauss** control is activated for some types of probes (e.g., current probes). Degaussing eliminates residual magnetization from the probe core caused by external magnetic fields or by excessive input. It is recommended to always Degauss probes prior to taking a measurement.

On oscilloscopes running firmware version 8.5.1.1 or later, HVD3000 probes set attenuation relative to the oscilloscope's V/div setting and your **Voltage Range** selection:


- Auto will automatically raise the attenuation when the V/div setting is >7.9 V/div or lower the attenuation when the V/div is <7.9 V/div. As a result, the probe can automatically adjust attenuation to properly view the input waveform.
- Lock to High locks attenuation to the highest setting, regardless of the V/div setting. Maintaining a high attenuation will allow small signals on a larger voltage waveform to be accurately measured.

## **Digital (Mixed Signal)**

When a Mixed Signal device is connected to the oscilloscope, digital input options are added to the Vertical menu. There are set up dialogs for each possible digital group, Digital 1 to Digitaln, which correspond to digital buses. You choose which lines make up each digital group, what they are named, and how they appear on the display.

## **Digital Traces**

When a digital group is enabled, digital Line traces (also called Expanded view when using MS-250/MS-500) show which lines are high, low, or transitioning relative to the threshold. You can also view a digital Bus trace that collapses all the lines in a group (Collapsed view) into their Hex values.



Four digital lines displayed with a Vertical Position +4.0 (top of grid) and a Group Height 4.0 divisions. Depending on your input method, Height may be defined by the entire group or by the individual line.

## **Activity Indicators**

Activity indicators appear at the bottom of the Digitaln dialogs when using the Digital Leadset. They show which lines are High (up arrow), Low (down arrow), or Transitioning (up and down arrows) relative to the Logic Threshold value, providing a quick view of which lines are of interest to display on screen.



## Digital Setup Using MS-250/MS-500

The MS-250 and MS-500 Mixed Signal Solutions are complete systems that add digital acquisition and triggering capabilities to Teledyne LeCroy oscilloscopes. The MS-250 is an external device that samples digital signals up to 250 MHz at 1 GS/s over 18 Lines. The MS-500 samples digital signals up to 500 MHz at 2 GS/s over 18 or 36 Lines, depending on model.

Unlike a logic analyzer, they operate only in a Timing Analysis mode and so require 4x oversampling to determine the correct digital edge position. They do not require a second clock input.

See the <u>MS-250 Operator's Manual</u> and <u>MS-500 Operator's Manual</u> for full instructions. Also see <u>Trigger</u> <u>Dialog</u> for digital triggering instructions.

### Connecting

- 1. Connect the smaller end of the Bus cable to the instrument's LBUS interface. Be sure the head is turned so that the wedge fits into the groove at the top of the connector. Fasten the thumb screws.
- 2. Connect the larger, grooved end of the Bus cable to the MS device. Again, be sure the wedge fits into the groove at the top of the connector. Fasten the thumb screws.
- 3. Connect one end of the USB cable (that is attached to the Bus cable) to any host port on the instrument, and the other to the USB port on the MS device.
- 4. Connect the digital leadset(s) to the other end of the MS device.
- 5. Attach the leads to the digital lines on your DUT. You may use micro-grippers, if desired.

Once the device is connected, digital acquisition features are added to the instrument's Vertical menu. Here, you can specify your bus configuration and set the logic threshold using industry standard or custom levels.

### Digital Group Setup

To set up a digital group:

- 1. Connect the digital input device to the test device and the instrument.
- 2. From the menu bar, choose Vertical > Digitaln Setup.



3. On the Digitaln set up dialog, check the boxes for all the lines that comprise the group. Touch the Right and Left Arrow buttons to switch between digital banks as you make line selections.

Alternatively, touch **All Lines ON** to quickly turn on an entire digital bank.



Note: Each group can consist of anywhere from one to all of the leads from any digital bank. It does not matter if the some or all of the lines have been included in other groups.

- 4. Check **Trace On** to start the display.
- 5. When you're finished on the Digital*n* dialog, open **Logic Setup** and choose the **Logic Family** that applies to each digital bank, or set custom **Threshhold** and **Hysteresis** values.

### Digital Display Setup

Choose the type and position of the digital traces that appear on screen for each digital group.

- 1. Set up the digital group.
- 2. Choose a **Display Mode**:
  - Expand (default) shows a time-correlated trace indicating high, low, and transitioning points (relative to the Threshold) for *every* digital line in the group. The size and placement of the lines depend on the number of lines, the Vertical Position and Line Height settings.
  - Collapse collapses the lines in a group into their Hex values.
- 3. In **Vertical Position**, enter the number of divisions (positive or negative) relative to the zero line of the grid where the display begins. The top of the first trace appears at this position.
- 4. In **LineHeight**, enter the total number of grid divisions each line should occupy.

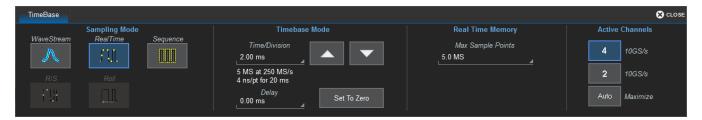
To close digital traces, uncheck the **Trace On** box on the Digitaln dialog.

### Renaming Lines

The labels used to name each line can be changed to make the user interface more intuitive.

- 1. Set up the digital group.
- 2. Touch the **Line number field** below the corresponding checkbox. If necessary, use the **Left/Right Arrow buttons** to switch between banks.
- 3. Use the virtual keyboard to enter the new name, then press **OK**.

Any active line traces are renamed accordingly.


## **Timebase**

Timebase (Horizontal) settings control traces along the X axis. The timebase is shared by all channels.

The time represented by each horizontal division of the grid, or **Time/Division**, is most easily adjusted using the **front panel Horizontal knob**. Full Timebase set up is done on the Timebase dialog, accessed either by choosing **Timebase > Horizontal Setup** from the menu bar or by touching the **Timebase descriptor box**.

## **Timebase Set Up**

Use the Timebase dialog to select the Sampling Mode, Memory /Sample Rate, and number of Active Channels. You can also use it instead of the Front Panel to modify the Time/Div and horizontal Delay. There are related dialogs for Reference Clock.



## Sampling Mode

The **Sampling Mode** determines how the instrument samples the input signal and renders it for display.

#### Timebase Mode

**Time/Division** is the time represented by one horizontal division of the grid. Touch the Up/Down Arrow buttons on the Timebase dialog or turn the front panel Horizontal knob to adjust this value. The overall length of the acquisition record is equal to 10 times the Time/Division setting.

**Delay** is the amount of time relative to the trigger event to display on the grid. Raising/lowering the Delay value has the effect of shifting the trace to the right/left. This allows you to isolate and display a time/event of interest that occurs before or after the trigger event.

- Pre-trigger Delay, entered as a negative value, displays the acquisition time prior to the trigger event, which occurs at time 0 when in Real Time sampling mode. Pre-trigger Delay can be set up to the instrument's maximum sample record length; how much actual time this represents depends on the timebase. At maximum pre-trigger Delay, the trigger point is off the grid (indicated by the arrow at the lower right corner), and everything you see represents 10 divisions of pre-trigger time.
- Post-trigger Delay, entered as a positive value, displays time following the trigger event. Post-trigger Delay can cover a much greater lapse of acquisition time than pre-trigger Delay, up to the equivalent of 10,000 divisions after the trigger event (it is limited at slower time/div settings and in Roll mode). At maximum post-trigger Delay, the trigger point is off the grid far left of the time displayed.

Set to Zero returns Delay to zero.

### Memory

Max. Sample Points is the maximum number of samples taken per acquisition. By default, the instrument allocates memory as needed to maintain the highest sample rate possible for the timebase. The actual number of samples acquired can be lower due to the current Max. Sample Points setting.

To avoid aliasing and other waveform distortions, it is advisable (per Nyquist) to acquire at a sample rate at least twice the bandwidth of the input signal. Use Max. Sample Points in relation to Time/Division to adjust the overall Sample Rate (shown on the Timebase descriptor). The formula for sample rate is: Sample Rate = Memory Samples/Acquisition Time, with the maximum sample rate being limited by the instrument's analog-to-digital converter (ADC).

## Active Channels (Dual-Channel Acquisition)

The Active Channels settings allow you to combine the acquisition capabilities of the leftmost pair of channels (C1 and C2) and the rightmost pair of channels (C3 and C4) to result in two channels with maximum sample rate and memory.

In 4-channel mode, all channels remain active at the default sample rate.

To combine channels, under Active Channels, choose 2 or Auto:

- 2-channel mode turns off waveform acquisition on C1 and C4, although C1 can still be used for trigger input. C2 and C3 acquire at doubled sample rate and memory.
- In Auto mode, the oscilloscope will allot the maximum memory and sample rate possible based on the activity within each *pair* of channels. As long as only one channel in each of the C1-C2 and C3-C4 pairs is turned on, the maximum rate is used. Turning on both channels in either pair has the same effect as selecting 4 Active Channels.

**Example:** In Auto mode, C1 can operate with either C3 or C4 at higher sample rate and memory since they belong to different pairs, and likewise C2. However, C1 cannot operate with C2 without dropping the sample rate, nor can C3 operate with C4.

Refer to Acquisition System in the product datasheet for maximum sample rates.

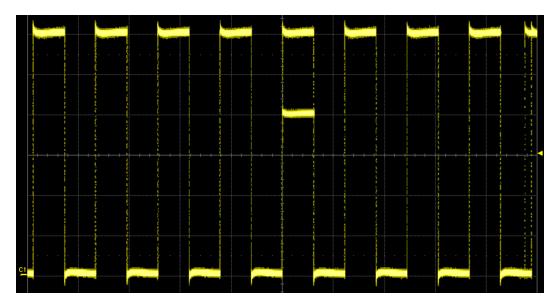
## **Sampling Modes**

The Sampling Mode determines how the instrument samples the input signal and renders it for display.

### Real Time Sampling Mode

Real Time sampling mode is a series of digitized voltage values sampled on the input signal at a uniform rate. These samples are displayed as a series of measured data values associated with a single trigger event. By default (with no Delay), the waveform is positioned so that the trigger event is time 0 on the grid. The relationship between sample rate, memory, and time can be expressed as:

Capture Interval = 1/(Sample Rate X Memory)
Capture Interval/10 = Time Per Division


Usually, on fast timebase settings, the maximum sample rate is used when in Real Time mode. For slower timebase settings, the sample rate is decreased so that the maximum number of data samples is maintained over time.

### WaveStream Sampling Mode

### Available only on WaveSurfer oscilloscopes.

WaveStream provides a vibrant, intensity graded display with a fast update rate to closely simulate the look and feel of an analog oscilloscope. WaveStream is most helpful in viewing signals that have signal jitter or signal anomalies, or for applying a visual check before creating an advanced trigger or WaveScan setup to locate an unusual event.

WaveStream mode operates at up to 80 GS/s with an update rate of up to several thousand waveforms/second for better capture of higher frequency abnormal events. Time/div must be set to 50 ms or faster to use WaveStream.



Waveform captured in WaveStream sampling mode, showing hard-to-find runt.

To use WaveStream, select it as the Sampling Mode when making other settings on the Timebase dialog.

### RIS Sampling Mode

RIS (Random Interleaved Sampling) allows effective sampling rates higher than the maximum single-shot sampling rate. It is available on timebases  $\leq 10$  ns/div.

The maximum effective RIS sampling rate is achieved by making multiple single-shot acquisitions at maximum real-time sample rate. The bins thus acquired are positioned approximately 20 ps (50 GS/s) apart. The process of acquiring these bins and satisfying the time constraint is a random one. The relative time between ADC sampling instants and the event trigger provides the necessary variation.

Because the instrument requires multiple triggers to complete an acquisition, RIS is best used on repetitive waveforms with a stable trigger. The number depends on the sample rate: the higher the sample rate, the more triggers are required. It then interleaves these segments to provide a waveform covering a time interval that is a multiple of the maximum single-shot sampling rate. However, the real-time interval over which the instrument collects the waveform data is much longer, and depends on the trigger rate and the amount of interleaving required.



Note: RIS is not available when the oscilloscope is using another form of digital interleaving.

### Roll Sampling Mode

Roll mode displays incoming points of slow timebase acquisitions so that the trace appears to "roll" continuously across the screen from right to left. The acquisition is complete when a trigger event is detected, at which point the next acquisition begins immediately. Parameters or math functions are updated every time the roll mode buffer is updated as new data becomes available. This resets statistics on every step of Roll mode that is valid because of new data.

Timebase must be set sufficiently slow to enable Roll mode selection; increase Time/div to 50 ms/div or more and decrease sample rate to 2.5 MS/s or less to to activate the Roll mode option on the Timebase dialog. Only Edge trigger is supported for Roll mode acquisitions.



**Note:** Roll mode sampling is not available when using another form of digital interleaving. If processing time is greater than acquisition time, the roll mode buffer is overwritten. The instrument warns, "Channel data is not continuous in ROLL mode!!!" and rolling starts again.

## Sequence Sampling Mode

In Sequence Mode sampling, the completed waveform consists of a number of fixed-size segments. The instrument uses the Timebase Sequence settings to determine the capture duration of each segment. The desired number of segments, maximum segment length, and total available memory are used to determine the actual number of samples or segments, and time or points.

Sequence Mode is ideal when capturing many fast pulses in quick succession or when capturing few events separated by long time periods. The instrument can capture complicated sequences of events over large time intervals in fine detail, while ignoring the uninteresting periods between the events. Measurements can be made on selected segments using the full precision of the timebase.

## **Sequence Mode Set Up**

The Sequence dialog appears only when Sequence Mode sampling is selected. Use it to define the number of fixed-size segments to be acquired.



- 1. From the menu bar, choose **Timebase > Horizontal Setup...**, then **Sequence Sampling Mode**.
- 2. On the **Sequence tab** under Acquisition Settings, enter the **Number of Segments** to acquire.
- 3. To stop acquisition in case no valid trigger event occurs within a certain timeframe, check the **Enable Timeout** box and provide a **Timeout** value.



Note: While optional, Timeout ensures that the acquisition completes in a reasonable amount of time and control is returned to the operator/controller without having to manually stop the acquisition, making it especially useful for remote control applications.

4. Touch one of the **front panel Trigger buttons** to begin acquisition.

You can interrupt acquisition at any time by pressing the front panel **Stop** button. In this case, the segments already acquired will be retained in memory.

### Viewing Sequence Segments

When in Sequence sampling mode, you can view individual segments easily using the front panel **Zoom** button. A new zoom of the channel trace defaults to Segment 1.

You can view other segments by changing the **First** and total **Num**(ber) of segments to be shown on the Zn dialog. Touch the Zn descriptor box to display the dialog.



**Tip:** The number of segments displayed can be less than the total number acquired. By setting the Num to 1, you can use the front panel Adjust knob to scroll through each segment in order.

Channel descriptor boxes indicate the total number of segments acquired in sequence mode. Zoom descriptor boxes show the first segment displayed and total number of segments displayed ([#] #). As with all other zoom traces, the zoomed segments are highlighted on the source trace.



**Example**: You have acquired 10 segments. You choose to display segments 4 to 6—or, a total of 3 segments beginning with segment 4. The Cn descriptor box reads 10. The Zn descriptor box reads [4]3 Seg, meaning you are displaying a total of 3 segments, starting with segment 4.

### View Segment Time Stamps

To view time stamps for each segment:

1. From the Sequence dialog, choose **Show Sequence Trigger Times**.

Or

From the menu bar, choose Timebase > Acquisition Status, then open Trigger time.

2. Under Show Status For. choose Time.

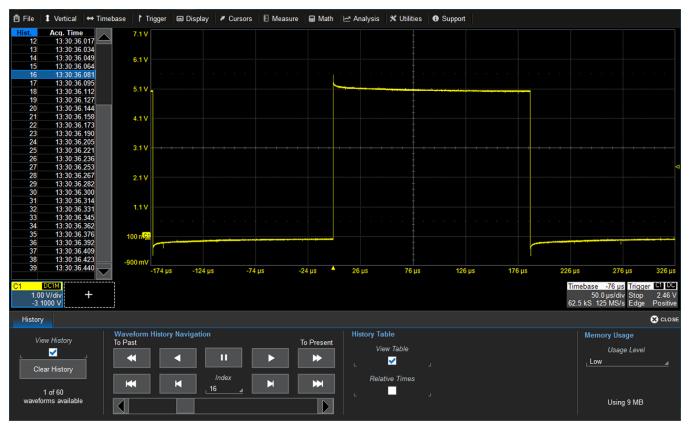
#### View Segments as Math Function

Besides using the Zoom feature, you can also create a Math (Fn) trace to display individual segments.

- 1. From the menu bar, choose Math > Math Setup...
- 2. Touch a Function (Fn) tab to display its corresponding dialog.
- 3. On the dialog, touch **Operator1** and select the **Segment** button from the pop-up menu.
- 4. Touch the **Select** subdialog tab.
- 5. Touch **First Selected** and choose the first segment to display.
- 6. Touch **Number of Selected** and enter the total number of segments to display.

## **History Mode**

History Mode allows you to review any acquisition saved in the history buffer, which automatically stores all acquisition records until full. Not only can individual acquisitions be restored to the grid, you can "scroll" backward and forward through the history at varying speeds to capture details or changes in the waveforms over time.


Each record is indexed and time-stamped, and you can choose to view the absolute time of acquisition or the time relative to when you entered History Mode. In the latter case, the last acquisition is time zero, and all others are stamped with a negative time. The maximum number of records stored depends on your acquisition settings and the total available memory.

Press the front panel **History Mode button**, or choose **Timebase > History Mode** to access this feature.

Entering History Mode automatically stops new acquisitions. To leave History Mode, press the **History Mode button** again, or restart acquisition by pressing one of the front panel Trigger Mode buttons.



**Note:** History Mode does not work with Sequence Mode acquisitions, pre-processor Interpolation set on the input channel, or channel interleaving.



Oscilloscope in History mode.

### Replay Acquisition History

This is a good way to begin using History Mode. Watching a "movie" of the history allows you to see waveform changes that are invisible during real-time acquisition.

Select **View History** to enable the display, then use the Navigation buttons or the slider bar at the bottom of the dialog to "scroll" the history of acquisitions.

- Top row buttons scroll: Fast Backward, Slow Backward, Slow Forward, Fast Forward.
- Bottom row buttons step: Back to Start, Back One, Go to Index (row #), Forward One, Forward to End.

Press Pause when you see something of interest, then use the History table to find the exact Index.

### Select Single Acquisition

- 1. Select View History to enable the display, and View Table to show the index of records.
- 2. Optionally, select to show **Relative Times** on the table.
- 3. To view individual acquisitions, select the row from the table or enter its **Index** number on the dialog.

## **Trigger**

Triggers define the event around which digitized information is displayed on the grid.

Different <u>Trigger Types</u> are used to select different events in the trigger source waveforms: edge voltages, pulse widths, high/low states, etc. These may be a single channel event or a complex pattern of events across several channels. On instruments with Mixed Signal capabilities, many triggers can be set on either analog channels, including the External Trigger input, or digital lines.

In addition to the type, the <u>Trigger Mode</u> determines how the instrument behaves as it encounters trigger events: take a single acquisition and stop, holding on to the display of the last acquisition, or continuously take and display acquisitions.

In both cases, when the previous acquisition has completed processing, the oscilloscope is again ready to acquire and the READY indicator is lit. If, while READY, the trigger circuit detects a signal that matches the trigger conditions, the oscilloscope triggers on the next matching event, and the TRIG'D indicator is lit.

Unless modified by a pre- or post-trigger <u>Delay</u>, the trigger event appears at time 0 at the horizontal center of the grid, and a period of time equal to five divisions of the timebase is shown to the left and right of it. Delay shifts the acquisition "window" on screen, displaying a different portion of the waveform.

An additional condition of <u>Holdoff</u> by time or events is available for Edge and Pattern triggers, including those that appear within MultiStage triggers. Holdoff arms the trigger on the first matching event, inserts the holdoff count, then triggers on a subsequent event. Often, especially with repetitive signals, the initial arming event appears to the left of the trigger in "negative" acquisition time.

## **Trigger Modes**

The Trigger Mode determines how often the instrument acquires. It is equivalent to how analog oscilloscopes "sweep," or refresh, the display. Trigger Mode can be set from the Trigger menu or from the front panel Trigger control group.

In **Single** mode, when you choose **Trigger > Single** or press the front panel **Single** button, the oscilloscope readies, arms, and triggers provided all trigger conditions (including Holdoff) are met. It then stops and continues to display the last acquisition until a new one is taken. The oscilloscope remains armed unless manually stopped or triggered, and if a valid trigger does not occur, invoking Single a second time will force a trigger and display the acquisition.

In **Normal** mode, operation is the same as in Single, except that the trigger automatically re-arms after the previous acquisition is complete, and data is continuously refreshed on the touch screen.

**Auto** operates the same as Normal mode, except that a trigger is forced if the trigger event has not occurred within a preset timeout period.

**Stop** ceases acquisition processing until you select one of the other three modes. The arming and Holdoff counters are cleared, even if there has not yet been a trigger since the previous acquisition.

## **Trigger Types**

The Trigger Type sets the triggering conditions.

### Basic Types

**Edge** triggers upon a achieving a certain voltage level in the positive or negative slope of the waveform.

**Width** triggers upon finding a positive- or negative-going pulse width when measured at the specified voltage level.

**Pattern** triggers upon a user-defined pattern of concurrent high and low voltage levels on selected inputs. In Mixed-Signal oscilloscopes, it may be a digital logic pattern relative to voltage levels on analog channels, or just a digital logic pattern omitting any analog inputs. Likewise, if your oscilloscope does not have Mixed-Signal capability, the pattern can be set using analog channels alone.

TV triggers on a specified line and field in standard (PAL, SECAM, NTSC, HDTV) or custom composite video signals.

**Serial** triggers on the occurrence of user-defined serial data events. This type will only appear if you have installed protocol-specific serial data trigger and decode options.

## MultiStage Types

MultiStage triggers set one event that "qualifies" or arms, and another that triggers. First select MultiStage to show all the triggers in the group.

**QualFirst** is only enabled when using Sequence sampling mode. It arms the oscilloscope on the A event, then triggers on all subsequent B events, saving each as a Sequence Mode segment.

**Qualified** arms on the A event, then triggers on the B event. In Normal trigger mode, it automatically resets after the B event, and re-arms upon the next matching A event.

## Smart Triggers

Smart triggers allow you to apply Boolean logic conditions to the basic signal characteristics of level, slope, and polarity to determine when to trigger. First select Smart to show all the triggers in the group.

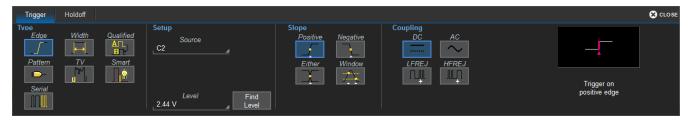
**Glitch** triggers upon finding a pulse-width that is less than a specified time or within a specified time range.

**Window** triggers when a signal exits a window defined by voltage thresholds.

**Interval** triggers upon finding a specific time between two consecutive edges of the same polarity. Use it to capture intervals that fall short of, or exceed, a specified range.

**Dropout** triggers when a signal loss is detected. The trigger is generated at the end of the timeout period following the last trigger source transition. It is used primarily in Single acquisitions with pre-trigger Delay.

**Runt** triggers when a pulse crosses a first threshold, but fails to cross a second threshold before recrossing the first. Other defining conditions for this trigger are the edge (triggers on the slope opposite to that selected) and runt width.


**SlewRate** triggers when the rising or falling edge of a pulse crosses an upper and a lower level. The pulse edge must cross the thresholds faster or slower than a selected period of time.

## **Trigger Set Up**

To open the Trigger dialog, press the **front panel Trigger Setup** button or touch the **Trigger descriptor box**.

Different controls will appear depending on the Trigger <u>Type</u> selected (e.g., Slope for Edge triggers). Complete the settings shown after making your selection.

The trigger condition is summarized in a preview window at the far right of the Trigger dialog. Refer to this to confirm your selections are producing the trigger you want.



#### Source

For most triggers, the **Source** is the analog channel or digital line to inspect for the trigger conditions. Pattern triggers may utilize multiple sources (such as a mix of analog and digital signals).

### Coupling

For analog triggers, specify the type of signal **Coupling** at the input:

- DC Frequency components are coupled to the trigger circuit for high frequency bursts, or where the use of AC coupling would shift the effective trigger level.
- AC Capacitively coupled. DC levels are rejected, and frequencies below 50 Hz are attenuated.
- LFREJ Coupled through a capacitive high-pass filter network, DC is rejected and signal frequencies below 50 kHz are attenuated. For stable triggering on medium to high frequency signals.
- HFREJ DC coupled to the trigger circuit, and a low-pass filter network attenuates frequencies above 50 kHz (used for triggering on low frequencies).

## Slope/Polarity

For some triggers, such as Edge, you will be asked to select the waveform **Slope** (rising vs. falling) on which the triggering event may occur. For others, such as Width, the equivalent selection will be **Polarity** (positive vs. negative).

#### Level

For analog triggers, enter the voltage **Level** at which the triggering condition must occur. Use the **Find Level** button to set the level to the signal mean.

Trigger types that require multiple crossings to define the triggering condition—such as Window, SlewRate and Runt—will have **Upper Level** and **Lower Level** fields.

For digital pattern triggers, the level is determined by the **Logic Family** that is set on the digital group. This can also be specified by a custom (User-Defined) crossing **Threshold** and **Hysteresis**. Usually, there will be a separate Logic tab for these settings.

### Conditions (Smart Triggers)

Smart triggers all allow you to apply Boolean logic to refine the triggering condition beyond simply Level and Slope/Polarity.



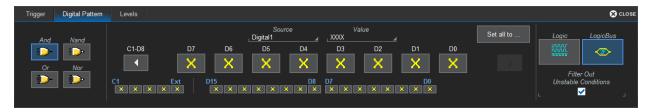
The values that satisfy the operators of **Less Than**, **Less Than or Equal To**, **Greater Than**, etc. can be set by entering an **Upper Value** and/or **Lower Value**.

In some cases, it is possible to set a range of values that satisfy the condition. Depending on the trigger, the values may be **In Range** that is bounded by the upper/lower values, or **Out Range**.

The extent of the range can often also be specified by using a **Nominal** and **Delta** value, rather than an absolute upper and lower value. In this case, the Nominal value sets the center of the range, and the Delta determines how many units plus/minus the Nominal value are included in the range.

For Dropout triggers, the default is to **Ignore Opposite Edge**, setting the trigger to dropout of the Positive or Negative edge within the given timeframe. Deselecting it has the effect of setting the trigger to dropout on Both edges.

#### **Patterns**


A triggering logic pattern may be set on digital lines, analog channels, or a combination of both.

### Digital Pattern

A digital pattern is set on a single bus (group) manually or by applying a hexadecimal value, while the remaining lines are disabled ("Don't Care").

The Logic Bus method simplifies pattern set up by utilizing digital groups and logic you have already defined on the Digital Setup dialogs. If you have not set up digital groups, you can set a digital pattern line by line using the Logic method. All available lines remain active for selection.

1. On the Trigger dialog, select **Pattern** trigger type. Open the **Digital Pattern** dialog.



- 2. At the far right of the dialog, choose either **Logic Bus** or **Logic**.
- 3. Optionally, deselect **Filter Out Unstable Conditions**. This default filter ignores short glitches in logic state triggers that last less than 3.5 ns.
- 4. If using Logic Bus, touch **Source** and select the digital group. Any lines that are not in this group will now be disabled.
- 5. To apply a digital logic pattern, either:
  - Enter the hexadecimal value of the pattern in **Hex** or **Value**. Lines will take a logical 1, 0, or X ("Don't Care") according to the pattern. Disabled lines will remain X.
  - For each active line, touch **Dn** and select whether it must be High or Low compared to the logic threshold. A logical 1 (High) or 0 (Low) now appears on the dialog. Leave X for any line you wish to exclude from the pattern. Use the Left/Right Arrow buttons to display lines in other digital banks.
  - 0

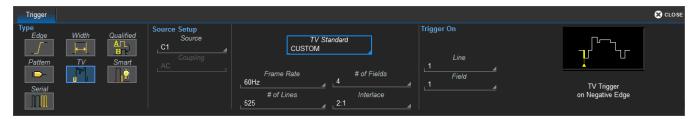
Note: As an alternative to 1 or 0, you may set edge conditions on any line. Touch **D***n* and choose the edge. Edge conditions always assume a logical OR in the overall trigger criteria.

6. If you have not already set a logic threshold, open the **Levels dialog** and select a **Logic Family** for each digital bank from which you've selected lines. To set a custom logic threshold, choose Logic Family User Defined, then enter the **Threshold** voltage and **Hysteresis**.



Note: Digital lines inherit the Logic Setup made when defining digital groups. However, you can change the logic threshold on the Levels dialog. Logic thresholds can only be set per lead bank, not individual line.

#### Analog Pattern


1. On the Trigger dialog, select the **Pattern** trigger type.



- 2. Select the Boolean **Operator** that describes the relationship among analog inputs (e.g., C1 must be High AND C2 must be Low).
- 3. For each input in the trigger pattern, select what **State** it must be in compared to the threshold Level. Leave "Don't Care" for any input you wish to exclude.
- 4. For each input included in the trigger, enter the voltage threshold **Level**.

### TV Trigger

TV triggers on a specified line and field in standard or custom composite video signals.



- 1. Choose the **Source** signal input.
- 2. Choose the signal **TV Standard**. To use a custom signal, also enter the **Frame Rate**, **# of Fields** per line, **# of Lines**, and **Interlace** ratio.
- 3. Choose the **Line** and **Field** upon which to trigger.

### Serial Trigger

The Serial trigger type will appear if you have installed serial data trigger and decode options. Select the **Serial** type then the desired **Protocol** to open the serial trigger setup dialogs. For setup instructions, see the software instruction manual at teledynelecroy.com/support/techlib under Manuals > Software Options.

### Qualified Trigger

A Qualified trigger arms on the A event, then triggers on the B event. In Normal trigger mode, it automatically resets after the B event, and re-arms upon the next matching A event. Unlike a basic Edge or Pattern trigger with Holdoff, the A and B events can occur in different signals, allowing you to use the state of one signal to "qualify" the trigger on another.

On the Trigger dialog, select **Qualified** trigger type to display the controls.



Besides an Edge or Pattern, two special conditions may be selected as the arming event (A):

- State, an analog or digital High/Low state ocurring on a single input.
- PatState, a pattern of analog or digital High/Low states across multiple inputs.

When B is an Edge or Pattern, use the When B Occurs buttons to add a time window to the conditions:

- Any Time triggers if B occurs any time after being qualified by A.
- Less Than triggers only if B occurs before the time limit once qualified by A.
- Greater Than triggers only if B occurs after the time limit once qualified by A.
- Events triggers on the next B event after the specified N Events once qualified by A.

As with regular Holdoff, the counter may begin from the Acquisition Start or the Last Trigger Time.

Once you've selected the A and B events on the Qualified dialog, set up the conditions on the respective "Event" dialogs exactly as you would a single-stage trigger.

## QualFirst Trigger

The QualFirst trigger, which is used in Sequence sampling mode, is set up exactly like the <u>Qualified</u> trigger. The only difference is that the "B" event triggers repeated segments of a segmented acquisition.

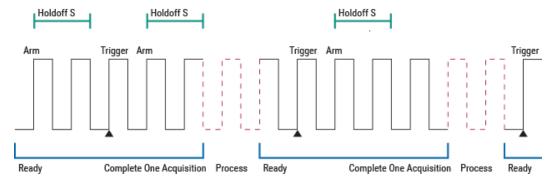
### Trigger Holdoff

Holdoff is either a period of time or an event count that may be set as an additional condition for Edge and Pattern triggers. Holdoff disables the trigger temporarily, even if the other conditions are met. Use Holdoff to obtain a stable trigger for repetitive, composite waveforms. For example, if the number or duration of sub-signals is known, you can disable them by setting an appropriate Holdoff value.




**Note:** <u>Qualified</u> triggers operate using time or event conditions similar to Holdoff, but arm and trigger differently.

### Hold Off by Time


This is a period of time to wait after the arming event before triggering on the next event. The maximum allowed time is 20 seconds; the Holdoff time would otherwise be limited only by the input signal, the coupling, and the instrument's bandwidth.

When a Holdoff by time is counted from the start of the acquisition, the oscilloscope readies, arms on the first event, holds for the specified time, then triggers on the next event. After one full acquisition has completed, the oscilloscope again readies, arms, holds, and triggers for the following acquisition.



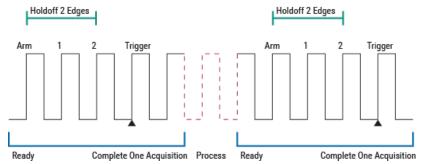
Positive Edge trigger with Holdoff by time counted from the start of acquisition.

When a Holdoff by time is counted from the last trigger time, the oscilloscope immediately re-arms on the first event following the trigger and begins counting the Holdoff, rather than wait to complete the full acquisition. The Holdoff count continues even during the very brief time between acquisitions while the oscilloscope is processing. As soon as the Holdoff is satisfied *and* the oscilloscope is again ready, it triggers on the next event. The re-arming and Holdoff may occur in one acquisition, and the trigger in the next.



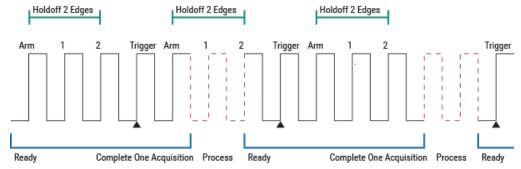
Positive Edge trigger with Holdoff by time counted from the last trigger time.




**Note:** Because there is only one trigger per acquisition, the trigger event will always belongs to the new acquisition. The processing time shown here is for purposes of illustration only.

Regardless of where in the acquisition record the trigger event was found (first edge or last), the display will show time pre- and post-trigger based on your Time/Div and Delay settings.

## Hold Off by Events


Events refers to the number of times the trigger conditions have been met following the arming event.

For example, if the Holdoff is two edges counted from the start of the acquisition, the oscilloscope readies, arms on the first edge, holds off for the next two, triggers on the fourth edge, then completes the acquisition. Because there must always be a first arming edge, it appears to be "Holdoff plus one."



Positive Edge trigger with Holdoff by events counted from start of acquisition.

As with Holdoff by time, when a Holdoff by events is counted from the last trigger time, the oscilloscope rearms immediately following the trigger and begins the Holdoff count. If the count is satisfied by the time the oscilloscope is again ready, the trigger occurs on the next event at the start of the new acquisition.



Positive Edge trigger with Holdoff by events counted from last trigger time.

## Holdoff Set Up

To add Holdoff to an Edge or Pattern trigger, touch the Trigger descriptor box or press the front panel Trigger Setup button, then open the **Holdoff tab**.

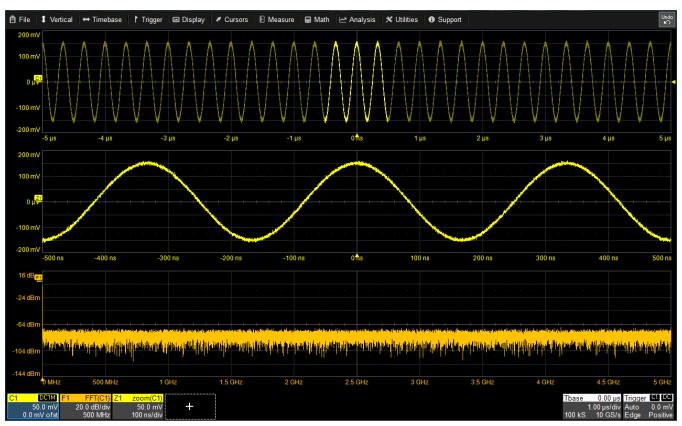


Choose to Holdoff by Time (the clock) or Events.

- If using Holdoff by Time, enter the **Time** in S to wait before triggering.
- If using Holdoff by Events, enter the number of **Events** to wait before triggering.

### Choose to Start Holdoff Counter On:

- Current Acquisition Start time.
- Last Trigger Time from previous acquisition.


# **Display**

Display settings affect the number and style of grids that appear on screen and some of the visual characteristics of traces, such as persistence.

**Auto Grid** is enabled by default. This feature divides the screen as needed when new traces open. WaveSurfer oscilloscopes may be divided into a maximum of three grids—one each for channels/memories, math functions, and zooms—that each represent the full number of vertical levels. All traces of the same type appear on the same grid.

Two special grid layouts are available: XY Grid, which puts the oscilloscope in XY mode, and XY Single Grid, which creates one XY grid and one single grid for the rest of your traces.

To display all types of traces on a single grid, choose **Single Grid** from the Display dialog.



Different types of traces opening in a multi-grid display.

## **Display Set Up**

To access the Display dialog, choose **Display > Display Setup**.



## **Grid Mode**

The Grid Mode setting determines the number and layout of display grids, each of which represents the full number of vertical levels. The selection icon shows the number and arrangement of grids.

Only Auto, Single, XY Single and XY Dual are available on WaveSurfer oscilloscopes.

| Grid Mode         | Number   | Orientation | Notes                                                                                    |
|-------------------|----------|-------------|------------------------------------------------------------------------------------------|
| Auto<br>(default) | variable | landscape   | Automatically adds or deletes grids as traces turned on/off, up to the maximum supported |
| Single            | 1        | landscape   | All traces share one grid                                                                |
| XY                | 1        | portrait    | Single XY type grid                                                                      |
| XYSingle          | 2        | portrait    | One VT grid left, one XY grid right                                                      |
| XYDual            | 3        | variable    | Two VT grids left, one XY grid right                                                     |



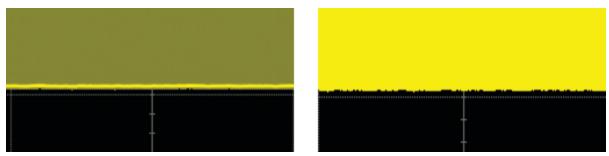
Note: Additional grid modes may become available with the installation of software options.

## **Grid Intensity**

To dim or brighten the background grid lines, touch **Grid Intensity** and enter a value from 0 to 100.

**Grid on top** superimposes the grid over the waveform.




Note: Some waveforms may be hidden from view with the grid on top.

On WaveSurfer oscilloscopes, **Axis labels** display the values associated with the top and bottom grid lines (calculated from Volts/div) and the time associated with the extreme left and right grid lines (calculated from the Time/div).

## **Trace Intensity**

Choose a line style for traces: solid Line or disconnected sample Points.

When more data is available than can actually be displayed, Trace Intensity helps to visualize significant events by applying an algorithm that dims less frequently occurring samples. Touch **Intensity** and enter a value from 0 to 100.



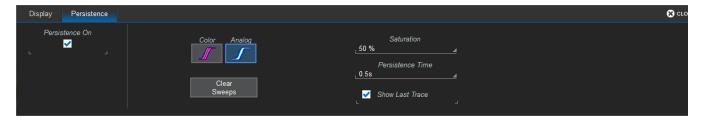
Intensity 40% (left) dims samples that occur ≤ 40% of the time to highlight the more frequent samples, vs. intensity 100% (right) which shows all samples the same.

#### **XY Plots**

XY plots display the phase shift between otherwise identical signals. They can be used to display either voltage or frequency on both axes, each axis now corresponding to a different signal input, rather than a different parameter. The shape of the resulting pattern reveals information about phase difference and frequency ratio.

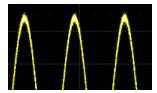


**Note:** The inputs can be any combination of channels, math functions or memories, but both sources must have the same X-axis scale.


Choose an XY grid mode and select the sources for Input X and Input Y.

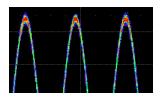
## **Persistence Display**

The Persistence feature retains waveform traces on the display for a set amount of time before allowing them to gradually "decay," similar to the analog-style display of old, phosphor screen oscilloscopes. The display is generated by repeated sampling of events over time and the accumulation of the sampled data into "persistence maps". Statistical integrity is preserved because the duration (decay) is proportional to the persistence population for each amplitude or time combination in the data.


The different persistence modes show the most frequent signal path in three-dimensional intensities of the same color (Analog), or in a graded spectrum of colors (Color).

Access the Persistence dialog from the Display dialog or by choosing **Display > Persistence Setup**.




## **Apply Persistence**

- 1. Check Persistence On.
- 2. Use the buttons to select a persistence mode:



In **Analog Mode**, as a persistence data map develops, different intensities of the same color are assigned to the range between a minimum and a maximum population. The maximum population automatically gets the highest intensity, the minimum population gets the lowest intensity, and intermediate populations get intensities in between these extremes. The

information in the lower populations (for example, down at the noise level) could be of greater interest to you than the rest. The Analog persistence view highlights the distribution of data so that you can examine it in detail.



**Color Mode** persistence works on the same principle as Analog persistence, but instead uses the entire color spectrum to map signal intensity: violet for minimum population, red for maximum population. In this mode, all traces use all colors, which is helpful for comparing amplitudes by seeking like colors among the traces.

3. Select the **Saturation** level as a percentage of the maximum population. All populations above the saturation population are assigned the highest color intensity: that is, they are saturated. At the same time, all populations below the saturation level are assigned the remaining intensities. Data populations are dynamically updated as data from new acquisitions is accumulated. A saturation level of 100% spreads the intensity variation across the entire distribution; at lower saturation levels the intensity will saturate (become brighter) at the percentage value specified. Lowering this

- percentage causes the pixels to be saturated at a lower population and makes visible those events rarely seen at higher saturation levels.
- 4. In **Persistence Time**, enter the duration of time (in seconds) after which persistence data is erased from the display.
- 5. Choose to superimpose the last waveform over the persistence display by selecting **Show Last Trace**.

## **Remove Persistence**

To turn off persistence and return to the regular trace style, clear **Persistence On**.

| WaveSurfer 510 Oscilloscope Operator's Manual |  |
|-----------------------------------------------|--|
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |
|                                               |  |

## **Cursors**

Cursors are markers (lines and arrows) that identify horizontal and vertical values where they intersect the X or Y axis. Use cursors to make fast, accurate measurements of points on the waveform.

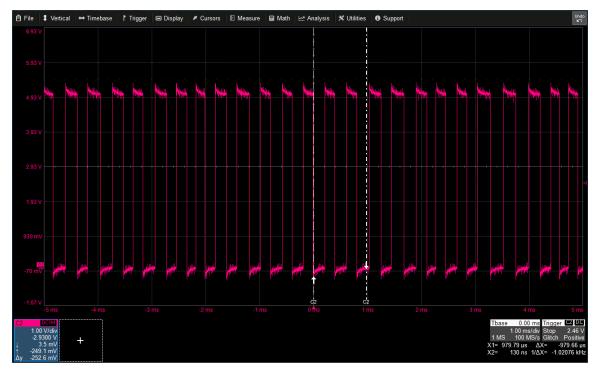
The equations in this section use the following notational conventions:

X1 and X2 = cursor and/or value where cursor intersects x-axis

Y1 and Y2 = cursor and/or value where cursor intersects y-axis

y@X1= vertical value at point where X1 cursor intersects source trace

y@X2 = vertical value at point where X2 cursor intersects source trace


 $\Delta x = difference between X1 and X2$ 

 $\Delta y = difference between y@X1 and y@X2 (Horizontal) or Y1 and Y2 (Vertical)$ 

# **Cursor Types**

## **Horizontal Cursors**

Horizontal cursors are positioned at points on the x-axis and will measure the source trace horizontal and vertical values at that point. Usually, these are in units of time and Volts, but may be whatever units are currently configured for the trace. On instruments with OneTouch, they will automatically adjust position to reflect differences in the scale of zooms and source traces when you drag the cursor readout from below the Timebase descriptor box onto the zoom trace grid or descriptor box.



Horizontal Cursors.

The **Horizontal (Time)** cursor displays two lines: X1 with the down-pointing arrow, and X2 with the uppointing arrow. The readout below the Timebase and Trigger descriptors always shows:

- The time where each cursor intersects the x-axis (X1 and X2)
- The difference of  $X2 X1 (\Delta x)$
- The frequency in Hz calculated from the delta time  $(1/(\Delta x))$ .

When horizontal cursors are not tracking, they can be moved to any position along the x-axis individually. The horizontal delta represents X2 - X1, which will be a positive number so long as X2 remains to the right of X1. If X2 is moved to the left of X1, this will now be a negative number.

The readout on the source trace descriptor box shows the difference in vertical value where each cursor intersects the source trace (shown by the arrows), calculated as:

$$y@X2 - y@X1 = \Delta y$$

When the X1 arrow is higher than the X2 arrow, this will be a negative number, as it represents a drop (e.g., in voltage), even when X2 is positioned above the zero level. When the X1 arrow is lower than the X2 arrow, this will be a positive number, as it represents a rise.

Two other Horizontal cursors are offered only in cases where the x-axis represents units other than time:

The Horizontal (Frequency) cursor works the same as the Horizontal (Time) cursor, except that it is placed on waveforms that have frequency (Hz) on the x-axis, such as FFTs.

The **Horizontal (Event)** cursor also works the same as the Horizontal (Time) cursor, but is placed only on Trend waveforms, where the x-axis represents the number of the measurement event.

#### **Vertical Cursors**

Vertical cursors intersect the y-axis and show the vertical value at that point (e.g., a voltage). These cursors can go "off trace" to show vertical scale values that are not represented in the acquisition. Vertical cursors have no horizontal readout below the Timebase descriptor, as they do not have an x-axis element. As they are set by divisions, they remain in the same position and do not "readjust" with changes in the scale of the underlying traces.

The **Vertical (Amplitude)** cursor displays two lines: the dashed-dotted line is Y1, and the dashed line is Y2. The readout on the source trace descriptor box shows the vertical values where Y1 and Y2 intersect the y-axis, and the difference of Y1 – Y2 ( $\Delta$ y). As long as Y2 remains below Y1, this is a negative number, even if Y2 is positioned above the zero level. If Y2 is moved above Y1, it will become a positive number.

### **Combination Cursors**

The Horizontal + Vertical option places both Vertical (Amplitude) and Horizontal (Time) cursors together. The vertical readout on the source trace descriptor will be the same as for the Vertical (Amplitude) cursor, while the horizontal readout below the Timebase descriptor will be the same as for the Horizontal (Time) cursor.

# **Apply and Position Cursors**

### To turn on cursors, either:

- From the menu bar, choose **Cursors** and select the desired cursor type from the drop-down list.
- On the front panel, press the **Cursor button** to turn on cursors, then continue pressing to cycle through all the cursor types. Stop when the desired type is displayed.



**Note:** There must be a trace on the grid for cursors to execute, although acquisition may be in process or stopped when you turn them on.

## To turn off cursors, either:

- From the menu bar, choose Cursors > Off.
- Continue cycling the Cursor button until you reach "Off" (the cursor lines disappear).

## To reposition a cursor:

- Drag-and-drop the **cursor marker** to a new position. Indicators outside the grid show to which trace the cursor belongs when you have multiple traces on one grid.
  - Use the Position data entry controls on the Standard Cursors dialog to place cursors precisely.
- Alternatively, use the Front Panel **Cursor knob**. Push the knob until the correct cursor is selected, then turn the knob to move it. The third press of the Cursor knob selects both cursors so they will track together when the knob is turned.
  - When there are multiple traces on the same grid, first bring the desired trace to the foreground by touching the trace or its descriptor box. The Cursor knob will only operate on the foreground trace.

On oscilloscopes with OneTouch, if Horizontal cursors are applied to a source trace but do not appear on its dependent traces (e.g., a zoom) because of differences in scale, drag-and-drop the cursor readout from below the Timebase descriptor box onto the target trace or its descriptor box. This will apply the cursor at the 2.5 and 7.5 division marks of the target trace and adjust the source trace cursor accordingly.

To track cursors, moving both lines together at a consistent distance, check Track on the Standard Cursors dialog. Drag the X1 or Y1 cursor marker, or select the set using the font panel controls and turn the Cursor knob. The delta readouts should show little or no change when tracking, although absolute readouts will change depending on the new position of the cursors. Moving the X2 or Y2 cursor will reset the relative distance and the delta, after which you can again track by moving the X1 or Y1 markers.

# **Standard Cursors Dialog**

These controls can be used instead of the front panel controls to turn on cursors or to refine the cursor position. Access the dialog by choosing **Cursors > Cursors Setup** from the menu bar.



Cursor Type buttons select the type of cursor displayed on the grid. Off disables the cursor display.

Refer to Cursor Types for a detailed explanation of what is shown with each option.

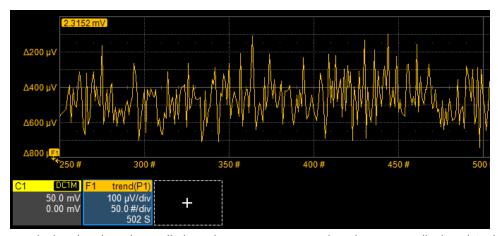
The **Position** controls at the right-side of the Standard Cursors dialog display the current cursor location and can be used to set a new location.

- X1 and X2 sets the position of Horizontal cursors. They may be entered as time or a fraction of a division.
- Y1 and Y2 sets the position of Vertical cursors, entered as a fraction of a division.

**Track** locks cursor lines so they move together, maintaining the same distance from each other. Only move X1 or Y1 to reposition the cursors. Moving X2 or Y2 will change the relative distance.

**Find** places the cursors 2.5 divisions (negative and positive) from the trigger point on the first touch. On the second touch, it returns the cursor to its previous position.

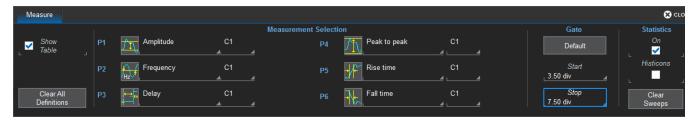
## **XY Cursors Dialog**


If your Grid Mode selection includes an XY trace display, an XY Cursors dialog appears behind the Standard Cursors dialog. Use it to exactly position and track cursors on XY traces, the same as you use the settings on the Standard Cursors dialog for time traces. The functionality is the same.

## Measure

Parameters are tools that give you access to a wide range of waveform properties, such as Rise Time, RMS voltage and Peak-Peak voltage.

For all parameters, you may optionally calculate and display the statistical mean, min, max and sdev of that parameter. <u>Statistics</u> are calculated once per acquisition and accumulate over multiple acquisitions, up to the two billion value limit of the measurement buffer. The history of a parameter can also be graphed as a <u>trend</u> for statistical analysis.


Parameter readouts are shown in a dynamic <u>Measure table</u> that appears below the waveform grids. All active measurements can be used as inputs to other processes, such as math functions, even when the Measure table is hidden from view.



Measurements are calculated and can be applied to other processes even when they are not displayed. In the image above, the P1 amplitude measurement is used to plot a Trend math function, although the Measure table is hidden.

# Parameter Set Up

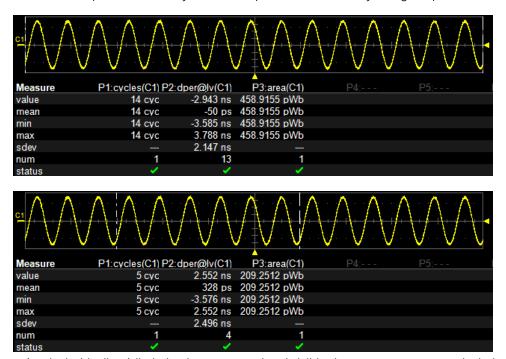
The Measure Dialog gives quick access to measurement features. Besides configuring parameters, use the Measure dialog to show <u>statistics and histicons</u>, or to <u>gate</u> measurements.



- 1. To open the Measure dialog, touch the **Add New** box and select **Measurement**, or choose **Measure** > **Measure Setup** from the menu bar.
- 2. Check **Show Table** to display the readout. This is not required to take the measurement.
- 3. For each parameter (Pn):
  - Touch the **Measure** field and choose a measurement from the list.
  - Touch the **Source** field and choose the source trace to measure. This can be any type of input available to your instrument; all will appear on the Source pop-up selector.
- 4. Enter any other measurement settings that appear.
- 5. Optionally:
  - Gate parameters by entering the position (in divisions) of left and right gates.
  - Add Statistics and Histicons to the Measure Table.

Touch Clear Sweeps to reset all measurement counters and restart all statistics.

Touch Clear All Definitions to reset all parameters to "None".




Caution: Definitions cannot be restored after clearing, you must repeat parameter set up.

## **Gating Measurements**

All measurements are calculated on only that portion of the waveform trace that is visible on the grid *and* within the measurement gates. Any setting that moves the trace outside the observation window or makes it appear "clipped" will affect measurements.

The default starting positions of the measurement gate posts are 0 div and 10 div, which coincide with the left and right edges of the grid, and the First and Last points. Therefore, the measurement gates initially enclose the entire visible acquisition. By moving the measurement gates, you can focus the measurement on the section of the acquisition of greatest interest. For example, if you "gate" six rising edges of a waveform, calculations are performed only on the six pulses bounded by the gate posts.



Gates (vertical white lines) limit the data measured and visibly change measurement calculations.

The quickest way to set a gate is to drag the gate posts from the far left and right of the grid to the desired positions. You can refine this setting to hundredths of a division by using the **Gate Start** and **Stop** fields on the Measure dialog. All parameters share the same gate. Touch **Default** to return the measure gates to the width of the grid.

## **Statistics**

Checking **Statistics On** on the Measure dialog adds the mean, min, max and sdev of each parameter to the measured value shown on the Measure table.

Statistics for each parameter are calculated once per acquisition and accumulate until you either Clear Sweeps or the measurement buffer is full. The Num row of the Measure table shows the total number of measurements included in the Statistics calculation. If the measurement is gated, the statistics are calculated for only the data points between the gates, just as the parameter value itself will reflect the limits imposed by the gate.

#### Mean

Mean shows the weighted mean of the parameter calculated over the number of times shown.

### Min

Min shows the minimum value of the parameter measured over the number of times shown.

#### Max

Max shows the maximum value of the parameter measured over the number of times shown.

#### Sdev

Sdev shows the population standard deviation of the parameter calculated over the number of times shown.

#### Num

For any parameter that computes once on an entire acquisition, Num represents the number of sweeps over which the statistics are computed.

For any parameter that computes on every event within an acquisition, such as a full period, Num represents the number of events per sweep times the number of sweeps computed. Thus, for a Single acquisition of five periods, the Num shown for any per period measurements will be 5, as five measurements were made and the statistics reflect those five measurements. After another Single acquisition, Num will be 10, or five measurements times two sweeps. The statistics now reflect all 10 measurements.

#### Histicons

Histicons are miniature histograms of parameters that may be added to the Measure table readout. These thumbnail histograms let you see at a glance the statistical distribution of each parameter. Check **Histicons** on the Measure dialog.

## **List of Standard Measurements**



**Note:** Unless otherwise stated, measurements are calculated according to IEEE standards. Additional measurements may be available depending on the software options installed. The keyword to use in remote control programs appears in Summary on the Measure dialog.

## **Amplitude**

Difference between the upper and lower levels in two-level (bi-modal) signals. Differs from Peak-to-Peak (pkpk) in that noise, overshoot, undershoot, and ringing do not affect the measurement. Amplitude is calculated using the formula for Top-Base. On signals that cannot be identified as bi-modal, such as triangle or saw-tooth waves, Amplitude returns the same value as Maximum – Minimum. Amplitude may be calculated once per period, rather than once per acquisition, by selecting "Show one value per period" on the Amplitude subdialog.

#### Area

Integral of data. Computes the area of the waveform relative to the zero level. Values greater than zero contribute positively to the area; values less than zero contribute negatively. If Cyclic is checked on the Area subdialog, the area is calculated over only the full cycles, rather than the entire acquisition.

#### Base

Lower level in two-level (bi-modal) signals (the higher is Top), or lower of two most probable waveform states on waveforms that are not bi-modal. Base differs from Minimum in that noise, overshoot, undershoot and ringing do not affect the measurement. On signals that are not bi-modal (such as triangle waves), Base returns the same value as Minimum. Base may be calculated once per period, rather than once per acquisition, by selecting "Show one value per period" on the Base subdialog.

## Delay

Time from the acquisition trigger to the first 50% level crossing visible in the observation window. On acquisitions without a Timebase Delay setting, this is usually a negative number.

## Duty Cycle

Percent of period for which data are above or below the 50% level of the signal, using a hysteresis band of 22% of amplitude.

### Fall 80-20%

Duration of a pulse waveform's falling transition from 80% to 20% of the amplitude, averaged for all falling transitions between the measurement gates. On signals that do not have two major levels (such as triangle or saw-tooth waveforms), the Top-Base measurement used to calculate the amplitude can default to maximum and minimum, giving less predictable results.

#### Fall Time

Duration of a pulse waveform's falling transition from 90% to 10% of the Amplitude, averaged for all falling

transitions between the measurement gates. On signals that do not have two major levels (such as triangle or saw-tooth waveforms), the Top-Base measurement used to calculate the amplitude can default to maximum and minimum, giving less predictable results.

## Frequency

Reciprocal of each Period of a cyclic signal. Period is measured as time between every pair of 50% crossings on the rising edge, starting with the first rising transition after the left measurement gate.

#### Maximum

Largest vertical value in a waveform. Unlike Top, Maximum does not assume the waveform has two levels.

#### Mean

Average of vertical values in a waveform. Computed as centroid of distribution for a histogram of the data values.

#### Minimum

Smallest vertical value in a waveform. Unlike Base, Minimum does not assume the waveform has two levels.

### Overshoot-

Amount of overshoot following falling edges, represented as percentage of amplitude. Overshoot- is calculated using the formula (Base - Minimum)/Amplitude x 100. On signals that do not have two major levels (such as triangle or saw-tooth waveforms), this measurement may not give predictable results.

#### Overshoot+

Amount of overshoot following rising edges, represented as a percentage of amplitude. Overshoot+ is calculated using the formula (Maximum - Top)/Amplitude x 100. On signals that do not have two major levels (such as triangle or saw-tooth waveforms), this measurement may not give predictable results.

#### Peak to Peak

The difference between the maximum and minimum vertical values within the measurement gates. Unlike Amplitude, Peak to Peak does not assume a waveform has two levels.

#### Period

The time between 50% crossings on the rising edge, starting with the first transition after the left measurement gate. Period is measured for each adjacent pair, with values averaged to give the final result.

#### Phase

Phase difference between analyzed and reference signals, measured from the 50% level of their rising edges.

### Rise 20-80%

Duration of a pulse waveform's rising transition from 20% to 80% of amplitude, averaged for all rising transitions between the measurement gates. On signals that do not have two major levels (such as triangle or saw-tooth waves), the Top-Base measurement used to calculate rise can default to maximum and minimum, giving less predictable results.

#### Rise Time

Duration of a pulse waveform's rising transition from 10% to 90% of amplitude, averaged for all rising transitions between the measurement gates. On signals that do not have two major levels (such as triangle or saw-tooth waves), the Top-Base measurement used to calculate rise can default to maximum and minimum, giving less predictable results.

### **RMS**

Root Mean Square of the vertical values (between the measurement gates), calculated using the formula:

$$\sqrt{\frac{1}{N} - \sum_{j=1}^{N} (v_j)^2}$$

Where:  $V_i$  = measured vertical values, and N = number of data points.

If Cyclic is checked on the RMS subdialog, the RMS is calculated over only full cycles, rather than the entire acquisition.

#### Skew

Time of Clock2 edge (Source2) minus the time of previous Clock1 edge (Source1).

#### Std Dev

Standard deviation of the vertical values between the measurement gates, using the formula:

$$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(v_i - mean)^2}$$

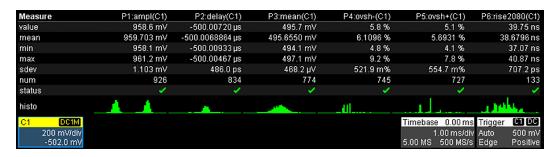
Where:  $V_i$  = measured vertical values, and N = number of data points. This is equivalent to the RMS for a zero-mean waveform. Also referred to as AC RMS.

If Cyclic is checked on the Std Dev subdialog, the standard deviation is calculated over only full cycles, rather than the entire acquisition.

#### Top

Higher vertical value in two-level (bi-modal) signals (the lower is Base), or higher of two most probable waveform states in waveforms that are not bi-modal. Top differs from Maximum in that noise, overshoot, undershoot and ringing do not affect the measurement. On signals that are not bi-modal (e.g., triangle waves), Top returns the same value as Maximum. Top may be calculated once per period, rather than once per acquisition, by selecting "Show one value per period" on the Top subdialog.

## Width


Width of cyclic signal measured at 50% level and positive slope, using a hysteresis of 22% of amplitude. Widths of all waveform pulses are averaged for the final result.

### WidthN

Width of cyclic signal measured at 50% level and negative slope, using a hysteresis of 22% of amplitude. Widths of all waveform pulses are averaged for the final result.

## **Measure Table**

Parameter readouts (P1-Pn) appear in a table below the grid. The **value** row shows the measurements taken for each parameter on the last acquisition. Optional <u>statistics and histicons</u> can be added to the Measure table readout.



## **Navigating with the Measure Table**

Close setup dialogs when the Measure table is displayed to maximize the area available for viewing waveforms. To return to the Measure dialog when closed, touch anywhere in the table.

## **Quick Table Setup**

On instruments with OneTouch, any parameter can be copied by dragging the cell onto the target cell of the Measure table. Then, drag the desired measurement source descriptor box onto the new parameter. Touch the cell to make any other modifications.

## **Measurement Status Indicators**

Symbols in the status row of the Measure table indicate the following:



OK: valid value returned.



**Warning**: there is a problem with the signal or the setup that prevents measuring. Touch the parameter cell to see an explanation in the message bar.

No Pulse/Insufficient Data: The software is unable to determine Top and Base. In the case of Vertical measurements, this may indicate that there is insufficient difference between the Maximum and Minimum for the software to detect a pulse. Or, there may be an insufficient number of points in the visible top or base of a pulse, such as when closely examining a step response. Adjusting Vertical Scale or Horizontal Delay may eliminate the error.

Underflow Condition: The bottom most (negative) sample point of the waveform falls below the ADC range. Probably, the bottom of the pulses appear to be cut off. Adjusting Vertical Scale or Offset so that there is no "clipping" of the pulse may eliminate the error.

Overflow Condition: The top most (positive) sample point of the waveform is above the ADC range. Probably, the top of the pulses appear to be cut off. Adjusting Vertical Scale or Offset so that there is no "clipping" of the pulse may eliminate the error.

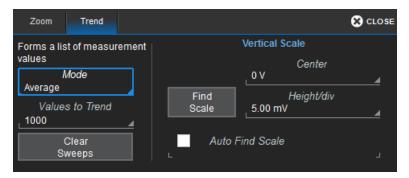
O,A

Simultaneous Underflow and Overflow Condition: Both conditions are present at once.

# **Using Trends**

The Trend math function plots a waveform composed of parameter measurements arranged in the order the measurements were made. The vertical units are the source parameter values, and the horizontal unit is the measurement number. The Trend contains a single value for each unique measurement, and therefore may not be time synchronous with the source waveform.

## **Uses of Trends**


Trends are especially useful for visualizing the history of a parameter over an extended period of time or over multiple acquisitions. Think of Trend as a strip chart recorder for your instrument. Example applications of Trend include:

- Data logging multiple circuit parameters
- Power line monitoring
- Measuring output regulation and ripple

## **Plotting Trends**

Although a Trend plots parameter values, it is created as a Math function on the Function (Fn) dialogs.

1. Select the **Trend Operator** on the F*n* setup dialog.



- 2. Choose a computation **Mode** of All (measurements per acquisition) or Average (one measurement per acquisition).
- 3. Enter the number of measured Values to Trend.

# Math

Math function traces (Fn) display the result of applying a mathematical operation to a source trace. The output of a math function is always another trace, whereas the output of a measurement parameter is a tabular readout of the measurement.

Math can be applied to any channel (Cn), zoom (Zn), or memory (Mn) trace. It can even be applied to another math trace, allowing you to chain operations (for example, trace F1 can show the average of C1, while trace F2 provides the integral of F1).

In addition to the extensive math capabilities that are standard with every instrument, enhanced math analysis tools customized for various industries and applications are offered through optional software packages. To learn about math tools available in each optional package, see the product datasheets at teledynelecroy.com.

If you have installed software options, the new capabilities are usually accessed through the Analysis menu, rather than the Math menu, although special math functions will be available when using the standard Math dialogs.

# **Math Function Set Up**

Use the Function dialog to set up math function traces. Math functions take as input one or more channel, zoom, memory or math traces and output a new math trace (Fn). Any additional settings required for the operator will appear on a subdialog at the right of the screen.

Single functions perform one operation on one or two input sources.

Dual functions chain two operations to arrive at a single result. This saves you the effort of having to chain two separate math functions. As with single functions, the number of sources required will vary based on the operation. You may need only one source for Operator1, but two for Operator2 (the result of the first operation counts as one source).

## Setting Up New Functions

- 1. From the menu bar choose **Math > Math Setup**, or press the front panel **Math button**.
- 2. Choose a location by touching one of the **F***n* tabs.

If you know which function location you'll be using, you can select **Fn Setup** right from the Math menu.



- 3. Choose a single f(x) or dual g(f(x)) operator function.
- 4. In Operator 1, choose the math operation to perform.

- 5. The choice of operator drives the number of **Source** fields you will see displayed. Make a selection in each field, or drag the source channel descriptor box to the field.
  - A **Summary** of the function you are building appears on the dialog. Refer to this to be sure your sources are in the proper order to yield the function you want (e.g., C1-C2 vs. C2-C1).
- 6. If the operator you've selected has any other configurable settings, you'll see a subdialog of the same name as the operator. Touch the tab to open the dialog and make any further settings. These are explained on the dialog.
- 7. If you're creating a dual function, repeat the procedure for the second operator.

## Adjusting Memory or Math Traces

Unlike channel traces, the scale of memory (Mn) or math function (Fn) traces can be adjusted directly without having to create a separate zoom trace. The same set of  $\underline{zoom\ factor\ controls}$  used for zoom traces appear on the **Zoom subdialog**, but in this context they only rescale the active math or memory trace rather than create a new zoom. This applies to any trace that is created as a math function (Fn) trace, including traces generated through analysis options and graphs.

You can, if you wish, create a separate zoom trace from a memory or function trace the same as you would normally create a zoom (draw a selection box, etc.). In this case, you choose one of the zoom locations (Zn) in which to draw the trace, but the source trace remains at the original scale.

# **List of Standard Math Operators**



**Note:** There may be additional operators available depending on the software options installed on the oscilloscope. The keyword to use in remote control programs appears in Summary on the Fn dialog.

### **Absolute**

Calculates distance away from zero for every point in the waveform. For values greater than zero, this is the same as the value. For values less than zero, the magnitude of this value without regard to its sign is used.

## Average

Calculates either a summed or continuous average of a selected number of sweeps. See <u>Averaging Waveforms</u>. The maximum number of sweeps is determined by the oscilloscope model and memory.

### Derivative

Calculates the derivative of adjacent samples using the formula:

(next sample value - current sample value) / (horizontal sample interval)

### Difference

For every point in the waveform, subtracts the value of Source2 from the value of Source1. Source1 and Source2 must have the same horizontal and vertical units and scale.

## Envelope

Calculates highest and lowest vertical values of a waveform at each horizontal value for a specified number of sweeps.

#### **ERes**

Applies a noise reduction and smoothing filter by adding a specified number of bits. See <a href="Enhanced Resolution"><u>Enhanced Resolution</u></a>.

## **FFT**

Computes a frequency spectrum with optional Rectangular, Von Hann, Flat Topp, Hamming, Blackman-Harris, and Hanning windows. Calculates up to 128 Mpts. Also allows FFT Averaging through use of a second math operator. See <a href="FFT">FFT</a>.

#### Floor

Calculates the lowest vertical values of a waveform at each horizontal value for a specified number of sweeps.

## Integral

Calculates the linearly rescaled integral (with multiplier and adder) of a waveform input starting from the left edge of the screen using the formula:

(current sample value + next sample value) \* (horizontal sample interval)

Each calculated area is summed with the previous sum of areas. The multiplier and adder are applied before the integration function.

#### Invert

For every point in the waveform, the inverse of that point is calculated.

### **Product**

For every point in the waveform, the value of Source1 is multiplied by the value of Source 2. Source1 and Source2 must have the same horizontal units and scale.

#### Ratio

For every point in the waveform, divides the value of Source1 by the value of Source2. Source1 and Source2 must have the same horizontal units and scale.

## Reciprocal

For every point in the waveform, calculates the inverse using the formula: 1 / (sample value).

#### Rescale

For every point in the waveform, multiplies the sample value by the specified Multiplier, then adds the specified Additive Constant value. See Rescaling and Assigning Units.

#### Roof

Calculates the highest vertical values of a waveform at each horizontal value for a specified number of sweeps.

#### Square

For every point in the waveform, calculates the square of the sample value.

#### Square Root

For every point in the waveform, calculates the square root of the sample value.

#### Sum

For every point in the waveform, adds the value of Source1 to the value of Source 2. Source1 and Source2 must have the same horizontal and vertical units and scale.

#### Trend

Produces a waveform composed of a series of measurement parameter values in the order the measurements were taken. The vertical units are those of the source parameter; the horizontal unit is measurement number. The trend contains a single value for each unique measurement.

#### Zoom

Produces a magnified trace of a selected portion of the input waveform. See Zooming Traces.

# **Average Function**

The summed or continuous average of all data samples from multiple acquisitions can be displayed as a new waveform trace using the Average function.

## **Setting Up Averaging**

To apply Continuous or Summed Averaging as a Math function:

- 1. Follow the usual steps to set up a math fuction, selecting Average from the Basic Math submenu.
- 2. On the Average subdialog, choose Summed or Continuous.
- 3. Touch Sweeps and provide a value.



**Tip:** To quickly set up Continuous Averaging (only), access the channel setup dialog (Cn) and enter the number of sweeps to average in Averaging.

## **Summed Averaging**

Summed Averaging is the repeated addition, with equal weight, of successive source waveform records. If a stable trigger is available, the resulting average has a random noise component lower than that of a single-shot record. Whenever the maximum number of sweeps is reached, the averaging process stops. In Summed averaging, you specify the number of acquisitions to be averaged. The averaged data is updated at regular intervals.

An even larger number of records can be accumulated simply by changing the number in the dialog. However, the other parameters must be left unchanged or a new averaging calculation will be started. You can pause the averaging by changing the trigger mode from Normal/Autoto Stop. The instrument resumes averaging when you change the trigger mode back to Normal/Auto.

You can reset the accumulated average by pushing the Clear Sweeps button or by changing an acquisition parameter such as input gain, offset, coupling, trigger condition, timebase, or bandwidth limit. The number of current averaged waveforms of the function, or its zoom, is shown in the acquisition status dialog. When summed averaging is performed, the display is updated at a reduced rate to increase the averaging speed (points and events per second).

## **Continuous Averaging**

Continuous Averaging, the default setting, is the repeated addition, with unequal weight, of successive source waveforms. It is particularly useful for reducing noise on signals that drift very slowly in time or amplitude. The most recently acquired waveform has more weight than all the previously acquired ones: the continuous average is dominated by the statistical fluctuations of the most recently acquired waveform. The weight of 'old' waveforms in the continuous average tends to zero (following an exponential rule) at a rate that decreases as the weight increases.

You determine the importance of new data vs. old data by assigning a weighting factor. The formula for continuous averaging is:

## new average = (new data + weight \* old average)/(weight + 1)

By setting a **Sweeps** value, you establish a fixed weight that is assigned to the old average once the number of sweeps is reached. For example, for a sweeps (weight) value of **4**:

| Sweep                  | New Average =                                                         |  |
|------------------------|-----------------------------------------------------------------------|--|
| 1 (no old average yet) | (new data +0 * old average)/(0 + 1) = new data only                   |  |
| 2                      | (new data + 1*old average)/(1 + 1) = 1/2 new data +1/2 old average    |  |
| 3                      | (new data + 2 * old average)/(2 + 1) = 1/3 new data + 2/3 old average |  |
| 4                      | (new data + 3 * old average)/(3 + 1) = 1/4 new data + 3/4 old average |  |
| 5                      | (new data + 4 * old average)/(4 + 1) = 1/5 new data + 4/5 old average |  |
| 6                      | (new data + 4 * old average)/(4 + 1) = 1/5 new data + 4/5 old average |  |
| 7                      | (new data + 4 * old average)/(4 + 1) = 1/5 new data + 4/5 old average |  |



**Note:** The number of sweeps used to compute the average is displayed at the bottom of the trace descriptor box.

## **ERes Function**

ERes (Enhanced Resolution) filtering increases vertical resolution, allowing you to distinguish closely spaced voltage levels. The instrument's ERes function is similar to smoothing the signal with a simple, moving-average filter, but is more efficient concerning bandwidth and pass-band filtering. Use ERes:

- On single-shot acquisitions or where the data record is slowly repetitive (and you cannot use averaging).
- To reduce noise on noticeably noisy signals when you do not need to perform noise measurements.
- As a low-pass filter. The ERes filter rejects high-frequency components from the signal. The higher the bit enhancement, the lower the resulting bandwidth.
- When performing high-precision voltage measurements (e.g., zooming with high vertical gain).

## **Setting Up ERes**

To apply ERes as a Math function:

- 1. Follow the usual steps to set up a math function, selecting **Eres** from the **Filter** submenu.
- 2. Touch the Trace On checkbox.
- 3. On the **Eres** subdialog, select the number of **bits** of improvement from the pop-up menu.



**Tip:** To quickly set up ERes as a pre-processing function, access the channel setup dialog (Cn) and select a **Noise Filter (ERes)** bit size.

## **ERes Filtering**

The instrument's ERes feature improves vertical resolution by a fixed amount for each filter. This real increase in resolution occurs whether or not the signal is noisy, or whether it is single-shot or repetitive. The signal-to-noise ratio (SNR) improvement depends on the form of the noise in the original signal. ERes filtering decreases the bandwidth of the signal, filtering out some of the noise.

The instrument's constant phase finite impulse response (FIR) filters provide fast computation, excellent step response in 0.5 bit steps, and minimum bandwidth reduction for resolution improvements of between 0.5 and 3 bits. Each step corresponds to a bandwidth reduction factor of two, allowing easy control of the bandwidth resolution trade-off.

| Resolution Increase | -3 dB Bandwidth (x Nyquist) | Filter Length (Samples) |
|---------------------|-----------------------------|-------------------------|
| 0.5                 | 0.5                         | 2                       |
| 1.0                 | 0.241                       | 5                       |
| 1.5                 | 0.121                       | 10                      |
| 2.0                 | 0.058                       | 24                      |
| 2.5                 | 0.029                       | 51                      |
| 3.0                 | 0.016                       | 117                     |

With low-pass filters, the actual SNR increase obtained in any particular situation depends on the power spectral density of the noise on the signal.

The improvement in SNR corresponds to the improvement in resolution if the noise in the signal is white (evenly distributed across the frequency spectrum). If the noise power is biased towards high frequencies, the SNR improvement will be better than the resolution improvement.

The opposite may be true if the noise is mostly at lower frequencies. SNR improvement due to the removal of coherent noise signals—feed-through of clock signals, for example—is determined by the fall of the dominant frequency components of the signal in the passband. This is easily ascertained using spectral analysis. The filters have a precisely constant zero-phase response. This has two benefits. First, the filters do not distort the relative position of different events in the waveform, even if the events' frequency content is different. Second, because the waveforms are stored, the delay normally associated with filtering (between the input and output waveforms) can be exactly compensated during the computation of the filtered waveform.

The filters have been given exact unity gain at low frequency. ERes should therefore not cause overflow if the source data is not overflowed. If part of the source trace were to overflow, filtering would be allowed, but the results in the vicinity of the overflowed data—the filter impulse response length—would be incorrect. This is because in some circumstances an overflow may be a spike of only one or two samples, and the energy in this spike may not be enough to significantly affect the results. It would then be undesirable to disallow the whole trace.



**Note:** While ERes improves the resolution of a trace, it cannot improve the accuracy or linearity of the original quantization. The pass-band causes signal attenuation for signals near the cut-off frequency. The highest frequencies passed may be slightly attenuated. Perform the filtering on finite record lengths. Data is lost at the start and end of the waveform and the trace ends up slightly shorter after filtering. The number of samples lost is exactly equal to the length of the impulse response of the filter used: between 2 and 117 samples. Normally this loss (just 0.2 % of a 50,000 point trace) is not noticed. However, you might filter a record so short that no data is output. In that case, however, the instrument would not allow you to use the ERes feature.

## **FFT Function**

For a large class of signals, you can gain greater insight by looking at spectral representation rather than time description. Signals encountered in the frequency response of amplifiers, oscillator phase noise and those in mechanical vibration analysis, for example, are easier to observe in the frequency domain.

If sampling is done at a rate fast enough to faithfully approximate the original waveform (usually five times the highest frequency component in the signal), the resulting discrete data series will uniquely describe the analog signal. This is of particular value when dealing with transient signals, which conventional swept spectrum analyzers cannot handle.

While FFT has become a popular analysis tool, some care must be taken with it. In most instances, incorrect positioning of the signal within the display grid will significantly alter the spectrum, producing effects such as leakage and aliasing that distort the spectrum.

An effective way to reduce these effects is to maximize the acquisition record length. Record length directly conditions the effective sampling rate and therefore determines the frequency resolution and span at which spectral analysis can be carried out.

## **Setting Up FFT**

- 1. Follow the usual steps to <u>set up a math function</u>, selecting FFT from the Frequency Analysis submenu.
- 2. Open the FFT subdialog.
- 3. Choose an Output type.
- 4. If your Output Type is Power Spectrum, also enter **Line Impedence**. By default, the FFT function assumes a termination of 50 Ohms. If an external terminator is being used, this setting can be changed to properly calculate the FFT based on the new termination value.
- 5. Optionally, choose a weighting **Window** (see below).
- 6. Check the Suppress DC box to make the DC bin go to zero. Otherwise, leave it unchecked.

## **Choosing a Window**

The choice of a spectral window is dictated by the signal's characteristics. Weighting functions control the filter response shape, and affect noise bandwidth as well as side lobe levels. Ideally, the main lobe should be as narrow and flat as possible to effectively discriminate all spectral components, while all side lobes should be infinitely attenuated. The window type defines the bandwidth and shape of the equivalent filter to be used in the FFT processing.

Rectangular windows provide the highest frequency resolution and are useful for estimating the type of harmonics present in the signal. Because the rectangular window decays as a (SinX)/X function in the spectral domain, slight attenuation will be induced. Functions with less attenuation (Flat Top and Blackman-Harris) provide maximum amplitude at the expense of frequency resolution, whereas Hamming and Von Hann are good for general purpose use with continuous waveforms.

| Window Type                     | Applications and Limitations                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rectangular                     | Normally used when the signal is transient (completely contained in the time-domain window) or known to have a fundamental frequency component that is an integer multiple of the fundamental frequency of the window. Signals other than these types will show varying amounts of spectral leakage and scallop loss, which can be corrected by selecting another type of window. |
| Hanning (Von Hann)<br>& Hamming | Reduces leakage and improves amplitude accuracy. However, frequency resolution is also reduced.                                                                                                                                                                                                                                                                                   |
| Flat Top                        | Provides excellent amplitude accuracy with moderate reduction of leakage, but with reduced frequency resolution.                                                                                                                                                                                                                                                                  |
| Blackman-Harris                 | Reduces leakage to a minimum, but with reduced frequency resolution.                                                                                                                                                                                                                                                                                                              |

| FFT Window Filter Parameters |                        |                   |             |                    |
|------------------------------|------------------------|-------------------|-------------|--------------------|
| Window Type                  | Highest Side Lobe (dB) | Scallop Loss (dB) | ENBW (bins) | Coherent Gain (dB) |
| Rectangular                  | -13                    | 3.92              | 1.0         | 0.0                |
| Von Hann                     | -32                    | 1.42              | 1.5         | -6.02              |
| Hamming                      | -43                    | 1.78              | 1.37        | -5.35              |
| Flat Top                     | -44                    | 0.01              | 3.43        | -11.05             |
| Blackman-Harris              | -67                    | 1.13              | 1.71        | -7.53              |

## **Rescale Function**

The Rescale function allows you to create a new function trace that rescales another trace by applying a multiplication factor (a) and additive constant (b). You can also use it as a way to view the function source in a different unit of measure.

## **Setting Up Rescaling**

- 1. Follow the usual steps to set up a math function, selecting Rescale from the Functions submenu.
- 2. Touch the **Rescale** subdialog tab.
- 3. To modify the scale of output:
  - Check the **First multiply by:** box and enter the number of units equal to 1 V (*a*, the multiplication factor).
  - Touch then add: and enter b, the additive constant.
- 4. To change the output unit of measure from that of the source waveform:
  - Check Override units.
  - In **Output** enter the code for the new unit of measure.

You can combine units following these rules:

- For the quotient of two units, use the character "/"
- For the product of two units, use the character "."
- For exponents, append the digit to the unit without a space (e.g., "S2" for seconds squared)



Note: Some complex units are automatically converted to simple units. For example,  $V \cdot A$  becomes W).

5. You can further override the output unit by selecting from the **Units** dialog. Only units in the equivalent dimension as the unit of the Rescale function trace are available for selection.

## **Units of Measure**

Units are automatically rescaled up or down within the list of standard, SI prefixes based on the relative size of the signal. For example a 1000 V reading is shown as 1 kV, while .1 V is shown as 100 mV. When the multiplication factor is 1 V = 1 Pascal, a 10 millivolt (mV) reading is displayed as 10 mPa rather than .001 Pa or 100e-3 Pa.

Following are the supported SI units of measure and the mnemonics used to represent them on the Rescale dialog.



**Note:** These same mnemonics can be used in remote control programs and customization scripts. Specify only the base unit in code, do not add prefixes.



**Note:** Time and dimensionless units are available only for certain measurements and for use in code where relevant.

| Category     | Unit                       | Mnemonic |
|--------------|----------------------------|----------|
| Mass         | gram                       | G        |
|              | slug                       | SLUG     |
| Volume       | liter                      | L        |
|              | cubic meter                | M3       |
|              | cubic inch                 | IN3      |
|              | cubic foot                 | FT3      |
|              | cubic yard                 | YARD3    |
| Angle        | radian                     | RAD      |
|              | arcdegree                  | DEG      |
|              | arcminute                  | MNT      |
|              | arcsecond                  | SEC      |
|              | cycle                      | CYCLE    |
|              | revolution                 | REV      |
|              | turn                       | TURN     |
| Force/Weight | Newton                     | N        |
|              | grain                      | GR       |
|              | ounce                      | OZ       |
|              | pound                      | LB       |
| Velocity     | meters/second              | M/S      |
|              | inches/second              | IN/S     |
|              | feet/second                | FT/S     |
|              | yards/second               | YARD/S   |
|              | miles/second               | MILE/S   |
| Acceleration | meters/second <sup>2</sup> | M/S2     |
|              | inches/second <sup>2</sup> | IN/S2    |
|              | feet/second <sup>2</sup>   | FT/S2    |
|              | standard gravity           | GN       |


| Category         | Unit                     | Mnemonic |
|------------------|--------------------------|----------|
| Pressure         | Pascal                   | PAL      |
|                  | bar                      | BAR      |
|                  | atmosphere, technical    | AT       |
|                  | atmosphere, standard     | ATM      |
|                  | Torr                     | TORR     |
|                  | pounds/square inch       | PSI      |
| Temperature      | degrees Kelvin           | К        |
|                  | degrees Celsius          | CEL      |
|                  | degrees Fahrenheit       | FAR      |
| Energy           | Joule                    | J        |
|                  | British Thermal Unit     | BTU      |
|                  | calorie                  | CAL      |
| Rotating Machine | radians/second           | RADPS    |
|                  | frequency (Hertz)        | HZ       |
|                  | revolutions/second       | RPS      |
|                  | revolutions/minute       | RPM      |
|                  | torque N•m               | NM       |
|                  | torque in•oz             | INOZ     |
|                  | torque in•lb             | INLB     |
|                  | torque ft•lb             | FTLB     |
|                  | power, mechanical (Watt) | W        |
|                  | horsepower               | HP       |
| Magnetic         | Weber                    | WB       |
|                  | Tesla                    | Т        |
|                  | inductance (Henry)       | Н        |
|                  | magnetic field strength  | A/M      |
|                  | permeability             | HENRYPM  |

| Category   | Unit                          | Mnemonic |
|------------|-------------------------------|----------|
| Electrical | Ampere                        | А        |
|            | Volt                          | V        |
|            | Watt                          | W        |
|            | power, apparent               | VA       |
|            | power, reactive               | VAR      |
|            | power factor                  | PF       |
|            | capacitance (Farad)           | F        |
|            | Coulomb                       | С        |
|            | Ohm                           | ОНМ      |
|            | Siemen                        | SIE      |
|            | electrical field strength     | V/M      |
|            | electrical displacement field | CPM2     |
|            | permittivity                  | FARADPM  |
|            | conductivity                  | SIEPM    |
| Time       | second                        | S        |
|            | minute                        | MIN      |
|            | hour                          | HOUR     |
|            | day                           | DAY      |
|            | week                          | WEEK     |

| Category      | Unit                        | Mnemonic |
|---------------|-----------------------------|----------|
| Dimensionless | percent                     | PCT      |
|               | percent min-max             | PCTMNMX  |
|               | decibel                     | DB       |
|               | decibel milliwatt           | DBM      |
|               | decibel Volt                | DBV      |
|               | decibel millivolt           | DBMV     |
|               | decibel microvolt           | DBUV     |
|               | decibel microampere         | DBUA     |
|               | decibel referred to carrier | DBC      |
|               | decade                      | DECADE   |
|               | unit interval               | UI       |
|               | Q-scale                     | Q        |
|               | bit                         | BIT      |
|               | byte                        | BYTE     |
|               | baud                        | BAUD     |
|               | least significant bit       | LSB      |
|               | poise                       | POISE    |
|               | parts per million           | PPM      |
|               | pixel                       | PIXEL    |
|               | division                    | DIV      |
|               | event                       | EVENT    |
|               | sample                      | SAMPLE   |
|               | segment                     | SEG      |
|               | sweep                       | SWEEP    |

# **Math Dialog**

Once a math function has been created and saved on the Function (Fn) dialog, use the main Math dialog to quickly enable/disable it. You can also use this dialog to quickly turn on/off zoom traces.



To open the Math dialogs, touch the front panel **Math button**, or from the menu bar choose **Math > Math Setup**. Select the **On** checkbox next to each function you wish to display.

To modify a function, touch the **F***n* button.

To erase all functions from their locations, touch Reset All.

To restart the counter on cumulative functions (like Average), touch Clear Sweeps.

On WaveSurfer 510, the checkboxes at the right of the Function dialog quickly turn on/off the four zooms as last configured (the source trace is shown). The zooms open in their own grid at the scale of the first zoom that was turned on.

# **Memory**

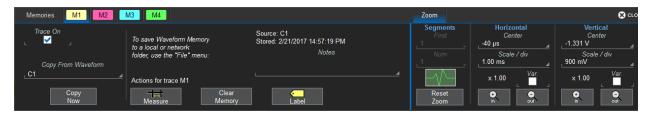
The instrument is equipped with internal memory slots (Mn) to which you can copy any waveform that is active on the grid. This is a convenient way to store an acquisition for later viewing and analysis.

Memories can be used as source inputs for most oscilloscope math and measurements, allowing you to compare historical data to a live acquisition or perform "what if" modeling on saved acquisitions.

# **Saving Memories**

Store  $\underline{\text{memories}}$  on the Memory dialogs (Mn). Memories are created at the same scale as the source trace, but they can be adjusted independently by using the  $\underline{\text{zoom factor controls}}$  that appear next to the Mn dialogs.

## Save Waveform to Memory




**Tip:** Try to choose an empty slot, as anything currently stored in that location will be overwritten. All memories will state if they are empty or an acquisition is stored there.

On oscilloscopes with OneTouch, touch the **Add New box** and choose **Memory** until you see an empty memory slot. Drag the descriptor box of the trace you wish to store onto the Mn descriptor box.

Or

- 1. Press the front panel **Mem button** or choose **Math > Memory Setup** to open the Memories dialog.
- 2. Touch the Mn tab corresponding to the memory slot you wish to use.



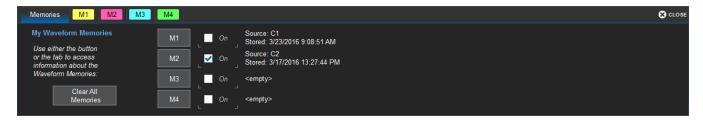
- 3. In Copy from Waveform, choose the source trace to copy to memory.
- 4. Touch Copy Now.
- 5. Optionally, check **Trace On** to immediately display the memory. Use the Zoom controls to adjust the scale of the memory trace.

## Save (External) Waveform Files to Memory

Trace (.trc) files saved on other Teledyne LeCroy instruments can also be saved to internal memory. Use the Recall Waveform function to save external files to memory. Then, you can use the <u>Memories dialog</u> to restore them to the touch screen.

# **Restoring Memories**

The Memories dialog is a convenient panel for restoring saved memories to the display.


Access the Memories dialog by pressing the front panel Mem button or choosing Math > Memory Setup.

Check **On** next to the memory trace you wish to display. A description of the memory showing the source channel and creation time appears next to each Mn on the dialog.

Touch Clear All Memories to empty the memory banks.

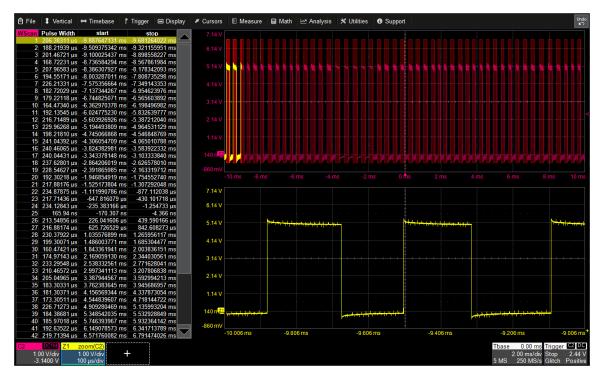


Caution: Memories cannot be restored once they have been erased.



# **Analysis Tools**

The Analysis menu tools complement the standard math and measurements to help you understand the behavior of waveforms.


WaveScan searches single or multiple acquisitions for events that meet specific criteria.

Pass/Fail Testing shows whether waveforms meet mask test limits.

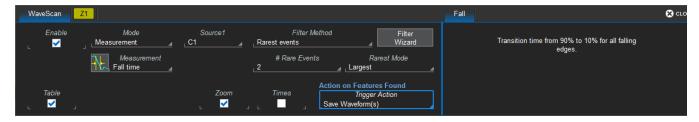
Optional software packages may be purchased for specialized uses, such as power analysis. In most cases, these options are added to the Analysis menu. Documentation for software options can be found at <a href="mailto:teledynelecroy.com/support/techlib">teledynelecroy.com/support/techlib</a> under Manuals > Software Options. In addition, documentation for many options available on your platform can be found in the MAUI Support site under the Support menu.

## WaveScan

The WaveScan® Search and Find tool enables you to search for unusual events in a single capture, or to scan for a particular event in many acquisitions over a long period of time. Each <u>Scan Mode</u> is optimized to find a different type of event. Results are time stamped, tabulated, and can be viewed individually.



WaveScan window with different scan "views" turned on.


You customize the presentation by choosing different WaveScan displays, called <u>Scan Views</u>. Optionally, set actions, such as stopping or beeping, to occur automatically when unusual events are found.



Note: The instrument reverts to Real-time sampling mode when WaveScan is enabled.

## **Setting Up WaveScan**

Set up your source channel and triggers before setting up the scan.



- 1. Press the front panel **Stop button** to stop acquisition.
- 2. Choose **Analysis > WaveScan**.
- 3. Check Enable.
- 4. Choose the **Source** waveform.
- 5. Choose the <u>Scan Mode</u> and enter values for any additional settings that appear at the right of the dialog based on your selection.
- 6. Select each <u>Scan View</u> in which you wish to display results by checking the box at the bottom of the dialog. Each view selected is displayed simultaneously.
- 7. Optionally, choose an **Action** to trigger when an event that meets your scan criteria is found.
- 8. Restart acquisition.

## **Scan Modes**

The Scan Mode determines the type of search to be performed. Select the **Mode** along with the **Source** trace to be searched on the main WaveScan dialog. For each mode, different controls appear on the WaveScan dialog, providing additional inputs to the search criteria. Make the appropriate entries in these fields before starting the search.

### Edge Mode

Edge Mode is used for detecting the occurrence of edges. Events that meet the threshold level are captured and tabulated. When the acquisition is stopped, scan filters can be applied to the edges to find specific characteristics. Edge Mode settings are:

- Slope. Choose Pos, Neg, or Both.
- Level is (set in...). Choose Percent or Absolute.
- Percent/Absolute Level. Enter a threshold value as a percentage of Top to Base or voltage level.

#### Non-monotonic Mode

Non-monotonic Mode looks for edges that cross a threshold more than once between high and low levels. All events that meet the criteria of slope, hysteresis, and level are presented in a table and highlighted in the source trace. The value displayed in the table is the difference of the max. and min. of the non-monotonicity. This can be confirmed with cursors. The hysteresis value is used to eliminate noise. A non-monotonicity is detected only when its amplitude is greater than the hysteresis. Therefore, when setting a hysteresis level, set a value that is greater than the amplitude of the noise. Settings are:

- Slope. Choose Pos, Neg, or Both.
- Hysteresis is (set in...). Choose Division, Percent, Absolute.
- Division/Percent/Absolute. Enter hysteresis level in the selected unit.
- Levels are (set in...). Choose Percent, Absolute, or Pk-Pk%.
- High/Low Level. Enter top and bottom thresholds in the selected unit.

### Runt Mode

Runt Mode looks for pulses that fail to cross a specified threshhold. You can search for positive-going or negative-going runts, or both. An adjustable hysteresis band is provided to eliminate noise.

In the case of negative-going runt pulses, the value displayed in the table is the difference (delta) of the high level of the signal and the runt amplitude (i.e., where the runt bottoms out). This can be confirmed by placing cursors on the runt pulse and reading the delta Y value in the trace labels. In the case of positive-going runt pulses, the value displayed in the table is the absolute value of the amplitude of the runt pulse. Runt Mode settings are:

- Runt Type. Choose Both, Pos, or Neg.
- Hysteresis. Enter the hysteresis level as a percentage or voltage.
- Low/High Threshold. Enter the levels as a percentage or voltage.
- Absolute Levels. Check this box to enter levels as absolute voltage instead of percentage.

#### Measurement Mode

Measurement Mode is used for applying filters to measurements to find those that meet your defined criteria, helping to isolate particular events within many samples. Markers appear over the source trace to indicate the location of measurement, while the table displays values for the selected parameter that meet the criteria. Measurement Mode settings are:

- Measurement. Choose the measurement parameter you wish to search.
- **Filter Method**. Choose the operator that indicates the desired relationship to the Filter Limit. Only measurements that meet this criteria are returned.
- Filter Limit. Enter the value that completes the filter criteria.

Alternatively, you can use the **Filter Wizard** to create the filter criteria.

### Bus Pattern Mode

Bus Pattern Mode (only on Mixed Signal models) is used for finding 2- to 16-bit patterns across the digital lines. Bus Pattern Mode settings are:

- Viewing. Choose to enter the pattern as Binary or Hex(adecimal).
- Binary/Hex. Enter the pattern.
- Num. Patterns to detect. Enter a whole number.

## Scan Views

Scan Views are different ways to view your WaveScan results. Just check the boxes at the bottom of the WaveScan dialog for those views you wish to display simultaneously.

Additional controls for Zoom view are on the Zn dialog. If you turn on a zoom from that dialog, you must turn it off from there, too.

#### Source Trace

By default, the source trace is displayed in the top grid, with markers indicating points that meet the search criteria.

### Table

**Table** view displays a table of measurements relevant to your chosen Search Mode next to the source trace. **Times** view adds columns to the table showing Start and Stop Times for each event.

#### Zoom

**Zoom** view works exactly as it does elsewhere in the X-Stream software, creating a new trace that is a magnified section of the source trace. A Zn tab appears by default when you launch WaveScan; see zoom factor controls for an explanation of the remainder of the controls found on this dialog.

### WaveScan Search

Search is used to find events in traces—usually zoom (Zn) traces—that match user-defined criteria. To search within WaveScan:

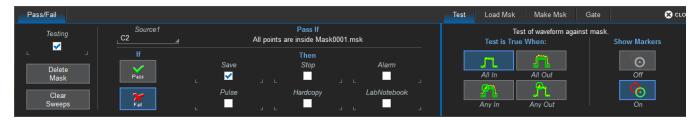
- 1. Select the **Zoom** view.
- 2. After stopping the acquisition, open the WScanZ1 dialog that appears behind the WaveScan dialog.
- 3. Use the **Prev** and **Next** buttons to move back or forward within the trace to the events that matched your Scan Modes criteria.

Or

If you know the WaveScan table index (row) number of the event you wish to find, enter it in Idx.

# **PASS/FAIL Testing**

PASS/FAIL testing is a type of <u>mask testing</u> that is particularly useful for comparing newly acquired signals to a previously acquired "golden standard" waveform.


## **Mask Testing**

A mask defines an area of the grid against which a source Channel, Zoom, or Math trace is compared. Test conditions are associated with the mask, defining how the waveform is to be compared to the masked area (e.g., some/all values fall within, some/all values fall outside), and a pass or fail result is returned indicating the condition was found to be true or false.

Mask testing can be done using a pre-defined mask or a mask created from a waveform with user-defined vertical and horizontal tolerances. The mask test can be confined to just a portion of the trace by the use of a measurement gate.

## Access Mask Test Dialogs

Choose Analysis > Pass/Fail Setup to display the Pass/Fail dialog. To the right are the Test, Load Mask, Make Mask, and Gate subdialogs where you manage all mask settings.



#### Make Mask

Use this procedure to create a new mask based on a live waveform. The mask covers the area of the waveform plus the boundaries you enter.

- 1. Open the **Make Mask** subdialog.
- 2. If desired, enter a new **Destination File Name** and path, or touch Browse and select a previous file to overwrite. The file name should end with the .msk extension.
- 3. Touch the **Ver Delta** and **Hor Delta** fields and enter boundary values using the pop-up Virtual Keypad or the front panel Adjust knob.
- 4. Touch Make from Trace.

#### Load Mask

Do this instead of Make Mask if you have a pre-defined mask file.

- 1. Open the Load Mask subdialog.
- 2. To use a saved .msk file, touch File and select the mask.

3. Check View Mask to display the mask over the trace.

## Remove a Mask from the Display

Touch the **Delete** button on the Load Mask subdialog.

#### Set Gates

To limit the section of the waveform that is compared to the mask.

- 1. Open the **Gate** subdialog.
- 2. Enter the **Start** and **Stop** horizontal divisions that mark the section of the waveform to be tested. These can be a whole division or a fraction of a division. Divisions are numbered 1-*n* left to right.



**Tip:** You can also drag the gate posts from the extreme left and right of the grid to the desired position.

### Define "True"

- 1. Open the **Test** subdialog.
- 2. Select one of the conditions that, when true (yes), results in a pass or fail.
- 3. Optionally, turn **On** markers to show where on the waveform mask violations have occurred.

#### Run Test

- 1. On the main Pass/Fail dialog, select whether the "true" result constitutes a Pass or a Fail.
- 2. Select any actions to take when the test produces this result:
  - Save a waveform file
  - Stop the test
  - Sound an Alarm
  - Emit a Pulse from the AUX OUT connector. When taking this action, also go to Utilities > Utilities Setup > Aux Output and choose to Use Auxilliary Output For Pass/Fail.
  - Capture the screen and process it according to your **Hardcopy**(Print) setting
  - Create a LabNotebook Entry
- 3. Select the **Testing** checkbox at the far left of the Pass/Fail dialog. The results of your test will appear in a table below the grid as soon as there is a fresh acquisition.

# **Saving Data (File Functions)**

This topics in this sections explain the instrument's File menu functions.

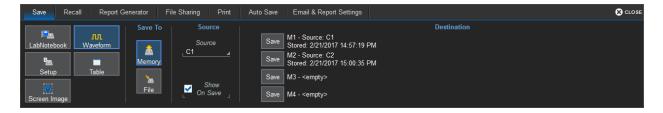
<u>Save/Recall</u> features allow you to save and restore setups, waveform data, table data, screen captures, LabNotebooks, and reports. You can use <u>Print</u> or <u>E-mail</u> to share these files.

<u>LabNotebook</u> is Teledyne LeCroy's proprietary tool for capturing a composite file containing waveform data, oscilloscope setups and display, which can be output to a preformatted report. An important feature of LabNotebook is <u>Flashback</u>, which enables you to restore an acquisition (and the setups used to create it) to the oscilloscope screen simply by recalling a LabNotebook entry.

## Save

Oscilloscope setups (configurations), waveform data, tabular data, and the display can all be saved in multiple formats. To save them all as a composite LabNotebook file, see <u>Save LabNotebook</u>.

### **Save Waveform**


The Save Waveform function saves trace data either to internal memory (M1-Mn) or to a file in text or binary format. The source waveform can be any type of trace; a channel, math function, zoom, or even another memory. Waveform files can be <u>recalled</u> into an internal memory, from where they can be restored to the display.



**Note:** Only traces saved in Teledyne LeCroy proprietary formats can be recalled to the display. Use the Binary format (.trc) for analog waveforms, or WaveML (.xml) for digital waveforms.

# Save Waveform To Memory

- 1. From the menu bar, choose File > Save Waveform.
- 2. Choose to Save To Memory.



- 3. Choose the **Source** trace you are saving.
- 4. Optionally, select **Show On Save** to display the memory trace with its source as soon as it is saved.
- 5. Touch the **Save** button directly to the left of the selected **Destination** memory slot. The date/time stamp of the saved memory will appear at that location.

#### Save Waveform To File

- 1. From the menu bar, choose File > Save Waveform.
- 2. Choose to Save To File.

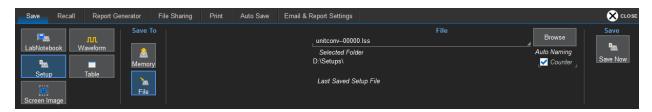


- 3. Choose the **Source** waveform. To quickly save all displayed waveforms separate trace files, touch the **All Displayed** button.
- 4. Select a file **Format**. **Binary** is Teledyne LeCroy's .trc file format. Binary results in the smallest possible file size. Binary files can be converted to ASCII using Teledye LeCroy utilities such as WaveStudio.
- 5. If your Format is ASCII, touch **Delimiter** and select a character from the pop-up menu.
- 6. Depending on your Format selection, you may also need to specify a **SubFormat**:
  - Word (Binary) represents samples using 16 bits. Always use this unless Byte mode is "pre."
  - Byte (Binary) represents samples using 8 bits. This option can result in a loss of resolution.
  - Auto (Binary) looks at the data and automatically selects either Word or Byte subformat.
  - Amplitude only (Text) includes amplitude data for each sample, but not time data.
  - Time and Amplitude (Text) includes both types of data for each sample.
  - With Header (Text) includes a file header with scaling information.
- 7. The system will auto name the file <Source>-Trace-<Counter>. To change the file name or Selected Folder, enter the full path and name in **File**, or <u>use the File Browser</u>. By default, trace files are saved to D:\Waveforms on the instrument hard drive.
- 8. If you do not want to use the **Source** prefix or **Counter** number, deselect them.
- 9. Touch Save Now.

# **Save Setup**

You can quickly save oscilloscope configurations to one of the internal setup panels or to a LeCroy System Setup (.lss) file, a text-based Automation program. Setups can be easily <u>recalled</u> to restore the oscilloscope to the saved state.

## Save Setup to Memory

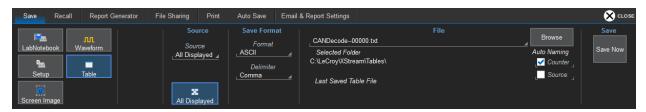

- 1. From the menu bar, choose File > Save Setup.
- 2. Choose to Save To **Memory**.



- 3. If desired, touch one of the **Setup** slots and enter a name for the memory. The default name will be Paneln. Try to select an empty slot, as anything currently in it will be overwritten.
- 4. Touch the **Save** button directly to the left of the selected Setup slot. The save date/time is displayed above the **Setup** field.

### Save Setup to File

- 1. From the menu bar, choose **File > Save Setup**.
- 2. Choose to Save To File.




- 3. The system will auto name the file "DSOSetup-<counter>". To change the file name or Selected Folder, enter the full path and name in **File**, or <u>use the File Browser</u>. By default, setup files are saved to D:\Setups on the instrument hard drive.
- 4. If you do not want to use the **Counter** number, deselect it.
- 5. Touch Save Now.

### Save Table

The Save Table function saves tabular measurement data displayed on screen to an Excel or ASCII file.

1. From the menu bar, choose **File > Save**, then choose **Table**.



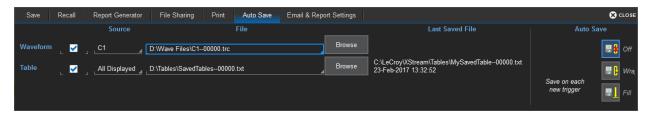
- 2. To save only one of the tables displayed, touch **Source** and navigate to the selection.
  - By default, data from all visible tables are saved to separate files. To quickly restore this selection, touch the **All Displayed** button.
- 3. Choose a format of **ASCII** (.txt) or **Excel** (.csv). If you selected **ASCII** format, also touch **Delimiter** and choose a character.
- 4. The system will auto name the file "<source>-Table-<counter>". To change the file name or Selected Folder, enter the full path and name in **File**, or <u>use the File Browser</u>. By default, table files are saved to D:\Tables on the instrument hard drive.
- 5. If you do not want to use the **Source** or **Counter** number, deselect them.
- 6. Touch Save Now.

# **Save Screen Image**

The full touch screen display or selected portions of it can be captured, saved to an image file, and marked with custom annotations.

1. From the menu bar, choose File > Save, then choose Screen Image.




- 2. Choose a File Format of .JPEG, .PNG, .TIF, or .BMP.
- 3. To mark up the screen image using the drawing tools, select **Annotate Screen Image Before Saving**.
- 4. Select the Screen Area captured:
  - Grid Area Only includes any visible waveform grids, tables, and descriptor boxes.
  - DSO Window includes the above plus any open dialogs, menu bar, and message bar.
  - Full Screen is the full Windows display, including other visible applications and desktop.
- 5. Choose the **Colors** used in the capture:
  - Standard uses the screen colors on a black background as it appears on the instrument.
  - Print (default) uses your <u>print color palette</u> (set in Preferences) on a white background to save ink.
  - Black & White captures the image in grayscale.
- 6. The system will auto name the file "LeCroy-<counter>". To change the file name or Selected Folder, enter the full path and name in **File**, or <u>use the File Browser</u>. By default, image files are saved to D:\Hardcopy on the instrument hard drive.
- 7. Touch Save Now.
- 8. If you've turned on annotations, use the <u>Drawing toolbar</u> to mark up the screen image. Click **Done** when finished.

#### **Auto Save**

Data that appears on the oscilloscope display, such as waveforms, measurement readouts and decoder data, can be very dynamic and difficult to read from the oscilloscope unless you stop the acquisition.

Auto Save enables you to automatically store waveform and table data to file with each new trigger. The file can later be recalled to the oscilloscope or saved permanently to external storage.

1. Choose **File > Save** and open the **Auto Save** dialog.



- 2. Select to save **Waveforms** and/or **Tables**.
- 3. Select the **Source** from which to save.
- 4. By default, waveform files are stored in D:\Waveforms, and tables are stored in D:\Tables on the instrument hard drive. Optionally:
  - Enter a different path in File, or Browse to and select the path.
  - Enter a more descriptive root file name than "Trace" or "Table." Auto Saved files will always be named using the Source prefix and a Counter number suffix around the root.
- 5. Choose one of the **Auto Save** options: **Wrap** (old files overwritten when buffer filled) or **Fill** (no files overwritten, excess is truncated).
  - If you have frequent triggers, it is possible you will eventually run out of storage space. Choose Wrap only if you're not concerned about files persisting on the instrument. If you choose Fill, plan to periodically delete or move files off the instrument, or you will lose new data.
- 6. To enable these selections, choose **Configure Auto Save** from the pop-up dialog that appears.
- 7. As soon as there is a trigger, files will begin to be saved. Choose **Disable Auto Save** to stop saving files while the acquisition is in process.

You can also choose **Off** on the Auto Save dialog to disable this feature in between acquisitions.

## Recall

Setups saved to internal memory or to .LSS file can be recalled to restore the oscilloscope to the saved state.

Waveform data stored to .TRC or .XML files can be recalled into a memory and from there restored to the screen.

To recall and modify saved LabNotebook files, see Recall LabNotebook.

## **Recall Waveform**



Note: Only files saved in Binary (.trc) or WaveML (.xml) format can be recalled to the touch screen.

1. Choose File > Recall Waveform from the menu bar.



2. Touch Browse and navigate to the file.

If the file is in the Selected Folder, you can use the **Up /Down Arrows** to cycle through the available files until the desired file is selected.

Optionally, touch **Show only files** to apply a search filter (channels, math functions, or memory) to the list of available files.


- 3. Select a **Destination** memory slot into which to recall the file.
- 4. Mark Show on Recall to display the trace on the grid.
- 5. Touch Recall Now.

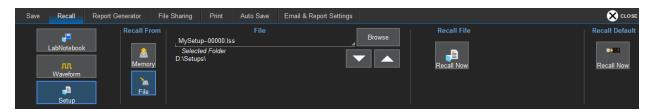
# **Recall Setup**

Choose File > Recall Setup... from the menu bar.

## Recall Setup from Memory

1. Choose to Recall From **Memory**.




2. Touch one of the six Recall buttons under Recall From Internal Setup....



**Note:** If a setup has been stored to a location, it is labeled with the save date/time. Otherwise, the slot is labeled **Empty**.

## Recall Setup from File

1. Choose to Recall From File.



2. Enter the path to the File, or touch Browse and navigate to the desired file.

If the file is in the Selected Folder, you can use the **Up /Down Arrows** to cycle through the available files until the desired file is selected.

3. Under Recall File, touch Recall Now.

# **Restore Default Setup**

Restore the factory default settings by pressing the front panel **Default Setup** button. **Confirm** the action.

You can also restore default settings via the touch screen:

- 1. Choose File > Recall Setup from the menu bar.
- 2. Choose to Recall From File.
- 3. Under Recall Default touch Recall Now.

## LabNotebook

The LabNotebook feature allows you to create and save composite files containing a screen capture of all displayed waveforms, as well as all waveform and setup data at the time of capture. The <a href="Flashback">Flashback</a> feature instantly recalls the setups and waveforms stored with LabNotebook Entries, enabling you to restore the exact state of the instrument at a later date to perform additional analysis.

LabNotebooks can be output to a preformatted .PDF, .RTF, or .HTML report. You can also upload your own report layout if you prefer not to use the default.

### Save LabNotebook

All LabNotebook files (.LNB) are composed of a screen image (.PNG), a setup file (LSS), and a waveform file (.TRC) for each waveform displayed. When creating LabNotebooks, you choose how to handle the screen image component, which is the basis for the Report Generator output, and to which you can add a description and other hand-drawn annotations.

1. Choose File > Save LabNotebook from the menu bar.



- 2. Optionally, enter a **Description**. This text appears whenever the file is recalled and on reports.
- 3. To mark up the image using the drawing tools, select **Annotate Screen Image Before Saving**.

  To skip this step, deselect the checkbox. You can recall the LabNotebook later to add a description and annotations.
- 4. To change the area of the screen captured and the colors used, touch **Area/Color Preferences** and make your selections on the pop-up:
  - Use Print Colors (default) uses your <u>print color palette</u> (set in Preferences) on a white background to save ink. Deselect this to capture the display using the screen colors on a black background as it appears on the instrument.
  - Grid Area Only includes any visible waveform grids, tables, and descriptor boxes.
  - DSO Window includes the above plus any open dialogs, menu bar, and message bar.
  - Full Screen is the full Windows display, including other visible applications and wallpaper.

Touch **Close** to save your changes.

#### WaveSurfer 510 Oscilloscope Operator's Manual

5. The system will auto name the file "MyLabNotebook" followed by a counter number. To change this to something more descriptive, or to change the file path, enter the name in **LabNotebook Entry**, or touch **Browse** and <u>use the File Browser</u>. By default, LabNotebook files are saved to D:\LabNotebook on the instrument hard drive.




Note: Changing the file path, name or format will cause the counter to reset to the next number in that sequence.

- 6. If you do not want to use autonumbering to identify files, deselect **Counter**.
- 7. Touch Save Now.
- 8. If annotating, use the <u>Drawing toolbar</u> to mark up the screen image. Click **Done** when finished.

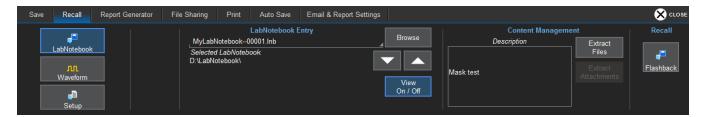
# **LabNotebook Drawing Toolbar**

The basic LabNotebook is a screen capture of the display as it was at the time of entry, along with the setup and waveform data. If you have selected to Annotate Screen Image Before Saving, the capture is immediately displayed in the Drawing window. You can later add Annotations by <a href="recalling the LabNotebook">recalling the LabNotebook</a> into the Preview window and choosing to Annotate Screen Image.

Markup tools are available from the toolbar along the top of the window.



To use any tool, touch the icon, then touch on the image where you wish to draw or add text. From left to right, the tools are:


| Tool          | Function                                                                                                                                                                                                                                |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pencil        | Draw in freehand. Maintain contact with the screen to make a continuous mark. Once you release, you can touch-and-drag the object to any point on the image.                                                                            |
| Circle        | Draw a circle around a waveform feature that you want to emphasize. Touch-and-drag across the diameter of the circle. When you release, the circle is placed. You can drag the circle to any location on the image.                     |
| Arrow         | Draw lines with arrowheads for placing callouts. You can rotate these lines through 360 degrees or drag them to any location on the image.                                                                                              |
| Text          | Open a textbox for placing labels/annotations on the image. Touch the point on the image to place the label, then enter the text in the pop-up dialog. Once placed, you can resize the textbox or drag it to any location on the image. |
| RGB Selectors | Quickly change the line color. Just touch the color icon, then choose the next drawing tool.                                                                                                                                            |

| Tool                          | Function                                                                                                                                                                                                                                                                                                                |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| More                          | Activates a Custom line color field. The default color is Yellow. To choose another, touch the color swatch, then select from the Color dialog. You can enter RGB values, or choose from the spectrum. After saving, the new color appears in the Custom field. This remains the markup color until you choose another. |
| Erase Selected /<br>Erase All | Remove selected drawing objects. Erase All will also undo any Custom color selection.                                                                                                                                                                                                                                   |
| Undo                          | Cancel the last action. Use it to restore any objects you inadvertently erased.                                                                                                                                                                                                                                         |
| Move                          | Undock the drawing toolbar so you can move it anywhere on the display. This helps to keep tools handy when working on a particular area of a waveform. Touch the button again to restore the toolbar to the top of the Drawing window.                                                                                  |
| Done                          | Save the annotations with the image and close the Drawing window.                                                                                                                                                                                                                                                       |

### Recall LabNotebook

Once a LabNotebook Entry is saved, Recall it to view and modify descriptive information or manage attachments and component files. Flashback to restore the oscilloscope to the state saved in the LabNotebook file.

Choose File > Recall LabNotebook from the menu bar.



#### Flashback

Flashback restores the waveforms and setups saved with the LabNotebook Entry, so you can later analyze the inputs that resulted in that capture. Some result data *not* included in Flashback are:

- Persistence data, although it is saved with the .LNB file and appears on reports.
- Histogram data over 16-bits.
- Floating point waveforms resulting from certain math operations that have much higher resolution than 16-bits. This extra resolution is not preserved when traces are recalled using Flashback.
- Cumulative Measurements in process when Flashback is entered. When Flashback is used, they lose their history and show instead only the results from the stored waveforms, not including any data taken from interim acquisitions.
- 1. In LabNotebook Entry, enter the path to the LabNotebook, or touch Browse and navigate to the file.
- 2. Touch the **Flashback** button.
- 3. To exit Flashback, touch the **Undo** button at the far right of the menu bar.

### WaveSurfer 510 Oscilloscope Operator's Manual

#### Recall and Preview

- 1. Enter the path to the file in LabNotebook Entry, or touch Browse and navigate to the file.
- 2. Touch View On/Off to open it in the Preview window.
- 3. While the file is in preview, you may <u>Edit Description</u>, <u>Annotate Screen Image</u>, or <u>Manage</u> Attachments.
- 4. Optionally, choose to **Save**, **Print**, or **Email** the LabNotebook in the <u>output report</u> format shown in the preview. Select **Close** to close the Preview window.

### Edit Description

You can modify the description and annotations saved with the LabNotebook Entry. Setups and waveform data originally saved with the LabNotebook cannot be changed.

- 1. Browse to and select the **LabNotebook Entry**. If the file is in the Selected Folder, just use the Up/Down Arrow keys to select it.
- 2. Select View On/Off to preview the file.
- 3. From the top of the preview window, choose **Edit Description**.
- 4. Touch the pop-up description to open the virtual keyboard and edit the text.
- 5. Touch **OK** twice to save changes.

### Annotate Screen Image

- 1. Browse to and select the **LabNotebook Entry**. If the file is in the Selected Folder, just use the Up/Down Arrow keys to select it.
- 2. Select View On/Off to preview the file.
- 3. From the top of the preview window, choose **Annotate Screen Image** and use the drawing tools.
- 4. Click **Done** when finished to close the Drawing window and return to the preview.

### Manage Attachments

To append external files to the LabNotebook composite (such as images of the DUT, mask files, test scripts, or anything relevant to the entry):

- 1. Browse to and select the **LabNotebook Entry**. If the file is in the Selected Folder, just use the Up/Down Arrow keys to select it.
- 2. Select View On/Off to preview the file.
- 3. From the top of the preview window, choose **Manage Attachments** and select the files to attach. The file list will build in the lower part of the File Attachments browser.
- 4. Click **Update Attachments** to finish.

To later remove appended files, Manage Attachments and deselect the files from the list. Update Attachments again to refresh the list.

#### Convert File Format

Individual entries in legacy .ZIP format Notebooks can be converted to the new LabNotebook file format.

1. In LabNotebook Entry, **Browse** to and select the legacy .zip file from the left side navigation pane of the File Browser.



Note: Be sure to select the .zip file from the left pane so that its sub-entries appear in the right pane and the Save buttons appear on the browser. The file should appear in Current Path on the file browser.

2. To batch convert all entries into separate LabNotebook files, at the top of the file browser choose Save All As I NB Files.

To convert a single entry, select it from the Name list (right side), then choose Save As LNB File.

New LabNotebooks of the same name as the original entries are created in the D:\XPort folder. These can be selected the same as any other .LNB files for Flashback, editing, reports, or extraction.

#### Extract Files

The component files that make up the LabNotebook composite (.PNG, .LSS, and .TRC) and any appended files can be extracted into separate files.

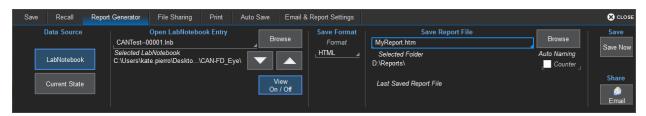
- 1. Enter the path to the **LabNotebook Entry**, or **Browse** to the file.
- 2. To extract all files, under Content Management, choose Extract Files.

To extract only the attachments, choose **Extract Attachments**.

3. Navigate to the folder where you want the files extracted, and choose Extract Now.

A folder of the same name as the original LabNotebook containing the separate files will be created at that location.

# **Report Generator**


The Report Generator feature allows you to output a preformatted report consisting of an annotated screen image and a summary of the setups in place when it was captured. The report can be sourced from an existing LabNotebook, or it can be newly generated from the current state of the oscilloscope.

The logo and output template used to create the report can be changed on the <u>Email & Report Settings</u> dialog.

### From LabNotebook

This procedure outputs an existing source as is. If you want to further annotate or change the description of a LabNotebook file, first recall the LabNotebook.

1. Choose File > Report Generator from the menu bar.



- 2. **Browse** to and select the **LabNotebook Entry**. If it is in the Selected Folder, just use the Up/Down Arrow keys to select it.
- 3. Optionally, use View On/Off to preview the selected file.
- 4. Choose a **Save Format** of HTML, .RTF, or .PDF.



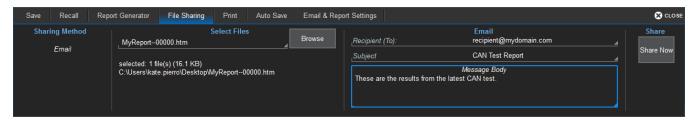
Note: Only HTML reports can later be saved to .RTF or .PDF format. The .RTF and .PDF reports can only be combined into another report of the same format.

5. By default, the system will auto name the file "Report" followed by a counter number. To change the file name or the Selected Folder, enter the full path and name in **Save Report File**, or touch **Browse** and <u>use the File Browser</u>. By default, report files are saved to the D:\Xport folder on the instrument hard drive.



Note: Changing the file path, name, or format will cause the counter to reset to the next number in that sequence.

- 6. If you do not want to use autonumbering, deselect Counter.
- 7. To save the report, choose **Save Now**.


### From Current State

If you are creating a report from the current state of the instrument, the procedure is much like that above, except that you will also be able to enter a new **Description**, **Annotate Screen Image**, and select your capture **Area/Color Preferences** as you would normally do when first creating a LabNotebook. See <u>Save LabNotebook</u> for an explanation of these steps.

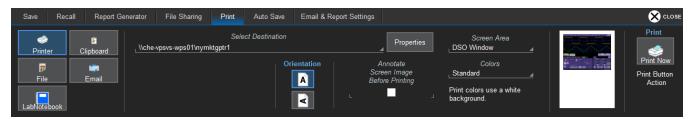
However, when using the Report Generator from Current State, you will not have saved a composite .LNB file that can later be recalled or extracted into its component files. You will only have the preformatted report file.

## **Share**

Use the File Sharing dialog to email files from the instrument. Configure the oscilloscope for email on the Email & Report Settings dialog.



- 1. Choose File > File Sharing from the menu bar.
- 2. <u>Use the File Browser</u> to select all the files to be emailed.
  - Use CTRL + Click to select multiple files.
- 3. Optionally, change the email Recipient(s). This field defaults to whatever is in your Email Settings.
- 4. Enter a Subject line and Message Body, then Share Now.


## **Print**

Print dialog settings control how the oscilloscope's Print function behaves. This includes the front panel **Print buttons**, as well as the **File > Print** option.

Print captures an image of the touch screen display, but there are several options as to what it does next with the image:

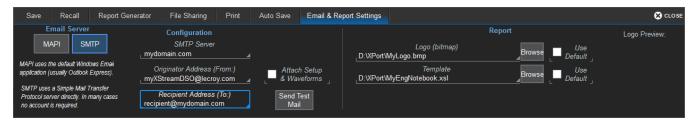
- Send it to a Printer
- Copy it to the Windows Clipboard
- Save it to an image File using your current Screen Image Preferences
- Email an image file using your current Screen Image Preferences and Email Preferences
- Create a new LabNotebook file using your current LabNotebook Preferences

The **Print Now** button at the far right of the Print dialog can also be used to execute your Print selection.



# **Printer Settings**

If sending to a printer:


- 1. Touch **Select Destination** and choose a connected printer. Touch **Properties** to change any of the printer properties using the standard Windows Print dialog.
- 2. Choose a paper orientation of **Portrait** or **Landscape**.
- 3. Select **Annotate Before Saving** to mark up captures before they print. Each time you press Print, the capture will open in the <u>Drawing Tools</u> window. When you are **Done** drawing, the image prints.

# **Capture Settings**

- 1. Select a Screen Area:
  - Grid Area Only includes any visible waveform grids, tables, and descriptor boxes.
  - DSO Window includes the above plus any open dialogs, menu bar, and message bar.
  - Full Screen is the full Windows display, including other visible applications and wallpaper.
- 2. Choose the Colors used in the capture:
  - Standard uses the screen colors on a black background as it appears on the instrument.
  - Print uses your print color palette (set in Utilities > Preference Setup) on a white background
  - Black & White captures the image in grayscale.

# **Email & Report Settings**

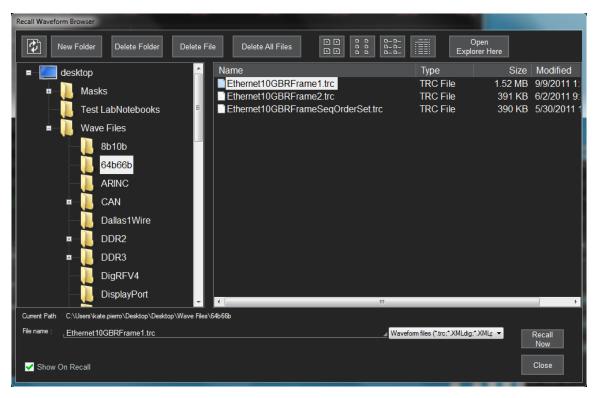
This dialog contains additional settings used by the File Sharing and Report Generator functions.



# **Email Settings**

- 1. Select to use MAPI or SMTP.
- 2. If you chose SMTP, touch **SMTP Server** and enter the network address of your mail server.
- 3. Touch Originator Address (From:) and enter the instrument's e-mail address.
- 4. Touch Default Recipient Address (To:) and enter the recipient's e-mail address.
- Optionally, select to always Attach Setup & Waveforms associated with image files selected for email.
- 6. Use **Send Test Mail** to send a confirmation message to ensure proper e-mail configuration.

# **Report Settings**


The default report template uses our logo as a placeholder. You can replace this with your logo. Logo files should be in bitmap (.bmp) format and not exceed 100 pixels high by 180 pixels wide. Place the file in the D:\Xport folder.

You can also use your own report template. Templates must be saved as .xsl or .xslt files and placed in the D:\Xport folder.

Deselect Use Defualt next to each item you want changed, then Browse to and select the new files.

# **Using the File Browser**

Selecting **Browse** on any of the File menu dialogs opens a File Browser that enables you to perform basic disk utility functions, as well as making file path/name and format selections. The additional file actions available depend on the actions available on the underlying dialog (Save file, Email report, etc.).



## **Disk Utilities**

New Folder, Delete Folder, Delete File, and Delete All Files can be used to change your file system prior to saving new files. Be sure to first select the folder from the navigator or file from the file list.

### File Path and Name

The **Current Path** is shown immediately below the navigator pane. To change it, use the navigator to select a different folder.

To select an existing file, use the file list to the right of the navigator. The buttons immediately above the file list let you change how items appear: icons only, details, etc. If you do not see the file you seek, try using the drop-down next to **File name** to change the file type to "All files (\*.\*)".

Most file types have a default root file name (e.g., "MyLabNotebook"), to which an autogenerated prefix and/or suffix is added. To change this, enter the new **File name**. If you are autogenerating, the root file name for a given file type persists until changed.

# **Auto Naming Selections**

The checkboxes to turn on/off the **Source** prefix and the **Counter** number suffix used to autogenerate file names will appear on the File Browser. These selections are linked to those on the underlying dialog, and changing the value in either place causes it to change everywhere.



**Note:** If you change any part of the file path/name or format on the File Browser or the dialog, the Counter number will reset to the last number in the sequence associated with that value.

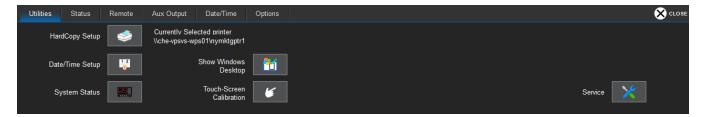
**Example:** Changing "Decode1-Table-0002" to "Decode1-CANFDTable-..." will reset the counter to "Decode1-CANFDTable-0000" if there is no prior file named "Decode1-CANFDTable-...".

# **Actions**

The **Close** button accepts the selections you made on the File Browser and closes the browser window. If you do not need to make further entries on the dialog to complete your task, you can choose to Save, Recall, Flashback, Email, etc. right from the File Browser.

| WaveSurfer 510 Oscilloscope Operator's Manual |  |  |  |  |
|-----------------------------------------------|--|--|--|--|
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |
|                                               |  |  |  |  |

# **Utilities**


Utilities settings primarily control the instrument's interaction with other devices/systems.

<u>Preferences</u> settings, on the other hand, tend to control the appearance and performance of the oscilloscope application. Use these settings to personalize the behavior of the instrument.

Disk Utilities enable you to perform commonplace Windows file functions.

# **Utilities Dialog**

To access the Utilities dialogs, choose Utilities > Utilities Setup... from the menu bar.



Hardcopy Setup (Print), Date/Time Setup and System Status buttons open their corresponding dialogs.

**Show Windows Desktop** minimizes the oscilloscope application window. Maximize the application by touching the display icon located at the lower-right of the desktop.

<u>Touch-Screen Calibration</u> launches a sequence of display calibration screens. You will be prompted through a series of actions to improve the precision and accuracy of the touch screen.

The **Service** button to the far right of the dialog launches a section of the application reserved for qualified Teledyne LeCroy service personnel. An access code is required to enter this section.

### **Status**

The Utilities Status dialog displays information about your instrument including model number, serial number, firmware version, and installed hardware and software options.

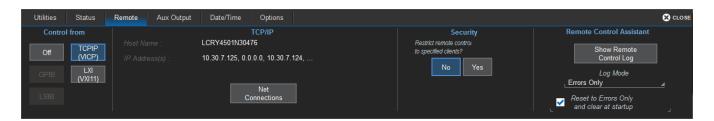
Choose Utilities > Utilities Setup from the menu bar, then touch the Status tab.

Or

Choose Support > About from the menu bar.

### **Remote Control**

The Remote dialog contains settings to configure remote control of the instrument and also network access. Supported remote control protocols are:


- TCPIP (Ethernet). If you choose this option, also install Teledyne LeCroy's VICP drivers on the controller. These are included in the VICP Passport plug-in, available free from <a href="teledynelecroy.com/support/softwaredownload">teledynelecroy.com/support/softwaredownload</a> under Oscilloscope Downloads > Software Utilities. The instrument uses Dynamic Host Configuration Protocol (DHCP) as its default addressing protocol. You can assign a static IP address using the standard Windows network setup menus.
- LXI (Ethernet). To use this option on Windows 10 oscilloscopes, you must run the oscilloscope from the administrative user account, LCRYADMIN. See Changing Windows User.
- **GPIB**. This selection is active if you are using the USB2-GPIB adapter. Connect the adapter from any USB port on the oscilloscope to the GPIB port on the controller.



Note: Full remote control setup requires installation and configuration of software on the controller, as well. See the <u>MAUI Oscilloscopes Remote Control and Automation Manual</u> for instructions on making the remote connection and sending remote commands. The steps shown here are only those performed on the oscilloscope to enable the connection. A commented copy of the oscilloscope Waveform Template (.tpl) file is installed on the oscilloscope in C:\Program Files\LeCroy\XStream. You can open this ASCII file using any text editor, such as Windows Notepad, which is also installed on the oscilloscope. The template will help you better understand the MAUI architecture for transferring waveform data to and from the oscilloscope.



Note: DCOM connections to LeCroy software are not supported on Windows 10 oscilloscopes. Use another type of Automation interface, such as ActiveDSO or NI-VISA, to execute XStreamBrowser or Automation scripts remotely.



## Set Up Remote Control

- 1. From the menu bar, choose **Utilities > Utilities Setup**, then touch the **Remote tab**.
- 2. On the **Remote** dialog, make a **Control From** selection.
- 3. If using TCPIP and wish to restrict control to specific network clients, choose **Yes** under Security. Enter the IP addresses or DNS names of the authorized controllers in a comma-delimited list.

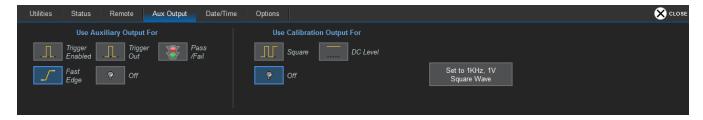
## Configure the Remote Control Assistant Event Log

The **Remote Control Assistant** monitors communication between the controller and instrument. You can log all events or errors only. The log can be output to an ASCII file and is invaluable when you are creating and debugging remote control programs.

- 1. From the menu bar, choose **Utilities > Utilities Setup**, then touch the **Remote tab**.
- 2. Under Remote Control Assistant, touch Log Mode and choose Off, Errors Only, or Full Dialog.
- 3. To always clear the log at startup, check Reset to Errors Only and clear at startup.

## Export Contents of the Event Log

- 1. From the menu bar, choose **Utilities > Utilities Setup**, then touch the **Remote tab**.
- 2. Touch the **Show Remote Control Log** button. The Event Logs pop-up is shown.
- 3. Enter a log file name in **DestFilename**, or touch Browse and navigate to an existing file.




Note: New contents will overwrite the existing content; it is not appended.

4. Touch Export to Text File.

# **Auxiliary Output**

Use the Aux Output dialog to configure the output of the Aux Out port and Cal Out port.



## Auxiliary Output

The Aux Out port outputs a 1.0 V TTL pulse following the selected event:

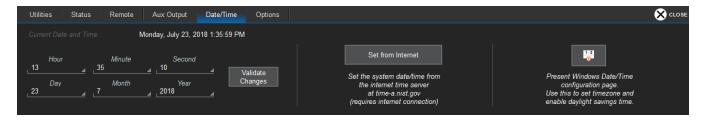
- Trigger Enabled sends a pulse when the trigger is ready (Ready indicator lit), but not necessarily triggered. It can be used as a gating function to trigger another instrument. Enter the desired pulse Amplitude.
- Trigger Out sends a pulse upon a trigger (TRIG'D Indicator lit). Enter the desired pulse Amplitude.
- Pass/Fail sends a pulse when Pass/Fail test conditions are met. Enter the desired Pulse Duration. Be sure to also select Pulse on the Pass/Fail Actions dialog.

Aux Out can also be used to generate a Fast Edge signal for deskewing channels.

Off disables output.

# Calibration Output

Choose the signal to be output from the Cal Out hook on the front of the instrument:


- For a Square wave signal, enter the wave Frequency and Amplitude into 1 MΩ, or choose to Set to 1 kHz, 1 V Square Wave.
- For a reference DC Level, enter an Amplitude into 1 MΩ.

Off disables output.

## Date/Time

Date/Time settings control the instrument's timestamp. These numbers appear in the message bar and on tables/records internal to the oscilloscope application, such as History Mode and WaveScan.

To access the Date/Time dialog, choose **Utilities > Utilities Setup** from the menu bar, then touch the **Date/Time tab**.

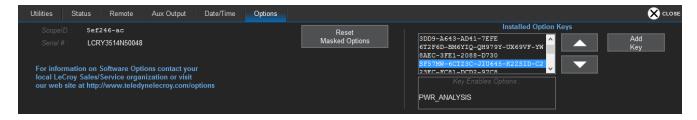


#### Manual Method

Enter the Hour, Minute, Second, Day, Month, and Year, then touch the Validate Changes button.

#### Internet Method

This method uses the Simple Network Time Protocol (SNTP) to read the time from time-a.nist.gov. The instrument must be connected to an internet access device through a LAN (Ethernet) port.


If your connection is active, touch the **Set from Internet** button.

#### Windows Method

To set date and time using the internal Windows system clock, touch the **Windows Date/Time** button. This displays the standard Windows **Date and Time Properties** pop-up dialog, where you can further configure these settings. If you are satisfied with the setup, just touch OK.

# **Options**

Many optional software packages are available to extend the Analysis functions of the instrument. When you purchase an option, you will receive a key code by email that activates the new functionality. Use the **Options** dialog to activate software options by installing the key code. This dialog also displays the **ScopeID** and **Serial #**.



### To install a key:

- 1. From the menu bar, choose **Utilities > Utilities Setup**, then open the **Options tab**.
- 2. Touch **Add Key**. The Virtual Keyboard appears onscreen.
- 3. Use the Virtual Keyboard to type the Key Code in the **Enter Option Key** field, then touch **OK** to enter the information.

The Key Code is added to the list of Installed Option Keys. You can use the Up/Down buttons to scroll the list. The software option that each key activates is displayed below the list.

4. Choose **Yes** to restart the X-StreamDSO application.

# **Disk Utilities**

Use the Disk Utilities dialog to manage files and folders on your instrument's hard drive. Disk Space information is shown at the far right of the dialog for convenience.



**Note:** These tasks can also be accomplished using the standard Microsoft Windows file management tools. Choose **File > Minimize** to access the Windows desktop and task bar.

Access the Disk Utilities dialog by selecting Utilities > Disk Utilities from the menu bar.



## Delete a Single File

- 1. Touch the **Delete** button.
- 2. Browse to the current folder containing the file.
- 3. **Browse** to the file to be deleted, or use the **Up** and **Down** arrow buttons to scroll through the files in the folder.
- 4. With the desired file selected, touch Delete File.

### Delete All Files in a Folder

- 1. Touch the **Delete** button.
- 2. **Browse** to the current folder containing the file.
- 3. With the desired folder selected, touch Empty Folder.

### Create a New Folder

- Touch Create.
- 2. Touch Current folder and provide the full path to the new folder, including the folder name.
- 3. Touch Create Folder.

# **Preferences Dialogs**

Preference settings have mostly to do with the appearance and performance of the instrument itself, rather than its interaction with other devices/systems. These settings are called "non-volatile," because they are not lost when the oscilloscope is restarted and do not change when a setup panel is recalled.

Access the Preferences dialogs by choosing Utilities > Preference Setup... from the menu bar.



**Audible Feedback** controls the instrument's audio output. Select this box to hear a beep each time you touch a screen or front panel control.

Language sets the language used on the touch screen display.

Font Size (Not available on Windows 10 oscilloscopes) changes the size of the text that appears on the touch screen display.



**Tip:** To change font size and other screen settings on Windows 10 oscilloscopes, swipe from the right of the touch screen to display the Action Center, then choose All Settings > System Settings and make your selections.

### **Calibration**

Calibration ensures that the output from the analog-to-digital converters (ADCs) accurately represents the input. The oscilloscope is calibrated at the factory at 23 °C (± 2 °C) prior to shipment. So that it maintains specified performance, it is factory set to perform an automatic calibration routine upon power up.



**Note:** Warm the oscilloscope for at least 20 min. after power on to ensure it reaches a stable operating temperature and completes the calibration routine. You will see a warning message on the Calibration dialog when the oscilloscope is still in the warm-up phase. Specifications are not guaranteed during warm up.

### Cached Calibration



#### Self Calibration

On oscilloscopes with Cached Calibration, you have the option of selecting the self calibration routine used when the instrument automatically invokes calibration. Go to **Utilities > Preference Setup > Calibration**.

**Stored Calibration** (the default selection) uses cached calibration files to recalibrate the instrument at start-up. As long as the oscilloscope is used at or near sea level within a temperature range of 19-30 °C, this calibration routine should be sufficient to maintain specified performance. The instrument will dynamically recalibrate if the temperature goes outside of the stored calibration range. If you know you will be operating outside this temperature range, do a Calibrate All to minimize recalibration.

The **Dynamic Calibration** routine recalibrates the oscilloscope at start-up and every time there is a change in any of the acquisition settings that directly affect the performance of the ADCs, in particular Vertical Scale, Coupling, Bandwidth, Attenuation, and Horizontal Scale. This can cause interruptions during operation, but ensures absolute accuracy within the current operating environment at every setting. When one setup is calibrated at a particular ambient temperature, the calibration is entered in a calibration table and reused for the duration of the session, so that over time the frequency of recalibration decreases. These calibration entries persist only for a single session; Dynamic Calibration restarts when the instrument is restarted or you change the principal acquisition settings.

#### WaveSurfer 510 Oscilloscope Operator's Manual

#### Manual Calibration

Two manual calibration routines can be used to recalibrate immediately before sensitive measurements or when there is a significant change of environmental characteristics that could affect the performance of the ADCs.

Go to **Utilities > Preference Setup > Calibration** to manually invoke calibration.



**Caution:** Remove all inputs from the oscilloscope prior to manual calibration.

**Calibrate Current State** calibrates at the current vertical and horizontal settings. This calibration takes 5 seconds but is valid *for only this setup* at the current temperature ±2.5 °C.

**Calibrate All** calibrates all possible combinations of vertical and horizontal settings. This calibration is valid for the current temperature and takes about four to five hours. Perform it when the ambient temperature is stable from the time of calibration to the time of operation.

We recommend that you run Calibrate All when:

- The instrument is operating outside the 19-30 °C range and the operating temperature changes while outside that range. Calibrate All is only valid for ± 2.5 °C of the last calibration temperature when operating outside of the 19-30 °C range.
- The instrument is moved to a new operating environment.
- It has been six months since the previous manual calibration.

# **Acquisition**

The Acquisition preference settings determine how traces behave as Vertical Offset or Horizontal Delay changes. Choose **Utilities > Preference Setup** to open the **Acquisition** dialog.

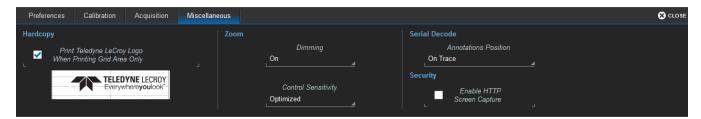


### Offset Setting constant in:

- **Volts** keeps the amount of Offset in the amount of Volts specified, regardless of the V/div setting. As the Offset is adjusted, the trace will appear to move up or down relative to the zero level.
- **Div**(isions) keeps the Vertical Offset level indicator stationary. The waveform remains on the grid as you change V/div, but your Offset value will change.

#### Delay Setting constant in:

- **Time** keep the Horizontal Delay at the amount of time specified, regardless of the Time/div setting. The Horizontal Delay indicator moves relative to the 0 point at the center of the grid.
- **Div**(isions) keeps the Horizontal Delay indicator stationary. The trigger point remains on the grid as you increase the timebase; whereas, if Time is selected, the trigger point could move off the grid.




**Note:** Whenever Div is selected, values are scaled proportional to the change in gain or timebase, thereby keeping the division of the grid constant.

**Trigger Counter Setting** is selected by default. It clears the trigger counter each time a new acquisition command is sent. It is only made active for deselection when trigger Holdoff is set.

### **Miscellaneous**

These other Preference settings are located on the **Miscellaneous** dialog.



To add the Teledyne LeCroy logo to print output, check **Print Teledyne LeCroy Logo When Printing Grid Area Only**. This identifies the instrument as the source of the image.

**Dimming** darkens/shades those areas of the source waveform that are not part of the Zoom trace.

**Control Sensitivity** adjusts the sensitivity of the front panel knobs. **Optimized** applies an acceleration algorithm to the knobs. **Legacy** detects rotation of the front panel knobs in a manner similar to our legacy oscilloscopes.

**Serial Decode Annotation Position:** If you have Serial Trigger or Decode options installed on your instrument, this control determines the placement of annotation labels relative to the trace line. It does not appear if there are no installed options.

- On Trace places the label close to the line.
- On Noisy Trace sets the label further away to accommodate potential noise spikes in the trace.

Check **Enable HTTP Screen Capture** to enable remote capture of the touch screen display over a netowrk. This setting is required to use the instrument with the WaveStudio software.

# **Maintenance**

Topics in this section describe procedures for keeping the instrument in optimal working condition.

# **Restart/Reboot Instrument**

To restart the MAUI oscilloscope application, choose **File > Exit** from the menu bar, then touch the **Start DSO** desktop shortcut.

To reboot the instrument, which includes restarting the Windows OS:

- 1. From within the oscilloscope application, choose File > Shutdown.
- 2. Wait 10 seconds after the oscilloscope has fully shut down, then press the **Standby Power button** on the front of the instrument.

# **Restore Default Setup**

Restore the factory default settings by pressing the front panel **Default Setup** button. **Confirm** the action.

You can also restore default settings via the touch screen:

- 1. Choose File > Recall Setup from the menu bar.
- 2. Choose to Recall From File.
- 3. Under Recall Default touch Recall Now.

# **Changing Screen Settings**

On instruments running Windows 10, MAUI software font size and other screen settings are now changed using the standard Windows 10 controls, rather than through the MAUI application. The text font is set to display at 125% by default.

- 1. Swipe the touch screen from the right to display the Action Center.
- 2. Touch the **All Settings** icon.
- 3. Choose **System** settings.
- 4. Make your selections from the Settings dialog.
- 5. If prompted, enter password SCOPEADMIN.
- 6. In MAUI, choose **File > Shutdown**, then press the Power button to restart.

## **Touch Screen Calibration**

Periodically calibrate the touch screen to maintain its accuracy and responsiveness. We recommend that you use a stylus rather than your finger for this procedure.

- 1. From the menu bar, choose **Utilities > Utilities Setup**.
- 2. On the Utilities main dialog, touch Touch-Screen Calibration.
- 3. Following the prompts, touch as close as possible to the center of each cross that appears on the screen until the calibration sequence is complete.

# Software and File Management

Due to the increased security of Windows 10, many more operations require Administrator permissions than did with previous versions of Windows. When doing any of the following from the default LeCroyUser account on Windows 10 oscilloscopes, you will be asked to supply the administrative **password SCOPEADMIN** (all uppercase).

- Installing software, both third-party applications and MAUI updates
- · Accessing third-party applications or running an application as an administrator
- Admitting third-party applications to make changes to the MAUI application
- Using Device Manager and making changes within it (such as installing new device drivers)
- Moving, deleting, or copying certain files
- Changing global settings

# X-StreamDSO Firmware Update

The XStreamDSO firmware installer updates multiple oscilloscope components including the MAUI application, required DLLs, device drivers and low-level microcode for integrated circuits.

The update *does not* modify or delete any saved panel setups, waveforms, screen captures, calibration constants, or other data stored on the D: drive.



**Caution:** Do not install any XStreamDSO version prior to 8.6.1.x on Windows 10 oscilloscopes. Doing so will disrupt the normal behavior of the software, unless you run the recovery procedure. To install firmware on Windows 10 machines, you must be logged on as an Administrator or supply the password SCOPEADMIN. The installation may take several minutes. **Do not power down at any point during the process.** 

### **Download Instructions**



**Tip:** If the oscilloscope has an internet connection, choose File > Exit to close MAUI and use the oscilloscope browser to download the installer directly.

- Visit our download page at <u>teledynelecroy.com/support/softwaredownload</u> and go to Oscilloscope Downloads > Firmware Upgrades.
- 2. Select your series and model number.
- 3. Enter your registration **login** information, or create a new account. You cannot proceed without an account.
- 4. Click the **download** link, and choose to **Save** the installer to the oscilloscope Desktop or to a USB storage device for transfer to the instrument.

# **Installation Instructions**

- 1. From the oscilloscope menu bar, choose File > Exit to close MAUI.
- 2. Browse to xstreamdsoinstaller\_x.x.x.x.exe and double-click it to launch the setup wizard.
- 3. On Windows 10 instruments running as a Standard user (the default state), enter the **Password SCOPEADMIN** (all uppercase).
- 4. Follow the installer prompts. Leave the default installation (recommended), or select individual components:
  - X-Stream DSO, DSO Device drivers, Upgrade DSO Microcode required for version upgrade
  - Touch Screen Driver required to use the display as a touch screen
  - Drivers for MSxx required for Mixed Signal devices MS-32, MS-250 and MS-500

Click Install when done.



**Note:** Not all components are available on all models. If you do not see an option above listed in your installer, it is not required for your instrument.

5. If you receive Windows security warnings, trust and Install the file.

#### WaveSurfer 510 Oscilloscope Operator's Manual

- 6. If you see the Hardware Programmers screen, accept all code installations, then click the **closebox** *after* you see that programming has completed to return to the X-Stream Setup wizard.
- 7. When installation is complete, choose **Reboot now** and click **Finish**.

#### **Release Notes**

Release Notes are provided for each new version. They can be found on the web page from which you downloaded the installer.

# **Switching Windows Users**

### Windows 10 oscilloscopes only

To maintain the highest security profile, the oscilloscope is shipped to run as the Standard user, LeCroyUser. If you need to run as an Administrator (e.g., to run compliance software), do the following to switch to LCRYADMIN. This will put the oscilloscope into a "legacy" mode where it will run most like it did on Windows 7.

- 1. Choose **File > Exit** to exit the oscilloscope application.
- 2. Open the Windows **Start menu**



4. Enter the password **SCOPEADMIN** (all uppercase).

To return to the default LeCroyUser account, repeat this procedure selecting **LeCroyUser** and entering the password **lecroyservice** (all lowercase).

You may create as many other new user accounts on the oscilloscope as you wish, provided you are logged in as LCRYADMIN when doing so. Contact your local Teledyne LeCroy office for instructions on creating new users without disrupting oscilloscope performance.



**Note:** As long as there are *any* Standard (non-administrative) users, the oscilloscope will reboot into the last active Standard user, regardless of whether you've switched to an administrative user. The only way to change this is to make LeCroyUser (and any other new users you create) an Administrator. Contact Customer Support for instructions on changing user privileges and creating new users on the oscilloscope.

# **Technical Support**

# **Live Support**

Registered users can contact their local Teledyne LeCroy service center at the number listed on our website.

You can also submit Technical Support requests via the website at:

teledynelecroy.com/support/techhelp

### Resources

Teledyne LeCroy publishes a free Technical Library on its website. Manuals, tutorials, application notes, white papers, and videos are available to help you get the most out of your Teledyne LeCroy products. Visit:

teledynelecroy.com/support/techlib

The Datasheet published on the product page contains the detailed product specifications.

## **Service Centers**

For a complete list of offices by country, including our sales & distribution partners, visit:

teledynelecroy.com/support/contact

Teledyne LeCroy 700 Chestnut Ridge Road Chestnut Ridge, NY, 10977, USA teledynelecroy.com

### Sales and Service:

Ph: 800-553-2769 / 845-425-2000 FAX: 845-578-5985 contact.corp@teledynelecroy.com

#### Support:

Ph: 800-553-2769 customersupport@teledynelecroy.com

# **Returning a Product for Service**

Contact your local Teledyne LeCroy service center for calibration or other service. If the product cannot be serviced on location, the service center will give you a **Return Material Authorization (RMA) code** and instruct you where to ship the product. All products returned to the factory must have an RMA.

**Return shipments must be prepaid.** Teledyne LeCroy cannot accept COD or Collect shipments. We recommend air-freighting. Insure the item you're returning for at least the replacement cost.

- 1. Remove all accessories from the device. Do not include the manual.
- 2. Pack the product in its case, surrounded by the original packing material (or equivalent).
- 3. Label the case with a tag containing:
  - The RMA
  - Name and address of the owner
  - Product model and serial number
  - Description of failure or requisite service
- 4. Pack the product case in a cardboard shipping box with adequate padding to avoid damage in transit.
- 5. Mark the outside of the box with the shipping address given to you by Teledyne LeCroy; be sure to add the following:
  - ATTN: <RMA code assigned by Teledyne LeCroy>
  - FRAGILE
- 6. If returning a product to a different country:
  - Mark the shipment as a "Return of US manufactured goods for warranty repair/recalibration."
  - If there is a cost for the service, list the cost in the Value column and the original purchase price "For insurance purposes only."
  - Be very specific about the reason for shipment. Duties may have to be paid on the value of the service.

Extended warranty, calibration, and upgrade plans are available for purchase. Contact your Teledyne LeCroy sales representative to purchase a service plan.

| Index                        | color                          |  |
|------------------------------|--------------------------------|--|
| Α                            | persistence 60                 |  |
| acquisition                  | cooling vi                     |  |
| pre-processing 14, 34        | coupling 6, 14, 33             |  |
| sampling mode 39             | cursor 63                      |  |
| settings 131                 | controls 66                    |  |
| action toolbar 15            | readout 14                     |  |
| activating traces 23         | D                              |  |
| altitude v                   | date and time 125              |  |
| analog                       | de-embedding 7                 |  |
| inputs 6                     | default setup 108, 133         |  |
| persistence 60               | degauss 35                     |  |
| attenuation 6                | delay 39, 131                  |  |
| auto naming 119              | post-trigger 39                |  |
| auto save 106                | pre-trigger 39                 |  |
| auto zero 35                 | derated voltage v              |  |
| AUX connectors 10, 124       | descriptor box 11, 14, 23      |  |
| averaging 14, 34, 81, 83     | deskew 14, 34                  |  |
| В                            | dialogs 15                     |  |
| bandwidth                    | display 9, 57                  |  |
| limiting 14, 33              | controls 58, 132               |  |
| BNC connectors 6             | extended 9                     |  |
| C                            | grid 12, 58                    |  |
| calibration 8, 124, 129, 138 | persistence 60                 |  |
| channel 32                   | Е                              |  |
| descriptor box 14            | email 115-116                  |  |
| frequency 7                  | enhanced resolution 14, 34, 83 |  |
| setup 33                     | enhanced sample rate 34        |  |
| cleaning vi                  | Ethernet 9                     |  |
|                              | extended display 9             |  |

| external monitor 9        | horizontal               |  |
|---------------------------|--------------------------|--|
| external trigger 6        | controls 39              |  |
| F                         | humidity v               |  |
| FFT 85                    | 1                        |  |
| file browser 118          | impedance 6              |  |
| file structure 118, 127   | import                   |  |
| filtering 14              | .trc files 107           |  |
| bandwidth 33              | setup panels 108         |  |
| LabNotebook entries 118   | input impedance 6        |  |
| noise 34, 83              | inputs                   |  |
| firmware 8                | analog 6                 |  |
| update 135                | intensity                |  |
| version 121               | grid 59                  |  |
| Flashback Recall 109, 111 | interfaces 6             |  |
| foreground trace 23       | ProBus 6                 |  |
| frequency 83              | interleaving 40          |  |
| response 7,85             | interpolation 34         |  |
| front panel 132           | inversion 14,34          |  |
| G                         | IP address 9, 122        |  |
| gain 33, 131              | L                        |  |
| gating measurements 69    | labelling traces 26, 110 |  |
| GPIB 122                  | LabNotebook 11, 109-110  |  |
| grid 12, 47               | recall 111               |  |
| indicators 13             | save 109, 116            |  |
| intensity 13, 59          | language selection 8     |  |
| style 58                  | logs                     |  |
| H                         | remote control event 123 |  |
| hard drive 127            | М                        |  |
| holdoff 54                | mask testing 99          |  |

| math 77,92              | power                                  |  |
|-------------------------|----------------------------------------|--|
| descriptor box 14       | ratings vi                             |  |
| function setup 77       | standby 7                              |  |
| operators 77            | pre-processing 14                      |  |
| measurements 67         | pre-trigger delay 39                   |  |
| cursors 63              | preferences 128                        |  |
| gating 69               | printing 9, 29, 116, 132               |  |
| graphing 76             | probes 7                               |  |
| pass/fail testing 99    | settings 35                            |  |
| readout 75              | ProBus interface 6                     |  |
| statistics 70           | Q                                      |  |
| measurements; status 75 | qualified trigger 53                   |  |
| measuring terminals v   | <b>R</b><br>real-time sampling mode 41 |  |
| memory 93-94, 101, 103  | recall                                 |  |
| descriptor box 14       | LabNotebooks 111                       |  |
| memory length 40        | reference clock 10                     |  |
| multi-grid display 12   | remote control 9, 122, 132             |  |
| multi-stage triggers 53 | reports 109, 114                       |  |
| N<br>noise 14           | rescaling 87                           |  |
| noise 14                | restart/reboot 133                     |  |
| offset 131              | restore                                |  |
| operating environment v | waveforms 94                           |  |
| options 8, 126          | returns 138                            |  |
| P                       | RH v                                   |  |
| parameter compare 99    | RIS sampling mode 42                   |  |
| pass/fail testing 99    | roll sampling mode 42                  |  |
| persistence 60          | S                                      |  |
| trace styles 60         | sample points 40                       |  |
| post-trigger delay 39   | sample rate 40-42                      |  |

| sa                          | mpling mode 39          | technical support 137-138 |
|-----------------------------|-------------------------|---------------------------|
|                             | real-time 41            | temperature v             |
|                             | RIS 42                  | timebase 39, 131          |
|                             | roll 42                 | controls 39               |
|                             | sequence 42             | descriptor box 14         |
|                             | WaveStream 41           | touch screen 9,11         |
| save                        |                         | calibration 134           |
|                             | data 109                | language 8                |
|                             | setup panels 109        | traces                    |
|                             | waveforms 93            | activating 24             |
| screen capture 29, 105, 116 |                         | context menu 25           |
| search 95                   |                         | copy 93                   |
| se                          | quence sampling mode 42 | descriptor boxes 14       |
| se                          | rial triggers 132       | label 26, 109-110         |
| se                          | rvice 137-138           | line style 59             |
| se                          | tup panels 103, 108-109 | persistence 60            |
| sir                         | 1x 14, 34               | recall 107, 109           |
| software options 8, 126     |                         | save 101, 109             |
| sound 128                   |                         | turn on/off 24            |
| support 137-138             |                         | TRC files 93              |
| sy                          | stem                    | trend 76                  |
|                             | hibernate 8             | trigger 47                |
|                             | on/off 7                | controls 47, 49, 54       |
|                             | status 121              | counter 54, 131           |
|                             | timestamp 125           | delay 39                  |
| T tables 104                |                         | descriptor box 14         |
|                             |                         | holdoff 54                |
| т.                          | auto save 106           | time 54                   |
| 1 (                         | PAP 9                   |                           |

```
U
undo 11
units 87
utilities 121
٧
vertical 32
  controls 33
  offset 33
  resolution 83
  sensitivity 32-33
W
waveform files 93, 102
  auto save 106
  recall 107
WaveScan 41,95
WaveStream sampling mode 41
WaveStudio 132
Windows
  networking 9
  power settings 8
XY plots 59
Ζ
zoom 22, 24, 27
  controls 132
  descriptor box 14
  undo 11
```



700 Chestnut Ridge Road Chestnut Ridge, NY 10977 USA

teledynelecroy.com