

Si9145

Vishay Siliconix

Low-Voltage Switchmode Controller

FEATURES

- 2.7-V to 7-V Input Operating Range
- Voltage-Mode PWM Control
- High-Speed, Source-Sink Output Drive (200 mA)
- Internal Oscillator (up to 2 MHz)
- Standby Mode
- 0-100% Controllable Maximum Duty-Cycle

DESCRIPTION

The Si9145 switchmode controller IC is ideally suited for high efficiency dc/dc converters in low input voltage systems. Operation is guaranteed down to 2.7 V, with a minimum start-up voltage of 3.0 V making the Si9145 ideal for use with NiCd, NMH, and lithium ion battery packs. A mode select pin allows the output driver polarity to be programmed allowing the device to function as a step-up or step-down converter.

Features include a precision bandgap reference, a wide bandwidth error amplifier, a 2-MHz oscillator, an input voltage monitor with standby mode and a 200-mA output driver.

Supply current in normal operation is typically 1.1 mA and 250 μ A in standby mode.

The Si9145 implements conventional voltage mode control. The maximum duty cycle in boost mode can be limited by voltage on D_{MAX}/SS pin. Frequency can be externally programmed by selection of R_{OSC} and C_{OSC} .

The Si9145 is available in both standard and lead (Pb)-free 16-pin SOIC and TSSOP packages and is specified over the industrial temperature range (-25° C to 85° C).

Pentium[™] is a trademark of Intel Corporation. PowerPC[™] is a trademark of IBM.

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND.

V _{DD} , V _S
P_{GND} $\pm 0.3 \: V$
V_{DD} to V_{S}
Linear Inputs $\ldots \ldots -0.3$ V to V_DD to +0.3 V
Logic Inputs
Continuous Output Current 100 mA
Storage Temperature65 to 125°C
Operating Junction Temperature

Power Dissipation (Package) ^a 16-Pin SOIC (Y Suffix) ^b
Thermal Impedance (Θ_{JA}) 16-Pin SOIC 140°C/W 16-Pin TSSOP 135°C/W

Notes a. Device mounted with all leads soldered or welded to PC board. b. Derate 7.2 mW/°C above 25°C. c. Derate 7.4 mW/°C above 25°C.

RECOMMENDED OPERATING RANGE

Voltages Referenced to GND.

V _{DD}
$V_{\rm S}$
f _{OSC} 2 kHz to 2 MHz
R_{OSC}

C _{OSC} 47 pF to 200 pF
Linear Inputs 0 to V _{DD}
Digital Inputs 0 to V _{DD}
V_{REF} Load Resistance \ldots >150 k Ω

SPECIFICATIONS							
		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		Limits B Suffix – 25 to 85°C			
Parameter	Symbol			Min ^b	Тур	Max ^b	Unit
Reference							
		I _{REF} = –10 μA		1.455		1.545	
Output Voltage	V _{REF}		$T_A = 25^{\circ}C$	1.477	1.50	1.523	- V
Oscillator							
Maximum Frequency ^c	f _{MAX}	V_{CC} = 3.0 V, C_{OSC} = 47 pF, R_{OSC} = 5.0 k Ω		2.0			
Accuracy	fosc	$V_{CC} = 3.0 \text{ V}$ $C_{OSC} = 100 \text{ pF}, \text{ R}_{OSC} = 6.98 \text{ k}\Omega$	T _A = 25°C	0.85	1.0	1.15	MHz
R _{OSC} Voltage	V _{ROSC}				1.0		
Minimum Start-Up Voltage	V _{DDOSC}			3.0			v
50% D _{MAX} /SS	V _{DMAX} 50%	MODE SELECT = V _{DD}			1.30		-
100% D _{MAX} /SS	V _{DMAX} 100%				1.58		1
D _{MAX} /SS Input Current	IDMAX	$D_{MAX} = 0$ to V_{DD}		-100		100	nA
		2.7 V \leq V_{DD} \leq 7 V, Ref to 4.8 V		-16		16	1
Voltage Stability ^c	. 5/6	2.7 V \leq V_{DD} \leq 4.2 V, Ref to 3.5 V	T _A = 25°C	-8		8	1 _
	∆f/f	3.8 V \leq V _{DD} \leq 5.6 V, Ref to 4.7 V		-7		7	~ %
Temperature Stability ^c	7	Referenced to 25°C	1		±5		1

SPECIFICATIONS						
		Test Conditions Unless Otherwise Specified ^a	Limits B Suffix – 25 to 85°C			
Parameter	Symbol	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 7 \text{ V}, \text{V}_{\text{DD}} = \text{V}_{\text{S}}$ GND = P_{GND}	Min ^b	Тур	Max ^b	Unit
Error Amplifier (C _{OSC} = G	ND, OSC DISAE	BLED)		1		1
Input Bias Current	I _{FB}	$V_{NI} = V_{REF}$, $V_{FB} = 1.0$ V	-1.0		1.0	μA
Open Loop Voltage Gain	A _{VOL}		47	55		dB
Offset Voltage	V _{OS}	V _{NI} = V _{REF}	-15	0	15	mV
Unity Gain Bandwidth ^c	BW			10		MHz
<u></u>		Source (V _{FB} = 1 V, NI = V _{REF})		-2.0	-1.0	
Output Current	IEA	Sink (V _{FB} = 2 V, NI = V _{REF})	0.4	0.8		mA
Power Supply Rejection ^c	P _{SRR}	2.7 V < V _{DD} < 7.0 V		60		dB
UVLO _{SET} Voltage Monitor						•
	V _{UVLOHL}	UVLO _{SET} High to Low	0.85	1.0	1.15	
Under Voltage Lockout	V _{UVLOLH}	UVLO _{SET} Low to High		1.2		- V
Hysterisis	V _{HYS}	V _{UVLOLH} – V _{UVLOHL}		200		mV
UVLO Input Current	I _{UVLO}	$V_{UVLO} = 0$ to V_{DD}	-100		100	nA
Output	I I					
Output High Voltage	V _{OH}	V _{DD} = 2.7 V, I _{OUT} = -10 mA	2.55	2.60		
Output Low Voltage	V _{OL}	V _{DD} = 2.7 V, I _{OUT} = 10 mA		0.06	0.15	- V
Peak Output Current	ISOURCE	$V_{DD} = 2.7 \text{ V}, V_{OUT} = 0 \text{ V}$		-180	-130	
Peak Output Current	I _{SINK}	V_{DD} = 2.7 V, V_{OUT} = 2.7 V	150	200		mA
Logic	1 I					
ENABLE Delay to Output	td _{EN}	ENABLE Rising to OUTPUT		1.5		vs
ENABLE Logic Low	V _{ENL}				0.2 V _{DD}	
ENABLE Logic High	V _{ENH}		0.8 V _{DD}			- V
ENABLE Input Current	I _{EN}	ENABLE = 0 to V _{DD}	-1.0		1.0	μA
MODE SELECT Logic Low	V _{MODEL}				0.2 V _{DD}	
MODE SELECT Logic High	V _{MODEH}		0.8 V _{DD}			- V
MODE SELECT Input Current	I _{MODE}	MODE SELECT = 0 to V_{DD}	-1.0		1.0	μA
Over Temperature Sense	·					
Trip Point	T _{TRIP}			150		°C
Output Low Voltage	V _{OTSL}	V_{DD} = 2.7 V, I_{OUT} = 1 μ A		0.06	0.15	
Output High Voltage	V _{OTSH}	V_{DD} = 2.7 V, I_{OUT} = $-1~\mu A$	2.55	2.6		V
Supply						
Quarte Quarter March 144		V_{DD} = 2.7 V, f_{OSC} = 1 MHz, R_{OSC} = 6.98 k Ω		1.1	1.5	
Supply Current – Normal Mode	I _{DD}	V_{DD} = 7 V, f_{OSC} = 1 MHz, R_{OSC} = 6.98 k Ω		1.6	2.3	mA
Supply Current – Standby Mode	1 +	ENABLE = Low		250	330	μΑ

Notes a. $C_{STRAY} < 5 \text{ pF}$ on C_{OSC} . After Start-Up, V_{DD} of $\geq 3 \text{ V}$. b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. c. Guaranteed by design, not subject to production testing.

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Si9145 Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Document Number: 70021 S-40710—Rev. K, 19-Apr-04

Si9145

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

TIMING WAVEFORMS Standby Start-Up (UVLO) Normal (Duty Cycle Limit) ENABLE MODE SELECT 1.2 V **UVLO_{SET}** 1.0 V 1.0 V R_{OSC} $\mathbf{C}_{\mathsf{OSC}}$ ON OUTPUT OFF >1.5 V Set for 50% Max. D_{MAX}/SS

Figure 1. Si9145 Timing Diagram (MODE SELECT = High)

Figure 2. Si9145 Timing Diagram (MODE SELECT = Low)

Vishay Siliconix

PIN CONFIGURATIONS

ORDERING INFORMATION-SOIC-16				
Part Number Temperature Range				
Si9145BY-T1	–25° to 85°C			
Si9145BY-T1—E3	-23 10 85 °C			

ORDERING INFORMATION-TSSOP-16				
Part Number Temperature Range				
Si9145BQ-T1	–25° to 85°C			
Si9145BQ-T1—E3	-23 10 85 0			

PIN DESCRIPTION

Pin 1: V_{DD}

The positive power supply for all functional blocks except output driver. A bypass capacitor of 0.1 μF (minimum) is recommended.

Pin 2: MODE SELECT

This pin is used to enable maximum duty cycle limit and set output polarity of controller. When connected to V_{DD}, the maximum duty cycle function is controlled by the D_{MAX}/SS pin. The maximum duty cycle limit is usually used for forward, flyback, and boost converters. The output polarity is high when the PWM circuitry requires the external device to be turned on.

When connected to GND, the maximum duty cycle is not limited (usually for buck converters driving a p-channel MOS). The output polarity is low when the PWM circuitry requires the external PMOS to be turned on.

Pin 3: D_{MAX}/SS

 D_{MAX}/SS pin controls the maximum duty cycle achievable by the PWM circuitry when the MODE SELECT = $V_{DD}.$

When D_{MAX} /SS is at less than 1.0 V (typical) the OUTPUT is held low (0% duty cycle). When D_{MAX} /SS is at more than 1.5 V (typical), the PWM circuitry can achieve 100% duty cycle. With

voltage at D_{MAX} /SS between 1.0 V and 1.5 V, the maximum duty cycle is proportionally limited to this voltage.

The addition of external components can implement a soft start function.

Pin 4: COMP

This pin is the output of the error amplifier. A compensation network is connected from this pin to the FB pin to stabilize the system. This pin drives one input of the internal pulse width modulation comparator.

Pin 5: FB

The inverting input of the error amplifier. External resistors are connected to this pin to set the regulated output voltage. The compensation network is also connected to this pin.

Pin 6: NI

The non-inverting input of the error amplifier. In normal operation it is externally connected to the V_{REF} pin.

Pin 7: V_{REF}

This pin supplies 1.5 V trimmed to $\pm 1.5\%$. The reference voltage is generated by a band-gap reference.

Pin 8: GND

Negative return for V_{DD}.

Pin 9: Rosc

This pin is the equivalent of a 1.0-V voltage source derived from the on-chip V_{REF}. When a low T.C. resistor is externally connected from this pin to GND, a temperature independent current is generated internally. This current is used as the charging current source connected to the C_{OSC} pin. The current is internally multiplied by 2 and is used as the discharging current source connected to the C_{OSC} pin. Therefore, the external resistor is one of the factors that determine the oscillator frequency.

Pin 10: COSC

An external capacitor is connected to this pin to set the oscillator frequency. Internal current sources alternately charge and discharge the external capacitor. The oscillator waveform is a symmetrical triangular type with a typical voltage swing between 1.0 V and 1.5 V.

$$f_{OSC} \simeq \frac{0.7}{R_{OSC} * C_{OSC}}$$

Pin 11: OTS

This pin indicates an over-temperature condition on the device when the output is low. The output is latched low and is reset with the ENABLE pin going low then high, or by turning power off and on.

Pin 12: ENABLE

A logic high on this pin allows normal operation. A logic low places the chip in the standby mode. In standby mode normal operation is disabled, supply current is reduced, the oscillator stops and the output is held high for MODE SELECT = low, and low for MODE SELECT = high.

Pin 13: UVLOSET

This pin will place the chip in the standby mode if the UVLO_{SET} voltage drops below 1.2 V. Once the UVLO_{SET} voltage exceeds 1.2 V, the chip operates normally. There is a built-in hysteresis of 200 mV.

Pin 14: PGND

The negative return for the V_S supply.

Pin 15: OUTPUT

This CMOS push-pull output pin drives the external MOSFET and is capable of sinking 150 mA or sourcing 130 mA with $\rm V_S$ equal to 2.7 V.

Pin 16: V_S

The positive terminal of the power supply which powers the CMOS output driver. A bypass capacitor is required.

Vishay Siliconix

APPLICATIONS

Figure 4. Non-Isolated Step Down Buck Converter for $V_{OUT} < V_{IN}$

Figure 5. Non-Isolated Synchronous Buck Converter for $V_{OUT} < V_{IN}$

Package Information Vishay Siliconix

SOIC (NARROW): 16-LEAD (POWER IC ONLY)

JEDEC Part Number: MS-012

	MILLIM	IETERS	INC	HES
Dim	Min	Max	Min	Max
Α	1.35	1.75	0.053	0.069
A ₁	0.10	0.20	0.004	0.008
В	0.38	0.51	0.015	0.020
С	0.18	0.23	0.007	0.009
D	9.80	10.00	0.385	0.393
Е	3.80	4.00	0.149	0.157
е	1.27 BSC 0.050 BSC			BSC
Н	5.80	6.20	0.228	0.244
L	0.50	0.93	0.020	0.037
\oslash	0 °	8°	0°	8°

Package Information

Vishay Siliconix

TSSOP: 16-LEAD

	DIMENSIONS IN MILLIMETERS				
Symbols	Min	Nom	Мах		
A	-	1.10	1.20		
A1	0.05	0.10	0.15		
A2	-	1.00	1.05		
В	0.22	0.28	0.38		
С	-	0.127	-		
D	4.90	5.00	5.10		
E	6.10	6.40	6.70		
E1	4.30	4.40	4.50		
е	-	0.65	-		
L	0.50	0.60	0.70		
L1	0.90	1.00	1.10		
у	-	-	0.10		
θ1	0°	3°	6°		
ECN: S-61920-Rev. D, 23-Oct-06 DWG: 5624					

PAD Pattern

Vishay Siliconix

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.