

STGAP2HD

Galvanically isolated 4 A dual gate driver

Features

- High voltage rail up to 1200 V
- Driver current capability: 4 A sink/source @ 25 °C
- dV/dt transient immunity ±100 V/ns
- Overall input-output propagation delay: 75 ns
- Separate sink and source option for easy gate driving configuration
- 4 A Miller CLAMP
- UVLO function
- Configurable interlocking function
- Dedicated SD and BRAKE pins
- Gate driving voltage up to 26 V
- 3.3 V, 5 V TTL/CMOS inputs with hysteresis
- Temperature shutdown protection
- Standby function
- 6 kV galvanic isolation
- Wide Body SO-36W
- UL 1577 recognized

Application

- · Motor driver for industrial drives, factory automation, home appliances and fans
- 600/1200 V inverters
- Battery chargers
- Induction heating
- Welding
- UPS
- Power supply units
- DC-DC converters
- Power Factor Correction

Description

The STGAP2HD is a dual gate driver which provides galvanic isolation between each gate driving channel and the low voltage control and interface circuitry. The gate driver is characterized by 4 A current capability and rail-to-rail outputs, making it suitable for mid and high power applications such as power conversion and industrial motor driver inverters. The separated output pins allow to independently optimize turn-on and turn-off by using dedicated gate resistors, while the Miller CLAMP function allows avoiding gate spikes during fast commutations in half-bridge topologies. The device integrates protection functions: dedicated SD and BRAKE pins are available, UVLO and thermal shutdown are included to easily design high reliability systems. In half-bridge topologies the interlocking function prevents outputs from being high at the same time, avoiding shoot-through conditions in case of wrong logic input commands. The interlocking function can be disabled by a dedicated configuration pin, so to allow independent and parallel operation of the two channels. The input to output propagation delay results are contained within 75 ns, providing high PWM control accuracy. A standby mode is available in order to reduce idle power consumption.

1 Block diagram

Figure 1. Block diagram

2 Pin description and connection diagram

O_A
O_A
<u>^</u> A
A
۱.
_В
О_В
В
5

Figure 2. Pin connection (top view)

Table 1. Pin description

Pin number	Pin name	Туре	Function
6	VDD	Power supply	Control logic supply voltage.
7	INA	Logic input	Control logic input for Channel A, active high.
8	INB	Logic input	Control logic input for Channel B, active high.
9	SD	Logic input	Shutdown input, active low.
10	BRAKE	Logic input	Control logic input, active low.
11	iLOCK	Analog input	Interlocking enable/disable.
13	GND	Power supply	Control logic ground.
20	VH_B	Power supply	Channel B gate driving positive supply.
22	GON_B	Analog output	Channel B source output.
25	CLAMP_B	Analog output	Channel B Miller Clamp.
23	GOFF_B	Analog output	Channel B sink output.
24	GNDISO_B	Power supply	Channel B gate driving isolated ground.
30	VH_A	Power supply	Channel A gate driving positive supply.
31	GON_A	Analog output	Channel A source output.
33	CLAMP_A	Analog output	Channel A Miller Clamp.
32	GOFF_A	Analog output	Channel A sink output.
34, 35	GNDISO_A ⁽¹⁾	Power supply	Channel A gate driving isolated ground.
1, 2, 3, 4, 5, 12, 14, 15, 16, 17, 18	N.C.	Not connected.	

1. Both GNDISO_A pins must be connected and shorted together.

3 Electrical data

3.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Test condition	Min.	Max.	Unit
VDD	Logic supply voltage vs. GND		-0.3	6.5	V
V _{LOGIC}	Logic pins voltage vs. GND		-0.3	6.5	V
iLOCK	Interlocking Enable vs. GND		-0.3	VDD + 0.3	V
VH_x	Positive supply voltage (VH_x vs GNDISO_x)		-0.3	28	V
V _{OUT}	Voltage on gate driver outputs (GON_x , GOFF_x , CLAMP_x vs GNDISO_x)		-0.3	VH_x + 0.3	V
TJ	Junction temperature		-40	150	°C
T _S	Storage temperature		-50	150	°C
ESD	HBM (human body model)			2	kV

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Package	Value	Unit
R _{th(JA)}	Thermal resistance junction to ambient	SO-36W	52	°C/W

3.3 Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Max.	Unit
VDD	Logic supply voltage vs. GND		3.1	5.5	V
VLOGIC	Logic pins voltage vs. GND		0	5.5	V
iLOCK	Interlocking Enable vs. GND		0	VDD	V
VH_x	Positive supply voltage (VH_x vs. GNDISO_x)			26	V
GNDISO _{A-B} ⁽¹⁾	Floating grounds differential voltage (GNDISO_A - GNDISO_B)		-1700	+1700	V
VIORM	Primary to secondary ground (GND - GNDISO_A); (GND - GNDISO_B)		-1200	+1200	V
F _{SW}	Maximum switching frequency ⁽²⁾			1	MHz
tout	Output pulse width (GON_x, GOFF_x vs GNDISO_x)		100		ns
T _J	Operating junction temperature		-40	125	°C

1. Characterization data, 1200 V max. tested in production.

2. Actual limit depends on power dissipation and T_{J} .

4 Electrical characteristics

Table 5. Electrical characteristics (TJ = 25 °C, VH_x = 15 V, VDD = 5 V unless otherwise specified)

Symbol	Pin	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Dynamic chara	acteristics						
t _{Don}	INA, INB, SD, BRAKE	Input to output propagation delay ON	See Figure 8	50	75	90	ns
t _{Doff}	INA, INB, SD, BRAKE	Input to output propagation delay OFF	See Figure 8	50	75	90	ns
t _r		Rise time	C _L = 4.7 nF,		30		ns
t _f		Fall time	See Figure 8		30		ns
MT		Matching time ⁽¹⁾				20	ns
t _{deglitch}	INA, INB, SD, BRAKE	Inputs deglitch filter			20	40	ns
CMTI ⁽²⁾		Common-mode transient immunity, dVISO/dt	V _{CM} = 1500 V, see Figure 9	100			V/ns
Supply voltage	9	· · ·					
VH _{on}		VH_x UVLO turn-on threshold		8.6	9.1	9.6	V
VH _{off}		VH_x UVLO turn-off threshold		7.9	8.4	8.9	V
V _{Hhyst}		VH_x UVLO hysteresis		600	750	950	mV
I _{QHU_A} I _{QHU_B}		VH undervoltage quiescent supply current	VH = 7 V		1.3	1.8	mA
I _{QH_A} I _{QH_B}		VH_x quiescent supply current			1.3	1.8	mA
I _{QHSBY_A} I _{QHSBY_B}		Standby VH_x quiescent supply current			400	550	μA
SafeClp		GOFF active clamp	I _{GOFF} = 0.2 A; VH floating		2	2.3	V
I _{QDD}		VDD quiescent supply current			1.8	2.4	mA
I _{QDDSBY}		Stand-by VDD quiescent supply current	Standby mode		40	80	μA
Logic inputs		· · ·					
V _{il}	INA, INB, SD, BRAKE	Low-level logic threshold voltage		0.29·VDD	0.33·VDD	0.37·VDD	V
V _{ih}	INA, INB, SD, BRAKE	High-level logic threshold voltage		0.62·VDD	0.66·VDD	0.72·VDD	V
I _{logic_h}	INA, INB, SD, BRAKE	Logic inputs high-level input bias current	V _{logic} = 5 V	33	50	70	μA
I _{logic_I}	INA, INB, SD, BRAKE	Logic inputs low-level input bias current	V _{logic} = 0 V			1	μA
R _{pd}	INA, INB, SD, BRAKE	Logic inputs pull-down resistor		70	100	150	kΩ
nterlocking		· · · · · · · · · · · · · · · · · · ·					
iLOCKen	iLOCK	Interlockng enable voltage		0.7·VDD			v

Symbol	Pin	Parameter	Test conditions	Min.	Тур.	Max.	Uni
iLOCK_I	iLOCK	iLOCK low-level bias current	iLOCK = GND	35	55	75	μA
iLOCK_h	iLOCK	iLOCK high-level bias current	iLOCK = VDD			1	μA
iLOCK_pu	iLOCK	iLOCK pull-up resistor		66	90	142	kΩ
Driver buffer se	ction				· · · · · ·		_
		Source short-circuit	T _J = 25 °C		4		
I _{GON}		current	$T_{\rm J}$ = -40 / +125 °C $^{(2)}$	3		5	- A
V _{GONH}		Source output high-level voltage	I _{GON} = 100 mA	VH-0.15	VH-0.125		V
R _{GON}		Source R _{DS_ON}	IG _{ON} = 100 mA		1.25	1.5	C.
			T _J = 25 °C		4		
IGOFF		Sink short-circuit current	$T_{\rm J}$ = -40 / +125 °C ⁽²⁾	3		5.5	- Α
V _{GOFFL}		Sink output low-level voltage	I _{GOFF} = 100 mA		110	120	m
R _{GOFF}		Sink R _{DS_ON}	I _{GOFF} = 100 mA		1.1	1.2	2
Viller Clamp				1	1		
V _{CLAMPth}		CLAMP voltage threshold	V _{CLAMP} vs. GNDISO	1.3	2	2.6	\ \
			V _{CLAMP} = 15 V		· · · · ·		
ICLAMP		CLAMP short-circuit current	T _J = 25 °C		4		A
			T_J = -40 ÷ +125 °C ⁽²⁾	2		5	_
V _{CLAMP_L}		CLAMP low-level output voltage	I _{CLAMP} = 100 mA		96	115	m
R _{CLAMP}		CLAMP R _{DS_ON}	I _{CLAMP} = 100 mA		0.96	1.15	C
Overtemperatur	e protection			1	1		
T _{SD}		Shutdown temperature ⁽²⁾		170			°(
T _{hys}		Temperature hysteresis			20		°(
Standby							
t _{STBY}		Standby time	See Section 6.3	200	280	500	μ
t _{WUP}		Wake-up time	See Section 6.3	10	20	35	μ
t _{awake}		Wake-up delay	See Section 6.3	90	140	200	μ
							+

See Section 6.3

200

280

800

ns

 $1. \quad MT = max \; (|t_{Don(A)} - t_{Don(B)}|, \; |t_{Doff(A)} - t_{Doff(B)}|, \; |t_{Doff(A)} - t_{Don(B)}|, \; |t_{Doff(B)} - t_{Don(A)}|).$

Standby filter

2. Characterization data, not tested in production.

t_{stbyfilt}

5 Isolation

Table 6. Isolation and safety-related specifications

Parameter	Symbol	Value	Unit	Conditions
Clearance (Minimum External Air Gap)	CLR	8	mm	Measured from input terminals to output terminals, shortest distance through air
Creepage (*) (Minimum External Tracking)	CPG	8	mm	Measured from input terminals to output terminals, shortest distance path along body
Comparative Tracking Index (Tracking Resistance)	CTI	≥ 400	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		П		Material Group (DIN VDE 0110, 1/89, Table 1)

Table 7. Isolation characteristics

Parameter	Symbol	Test Conditions	Characteristic	Unit
Maximum Working Isolation Voltage	V _{IORM}		1200	V _{PEAK}
		Method a, Type test		
		$V_{PR} = V_{IORM} \times 1.6$, $t_m = 10$ s	1920	V _{PEAK}
Input to Output test voltage		Partial discharge < 5 pC		
In accordance with VDE 0884-11	V _{PR} -	Method b1, 100% Production test		V _{PEAK}
		V _{PR} = V _{IORM} × 1.875, t _m = 1 s	2250	
		Partial discharge < 5 pC		
Transient Overvoltage	Maria	t _{ini} = 60 s	6000	V _{PEAK}
(Highest Allowable Overvoltage)	VIOTM	Type test	6000	
Maximum Surge Test Voltage	Maximum Surge Test Voltage V _{IOSM} Type test		6000	V _{PEAK}
Isolation Resistance	R _{IO}	V _{IO} = 500 V; Type test	>10 ⁹	Ω

Table 8. Isolation voltage as per UL 1577

Description	Symbol	Characteristic	Unit
Isolation Withstand Voltage, 1min (Type test)	V _{ISO}	3535/5000	V _{rms} / PEAK
Isolation Test Voltage, 1sec (100% production)	V _{ISOtest}	4242/6000	V _{rms} / PEAK

Recognized under the UL 1577 Component Recognition Program - file number E362869

6 Functional description

6.1 Gate driving power supply and UVLO

The STGAP2HD is a flexible and compact gate driver with 4 A output current and rail-to-rail outputs. The device allows to implement either unipolar or bipolar gate driving.

Figure 3. Power supply configuration for unipolar and bipolar gate driving

Undervoltage protection is available on VH_x supply pin. A fixed hysteresis sets the turn-off threshold, thus avoiding intermittent operation.

When VH_x voltage goes below the VH_{off} threshold, the output buffer goes into "safe state". When VH_x voltage reaches the VH_{on} threshold, the device returns to normal operation and sets the output according to actual input pins status.

The VDD and VH_x supply pins must be properly filtered with local bypass capacitors. The use of capacitors with different values in parallel provides both local storage for impulsive current supply and high-frequency filtering. The best filtering is obtained by using low-ESR SMT ceramic capacitors, which are therefore recommended. A 100 nF ceramic capacitor must be placed as close as possible to each supply pin, and a second bypass capacitor with value in the range between 1 μ F and 10 μ F should be placed close to it.

6.2 Power-up, power-down and 'safe state'

The following conditions define the "safe state":

- GOFF = ON state
- GON = high impedance

Such conditions are maintained at power-up of the isolated side (VH_x < VH_{on}) and during whole device powerdown phase (VH < VH_{off}), regardless of the value of the input pins.

The device integrates a structure which clamps the driver output to a voltage not higher than SafeClp when VH voltage is not high enough to actively turn the internal GOFF MOSFET on. If VH_x positive supply pin is floating or not supplied, the GOFF pin is therefore clamped to a voltage smaller than SafeClp.

If the supply voltage VDD of the control section of the device is not supplied, the output is put in safe state, and remains in such condition until the VDD voltage returns within operative conditions.

After power-up of both isolated and low voltage side the device output state depends on the input pins' status.

6.3 Control Inputs

The device is controlled through the following logic inputs:

- SD: active low shutdown input;
- BRAKE: active low brake input;
- INA, INB: active high logic inputs for channel A and channel B driver outputs;
- iLOCK: used to enable or disable the interlocking protection.

The operation of the driver IOs is described in Table 9.

		Outpu	ıt pins				
	iLOCK	SD	BRAKE	INA	INB	GOUT_A	GOUT_B
	Х	L	Х	Х	Х	Low	Low
	Х	Н	L	Х	Х	Low	HIGH
	Х	Н	Н	L	L	Low	Low
	Х	Н	Н	Н	L	HIGH	Low
	Х	Н	Н	L	Н	Low	HIGH
Interlocking	VDD	Н	Н	Н	Н	Low	Low
	GND	Н	Н	Н	Н	HIGH	HIGH

Table 9. Inputs truth table (applicable when device is not in UVLO or "safe state")

1. X: Don't care.

A deglitch filter allows input signals with duration shorter than t_{deglitch} to be ignored, thereby preventing noise spikes potentially present in the application from generating unwanted commutations.

6.4 Watchdog

The isolated HV side has a watchdog function in order to identify when it is not able to communicate with LV side, for example because the VDD of the LV side is not supplied. In this case the output of the driver is forced in "safe state" until communication link is properly established again.

6.5 Thermal shutdown protection

The device provides a thermal shutdown protection. When junction temperature reaches the TSD temperature threshold, the device is forced in "safe state". The device operation is restored as soon as the junction temperature is lower than TSD - Thys.

6.6 Standby function

In order to reduce the power consumption of both control interface and gate driving sides the device can be put in standby mode. In standby mode the quiescent current from VDD and VH_x supply pins is reduced to I_{QDDS} and I_{QHS} x respectively, and the output remains in 'safe state' (the output is actively forced low).

The way to enter standby is to keep the SD low while keeping the other input pins (INA, INB and BRAKE) high ("standby" value) for a time longer than t_{STBY} . During standby the inputs can change from the "standby" value.

To exit standby, inputs must be put in any combination different from the "standby" value for a time longer than $t_{stbvfilt}$, and then in the "standby" value for a time t such that $t_{WUP} < t < t_{STBY}$.

When the input configuration is changed from the "standby" value, the output is enabled and set according to inputs state after a time t_{awake} .

Figure 4. Standby state sequences

Sequence to exit stand-by mode

6.7 Interlocking function

The interlocking function prevents outputs GOUT_A and GOUT_B from being high at the same time, regardless of the status of the input pins INA and INB. In half-bridge topologies this protection avoids shoot-through in case that wrong input signals are generated by the controller device. In case the status of INA and INB is such to require both channels to be ON at the same time, the driver turns both channels off. In some topologies it is required to allow both channels to be ON at the same time: this can be achieved by disabling the interlocking function trough the iLOCK pin. The iLOCK pin shall be either connected to VDD, which enables the interlocking function, or to GND, which disables the interlocking function and allows parallel operation of Channel_A and Channel_B. Refer to Section 6.3 for complete logic inputs truth table.

7 Typical application diagram

Figure 5. Typical application diagram – half-bridge configuration

8 Layout

8.1 Layout guidelines and considerations

In order to optimize the PCB layout, the following considerations should be taken into account:

- SMD ceramic capacitors (or different types of low-ESR and low-ESL capacitors) must be placed close to each supply rail pin. A 100 nF capacitor must be placed between VDD and GND and between VH_x and GNDISO_x, as close as possible to device pins, in order to filter high-frequency noise and spikes. In order to provide local storage for pulsed current a second capacitor with value in the range between 1 µF and 10 µF should also be placed close to the supply pins.
 - As a good practice it is suggested to add filtering capacitors close to logic inputs of the device (INA, INB, BRAKE, SD), in particular for fast switching or noisy applications.
- The power transistors must be placed as close as possible to the gate driver, so to minimize the gate loop area and inductance that might bring about noise or ringing.
- To avoid degradation of the isolation between the primary and secondary side of the driver, there should not be any trace or conductive area below the driver.
- If the system has multiple layers, it is recommended to connect the VH_x and GNDISO_x pins to internal ground or power planes through multiple vias of adequate size. These vias should be located close to the IC pins to maximize thermal conductivity.

8.2 Layout example

An example of STGAP2HD suggested half-bridge with negative gate driving PCB layout is shown in Figure 7; the main signals have been highlighted by different colors. It is recommended to follow this example for proper positioning and connection of filtering capacitors.

Figure 7. Suggested PCB layout for half-bridge configuration with negative driving voltage

9 Testing and characterization information

57

Figure 9. CMTI test circuit

10 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

10.1 SO-36W package information

Table 10. SO-36W package dimensions

Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side.

Dim.		mm				
Dini.	Min.	Тур.	Max.	NOTES		
٩			2.65			
A1	0.1		0.3			
b	0.25		0.35			
c	0.20		0.33			
D	15.20		15.60			
E1	7.4		7.6			
E	10.05		10.65			
e		0.80				
e1		4.00				
L	0.61		0.91			
h	0.25		0.75			
θ	0°		8°			
ааа		0.25				
obb		0.25				
ccc		0.10				

11 Suggested land pattern

57

Figure 11. SO-36W suggested land pattern

12 Ordering information

Order code	Output configuration	Package	Package marking	Packaging
STGAP2HDM	Separated outputs and Miller CLAMP	SO-36W	GAP2HDM	Tube
STGAP2HDMTR	Separated outputs and Miller CLAMP	SO-36W	GAP2HDM	Tape and Reel

Table 11. Device summary

Revision history

Table 12. Document revision history

Date	Version	Changes
18-Oct-2021	1	Initial release.
29-Sep-2022	2	Added UL file certification

Contents

1	Block	a diagram		
2	Pin d	escription and connection diagram4		
3	Electrical data			
	3.1	Absolute maximum ratings		
	3.2	Thermal data		
	3.3	Recommended operating conditions		
4	Elect	rical characteristics		
5	Isolat	ion9		
6	Func	tional description		
	6.1	Gate driving power supply and UVLO10		
	6.2	Power-up, power-down and 'safe state'		
	6.3	Control Inputs		
	6.4	Watchdog		
	6.5	Thermal shutdown protection		
	6.6	Standby function		
	6.7	Interlocking function		
7	Туріс	al application diagram13		
8	Layo	ut14		
	8.1	Layout guidelines and considerations14		
	8.2	Layout example		
9	Testir	ng and characterization information15		
10	Packa	age information		
	10.1	[Package name] package information16		
11	Sugg	ested land pattern		
12	Orde	ring information		
Revi	sion h	istory		
Con	tents			
List	List of tables			
List	List of figures			

List of tables

Table 1.	Pin description.	4
Table 2.	Absolute maximum ratings	5
Table 3.	Thermal data	5
Table 4.	Recommended operating conditions.	3
Table 5.	Electrical characteristics (TJ = 25 °C, VH_x = 15 V, VDD = 5 V unless otherwise specified)	7
Table 6.	Isolation and safety-related specifications	9
Table 7.	Isolation characteristics.	9
Table 8.	Isolation voltage as per UL 1577	9
Table 9.	Inputs truth table (applicable when device is not in UVLO or "safe state") 1	1
Table 10.	SO-36W package dimensions	6
Table 11.	Device summary	9
Table 12.	Document revision history)

List of figures

Figure 1.	Block diagram	. 3
Figure 2.	Pin connection (top view).	. 4
Figure 3.	Power supply configuration for unipolar and bipolar gate driving	10
Figure 4.	Standby state sequences	12
Figure 5.	Typical application diagram – half-bridge configuration.	13
Figure 6.	Typical application diagram – half-bridge configuration with negative gate driving	13
Figure 7.	Suggested PCB layout for half-bridge configuration with negative driving voltage	14
Figure 8.	Timings definition	15
Figure 9.	CMTI test circuit	15
Figure 10.	SO-36W package outline	17
Figure 11.	SO-36W suggested land pattern	18

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics - All rights reserved