

Datasheet

Built-in ARM Cortex-M4F Wi-Fi MCU 2.4G Hz IEEE 802.11 b/g/n, ultra-high integration, rich peripherals

Version: 2.6

Date: 2020-10-19

NO.: DS0125EN

Abstract

- Input Voltage: 3.0V~3.6V
- **Operating Temperature:** -20°C to +85°C
- Processor: ARM Cortex-M4 Processor Core MX1290
 - MX1290, up to 125MHz
 - MX1290V2, up to 62.5MHz
 - 40MHz clock input
 - SWD/JTAG simulation debugger interface
- Memory
 - 256K bytes SRAM
 - 512K bytes ROM
 - 512 bytes OTP memory area
 - 2M bytes XIP flash

Wi-Fi

- IEEE 802.11 b/g/n 1T1R 2.4GHz Single Frequency
- Built-in power amplifier (PA) with self-calibration
- Support 802.11e QoS enhancement (WMM)
- Support WPA/WPA2 PSK, Open/WEP/ TKIP/CCMP
- Support WPA/WPA2 Enterprise
- Support WPS, Wi-Fi Direct
- Support IEEE Power Save mode
- MX1290: support HT20/HT40, 150Mbps max.
- MX1290v2: support HT20, 72Mbps max.

Rich Peripherals

- 11 x GPIO
- 1 x SPI
- 2 x I2C, support 400K high speed mode
- 5 x PWM, up to 2MHz frequency
- 2 x UART, support hardware flow control
- 1 ADC channel
- Low-energy RTC

- Interface and Dimension
 - Maintain pin compatibility with similar package modules
 - RF Interface: PCB antenna, or IPEX connector antenna
 - 18mm x 20mm, stamp hole or pin
- Application Functions
 - Support AliOS and MXOS operating system
 - Provide major cloud platforms access SDK •
 - Mass production firmware for typical applications
- Typical applications:
 - smart home appliances
 - smart electric equipment
 - Industrial automation

Ordering Code

Ordering Code	Notes
EMW3090-P	PCB antenna, MX1290 processor
EMW3090-E	IPEX antenna, MX1290 processor
EMW3090V2-P	PCB antenna, MX1290V2 processor
EMW3090V2-E	IPEX antenna, MX1290V2 processor
EMW3090V2-P-TR	PCB antenna, MX1290V2 processor, Tape
EIVIVV5090V2-P-TK	and Reel

MXCHIP[®] Order Code

Example	EMW	3	09	0	V2	-P	-xxx
Product Series							
EMW=IoT Wi-Fi Module							
Product Type							
3=Welding type wireless modul	e						
Typical target applications and	features						
09=IOT Application 9 Series							
Dimensions, enhancements							
0=18mm x 20mm, 2 x 9 pins 1	5 space, stamp ho	le					
Processor version							
[omit]= MX1290							
V2= MX1290V2							
RF Interface							
P=2.4GHz On-Board PCB Anten	na						
E=2.4GHz External Antenna IPE	X Connector						
Option							

TR = tape and reel (default package is tray

For a list of all relevant features (such as packaging, minimum order quantity, etc.) and other information, please contact the nearest MXCHIP sales point and agent.

Accessories

Order Code	Description				
MXKIT-Base	Development board for all EMW3090 modules				
MXKIT-Core-3090	The development board core board for the EMW3090, used with MXKIT-Base				
FX-3090	EMW3090 production fixture with accompanying test board: MXKIT-Base, MXKIT- Core-3090				

Version Update Instructions

Date	Version	Update Contents			
2018-06-10	1.0	Release			
2018-08-23	1.1	Add description of IO port level status at module startup			
2018-12-26	1.2	Fixed SRRC ID			
2019-01-17	1.3	Add module reference design circuit, add antenna parameters			
2019-05-09	1.4	Change the antenna test parameters and clear zone schematic after MP			
2019-05-13	1.5	Add OTA test data, modify sensitivity max.			
2020-03-06	2.0	Rewritten according to new MXCHIP standard			
2020-03-10	2.1	Jpdate general assembly dimension diagram and pin distribution diagram			
2020-03-24	2.2	Modify the default function and operating mode selection of pins			
2020-04-16	2.3	Modify package information			
2020-09-03	2.4	Update label information			
2020-09-09	2.5	Update of order code information			
2020-10-19	2.6	Reference design circuit updated			

Copyright Notice

Without permission, it is prohibited to use or copy all or any part of this manual, especially for trademarks, model naming, part numbers and drawings.

MXCHIP®

Contents

1.	Intr	oduction	1
2.	Pin	Definition	3
	2.1.	Pin Arrangement	3
	2.2.	Pin Definition	3
3.	Elec	trical Parameter	6
	3.1.	Absolute Maximum Parameters	6
	3.2.	Operating Voltage and Current	6
	3.3.	General I/O interface	7
	3.4.	Typical Application Power Consumption	7
	3.5.	Temperature	8
	3.6.	ESD	8
	3.7.	RF Parameter	9
4.	Ant	enna Information	13
	4.1.	PCB antenna parameters and use	13
	4.1	.1. On-board PCB parameter	13
	4.2.	PCB Antenna Clearance	14
	4.3.	External antenna parameters and use	14
	4.3	.1. SRRC Important statements	16
5.	Dim	nensions and Production Guidance	17
	5.1.	Assembly Dimension Diagram	17
	5.2.	Recommended Package Drawing	17
6.	Ref	erence Circuits	18
	6.1.	Power	18
	6.2.	Module basic circuit	18
	6.3.	UART	18
7.	Pro	duction Guidelines	20
	7.1.	Precautions	21
	7.2.	Secondary reflow temperature curve	21
	7.3.	Storage Condition	22
8.	Lab	el Information	23
9.	Sale	es and Technical Support Information	24
	-		

Table Catalog

Table 1 MX1290 and MX1290V2 difference Table	2
Table 2 Pin Arrangement	3
Table 3 operation mode	4
Table 4 Absolute Maximum Parameter: Voltage	6
Table 5 Operating parameters: rated voltage and current	6
Table 6 Operation parameter: Typical RF power consumption	6
Table 7 DC current: digital I/O	7
Table 8 Typical application power consumption	8
Table 9 Temperature and humidity parameters	
Table 10 Electrostatic discharge parameters	8
Table 11 RF Parameter	9
Table 12 RF Parameters in IEEE802.11b mode	9
Table 13 RF Parameters in IEEE802.11g mode	.10
Table 14 RF Parameters in IEEE802.11n HT20 mode	.11
Table 15 RF Parameters in IEEE802.11n HT40 mode	.12

Table 16 On-board PCB parameter	13
Table 17 Typical furnace temperature settings	21

Figure Catalog

Figure 1 EMW3090 Hardware Block Diagram	1
Figure 2 Pin Arrangement	3
Figure 3 IO The power-on state interface	5
Figure 4 Antenna minimum clearance area (unit: mm)	14
Figure 5 Copper tube antenna size	15
Figure 6 Dimension drawing of external antenna connector	16
Figure 7 Assembly Dimension Diagram (unit: mm, tolerance: ±0.1, outside tolerance±0.2))	17
Figure 8 Package size (unit: mm)	17
Figure 9 Power reference circuit	18
Figure 10 module basic circuit connection	18
Figure 11 USB to serial port reference circuit	19
Figure 12 UART 3.3V/5V conversion circuit	19
Figure 13 Humidity Card	20
Figure 14 Typical secondary reflux temperature profile	22
Figure 15 Storage Conditions Diagram	22
Figure 16 Label diagram	23

MXCHIP®

1. Introduction

The EMW308x/EMW309x series modules are mainly used for IoT data communication. Data collection and control are realized through a rich peripheral interface, and data can be transmitted to the Internet of Things cloud service platform through a Wi-Fi network connection to realize the Internet of Everything. This series of modules is used in a wide range of IoT applications through a variety of different form factors, interface types, antenna interfaces and temperature range.

The module includes a super-integrated Wi-Fi microcontroller MX1290 that integrates a Cortex-M4F core up to 125MHz, 256K bytes of SRAM, 2M bytes of Flash memory, and IEEE 802.11 b/g/ n Standard 2.4 GHz RF. Streamlined peripheral circuitry makes the overall module size and interface design more flexible and easier to control costs. The high-performance processing core and security module greatly improve the speed of networking interaction and reduce the overall power consumption while ensuring data security.

Shanghai MXCHIP provides MXOS and AliOS software platforms to support the development of EMW3090 series modules, providing an efficient development environment, access protocol stacks for various IoT cloud services, rich sample programs and various typical applications.

The following figure shows the hardware block diagram of the EMW3090 module, which mainly includes:

- Wi-Fi processor MX1290/MX1290V2
- Equipped with 2M bytes of SPI interface Flash memory
- On-board or external antenna
- Power and communication interface

Figure 1 EMW3090 Hardware Block Diagram

MX1290 Wi-Fi microcontrollers are provided in two versions, MX1290 and MX1290V2. In MX1290V2, in order to provide a more cost-effective choice for this series of modules, the software restricts hardware

functions and cannot be lifted through software upgrades. The main differences are as follows:

Model	Main Frequency	Wi-Fi	Security	
	125MHz	Support HT20 and HT40, transmitting rate up to	Support Flash	
MX1290			encryption, Trust Zone	
		150Mbps	Lite	
MX1290V2		Support HT20, transmitting rate up to		
1017129002	62.5MHz	72.2Mbps	-	

Table 1 MX1290 and MX1290V2 difference Table

2. Pin Definition

2.1. Pin Arrangement

2.2. Pin Definition

Pin Number	Name	Main Function (After Reset)	PWM	UART	12C	SPI	Others
1	VDD						
2	CHIP_EN ^{(3) (5)}						
3	PA_0	PA_0	PWM_2				
4	PA_12	PA_12	PWM_3				
5	PA_19	PA_19	TIM5_TRIG	UART0_CTS	I2C0_SDA	SPI1_CS	ADC1
6	PA_22	PA_22	PWM_5	UART0_RTS	I2C0_SCL	SPI1_MISO	WAKEUP_2
7	PA_30 ^{(1) (2) (5)}	UART2_Log_TX	PWM_3	UART2_Log_TX	I2C0_SDA		PA_30
8	PA_29 ^{(2) (5)}	UART2_Log_RX	PWM_4	UART2_Log_RX	I2C0_SCL		PA_29
9	VSS						
10	PA_5	PA_5	PWM_4				WAKEUP_1
11	PA_18	PA_18	TIM4_TRIG	UART0_RX	I2C1_SCL	SPI1_CLK	WAKEUP_0
12	PA_23	PA_23	PWM_0	UART0_TX	I2C1_SDA	SPI1_MOSI	WAKEUP_3
13	VSS						
14	PA_8 ⁽¹⁾	PA_8					
15	NC						
16	NC						
17	PA_11 ⁽¹⁾	PA_11					
18	VSS						
T1	PA_15	SWDIO	PWM_1				
T2	PA_14	SWCLK	PWM_0				

Table 2 Pin Arrangement

Notes:

1. Module working mode selection signal. During the startup phase, the module detects the

MXCHIP[®]

level of these pins and enters a specific working state. The correspondence between level and working mode is shown in Table 3:

Operation mode	PA_30 (UART2_Log_TX) Default: 1	PA_11 (BOOT) Default: 1	PA_8 (EASYLINK) Default: 1
ISP Program Mode	0	not detect	not detect
Bootloader	1	0	1
ATE	1	0	0
Normal	1	1 (Default)	not detect

Table 3 operation mode

(1). During the startup phase, if the processor hardware detects that the PA_30 level is low, it enters the ISP programming mode. In ISP programming mode, you can program the flash of the module through UART2 (PA_29, PA_30). In normal use, the level of the PA_30 pin must be high or floating at the time of power-up, please pay special attention when designing the circuit.

(2). After the startup is completed, when the processor runs the firmware provided by MXCHIP, the firmware detects the status of PA_11 and PA_8 to enter the corresponding working mode.

2. The UART2_Log serial port is used for the input / output of debugging information. Do not use it during design, and provide it in a convenient way to facilitate software development.

3. The CHIP_EN pin is an enable reset pin, which is active low and can be left floating if not used. Or pull up 3.3V.

4. Please keep unused pins floating. It should be noted that the IO port is in a floating state at startup. If you need to configure the state of the pin through software, you need to wait until the code in the bootloader starts to execute. The time from when the module is powered on to when the code in the bootloader is executed will be affected by the flash startup time. Therefore, if you need IO to be in a certain level state at startup, you need to use a 100k resistor on the pin to pull up and down. Figure 3 shows the level change of the IO port whose software is configured as a low level after being pulled up by an external 100K resistor in the floating state. It can be seen that the time from powering on the module to the IO port software controllable time is 69.4ms,

MXCHIP[®]

during which the time for IO to be pulled to high level is about 20ms.

Figure 3 IO The power-on state interface

5. The module has 100K hardware pull-up resistors in PA_30 (UART2_Log_TX) and PA_29 (UART2_Log_RX). The PA_0 pin has a 100K hardware pull-down resistor, and CHIP_EN has an internal 100K pull-up resistor and 0.01μ F capacitance to ground.

3. Electrical Parameter

3.1. Absolute Maximum Parameters

Operation of the module outside of its absolute maximum ratings may result in permanent damage. At the same time, long-term exposure to the maximum rated conditions will affect the reliability of the module.

Symbol	Ratings	Min	Мах	Unit
V _{DD} –V _{SS}	Voltage	-0.3	3.6	V
V _{IN}	Input voltage on any other pin	V _{SS} -0.3	V _{DD} +0.3	V

Table 4 Absolute Maximum Parameter: Voltage

3.2. Operating Voltage and Current

Symbol Note			Specifica	ation	
Symbol	Note	Min.	Typical	Max.	Unit
V _{DD}	Voltage	3.0	3.3	3.6	V
V _{DD_IO}	Digital IO Supply Voltage	1.62	1.8 ~ 3.3	3.6	V
	3.3V Rating Current (with 450 mA internal			450	mΛ
I _{VDD}	regulator and integrated CMOS PA)			450	mA
I _{DD_IO}	IO Rating Current (including $V_{DD_{IO}}$)			50	mA
I _{VDD}	Deep Sleep Mode		7	7	uA
I _{VDD}	Deep Standby Mode		70	70	uA
I _{VDD}	Sleep Power Gate		120	120	uA
I _{VDD}	Sleep Clock Gate		350	350	uA

Table 5 Operating parameters: rated voltage and current

Table 6 Operation parameter: Typical RF power consumption

Symbol	Note			Specific	ation	
Symbol	CPU	Wi-Fi	Min.	Typical	Max.	Unit
I _{VDD}	Deep Sleep Mode	Wi-Fi OFF		7	10	uA
I _{VDD}	Deep Standby Mode Pull up Flash CS pin	Wi-Fi OFF			150	uA
I _{VDD}	Sleep	Wi-Fi OFF		500	600	uA
I _{VDD}	Active	Wi-Fi OFF	14	14	26	mA
I _{VDD}	Sleep	Wi-Fi Associate, DTIM = 1		2.78		mA
I _{VDD}	Sleep	Wi-Fi Associate, DTIM = 3		1.49		mA
I _{VDD}	Active	Wi-Fi Associate, DTIM = 1		47		mA
I _{VDD}	Active	Wi-Fi Associate, DTIM = 3		46		mA
I _{VDD}	Sleep	Wi-Fi RX		90		mA
I _{VDD}	Active	Wi-Fi RX		120		mA
I _{VDD}	Active	TX@MCS7/HT40, 13dBm		220		mA
I _{VDD}	Active	TX@MCS7/HT40, 16.5dBm		230		mA

Gumbal	Note			Specific	ation	
Symbol	CPU	Wi-Fi	Min.	Typical	Max.	Unit
I _{VDD}	Active	TX@MCS7/HT20, 13dBm		244		mA
I _{VDD}	Active	TX@MCS7/HT20, 16.5dBm		257		mA
I _{VDD}	Active	TX@OFDM54M, 15dBm		255		mA
I _{VDD}	Active	TX@OFDM54M, 17.5dBm		267		mA
I _{VDD}	Active	TX@CCK11M, 17dBm		287		mA
I _{VDD}	Active	TX@CCK11M, 18dBm		295		mA
I _{VDD}	Active	RX@Idle, HT40		120		mA
I _{VDD}	Active	RX@MCS7, HT40 (Pin= -60dBm)		130		mA
I _{VDD}	Active	RX@MCS7, HT20 (Pin= -60dBm)		127		mA
I _{VDD}	Active	RX@OFDM54M (Pin= -60dBm)		127		mA
I _{VDD}	Active	RX@CCK11M (Pin= -60dBm)		115		mA
I _{VDD}	Active	RF Standby		84		mA
I _{VDD}	Active	RF disable		62		mA

(1). The above parameters are measured in the laboratory wireless shielding environment. Refer to Table 8 for actual application power consumption.

(2). In Deep Standby Mode, the CS signal of Flash should be pulled high, otherwise the MX1290 will generate leakage current on the Flash interface.

(3). Flash power consumption is not included in the data in Table 6. When reading code or reading and writing data from the Flash, the power consumption of the Flash is not higher than 20mA, and the power consumption of the Flash in standby mode (CS signal pulled high) is not higher than 50μ A.

3.3. General I/O interface

Symbol	Nete	Conditions	Specification				
	Note	Conditions	Min.	Typical	Max.	Unit	
VIH	Input-High Voltage	LVTTL	2.0	-	-	V	
VIL	Input-Low Voltage	LVTTL	-	-	0.8	V	
V _{OH}	Output-High Voltage	LVTTL	2.4	-	-	V	
V _{OL}	Output-Low Voltage	LVTTL	-	-	0.4	V	
I _{T+}	Schmitt-trigger High Level		1.78	1.87	1.97	V	
I _{T-}	Schmitt-trigger Low Level		1.36	1.45	1.56	V	
IIL	Input-Leakage Current	V _{IN} =3.3V or 0	-10	±1	10	μA	

Table 7 DC current: digital I/O

3.4. Typical Application Power Consumption

The module current test environment is based on VDD=3.3V. Test under common office application environment (values measured under different test environments will be different).

Mada	EMW3	090	EMW30	90V2	11	Note
Mode	Average	Max.	Average	Max.	Unit	Note
Wi-Fi off	28.3	28.3	21	21	mA	CPU idle
Wi-Fi off	3.5	3.5	3.5	3.5	mA	CPU idle, turn on low power consumption
Wi-Fi off	24.6	24.7	19	20	mA	CPU running at full load
Wi-Fi initial	114.	121	110	126	mA	Power on state, turn off low power consumption
Keep Wi-Fi connected	114	147	109	124	mA	Turn off Wi-Fi and MCU low power consumption
Keep Wi-Fi connected	14	290	9.06	282	mA	Turn on Wi-Fi and MCU low power consumption
SoftAP mode	118	306	116	306	mA	SoftAP networking status
Monitor mode	114	122	114	126	mA	Distribution process, in RX state
Deepsleep mode	10	12	10	12	μA	MCU / RAM / peripheral / RTC is off, can be woken up by wake-up pin or internal Timer
Iperf performance mode	160	336	115	345	mA	Turn off Wi-Fi and MCU low power consumption
Iperf performance mode	164	332	115	353	mA	Turn on Wi-Fi and MCU low power consumption

Table 8 Typical application power consumption

3.5. Temperature

Table 9 Temperature and humidity parameters

Symbol	Ratings	Max	Unit
T _{STG}	Storage temperature	–55 to +125	°C
T _{work}	Ambient Operating Temperature	-20 to +85	°C
T _{Jun}	Junction Temperature	0 to +125	°C

3.6. ESD

Table 10 Electrostatic d	lischarge parameters
--------------------------	----------------------

Symbol	Name	Name	Level	Max.	Unit
V _{ESD} (HBM)	Electrostatic discharge voltage (Human body model)	TA= +25 °C comply with JESD22-A114	2	2000	
V _{ESD} (CDM)	Electrostatic discharge voltage (Discharge equipment model)	TA = +25 °C comply with JESD22-C101	II	500	V

3.7. RF Parameter

Table 11 RF Parameter				
ltem	Specification			
Operating Frequency	2.412~2.484GHz			
Channel BW	20MHz, 40MHz(MX1290 only)			
Antenna Interface	1T1R, Single stream			
Wi-Fi Standard	IEEE 802.11b/g/n			
	11b: DBPSK, DQPSK, CCK for DSSS			
Modulation Type	11g: BPSK, QPSK, 16QAM, 64QAM for OFDM			
	11n: MCS0~7, OFDM			
	802.11b: 1, 2, 5.5 and 11Mbps			
Data Batas	802.11g: 6, 9, 12, 18, 24, 36, 48 and 54 Mbps			
Data Rates	802.11n: MCS0~7, up to 72.2Mbps			
	802.11n: MCS0~7, up to 150Mbps (MX1290 only)			
	One U.F.L connector for external antenna			
Antenna type	PCB printed ANT (Reserve)			

Note: The typical values of the following Tx test data are recorded under normal temperature environment and Tx lasts about 20s.

IEEE 802.11b mode

Item		Description					
Mode		IEEE802.11b					
Channel		CH1 to	CH13				
Data rate		1, 2, 5.5,	11Mbps				
TX Characteristics	Min.	Typical	Max.	Unit			
Transmitter Output Power							
11b Target Power@1Mbps	15	16.5	18	dBm			
11b Target Power@11Mbps	15.0	16.5	18.0	dBm			
Spectrum Mask							
fc +/-11MHz to +/-22MHz	-	-	-30	dBr			
fc > +/-22MHz	-	-	-50	dBr			
Frequency Error	-15	-1	+ 15	ppm			
Constellation Error (peak EVM)							
1~11Mbps	-	-15.5	35% (or -11dB)				
RX Characteristics	Min.	Typical	Max.	Unit			
Minimum Input Level Sensitivity							
1Mbps (FER≦8%)	-	-98	-97	dBm			
11Mbps (FER≦8%)	-	-90	-90	dBm			

Table 12 RF Parameters in IEEE802.11b mode

The 11b power is the power obtained from the factory mode test (through the wall mode), the actual user application and certification test will be 2dB lower than the factory mode, i.e. the actual maximum power of the 11b is capped at 16dBm. ensure that the PSD test item of the certification test can be passed.

IEEE802.11g mode

Table 13 F	RF Parameters in IEEE	802.11g mode				
ltem		Description				
Mode		IEEE80	2.11g			
Channel		CH1 to	CH13			
Datarate	6, 9	9, 12, 18, 24,	36, 48, 54Mk	ops		
TX Characteristics	Min.	Typical	Max.	Unit		
Transmitter Output Power						
11g Target Power@6Mbps	14	15.5	17	dBm		
11g Target Power@54Mbps	13	14.5	16	dBm		
Spectrum Mask	·					
fc +/- 11MHz	-	-	-20	dBr		
fc +/- 20MHz	-	-	-28	dBr		
fc > +/-30MHz	-	-	-40	dBr		
Frequency Error	-15	-1	+15	ppm		
Constellation Error (peak EVM)	·					
6Mbps	-	-30	-5	dBm		
54Mbps	-	-31	-25	dBm		
RX Characteristics	Min.	Typical	Max.	Unit		
Minimum Input Level Sensitivity						
6Mbps (FER≦10%)	-	-92.5	-92.5	dBm		
54Mbps (FER≦10%)	-	-76	-75.5	dBm		

Copyright of Shanghai MXCH	P Information Technology Co., Ltd.

IEEE802.11n HT20 mode

Item Description								
Mode	IEEE802.11n HT20							
Channel		CH1 to CH13						
Datarate		MCS0/1/2/3/4/5/6/7						
TX Characteristics	Min.							
Transmitter Output Power								
11n Target Power@MCS0	13.5	15	16.5	dBm				
11n Target Power@MCS7	12	13.5	15.0	dBm				
Spectrum Mask								
fc +/- 11MHz	-	-	-20	dBr				
fc +/- 20MHz	-	-	-28	dBr				
fc > +/-30MHz	-	-	-45	dBr				
Frequency Error	-15	-1	+15	ppm				
Constellation Error (peak EVM)								
MCS0	-	-30	-5	dBm				
MCS7	-	-32	-27	dBm				
RX Characteristics	Min.	Typical	Max.	Unit				
Minimum Input Level Sensitivity								
MCS0 (FER≦10%)	-	-92.5	-92.5	dBm				
MCS7 (FER≦10%)	-	-73	-73	dBm				

MCS0 (FER≦10%)

MCS7 (FER≦10%)

IEEE802.11n HT40 mode (MX1290V2 not support)

Table 15 RF Parameters in IEEE802.11n HT40 mode								
Item		Description						
Mode		IEEE802	2.11n HT40					
Channel		CH3	to CH11					
Datarate		MCS0/1,	/2/3/4/5/6/7					
TX Characteristics	Min.	Typical	Max.	Unit				
Transmitter Output Power								
11n Target Power@MCS0	13.5	15	16.5	dBm				
11n Target Power@MCS7	12	13.5	15.0	dBm				
Spectrum Mask								
fc +/- 11MHz	-	-	-20	dBr				
fc +/- 20MHz	-	-	-28	dBr				
fc > +/-30MHz	-	-	-45	dBr				
Frequency Error	-15	-1	+15	ppm				
Constellation Error (peak EVM)								
MCS0	-	-30	-5	dBm				
MCS7	-	-32	-28	dBm				
RX Characteristics	Min.	Typical	Max.	Unit				
Minimum Input Level Sensitivity								

-92.5

-73

-

-

-92.5

-73

dBm

dBm

4. Antenna Information

EMW3090 has two specifications: PCB antenna and external antenna, please refer to the order code for order. IPX antenna connectors are not soldered on the modules using PCB antennas. By connecting an external antenna through an IPX connector, you can get better RF performance.

4.1. PCB antenna parameters and use

4.1.1. On-board PCB parameter

Item	Min.	Typical	Max.	Unit				
Frequency	2400		2500	MHz				
Impedance		50		Ω				
VSWR			2					
Gain	≤2dBi							
Efficiency	>60% or >-2.22dB							

Table 16 On-board PCB parameter

Note: The above conditions are obtained with the module soldered to the motherboard and under anechoic chamber test conditions.

Note: The above antenna test data is based on the module soldered to the test board with good clearance area in anechoic chamber conditions, the measured data is for reference only. In actual use, the antenna is affected by the whole structure and enclosure, the data will be deviated.

4.2. PCB Antenna Clearance

When using PCB antenna in Wi-Fi module, it is necessary to ensure that PCB and other metal devices are at least 16 mm away from the motherboard. The shaded areas in the figure below need to be far away from metal devices, sensors, interference sources and other materials that may cause signal interference.

4.3. External antenna parameters and use

Users can choose different 2.4G antennas with different external dimensions and gains not greater

than 2dBi according to the application environment.

When using an external antenna, it should be noted that the module must be powered on after the antenna is connected, because the module will perform IQ calibration after power on, and send a single carrier through the PA to pass the RX loop detection signal. If the load is not loaded (the antenna is not connected), it will cause calibration errors, which will make the PA output power abnormal, and a large standing wave will be formed at the PA output, which may damage the internal devices.

The following is a copper tube antenna with an IPEX connector commonly used by MXCHIP:

Figure 5 Copper tube antenna size

- Frequency range: 2400-2500 MHz
- Input impedance: 50 OHM
- VSWR: < 2.0

MXCHIP[®]

- Gain: 2.0DBI
- Polarization: vertical
- Directivity: Omnidirectional
- Copper tube: 4.4 * 23mm
- Wire: 1.13 gray wire L-82mm

External antenna IPEX seat size:

MXCHIP

Figure 6 Dimension drawing of external antenna connector

4.3.1. SRRC Important statements

The SRRC type approval number obtained for module models using an external antenna base has the (M) suffix and any module with the (M) suffix is specifically declared as follows.

Type approval of a module does not imply that the end equipment in which the module is embedded or in which it is used complies with the relevant radio regulations or standards, and the end equipment manufacturer is responsible for the conformity of the technical characteristics of the product with the radio regulations or standards.

5. Dimensions and Production Guidance

5.1. Assembly Dimension Diagram

Figure 7 Assembly Dimension Diagram (unit: mm, tolerance: ±0.1, outside tolerance±0.2))

5.2. Recommended Package Drawing

Figure 8 Package size (unit: mm)

MXCHIP[®]

6. Reference Circuits

6.1. Power

The module uses 3.3V DC single voltage power supply. The following is an example of power supply after conversion with 5V power supply of USB interface.

Figure 9 Power reference circuit

6.2. Module basic circuit

Note: The module has 100K hardware pull-up resistors in PA_30 (UART2_Log_TX) and PA_29 (UART2_Log_RX). The PA_0 pin has a 100K hardware pull-down resistor. CHIP_EN has an internal 100K pull-up resistor and 0.01µF capacitance to ground. Please pay special attention to the design schematic and PCB and allocate the pull-up and pull-down according to the internal hardware.

6.3. UART

During the debugging process, the UART signal is usually converted to USB and then connected to the PC.

The conversion reference circuit is shown in Figure 11:

If the UART of the chip used by the user is 5V, you need to convert the 5V UART to 3.3V to communicate with the module. For the 5V-3.3V UART conversion circuit, please refer to the circuit shown in Figure 12.

7. Production Guidelines

MXCHIP[®]

MXCHIP stamp port packaging module must be SMT machine patches, module humidity sensitivity grade MSL3, after unpacking more than a fixed time patches to bake module.

- SMT patches require instruments
 - Reflow bonding machine
 - AOI detector
 - 6-8mm suction nozzle
- Baking requires equipment:
 - Cabinet oven
 - Anti-static, high temperature tray
 - Antistatic and heat resistant gloves

The storage conditions of MXCHIP module are as follows:

- Moisture-proof bags must be stored in an environment with temperature < 30 degree C and humidity < 85% RH.
- A humidity indicator card is installed in the sealed package.

After the module is split, if the humidity card shows pink, it needs to be baked.

The baking parameters are as follows:

- The baking temperature is 120°C±5°C and the baking time is 4 hours.
- The alarm temperature is set to 130°C.
- SMT patches can be made after cooling < 36°C under natural conditions.
- Drying times: 1 time.
- If there is no welding after baking for more than 12 hours, please bake again.

If the disassembly time exceeds 3 months, SMT process is forbidden to weld this batch of modules,

Figure 13 Humidity Card

because PCB gold deposition process, over 3 months, pad oxidation is serious, SMT patch is likely to lead to virtual welding, leak welding, resulting in various problems, our company does not assume the corresponding responsibility.

Before SMT patch, ESD (Electrostatic Discharge, Electrostatic Release) protection should be applied to the module.

SMT patches should be made according to the reflow curve. The peak temperature is 250 C.

In order to ensure the qualified rate of reflow soldering, 10% of the first patches should be taken for visual inspection and AOI testing to ensure the rationality of furnace temperature control, device adsorption mode and placement mode, and 5-10 patches per hour are recommended for visual inspection and AOI testing in subsequent batch production.

7.1. Precautions

MXCHIP®

- Operators of each station must wear static gloves during the entire production process.
- Do not exceed the baking time when baking.
- It is strictly forbidden to add explosive, flammable, or corrosive substances during baking.
- When baking, the module uses a high temperature tray to be placed in the oven to keep the air circulation between each module while avoiding direct contact between the module and the inner wall of the oven.
- When baking, please close the oven door to ensure that the oven is closed to prevent temperature leakage and affect the baking effect.
- Try not to open the door when the oven is running. If it must be opened, try to shorten the time for opening the door.
- After baking, the module should be naturally cooled to <36°C before wearing the static gloves to avoid burns.
- When operating, strictly guard against water or dirt on the bottom of the module.

The temperature and humidity control level of MXCHIP factory module is Level3, and the storage and baking conditions are based on IPC/JEDEC J-STD-020.

7.2. Secondary reflow temperature curve

Recommended solder paste type: SAC305, lead free. No more than 2 reflow cycles. Peak temperature not to exceed 245°C. The following is a typical furnace temperature profile setting.

Furnace settings	Z1	Z2	Z3	Z4	Z5	Z6	Z 7	Z8	Z 9	Z10
Upper temperature zone setting	135	150	170	175	180	215	250	260	247	200

Table 17 Typical furnace temperature settings

Lower										
temperature	135	150	170	175	180	215	250	260	247	200
zone setting										

- 30°C ~ 150°C preheating temperature rise: 0-3°C/s, typical value: 1.2°C/s
- 150°C ~ 190°C immersion time: 60-100second, typical value: 72second
- Peak temperature: 245°C, typical value: 242°C
- Time above 220°C: 50 sec. to 90 sec. Typical value: 70 sec
- 217°Ccooling speed: -3 ~ 0°C/s, typical value: -2.0°C/s

7.3. Storage Condition

Figure 15 Storage Conditions Diagram

8. Label Information

Figure 16 Label diagram

- 1. MXCHIP: Company Logo.
- 2. CMIIT ID: SRRC Model Authorization ID
- 3. EMW3090-P: Product Main Type
- 4. X1952: Product Auxiliary Model
- 5. F3090V2BP: type suffix
- 6. B0F893E57A90: MAC Address

Note: Due to production batch and version and other reasons, the above label diagram is for reference only, please prevail in kind.

MXCHIP[®]

9. Sales and Technical Support Information

If you need to consult or purchase this product, please call Shanghai MXCHIP Information Technology Co., Ltd. during office hours.

Office hours: Monday to Friday morning: 9:00-12:00, afternoon: 13:00-18:00

Contact Tel: +86-21-52655026

Address: 9th Floor, Lane 5, 2145 Jinshajiang Road, Putuo District, Shanghai

Zip code: 200333

Email: sales@mxchip.com