ROHM

STRUCTURE	Silicon Monolithic Integrated Circuit
PRODUCT SERIES	2ch Motor Driver
ТҮРЕ	BD6884GUW
FEATURES	Built in 1 Constant-Voltage Driver
	Built in 1 Linear Constant-Current Driver

•Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limit	Unit
Power supply voltage	VCC	-0.5 to +6.5	V
Motor power supply voltage	VM	-0.5 to +6.5	V
Control input voltage	VIN	-0.5 to VCC+0.5	V
Input voltage for Constant-Voltage setting	VLIM	-0.5 to VM+0.5	V
Power dissipation	Pd	540 ^{*1}	mW
Operating temperature range	Topr	-25 to +85	°C
Junction temperature	Tjmax	150	°C
Storage temperature range	Tstg	-55 to +150	°C
H-bridge output current	lout	-800 to +800 ^{*2}	mA/ch

*1 Reduced by 4.32mW/°C over 25°C, when mounted on a glass epoxy board (70mm × 70mm × 1.6mm)
*2 Must not exceed Pd, ASO, or Tjmax of 150°C.

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	VCC	2.5	3.0	5.5	V
Motor power supply voltage	VM	2.5	5.0	5.5	V
Control input voltage	VIN	0	-	VCC	V
Input voltage for Constant-Voltage setting	VLIM	0	-	VM	v
H-bridge output current	lout	-	-	±500 ^{*3}	mA/ch

●Operating Conditions (Ta= -25°C to +85°C)

*3 Must not exceed Pd or ASO.

The product described in this specification is a strategic product (and/or service) subject to COCOM regulations. It should not be exported without authorization from the appropriate government authorities. This product isn't designed for protection against radioactive rays.

Package Outline

Fig.1 VBGA035W040 Package (Unit: mm)

Block Diagram

Fig.3 BD6884GUW Block Diagram

• Pin Arrangement (Top View)

	1	2	3	4	5	6
Α	N.C.	VREF	CLIMH	CLIML	CLIMS	N.C.
в		IN2A	N.C.	VLIM	IN1A	SEL
С	PS	IN2B	N.C.	N.C.	IN1B	GND
D	vcc	VM2	N.C.	N.C.	VM1	N.C.
E	RNF	SENSE	N.C.	N.C.	N.C.	PGND
F	N.C.	OUT2A	OUT2B	OUT1B	OUT1A	N.C.

Fig.2 BD6884GUW Pin Arrangement (Top View)

•Pin No. and Pin Name

Nia	Dia	NI.	D'
No.	Pin name	No.	Pin name
1A	N.C.	1D	VCC
2A	VREF	2D	VM2
3A	CLIMH	3D	N.C.
4A	CLIML	4D	N.C.
5A	CLIMS	5D	VM1
6A	N.C.	6D	N.C.
1B		1E	RNF
2B	IN2A	2E	SENSE
3B	N.C.	3E	N.C.
4B	VLIM	4E	N.C.
5B	IN1A	5E	N.C.
6B	SEL	6E	PGND
1C	PS	1F	N.C.
2C	IN2B	2F	OUT2A
3C	N.C.	3F	OUT2B
4C	N.C.	4F	OUT1B
5C	IN1B	5F	OUT1A
6C	GND	6F	N.C.

rohm

•BD6884GUW Electrical Characteristics (Unless otherwise specified, Ta=25°C, VCC=3.0V, VM=5.0V)

Deremeter	Symbol	Limit		Unit	Conditions	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Overall						
Circuit current during standby operation	ICCST	-	0	10	μA	PS=L
Circuit current 1	ICC	-	1.0	1.5	mA	PS=H with no signal
Circuit current 2	IM	-	0.4	0.7	mA	PS=H, and VLIM=5V with no signal
Control input						
High-level input voltage	VINH	2.0	-	-	V	INxA, INxB, SEL, CLIMS, PS
Low-level input voltage	VINL	-	-	0.7	V	INxA, INxB, SEL, CLIMS, PS
High-level input current	IINH	15	30	60	μA	INxA, INxB, SEL, CLIMS, PS; VIN=3V
Low-level input current	IINL	-1	0	-	μA	INxA, INxB, SEL, CLIMS, PS; VIN=0V
Pull-down resistor	RIN	50	100	200	kΩ	INxA, INxB, SEL, CLIMS, PS
Input for Constant-Voltage se	etting					
Input current	IVLIM	-1.5	-0.5	-	μA	VLIM=0V
UVLO						
UVLO voltage	VUVLO	1.6	-	2.4	V	
Constant-Voltage Drive block	(ch1)					
Output ON-Resistance	RON	-	1.5	2.0	Ω	lo=±400mA on high and low sides in tota
Output high-level voltage	VOH	1.9×VLIM	2.0×VLIM	2.1×VLIM	V	VLIM=1V with 10Ω load
Turn-on time	ton	-	1.5	5.0	μs	VLIM=VM with 10Ω load ^{*4}
Turn-off time	toff	-	0.1	2.0	μs	VLIM=VM with 10Ω load ^{*4}
Rise time	tr	•	2.0	8.0	μs	VLIM=VM with 10Ω load*4
Fall time	tf	-	0.05	1.0	μs	VLIM=VM with 10Ω load*4
Linear Constant-Current Driv	e block (ch2	2)				•
Output ON-Resistance	RON	-	1.0	1.25	Ω	lo=±400mA on high and low sides in tota
VREF output voltage	VREF	0.88	0.90	0.92	V	lout=0~1mA
Output limit voltage 1	VOL1	291	300	309	mV	RNF=1.5Ω with 10Ω load, CLIM=0.3V
Output limit voltage 2	VOL2	437	450	463	mV	RNF=1.5Ω with 10Ω load, CLIM=0.45
Output limit voltage 3	VOL3	194	200	206	mV	RNF=0.5Ω with 10Ω load, CLIM=0.2V
Min. value for output current setting	IOLMIN	60	-	-	mA	RNF=2.5Ω
Turn-on time	ton	•	1.0	5.0	μs	RNF=0.5 Ω with 10 Ω load, CLIM=0.2V ^{*4}
Turn-off time	toff	-	0.1	2.0	μs	RNF=0.5Ω with 10Ω load, CLIM=0.2V*4
Rise time	tr	-	0.5	8.0	μs	RNF=0.5Ω with 10Ω load, CLIM=0.2V*4
Fall time	tf	-	0.07	1.0	μs	RNF=0.5Ω with 10Ω load, CLIM=0.2V*4

*4 Design target value (No total shipped devices are fully tested.)

●I/O Truth Table

BI	J6884	6884GUW Constant-Voltage Driver ch1 I/O Truth Table				
Input			INPUT		OUT	PUT
mode	PS	SEL	IN1A	IN1B	OUT1A	OUT1B
			L	X	Z	Z
EN/IN		L	Н	L	Н	L
			Н	Н	L	Н
	н		L	L	Z	Z
IN/IN		н	Н	L	Н	L
			L	Н	L	Н
			Н	Н	L	L
-	L	Х	Х	X	Z	Z

BD6884GUW Constant-Voltage Driver ch1 I/O Truth Table

L: Low, H: High, X: Don't care, Z: High Impedance

The OUTPUTs are provided with feed back resistor. This is so that GND voltage will be output, when the OUTPUT is "Z".

Input		INPUT		OUT	PUT
Input mode	PS	IN2A	IN2B	OUT2A	OUT2B
		L	X	Z	Z
EN/IN	н	н	L	Н	L
		Н	н	L	Н
-	L	X	X	Z	Z

BD6884GUW Linear Constant-Current Driver ch2 I/O Truth Table

L: Low, H: High, X: Don't care, Z: High Impedance

•Operation Notes

(1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range (Topr) may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. The implementation of a physical safety measure such as a fuse should be considered when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.

(2) Power supply lines

Regenerated current may flow as a result of the motor's back electromotive force. Insert capacitors between the power supply and ground pins to serve as a route for regenerated current. Determine the capacitance in full consideration of all the characteristics of the electrolytic capacitor, because the electrolytic capacitor may loose some capacitance at low temperatures. If the connected power supply does not have sufficient current absorption capacity, regenerative current will cause the voltage on the power supply line to rise, which combined with the product and its peripheral circuitry may exceed the absolute maximum ratings. It is recommended to implement a physical safety measure such as the insertion of a voltage clamp diode between the power supply and GND pins.

(3) Ground potential

Ensure a minimum GND pin potential in all operating conditions.

(4) Setting of heat

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

(5) Actions in strong magnetic field

Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction.

(6) ASO

When using the IC, set the output transistor for the motor so that it does not exceed absolute maximum ratings or ASO.

(7) Thermal shutdown circuit

This IC incorporates a TSD (thermal shutdown) circuit (TSD circuit). If the temperature of the chip reaches the following temperature, the motor coil output will be opened. The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.

TSD ON temperature [°C]	Hysteresis temperature [°C]
(Тур.)	(Тур.)
175	25

(8) Ground Wiring Pattern

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

ROHM

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.

Please contact our sales offices for details ;

U.S.A / San Diego Atlanta Dallas	TEL : +1(858)625-3630 TEL : +1(770)754-5972 TEL : +1(972)312-8818	FAX : +1(858)625-3670 FAX : +1(770)754-0691 FAX : +1(972)312-0330
Germany / Dusseldorf	TEL : +49(2154)9210	FAX : +49(2154)921400
United Kingdom / London	TEL : +44(1)908-282-666	FAX : +44(1)908-282-528
France / Paris	TEL : +33(0)1 56 97 30 60	FAX : +33(0) 1 56 97 30 80
China / Hong Kong Shanghai Dilian Beijing	TEL : +852(2)740-6262 TEL : +86(21)6279-2727 TEL : +86(411)8230-8549 TEL : +86(10)8525-2483	FAX : +852(2)375-8971 FAX : +86(21)6247-2066 FAX : +86(411)8230-8537 FAX : +86(10)8525-2489
Taiwan / Taipei	TEL : +866(2)2500-6956	FAX : +866(2)2503-2869
Korea / Seoul	TEL : +82(2)8182-700	FAX : +82(2)8182-715
Singapore	TEL : +65-6332-2322	FAX : +65-6332-5662
Malaysia / Kuala Lumpur	TEL : +60(3)7958-8355	FAX : +60(3)7958-8377
Philippines / Manila	TEL : +63(2)807-6872	FAX : +63(2)809-1422
Thailand / Bangkok	TEL : +66(2)254-4890	FAX : +66(2)256-6334

Tokyo	2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082 TEL : +81(3)5203-0321 FAX : +81(3)5203-0300
Yokohama	2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575 TEL : +81(45)476-2131 FAX : +81(45)476-2128
Nagoya	Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya,Aichi 450-0002 TEL : +81(52)581-8521 FAX : +81(52)561-2173
Kyoto	579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokoujidori, Shimogyo-ku Kyoto 600-8216 TEL : +81(75)311-2121 FAX : +81(75)314-6559
Contact addr	ess for overseas customers in Japan)
Yokohama	TEL : +81(45)476-9270 FAX : +81(045)476-9271

As of 18th. April 2005