ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

18-bit universal bus transceiver; 3-state

Rev. 03 — 5 July 2005

Product data sheet

1. General description

The 74ALVT16601 is a high-performance Bipolar Complementary Metal Oxide Semiconductor (BiCMOS) product designed for V_{CC} operation at 2.5 V and 3.3 V with I/O compatibility up to 5 V. This device is an 18-bit universal transceiver featuring non-inverting 3-state bus compatible outputs in both send and receive directions. Data flow in each direction is controlled by output enable (\overline{OEAB} and \overline{OEBA}), latch enable (LEAB and LEBA), and clock (CPAB and CPBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A-bus data is latched if CPAB is held at a HIGH or LOW level. If LEAB is LOW, the A-bus data is stored in the latch/flip-flop on the LOW-to-HIGH transition of CPAB. When \overline{OEAB} is LOW, the outputs are active. When \overline{OEAB} is HIGH, the outputs are in the high-impedance state. The clocks can be controlled with the clock enable inputs (\overline{CEAB} and \overline{CEBA}).

Data flow for B-to-A is similar to that of A-to-B but uses OEBA, LEBA and CPBA.

Active bus hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

2. Features

- 18-bit bidirectional bus interface
- 5 V I/O compatible
- 3-state buffers
- Output capability: +64 mA and –32 mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion and extraction permitted
- Power-up reset
- Power-up 3-state
- No bus current loading when output is tied to 5 V bus
- Positive-edge triggered clock inputs
- Latch-up protection:
 - JESD78: exceeds 500 mA
- ESD protection:
 - MIL STD 883, method 3015: exceeds 2000 V
 - Machine model: exceeds 200 V

PHILIPS

18-bit universal bus transceiver; 3-state

3. Quick reference data

Table 1: <i>GND = 0</i>	Quick reference data <i>V</i> ; $T_{amb} = 25 \circ C$.					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC} = 2.5	5 V					
t _{PLH}	propagation delay An to Bn or Bn to An	C _L = 30 pF	-	1.8	-	ns
t _{PHL}	propagation delay An to Bn or Bn to An	C _L = 30 pF	-	2.2	-	ns
Ci	input capacitance of control pins	$V_I = 0 V \text{ or } V_{CC}$		4	-	pF
C _{io}	input/output capacitance of I/O pins	$V_{I/O} = 0 V \text{ or } V_{CC};$ outputs disabled		8	-	pF
I _{CC}	supply current	outputs disabled	-	40	-	μΑ
$V_{\rm CC} = 3.3$	3 V					
t _{PLH}	propagation delay An to Bn or Bn to An	C _L = 50 pF	-	1.9	-	ns
t _{PHL}	propagation delay An to Bn or Bn to An	C _L = 50 pF	-	2	-	ns
Ci	input capacitance of control pins	$V_I = 0 V \text{ or } V_{CC}$		4	-	pF
C _{io}	input/output capacitance of I/O pins	$V_{I/O} = 0 V \text{ or } V_{CC};$ outputs disabled		8	-	pF
I _{CC}	supply current	outputs disabled	-	60	-	μΑ

4. Ordering information

Table 2: Ordering	g information							
Type number	Package							
	Temperature range	Name	Description	Version				
74ALVT16601DL	–40 °C to +85 °C	SSOP56	plastic shrink small outline package; 56 leads; body width 7.5 mm	SOT371-1				
74ALVT16601DGG	–40 °C to +85 °C	TSSOP56	plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1				

74ALVT16601

18-bit universal bus transceiver; 3-state

5. Functional diagram

Philips Semiconductors

18-bit universal bus transceiver; 3-state

74ALVT16601

18-bit universal bus transceiver; 3-state

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3:	Pin description	
Symbol	Pin	Description
OEAB	1	A-to-B output enable input (active LOW)
LEAB	2	A-to-B latch enable input
A0	3	data input or output (A side)
GND	4	ground (0 V)
A1	5	data input or output (A side)
A2	6	data input or output (A side)
V _{CC}	7	voltage supply
A3	8	data input or output (A side)

18-bit universal bus transceiver; 3-state

Table 3:	Pin description	.continued
Symbol	Pin	Description
A4	9	data input or output (A side)
A5	10	data input or output (A side)
GND	11	ground (0 V)
A6	12	data input or output (A side)
A7	13	data input or output (A side)
A8	14	data input or output (A side)
A9	15	data input or output (A side)
A10	16	data input or output (A side)
A11	17	data input or output (A side)
GND	18	ground (0 V)
A12	19	data input or output (A side)
A13	20	data input or output (A side)
A14	21	data input or output (A side)
V _{CC}	22	voltage supply
A15	23	data input or output (A side)
A16	24	data input or output (A side)
GND	25	ground (0 V)
A17	26	data input or output (A side)
OEBA	27	B-to-A output enable input (active LOW)
LEBA	28	B-to-A latch enable input
CEBA	29	B-to-A clock enable (active LOW)
CPBA	30	B-to-A clock input (active rising edge)
B17	31	data input or output (B side)
GND	32	ground (0 V)
B16	33	data input or output (B side)
B15	34	data input or output (B side)
V _{CC}	35	voltage supply
B14	36	data input or output (B side)
B13	37	data input or output (B side)
B12	38	data input or output (B side)
GND	39	ground (0 V)
B11	40	data input or output (B side)
B10	41	data input or output (B side)
B9	42	data input or output (B side)
B8	43	data input or output (B side)
B7	44	data input or output (B side)
B6	45	data input or output (B side)
GND	46	ground (0 V)
B5	47	data input or output (B side)
B4	48	data input or output (B side)
B3	49	data input or output (B side)

18-bit universal bus transceiver; 3-state

Table 3:	Pin description	continued
Symbol	Pin	Description
V _{CC}	50	voltage supply
B2	51	data input or output (B side)
B1	52	data input or output (B side)
GND	53	ground (0 V)
B0	54	data input or output (B side)
CPAB	55	A-to-B clock input (active rising edge)
CEAB	56	A-to-B clock enable (active LOW)

7. Functional description

7.1 Function table

Table 4:	Function tab	e [<u>1]</u>			
Control	Control				Output
CEAB	OEAB	LEAB	СРАВ	An	Bn
CEBA	OEBA	LEBA	СРВА	Bn	An
Х	Н	Х	Х	X	Z
Х	L	Н	Х	L	L
				Н	Н
L	L	L	\uparrow	L	L
				Н	Н
L	L	L	Н	Х	Y [2]
			L	Х	Y [<u>3]</u>
Н	L	L	Х	Х	Y [2]

- [1] H = HIGH voltage level;
 - L = LOW voltage level;
 - X = don't care;
 - Z = high-impedance OFF-state;
 - \uparrow = LOW-to-HIGH clock transition
- [2] Output level before the indicated steady-state input conditions were established.
- [3] Output level before the indicated steady-state input conditions were established, provided that CPAB or CPBA was LOW before LEAB or LEBA went LOW.

8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
VI	input voltage		<u>[1]</u> –0.5	+7.0	V
Vo	output voltage	output in OFF-state or HIGH-state	<u>[1]</u> –0.5	+7.0	V

18-bit universal bus transceiver; 3-state

Table 5: Limiting values ... continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
I _{IK}	input diode current	V _I < 0 V	-	-50	mA
I _{OK}	output diode current	V _O < 0 V	-	-50	mA
lo	output current	output in LOW-state	-	128	mA
		output in HIGH-state	-	-64	mA
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		[2] _	150	°C
T _j	0 1				-

[1] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

Recommended operating conditions 9.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{\rm CC} = 2.5$	5 V ± 0.2 V					
V _{CC}	supply voltage		2.3	-	2.7	V
VI	input voltage		0	-	5.5	V
V _{IH}	HIGH-level input voltage		1.7	-	-	V
V _{IL}	LOW-level input voltage		-	-	0.7	V
I _{OH}	HIGH-level output current		-	-	-8	mA
I _{OL}	LOW-level output current	none	-	-	8	mA
		current duty cycle \leq 50 %; f \geq 1 kHz	-	-	24	mA
$\Delta t / \Delta V$	input transition rise or fall rate	outputs enabled	-	-	10	ns/V
T _{amb}	ambient temperature		-40	-	+85	°C
$V_{\rm CC} = 3.3$	3 V ± 0.3 V					
V _{CC}	supply voltage		3.0	-	3.6	V
VI	input voltage		0	-	5.5	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	LOW-level input voltage		-	-	0.8	V
I _{OH}	HIGH-level output current		-	-	-32	mA
I _{OL}	LOW-level output current	none	-	-	32	mA
		current duty cycle \leq 50 %; f \geq 1 kHz	-	-	64	mA
$\Delta t / \Delta V$	input transition rise or fall rate	outputs enabled	-	-	10	ns/V
T _{amb}	ambient temperature	in free air	-40	-	+85	°C

18-bit universal bus transceiver; 3-state

10. Static characteristics

Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V). $T_{amb} = -40 \degree C$ to +85 $\degree C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Uni
V _{CC} = 2.	5 V ± 0.2 V [1]						
V _{IK}	input diode voltage	$V_{CC} = 2.3 \text{ V}; I_{IK} = -18 \text{ mA}$		-	-0.85	-1.2	V
V _{OH}	HIGH-level output voltage	V_{CC} = 2.3 V to 3.6 V; I_{OH} = –100 μA		V _{CC} – 0.2		-	V
		$V_{CC} = 2.3 \text{ V}; I_{OH} = -8 \text{ mA}$		1.8		-	V
V _{OL}	LOW-level output voltage	V_{CC} = 2.3 V; I_{OL} = 100 μ A		-	0.07	0.2	V
		V _{CC} = 2.3 V; I _{OL} = 24 mA		-	0.3	0.5	V
		$V_{CC} = 2.3 \text{ V}; \text{ I}_{OL} = 8 \text{ mA}$		-	-	0.4	V
V _{RST}	power-up LOW-state output voltage	V_{CC} = 2.7 V; I _O = 1 mA; V _I = V _{CC} or GND	[2]	-	-	0.55	V
ILI	input leakage current						
	control pins	V_{CC} = 2.7 V; V_I = V_{CC} or GND		-	0.1	±1	μΑ
		$V_{CC} = 0 \text{ V or } 2.7 \text{ V}; \text{ V}_{I} = 5.5 \text{ V}$			0.1	10	μΑ
	I/O data pins	$V_{CC} = 0 V \text{ or } 2.7 V; V_1 = 5.5 V$	[3]	-	0.1	20	μΑ
		$V_{CC} = 2.7 \text{ V}; \text{ V}_{I} = V_{CC}$	[3]	-	0.1	10	μΑ
		V _{CC} = 2.7 V; V _I = 0 V	[3]	-	+0.1	-5	μΑ
I _{OFF}	power-down leakage current	$V_{CC} = 0 \text{ V}; \text{ V}_{I} \text{ or } \text{ V}_{O} = 0 \text{ V to } 4.5 \text{ V}$		-	0.1	±100	μA
I _{HOLD}	bus hold current data inputs	$V_{CC} = 2.3 \text{ V}; \text{ V}_{I} = 0.7 \text{ V}$	[4]	-	90	-	μΑ
		V _{CC} = 2.3 V; V _I = 1.7 V	[4]	-	-75	-	μA
I _{EX}	external current into output	output in HIGH-state when V _O > V _{CC} ; V _O = 5.5 V; V _{CC} = 2.3 V		-	10	125	μA
I _{PU} , I _{PD}	power-up/down 3-state output current	$\begin{array}{l} V_{CC} \leq 1.2 \text{ V}; V_{O} = 0.5 \text{ V to } V_{CC}; \\ V_{I} = \text{GND or } V_{CC}; \overline{\text{OEAB}} \text{ or } \overline{\text{OEAB}} \\ \text{don't care} \end{array}$	[5]	-	1	100	μA
I _{CC}	supply current	V_{CC} = 2.7 V; V_I = GND or V_{CC} ; I_O = 0 A					
		outputs HIGH-state		-	0.04	0.1	mΑ
		outputs LOW-state		-	2.5	4.5	mA
		outputs disabled	[6]	-	0.04	0.1	mA
ΔI_{CC}	additional supply current per input pin	V_{CC} = 2.3 V to 2.7 V; one input at V_{CC} – 0.6 V, other inputs at V_{CC} or GND	[7]	-	0.01	0.4	mA
Ci	input capacitance of control pins	$V_{I} = 0 V \text{ or } V_{CC}$			4	-	pF
Cio	input/output capacitance of I/O pins	$V_{I/O} = 0$ V or V_{CC} ; outputs disabled			8	-	pF
V _{CC} = 3.	3 V ± 0.3 V [8]						
V _{IK}	input diode voltage	$V_{CC} = 3.0 \text{ V}; \text{ I}_{IK} = -18 \text{ mA}$		-	-0.85	-1.2	V
V _{OH}	HIGH-level output voltage	V_{CC} = 3.0 V to 3.6 V; I_{OH} = –100 μA		V _{CC} – 0.2	V _{CC}	-	V
		$V_{CC} = 3.0 \text{ V}; I_{OH} = -32 \text{ mA}$		2.0	2.3	-	V

18-bit universal bus transceiver; 3-state

Table 7: Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

 $T_{amb} = -40 \circ C$ to $+85 \circ C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage	V_{CC} = 3.0 V; I_{OL} = 100 μA		-	0.07	0.2	V
		$V_{CC} = 3.0 \text{ V}; I_{OL} = 16 \text{ mA}$		-	0.25	0.4	V
		$V_{CC} = 3.0 \text{ V}; I_{OL} = 32 \text{ mA}$		-	0.3	0.5	V
		$V_{CC} = 3.0 \text{ V}; I_{OL} = 64 \text{ mA}$		-	0.4	0.55	V
V _{RST}	power-up LOW-state output voltage	V_{CC} = 2.7 V; I _O = 1 mA; V _I = V _{CC} or GND	[2]	-	-	0.55	V
ILI	input leakage current						
	control pins	V_{CC} = 3.6 V; V_I = V_{CC} or GND		-	0.1	±1	μΑ
		$V_{CC} = 0 \text{ V or } 3.6 \text{ V}; \text{ V}_{I} = 5.5 \text{ V}$		-	0.1	10	μΑ
	I/O data pins	$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = 5.5 \text{ V}$	[3]	-	0.1	20	μΑ
		$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = V_{CC}$	[3]	-	0.5	10	μΑ
		$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = 0 \text{ V}$	[3]	-	+0.1	-5	μΑ
I _{OFF}	power-down leakage current	V_{CC} = 0 V; V _I or V _O = 0 V to 4.5 V		-	0.1	±100	μΑ
I _{HOLD}	bus hold current data inputs	$V_{CC} = 3 \text{ V}; \text{ V}_{I} = 0.8 \text{ V}$	[9]	75	130	-	μΑ
		$V_{CC} = 3 \text{ V}; \text{ V}_{I} = 2.0 \text{ V}$	[9]	-75	-140	-	μΑ
		$V_{CC} = 0 V$ to 3.6 V; $V_{CC} = 3.6 V$	[9]	±500	-	-	μΑ
I _{EX}	external current into output	output in HIGH-state when V _O > V _{CC} ; V _O = 5.5 V; V _{CC} = 2.3 V		-	10	125	μA
I _{PU} , I _{PD}	power-up/down 3-state output current	$\begin{array}{l} V_{CC} \leq 1.2 \text{ V}; V_{O} = 0.5 \text{ V to } V_{CC}; \\ V_{I} = \text{GND or } V_{CC}; \overline{\text{OEAB}} \text{ or } \overline{\text{OEAB}} \\ \text{don't care} \end{array}$	<u>[10]</u>	-	1	±100	μΑ
I _{CC}	supply current	V_{CC} = 3.6 V; V_{I} = GND or $V_{CC}; \ I_{O}$ = 0 A					
		outputs HIGH-state		-	0.06	0.1	mA
		outputs LOW-state		-	3.5	5	mA
		outputs disabled	[6]	-	0.06	0.1	mA
∆l _{CC}	additional supply current per input pin	V_{CC} = 3 V to 3.6 V; one input at V_{CC} – 0.6 V, other inputs at V_{CC} or GND	[7]	-	0.04	0.4	mA
Ci	input capacitance of control pins	$V_I = 0 V \text{ or } V_{CC}$			4	-	pF
C _{io}	input/output capacitance of I/O pins	$V_{I/O} = 0$ V or V_{CC} ; outputs disabled			8	-	pF

[1] All typical values are at V_{CC} = 2.5 V and T_{amb} = 25 °C.

[2] For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.

[3] Unused pins at V_{CC} or GND.

[4] Not guaranteed.

[5] This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 ms. From V_{CC} = 1.2 V to V_{CC} = 2.5 V \pm 0.2 V a transition time of 100 μ s is permitted. This parameter is valid for T_{amb} = 25 °C only.

[6] I_{CC} is measured with outputs pulled up to V_{CC} or pulled down to ground.

[7] This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.

[8] All typical values are at V_{CC} = 3.3 V and T_{amb} = 25 °C.

[9] This is the bus hold overdrive current required to force the input to the opposite logic state.

[10] This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 ms. From V_{CC} = 1.2 V to V_{CC} = 3.3 V \pm 0.3 V a transition time of 100 μ s is permitted. This parameter is valid for T_{amb} = 25 °C only.

18-bit universal bus transceiver; 3-state

11. Dynamic characteristics

Table 8: Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 11</u>. $T_{amb} = -40 \degree C$ to +85 $\degree C$.

	40 °C to +85 °C.	Conditions	NA!	True	Max	11
-	Parameter	Conditions	Min	Тур	Max	Unit
	5 V \pm 0.2 V [1]; C _L = 30 pF					
t _{PHL}	propagation delay					
	An to Bn or Bn to An	see Figure 5	1.4	2.2	3.5	ns
	LEAB to Bn or LEBA to An	see Figure 6	1.5	2.5	4.0	ns
	CPAB to Bn or CPBA to An	see Figure 7	1.9	3.2	5.2	ns
t _{PLH}	propagation delay					
	An to Bn or Bn to An	see Figure 5	1.0	1.8	3.0	ns
	LEAB to Bn or LEBA to An	see Figure 6	1.5	2.5	4.0	ns
	CPAB to Bn or CPBA to An	see Figure 7	2.2	3.5	5.0	ns
t _{PHZ}	output disable time from HIGH-level	see Figure 9	2.2	3.1	4.4	ns
t _{PLZ}	output disable time from LOW-level	see Figure 10	1.6	2.3	3.4	ns
t _{PZH}	output enable time to HIGH-level	see Figure 9	2.3	3.6	4.8	ns
t _{PZL}	output enable time to LOW-level	see Figure 10	1.9	2.9	4.4	ns
t _{h(H)}	hold time HIGH					
	An to CPAB or Bn to CPBA	see Figure 8	0.0	-1.1	-	ns
	An to LEAB or Bn to LEAB	see Figure 8	1.5	0.4	-	ns
	CEAB to CPAB or CEBA to CPBA	see Figure 8	2.0	0.4	-	ns
t _{h(L)}	hold time LOW					
	An to CPAB or Bn to CPBA	see Figure 8	0.0	-0.3	-	ns
	An to LEAB or Bn to LEAB	see Figure 8	1.9	1.0	-	ns
	CEAB to CPAB or CEBA to CPBA	see Figure 8	+0.8	-0.1	-	ns
su(H)	set-up time HIGH					
	An to CPAB or Bn to CPBA	see Figure 8	2.0	0.4	-	ns
	An to LEAB or Bn to LEBA	see Figure 8	0.0	-1.0	-	ns
	CEAB to CPAB or CEBA to CPBA	see Figure 8	0.7	0.3	-	ns
t _{su(L)}	set-up time LOW					
	An to CPAB or Bn to CPBA	see Figure 8	2.0	1.2	-	ns
	An to LEAB or Bn to LEBA	see Figure 8	1.5	0.4	-	ns
	CEAB to CPAB or CEBA to CPBA	see Figure 8	+0.3	-0.4	-	ns
ŴН	pulse width HIGH					
	CPAB or CPBA	see Figure 7	3.0	-	-	ns
	LEAB or LEBA	see Figure 6	1.5	-	-	ns
WL	pulse width LOW					
	CPAB or CPBA	see Figure 7	3.0	-	-	ns

74ALVT16601

18-bit universal bus transceiver; 3-state

Table 8: Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 11. $T_{amb} = -40 \degree C$ to +85 °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
V _{CC} = 3.3	3 V ± 0.3 V [2]; C _L = 50 pF									
t _{PHL}	propagation delay									
	An to Bn or Bn to An	see Figure 5	1.1	2.0	2.8	ns				
	LEAB to Bn or LEBA to An	see Figure 6	1.4	2.3	3.6	ns				
	CPAB to Bn or CPBA to An	see Figure 7	1.7	2.7	4.1	ns				
t _{PLH}	propagation delay									
	An to Bn or Bn to An	see Figure 5	1.2	1.9	2.9	ns				
	LEAB to Bn or LEBA to An	see Figure 6	1.5	2.5	3.8	ns				
	CPAB to Bn or CPBA to An	see Figure 7	2.1	3.1	4.5	ns				
t _{PHZ}	output disable time from HIGH-level	see Figure 9	2.7	3.6	4.9	ns				
t _{PLZ}	output disable time from LOW-level	see Figure 10	2.1	2.8	4	ns				
t _{PZH}	output enable time to HIGH-level	see Figure 9	2.2	3.2	4.2	ns				
t _{PZL}	output enable time to LOW-level	see Figure 10	1.6	2.5	3.8	ns				
t _{h(H)}	hold time HIGH									
	An to CPAB or Bn to CPBA	see Figure 8	+1.0	-0.5	-	ns				
	An to LEAB or Bn to LEAB	see Figure 8	1.5	0.1	-	ns				
	CEAB to CPAB or CEBA to CPBA	see Figure 8	1.5	0.7	-	ns				
t _{h(L)}	hold time LOW									
	An to CPAB or Bn to CPBA	see Figure 8	+1.0	-0.3	-	ns				
	An to LEAB or Bn to LEAB	see Figure 8	1.5	0.5	-	ns				
	CEAB to CPAB or CEBA to CPBA	see Figure 8	+1.0	-0.3	-	ns				
t _{su(H)}	set-up time HIGH									
	An to CPAB or Bn to CPBA	see Figure 8	1.5	0.4	-	ns				
	An to LEAB or Bn to LEBA	see Figure 8	+1.0	-0.5	-	ns				
	CEAB to CPAB or CEBA to CPBA	see Figure 8	1.5	0.3	-	ns				
t _{su(L)}	set-up time LOW									
	An to CPAB or Bn to CPBA	see Figure 8	1.5	0.6	-	ns				
	An to LEAB or Bn to LEBA	see Figure 8	+1.0	-0.1	-	ns				
	CEAB to CPAB or CEBA to CPBA	see Figure 8	1.0	-0.4	-	ns				
t _{WH}	pulse width HIGH									
	CPAB or CPBA	see Figure 7	2.0	-	-	ns				
	LEAB or LEBA	see Figure 6	1.5	-	-	ns				
t _{WL}	pulse width LOW									
-vVL	CPAB or CPBA	see Figure 7	2.0	-	-	ns				

[1] All typical values are measured at V_{CC} = 2.5 V and T_{amb} = 25 °C.

[2] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

18-bit universal bus transceiver; 3-state

12. Waveforms

18-bit universal bus transceiver; 3-state

18-bit universal bus transceiver; 3-state

Table 9: Measurement points						
Supply voltage	Input	Output				
	V _M	V _M	Vx	V _Y		
≥ 3 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V		
≤2.7 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V		

Table 10: Test data

Input				Load		V _{EXT}		
VI	f _i	tw	t _r , t _f	CL	RL	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}	t _{PHZ} , t _{PZH}
3.0 V or V _{CC} whichever is less	≤ 10 MHz	500 ns	≤ 2.5 ns	30 pF or 50 pF	500 Ω	$6 V or 2 \times V_{CC}$	open	GND

74ALVT16601

18-bit universal bus transceiver; 3-state

13. Package outline

Fig 12. Package outline SOT371-1 (SSOP56)

18-bit universal bus transceiver; 3-state

Fig 13. Package outline SOT364-1 (TSSOP56)

18-bit universal bus transceiver; 3-state

14. Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes		
74ALVT16601_3	20050705	Product data sheet	-	-	74ALVT16601_2		
Modifications:	• The format of this data sheet has been redesigned to comply with the new presentation and information standard of Philips Semiconductors.						
		"Features": modified 'JE					
	 Table 8 "D output dist 	ynamic characteristics": able time.	changed values of p	propagation delay, o	output enable and		
744UV/T40004_0	19980213	Product specification	-	9397 750 03571	74ALVT16601_1		
74ALVT16601_2							

18-bit universal bus transceiver; 3-state

15. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

19. Contact information

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Trademarks

Notice — All referenced brands, product names, service names and trademarks are the property of their respective owners.

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

74ALVT16601

18-bit universal bus transceiver; 3-state

20. Contents

1	General description 1
2	Features 1
3	Quick reference data 2
4	Ordering information 2
5	Functional diagram 3
6	Pinning information 5
6.1	Pinning 5
6.2	Pin description 5
7	Functional description7
7.1	Function table 7
8	Limiting values7
9	Recommended operating conditions 8
10	Static characteristics 9
11	Dynamic characteristics
12	Waveforms 13
13	Package outline 16
14	Revision history 18
15	Data sheet status 19
16	Definitions 19
17	Disclaimers 19
18	Trademarks 19
19	Contact information 19

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 5 July 2005 Document number: 74ALVT16601_3

Published in The Netherlands