

Intel® Celeron[™] P4000 and U3000 Mobile Processor Series

External Design Specification – Volume One

This is volume 1 of 2. Refer to Document 416057 for Volume 2 Rev 1.5 March 2010 Intel Confidential

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Intel® Active Management Technology requires the platform to have an Intel® AMT-enabled chipset, network hardware and software, connection with a power source and a network connection.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information.

^A Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details.

Intel, Intel SpeedStep, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2009 - 2010, Intel Corporation. All rights reserved.

Contents

1	Feat	ures Su	mmary	
	1.1			
	1.2	Proces	sor Featur	e Details
		1.2.1	Supporte	ed Technologies 14
	1.3	Interfa		
	-	1.3.1		Memory Support
		1.3.2		ess*
		1.3.3	Direct M	edia Interface (DMI)16
		1.3.4		Environment Control Interface (PECI)
		1.3.5		D Graphics Controller
		1.3.6	Embodd	ed DisplayPort* (eDP*)17
		1.3.7		lexible Display Interface (Intel® FDI)
	1.4			
	1.4			ent Support
		1.4.1		r Core
		1.4.2		
		1.4.3		Controller
		1.4.4		ress*
		1.4.5		
		1.4.6		ed Graphics Controller 18
	1.5			ment Support
	1.6			
	1.7			
	1.8	Relate	d Docume	nts
2	Inte	rfaces		
_	2.1			Interface
	2.1	2.1.1		Memory Technology Supported
		2.1.2		Memory Timing Support
		2.1.2		Memory Organization Modes
		2.1.5	2.1.3.1	
			2.1.3.2	Dual-Channel Mode - Intel® Flex Memory Technology
			2.1.5.2	Mode
		2.1.4	Rules for	Populating Memory Slots
		2.1.4	Technolo	by Enhancements of Intel [®] Fast Memory Access (Intel [®]
		2.1.5	FMA)	
			2.1.5.1	Just-in-Time Command Scheduling
			2.1.5.2	
			2.1.5.3	Out-of-Order Scheduling
		2.1.6		ock Generation
		2.1.7		Memory Pre-Charge Power Down Support Details 27
	2.2			rface
	2.2			ress Architecture
		2.2.1	2.2.1.1	Transaction Layer
			2.2.1.1	Data Link Layer
			2.2.1.2	Physical Layer
		2.2.2		ress Configuration Mechanism
		2.2.2		ess configuration Mechanism
		2.2.3	2.2.3.1	PCI Express Bifurcated Mode
			2.2.3.1	Static Lane Numbering Reversal
	2 2	рмт	-	-
	2.3	2.3.1		
				3()

Intel Confidential

3

4

2.4	2.3.2 2.3.3	DMI Link	r/PCH Compatibility Assumptions Down	31
2.4			ics Controller	
	2.4.1		/ideo Engines for Graphics Processing	
		2.4.1.1 2.4.1.2	3D Engine Execution Units	
		2.4.1.2	3D Pipeline Video Engine	
		2.4.1.3	2D Engine	
	2.4.2		ed Graphics Display Pipes	
	2.7.2	2.4.2.1	Display Planes	
		2.4.2.2	Display Pipes	
		2.4.2.3	Display Ports	
		2.4.2.4	Embedded DisplayPort (eDP)	35
	2.4.3	Intel Flex	kible Display Interface	
2.5	Platfor		ment Control Interface (PECI)	
2.6			g	
	2.6.1		Clocking Requirements	
3.1			tion Technology (Intel® VT)	
	3.1.1		T-x Objectives	
	3.1.2		x Features	
3.2			Dynamic Frequency	
	3.2.1	Intel Gra	phics Dynamic Frequency	38
Pow	er Mana	aement .		40
4.1	ACPI S	tates Sun	ported	40
	4.1.1		States	
	4.1.2		r Core/Package Idle States	
	4.1.3		ed Memory Controller States	
	4.1.4		 States 	
	4.1.5		es	
	4.1.6		ed Graphics Controller States	
	4.1.7	Interface	State Combinations	42
4.2			ower Management	
1.2	4.2.1		d Intel SpeedStep® Technology	
	4.2.2		er Idle States	
	4.2.3		ng Low-Power Idle States	
	4.2.4		tates	
	7.2.7	4.2.4.1	Core C0 State	
		4.2.4.2	Core C1/C1E State	
		4.2.4.3	Core C3 State	
		4.2.4.4	Core C6 State	
		4.2.4.5	C-State Auto-Demotion	
	4.2.5	Package	C-States	46
		4.2.5.1	Package C0	48
		4.2.5.2	Package C1/C1E	
		4.2.5.3	Package C3 State	
		4.2.5.4	Package C6 State	49
		4.2.5.5	Power Status Indicator (PSI#) and DPRSLPVR#	
4.3			gement	
	4.3.1	-	Unused System Memory Outputs	
	4.3.2		wer Management and Initialization	
		4.3.2.1	Initialization Role of CKE	
		4.3.2.2	Conditional Self-Refresh	
		4.3.2.3	Dynamic Power Down Operation	
		4.3.2.4	DRAM I/O Power Management	

	4.4	CIe Power Management 51
	4.5	MI Power Management51
	4.6	tegrated Graphics Power Management51
		6.1 Intel [®] Display Power Saving Technology 5.0 (Intel [®] DPST 5.0)51
		6.2 Graphics Render C-State
		6.3 Graphics Performance Modulation Technology
	4 7	6.4 Intel [®] Smart 2D Display Technology (Intel [®] S2DDT)
	4.7	nermal Power Management 52
5	Ther	I Management
	5.1	nermal Design Power and Junction Temperature
		1.1 Intel Graphics Dynamic Frequency
		1.2 Intel Graphics Dynamic Frequency Thermal Design Considerations
		and Specifications
		1.3Tule Power Specifications301.4Intelligent Power Sharing Control Overview57
		1.5 Component Power Measurement/Estimation Error
	5.2	nermal Management Features
		2.1 Processor Core Thermal Features
		5.2.1.1 Adaptive Thermal Monitor
		5.2.1.2 Digital Thermal Sensor60
		5.2.1.3 PROCHOT# Signal
		5.2.1.4 On-Demand Mode
		5.2.1.6 Critical Temperature Detection
		2.2 Integrated Graphics and Memory Controller Thermal Features 63
		5.2.2.1 Internal Digital Thermal Sensor
		5.2.2.2 Memory Thermal Throttling Options
		5.2.2.3 External Thermal Sensor Interface Overview
		5.2.2.4 THERMTRIP# Operation
		2.3 Platform Environment Control Interface (PECI)
		5.2.3.1 Fan Speed Control with Digital Thermal Sensor 66
		5.2.3.2 Processor Thermal Data Sample Rate and Filtering 67
6	Signa	Description
U	6.1	ystem Memory Interface
	6.2	emory Reference and Compensation
	6.3	eset and Miscellaneous Signals
	6.4	CI Express Graphics Interface Signals74
	6.5	nbedded DisplayPort (eDP)74
	6.6	tel Flexible Display Interface Signals75
	6.7	MI75
	6.8	L Signals
	6.9	AP Signals
	$6.10 \\ 6.11$	ror and Thermal Protection
	6.11	ower Sequencing
	6.12	round and NCTF
	6.14	ocessor Internal Pull Up/Pull Down
-		
7		al Specifications
	7.1 7.2	ower and Ground Pins
	1.2	2.1 Voltage Rail Decoupling
	7.3	ocessor Clocking (BCLK, BCLK#)
		3.1 PLL Power Supply

Intel Confidential

8

9

7.4	Voltage Identification (VID)	85
7.5	Reserved or Unused Signals	
7.6	Signal Groups	
7.7	Test Access Port (TAP) Connection	92
7.8	Absolute Maximum and Minimum Ratings	93
7.9	Storage Conditions Specifications	
7.10	DC Specifications	
	7.10.1 Voltage and Current Specifications	95
	7.10.2 V _{CC} and VAXG Validation	. 104
	7.10.3 Uncore Voltage Validation	. 106
7.11	Platform Environmental Control Interface (PECI) DC Specifications	
	7.11.1 DC Characteristics	. 106
	7.11.2 Input Device Hysteresis	.107
7.12	AC Specifications	. 108
	7.12.1 DDR3 AC Specifications	
	7.12.2 Miscellaneous AC Specifications	. 115
	7.12.3 TAP Signal Group AC Specifications	. 116
	7.12.4 VID Signal Group AC Specifications	
7.13	Processor AC Timing Waveforms	. 116
7.14	Signal Quality	
	7.14.1 Input Reference Clock Signal Quality Specifications	
	7.14.2 DDR3 Signal Quality Specifications	
	7.14.3 I/O Signal Quality Specifications	
7.15	Overshoot/Undershoot Guidelines	
	7.15.1 VCC Overshoot Specification	
	7.15.2 Overshoot/Undershoot Magnitude	
	7.15.3 Overshoot/Undershoot Pulse Duration	. 124
Proce	essor Pin and Signal Information	.125
8.1	Processor Pin Assignments	. 125
8.2	Package Mechanical Information	
Tooto	5	
resta	ability	. 202

Figures

1	Intel [®] Celeron [™] P4000 and U3000 mobile processor series
	on the Calpella Platform
2	Intel Flex Memory Technology Operation25
3	Dual-Channel Symmetric (Interleaved) and Dual-Channel
	Asymmetric Modes
4	PCI Express Layering Diagram
5	Packet Flow through the Layers
6	PCI Express Related Register Structures in the Processor
7	Integrated Graphics Controller Unit Block Diagram
8	Processor Display Block Diagram
9	Idle Power Management Breakdown of the Processor Cores
10	Thread and Core C-State Entry and Exit
11	Package C-State Entry and Exit
12	Frequency and Voltage Ordering59
13	Active V _{CC} and I _{CC} Loadline (PSI# Asserted)
14	Active V _{CC} and I _{CC} Loadline (PSI# Not Asserted)
15	VAXG/IAXG Static and Ripple Voltage Regulation
16	Input Device Hysteresis
17	Differential Clock – Differential Measurements
18	Differential Clock – Single Ended Measurements
19	DDR3 Command / Control and Clock Timing Waveform 118
20	DDR3 Receiver Eye Mask
21	DDR3 Clock to DQS Skew Timing Waveform
22	PCI Express Receiver Eye Margins
23	TAP Valid Delay Timing Waveform
24	Test Reset (TRST#), Async GTL Input, and PROCHOT#
	Timing Waveform
25	THERMTRIP# Power Down Sequence
26	VID Step Timings
27	VID Step Times and V _{CC} Waveforms
28	VCC Overshoot Example Waveform
29	Maximum Acceptable Overshoot/Undershoot Waveform
30	Socket-G (rPGA988A) Pinmap (Top View, Upper-Left Quadrant)
31	Socket-G (rPGA988A) Pinmap (Top View, Upper-Right Quadrant)
32	Socket-G (rPGA988A) Pinmap (Top View, Lower-Left Quadrant)
33	Socket-G (rPGA988A) Pinmap (Top View, Lower-Right Quadrant)
34	BGA1288 Ballmap (Top View, Upper-Left Quadrant)
35	BGA1288 Ballmap (Top View, Upper-Right Quadrant)
36	BGA1288 Ballmap (Top View, Lower-Left Quadrant)
37	BGA1288 Ballmap (Top View, Lower-Right Quadrant)
38	Arrandale rPGA Mechanical Package (Sheet 1 of 2)
39	Arrandale rPGA Mechanical Package (Sheet 2 of 2)
40	Arrandale BGA Mechanical Package (Sheet 1 of 2)
-	
41	Arrandale BGA Mechanical Package (Sheet 2 of 2)

Tables

1	Processor Documents	21
2	PCH Documents	22
3	Public Specifications	22
4	Supported SO-DIMM Module Configurations1	
5	DDR3 System Memory Timing Support	
6	eDP/PEG Ball Mapping	
7	Processor Reference Clocks	
8	System States	
9	Processor Core/Package State Support	
10	Integrated Memory Controller States	
11	PCIe Link States	
12	DMI States	
13	Integrated Graphics Controller States	
14	G, S and C State Combinations	
15	D, S, and C State Combination	
16	Coordination of Thread Power States at the Core Level	
17	P_LVLx to MWAIT Conversion	
18	Coordination of Core Power States at the Package Level	
19	Targeted Memory State Conditions	50
20	Intel® Celeron [™] P4000 mobile processor series Dual-Core	
	SV Thermal Power Specifications	55
21	Intel® Celeron [™] U3000 mobile processor series Dual-Core ULV	
	Thermal Power Specifications	56
22	35W Standard Voltage(SV) Processor Idle Power	
23	18W Ultra Low Voltage(ULV) Processor Idle Power	
24	Signal Description Buffer Types	
25	Memory Channel A	
26	Memory Channel B	70
27	Memory Reference and Compensation	71
28	Reset and Miscellaneous Signals	72
29	PCI Express Graphics Interface Signals	74
30	Embedded Display Port Signals	74
31	Intel® Flexible Display Interface	
32	DMI - Processor to PCH Serial Interface	
33	PLL Signals	
34	TAP Signals	
35	Error and Thermal Protection	
36	Power Sequencing	
37	Processor Power Signals	
38	Ground and NCTF	
39	Processor Internal Pull Up/Pull Down	
40	Voltage Identification Definition	
40 41	Market Segment Selection Truth Table for MSID[2:0]	
42	Signal Groups1	
43	Processor Absolute Minimum and Maximum Ratings	
44	Storage Condition Ratings	94
45	Arrandale Processor Core (VCC) Active and Idle Mode DC Voltage	<u>ог</u>
	and Current Specifications	95
46	Processor Uncore I/O Buffer Supply DC Voltage and	~~
47	Current Specifications	98
47	Processor Graphics VID based (VAXG) Supply DC Voltage and Current	00
40	Specifications	
48	DDR3 Signal Group DC Specifications	
49	Control Sideband and TAP Signal Group DC Specifications 1	.02

50	PCI Express DC Specifications	
51	eDP DC Specifications	
52	eDP DC Specifications	
53	PECI DC Electrical Limits	
54	Differential Clocks (SSC on)	
55	Differential Clocks (SSC off)	
56	Processor Clock Jitter Specifications (cycle-cycle)	109
57	Intel 5 Series Chipset Clock Jitter Specifications (cycle-cycle)	
58	System Reference Clock DC and AC Specifications	110
59	DDR3 Electrical Characteristics and AC Timings at 800 MT/s,	
	VDDQ = 1.5 V ±0.075 V	112
60	DDR3 Electrical Characteristics and AC Timings at 1066 MT/s,	
	VDDQ = 1.5 V ±0.075 V	
61	PCI Express AC Specification	
62	eDP AC Specifications	
63	Miscellaneous AC Specifications	
64	TAP Signal Group AC Specifications	116
65	VID Signal Group AC Specifications	116
66	VCC and VAXG Overshoot Specifications	
67	Processor Overshoot/Undershoot Specifications	124
68	rPGA988A Processor Pin List by Pin Name	130
69	rPGA988A Processor Pin List by Pin Number	143
70	BGA1288 Processor Ball List by Ball Name	162
71	BGA1288 Processor Ball List by Ball Number	

Revision History

Document	Revision	Description	Revision
Number	Number		Date
442690	1.5	Initial release	Feburary 2010

Revision Number Descriptions				
Revision	Associated Life Cycle Milestone	Release Information		
0.5	Design Win Phase	Required Release		
0.6-0.7	When Needed	Project Dependent		
0.7	Simulations Complete	Required Release		
0.8-0.9	When Needed	Project Dependent		
1.0	First Silicon Samples	Required Release		
1.1-1.4	When Needed	Project Dependent		
1.5	Qualification Silicon Samples	Project Dependent		
1.6-1.9	When Needed	Project Dependent		
NDA - 2.0 Public - XXXXXX-001	First SKU Launch	Required Release Product Launch		
2.1 and up	When Needed	Project Dependent		

§

1 Features Summary

1.1 Introduction

The External Design Specification (EDS) provides DC and AC electrical specifications, signal integrity, differential signaling specifications, pinout and signal definitions, interface functional descriptions, thermal specifications, and additional feature information pertinent to the implementation and operation of the processor on its respective platform.

Intel® Celeron[™] P4000 and U3000 mobile processor series is the next generation of 64-bit, multi-core mobile processor built on 32-nanometer process technology. Throughout this document, Intel® Celeron[™] P4000 and U3000 mobile processor series may be referred to as simply the processor. Based on the low-power/high-performance Nehalem micro-architecture, the processor is designed for a two-chip platform as opposed to the traditional three-chip platforms (processor, GMCH, and ICH). The two-chip platform consists of a processor and the Platform Controller Hub (PCH) and enables higher performance, lower cost, easier validation, and improved x-y footprint. The PCH may also be referred to as Mobile Intel® 5 Series Chipset (formerly Ibex Peak-M). Intel® Celeron[™] P4000 and U3000 mobile processor series is designed for the Calpella platform and is offered in an rPGA988A or a BGA1288 package.

Included in this family of processors is Intel® HD graphics and memory controller die on the same package as the processor core die. This two-chip solution of a processor core die with an integrated graphics and memory controller die is known as a multi-chip package (MCP) processor.

Note: Throughout this document, Intel® Celeron[™] P4000 and U3000 mobile processor series may be referred to as simply the processor.

Throughout this document, $\ensuremath{\mathsf{Intel}}\xspace$ BD graphics may be referred to as simply the integrated graphics.

Integrated graphics and memory controller die is built on 45-nanometer process technology

Intel® Celeron[™] P4000 and U3000 mobile processor series is not vPro eligible

Figure 1. Intel® Celeron™ P4000 and U3000 mobile processor series on the Calpella Platform

Intel Confidential

1.2 Processor Feature Details

- Two execution cores
- A 32-KB instruction and 32-KB data first-level cache (L1) for each core
- A 256-KB shared instruction/data second-level cache (L2) for each core
- Up to 2-MB shared instruction/data third-level cache (L3), shared among all cores

1.2.1 Supported Technologies

- Intel® Virtualization Technology (Intel® VT-x)
- Intel® 64 architecture
- Execute Disable Bit
- Processor Context Identifier(PCID)

Note: Please refer to the Intel® Celeron[™] P4000 and U3000 mobile processor series Specification Update for feature support details

For more information on AESNI, PCLMULQDQ instructions and Processor Context Identifier, please refer to the Intel Software Developer's Manual

1.3 Interfaces

1.3.1 System Memory Support

- One or two channels of DDR3 memory with a maximum of one SO-DIMM per channel
- Single- and dual-channel memory organization modes
- · Data burst length of eight for all memory organization modes
- Memory DDR3 data transfer rates of 800 MT/s (SV, ULV) and 1066 MT/s (SV)
- 64-bit wide channels
- DDR3 I/O Voltage of 1.5 V
- Non-ECC, unbuffered DDR3 SO-DIMMs only
- Theoretical maximum memory bandwidth of:
 - 12.8 GB/s in dual-channel mode assuming DDR3 800 MT/s
 - 17.1 GB/s in dual-channel mode assuming DDR3 1066 MT/s
- 1-Gb, and 2-Gb DDR3 DRAM technologies are supported for x8 and x16 devices.
- Using 2-Gb device technologies, the largest memory capacity possible is 8 GB, assuming dual-channel mode with two x8, double-sided, un-buffered, non-ECC, SO-DIMM memory configuration.
- Up to 32 simultaneous open pages, 16 per channel (assuming 4 Ranks of 8 Bank Devices)

- Memory organizations:
 - Single-channel modes
 - Dual-channel modes Intel® Flex Memory Technology: Dual-channel symmetric (Interleaved)
 Dual-channel asymmetric
- Command launch modes of 1n/2n
- Partial Writes to memory using Data Mask (DM) signals
- On-Die Termination (ODT)
- Intel® Fast Memory Access (Intel® FMA):
 - Just-in-Time Command Scheduling
 - Command Overlap
 - Out-of-Order Scheduling

1.3.2 PCI Express*

- The Processor PCI Express* ports are fully compliant to the PCI Express Base Specification Revision 2.0.
 - One 16-lane PCI Express* port intended for graphics attach.
 - Two 8-lane PCI Express* ports intended for graphics attach.
 PCI Express Port 0 is mapped to PCI Device 1 (PEG 0).
 PCI Express Port 1 is mapped to PCI Device 6 (PEG 1).
- Gen1 (2.5 GT/s) PCI Express* frequency is supported.
- Gen1 Raw bit-rate on the data pins of 2.5 Gb/s, resulting in a real bandwidth per pair of 250 MB/s given the 8b/10b encoding used to transmit data across this interface. This also does not account for packet overhead and link maintenance.
- Maximum theoretical bandwidth on interface of 4 GB/s in each direction simultaneously, for an aggregate of 8 GB/s when x16 Gen 1.
- Hierarchical PCI-compliant configuration mechanism for downstream devices.
- Traditional PCI style traffic (asynchronous snooped, PCI ordering).
- PCI Express extended configuration space. The first 256 bytes of configuration space aliases directly to the PCI compatibility configuration space. The remaining portion of the fixed 4-KB block of memory-mapped space above that (starting at 100h) is known as "extended configuration space".
- PCI Express Enhanced Access Mechanism. Accessing the device configuration space in a flat memory mapped fashion.
- Automatic discovery, negotiation, and training of link out of reset.
- Traditional AGP style traffic (asynchronous non-snooped, PCI-X Relaxed ordering).
- Peer segment destination posted write traffic (no peer-to-peer read traffic) in Virtual Channel 0:
 - DMI -> PCI Express Port 0
- 64-bit downstream address format, but the processor never generates an address above 64 GB (Bits 63:36 will always be zeros).
- 64-bit upstream address format, but the processor responds to upstream read transactions to addresses above 64 GB (addresses where any of Bits 63:36 are non-zero) with an Unsupported Request response. Upstream write transactions to addresses above 64 GB will be dropped.

- Re-issues configuration cycles that have been previously completed with the Configuration Retry status.
- PCI Express reference clock is 100-MHz differential clock buffered out of system clock generator.
- Power Management Event (PME) functions.
- Static lane numbering reversal
 - Does not support dynamic lane reversal, as defined (optional) by the PCI Express Base Specification.
 - PCI Express 1x16 configuration
 Normal (1x16): PEG_RX[15:0]; PEG_TX[15:0]
 Reversal (1x16): PEG_RX[0:15]; PEG_TX[0:15]
- Supports Half Swing "low-power/low-voltage" mode.
- Message Signaled Interrupt (MSI and MSI-X) messages
- PEG Lanes shared with Embedded DisplayPort* (see eDP, Section 1.3.6).
- Polarity inversion

1.3.3 Direct Media Interface (DMI)

- Compliant to Direct Media Interface second generation (DMI2).
- Four lanes in each direction.
- 2.5 GT/s point-to-point DMI interface to PCH is supported.
- Raw bit-rate on the data pins of 2.5 Gb/s, resulting in a real bandwidth per pair of 250 MB/s given the 8b/10b encoding used to transmit data across this interface. Does not account for packet overhead and link maintenance.
- Maximum theoretical bandwidth on interface of 1 GB/s in each direction simultaneously, for an aggregate of 2 GB/s when DMI x4.
- Shares 100-MHz PCI Express reference clock.
- 64-bit downstream address format, but the processor never generates an address above 64 GB (Bits 63:36 will always be zeros).
- 64-bit upstream address format, but the processor responds to upstream read transactions to addresses above 64 GB (addresses where any of Bits 63:36 are nonzero) with an Unsupported Request response. Upstream write transactions to addresses above 64 GB will be dropped.
- Supports the following traffic types to or from the PCH:
 - DMI -> PCI Express Port 0 write traffic
 - DMI -> DRAM
 - DMI -> processor core (Virtual Legacy Wires (VLWs), Resetwarn, or MSIs only)
 - Processor core -> DMI
- APIC and MSI interrupt messaging support:
 - Message Signaled Interrupt (MSI and MSI-X) messages
- Downstream SMI, SCI and SERR error indication.
- Legacy support for ISA regime protocol (PHOLD/PHOLDA) required for parallel port DMA, floppy drive, and LPC bus masters.
- DC coupling no capacitors between the processor and the PCH.
- Polarity inversion.

- PCH end-to-end lane reversal across the link.
- Supports Half Swing "low-power/low-voltage."

1.3.4 Platform Environment Control Interface (PECI)

The PECI is a one-wire interface that provides a communication channel between a PECI client (the processor) and a PECI master (the PCH).

1.3.5 Intel® HD Graphics Controller

- The integrated graphics controller contains a refresh of the fifth generation graphics core
- Intel® Dynamic Video Memory Technology (Intel® DVMT) support
- Intel® Graphics Performance Modulation Technology (Intel® GPMT)
- Intel® Smart 2D Display Technology (Intel® S2DDT)
- Intel® Clear Video Technology
 - MPEG2 Hardware Acceleration
 - WMV9/VC1 Hardware Acceleration
 - AVC Hardware Acceleration
 - ProcAmp
 - Advanced Pixel Adaptive De-interlacing
 - Sharpness Enhancement
 - De-noise Filter
 - High Quality Scaling
 - Film Mode Detection (3:2 pull-down) and Correction
 - Intel® TV Wizard
- 12 EUs
- Dedicated analog and digital display ports are supported through the Intel 5 Series Chipset PCH

1.3.6 Embedded DisplayPort* (eDP*)

- Shared with PCI Express Graphics port
- Shared on upper four logical lanes, after any lane reversal
- eDP[3:0] map to PEG[12:15] (non-reversed)
- eDP[3:0] map to PEG[3:0] (reversed)
- Concurrent eDP and PEG x1 support

1.3.7 Intel® Flexible Display Interface (Intel® FDI)

- Carries display traffic from the integrated graphics controller in the processor to the legacy display connectors in the PCH.
- Based on DisplayPort standard.
- Two independent links one for each display pipe.
- Four unidirectional downstream differential transmitter pairs:
 - Scalable down to 3X, 2X, or 1X based on actual display bandwidth requirements
 - Fixed frequency 2.7 GT/s data rate
- Two sideband signals for Display synchronization:
 - FDI_FSYNC and FDI_LSYNC (Frame and Line Synchronization)
- One Interrupt signal used for various interrupts from the PCH:
 FDI_INT signal shared by both Intel FDI Links
- PCH supports end-to-end lane reversal across both links.

1.4 Power Management Support

1.4.1 **Processor Core**

- Full support of ACPI C-states as implemented by the following processor C-states:
 - Ultra low voltage supports C0, C1, C1E, C3, C6
 - Standard voltage supports C0, C1, C1E, C3
- Enhanced Intel SpeedStep® Technology

1.4.2 System

• S0, S3, S4, S5

1.4.3 Memory Controller

- Conditional self-refresh (Intel® Rapid Memory Power Management (Intel® RMPM))
- Dynamic power-down

1.4.4 PCI Express*

• LOs and L1 ASPM power management capability

1.4.5 DMI

• LOs and L1 ASPM power management capability

1.4.6 Integrated Graphics Controller

- Intel Smart 2D Display Technology (Intel S2DDT)
- Intel® Display Power Saving Technology (Intel® DPST)
- Graphics Render C-State (RC6)

1.5 Thermal Management Support

- Digital Thermal Sensor
- Adaptive Thermal Monitor
- THERMTRIP# and PROCHOT# support
- On-Demand Mode
- Open and Closed Loop Throttling
- Memory Thermal Throttling
- External Thermal Sensor (TS-on-DIMM and TS-on-Board)
- Render Thermal Throttling
- Fan speed control with DTS

1.6 Package

- The Intel® Celeron[™] P4000 and U3000 mobile processor series is available on two packages:
 - A 37.5 x 37.5 mm rPGA package (rPGA988A) (Standard Voltage only)
 - A 34 x 28 mm BGA package (BGA1288) (Ultra Low Voltage only)

1.7 Terminology

Term	Description
BLT	Block Level Transfer
CRT	Cathode Ray Tube
DDR3	Third-generation Double Data Rate SDRAM memory technology
DP	DisplayPort*
DMA	Direct Memory Access
DMI	Direct Media Interface
DTS	Digital Thermal Sensor
ECC	Error Correction Code
eDP*	Embedded DisplayPort*
Intel® DPST	Intel [®] Display Power Saving Technology
Enhanced Intel SpeedStep® Technology	Technology that provides power management capabilities to laptops.
Execute Disable Bit	The Execute Disable bit allows memory to be marked as executable or non-executable, when combined with a supporting operating system. If code attempts to run in non-executable memory the processor raises an error to the operating system. This feature can prevent some classes of viruses or worms that exploit buffer overrun vulnerabilities and can thus help improve the overall security of the system. See the <i>Intel® 64 and IA-32 Architectures Software Developer's Manuals</i> for more detailed information.
(G)MCH	Legacy component - Graphics Memory Controller Hub

Term	Description
GPU	Graphics Processing Unit
ICH	The legacy I/O Controller Hub component that contains the main PCI interface, LPC interface, USB2, Serial ATA, and other I/O functions. It communicates with the legacy (G)MCH over a proprietary interconnect called DMI.
IMC	Integrated Memory Controller
Intel® 64 Technology	64-bit memory extensions to the IA-32 architecture
Intel® FDI	Intel® Flexible Display Interface
Intel® TXT	Intel® Trusted Execution Technology
Intel® VT-d	Intel® Virtualization Technology (Intel® VT) for Directed I/O. Intel VT-d is a hardware assist, under system software (Virtual Machine Manager or OS) control, for enabling I/O device virtualization. Intel VT-d also brings robust security by providing protection from errant DMAs by using DMA remapping, a key feature of Intel VT-d.
Intel® Virtualization Technology	Processor virtualization which when used in conjunction with Virtual Machine Monitor software enables multiple, robust independent software environments inside a single platform.
ITPM	Integrated Trusted Platform Module
IOV	I/O Virtualization
LCD	Liquid Crystal Display
LVDS	Low Voltage Differential Signaling. A high speed, low power data transmission standard used for display connections to LCD panels.
МСР	Multi-Chip Package.
NCTF	Non-Critical to Function. NCTF locations are typically redundant ground or non-critical reserved, so the loss of the solder joint continuity at end of life conditions will not affect the overall product functionality.
Nehalem	Intel's 45-nm processor design, follow-on to the 45-nm Penryn design.
РСН	Platform Controller Hub. The new, 2009 chipset with centralized platform capabilities including the main I/O interfaces along with display connectivity, audio features, power management, manageability, security and storage features. The PCH may also be referred to using the name (Mobile) Intel® 5 Series Chipset
PECI	Platform Environment Control Interface.
PEG	PCI Express* Graphics. External Graphics using PCI Express Architecture. A high-speed serial interface whose configuration is software compatible with the existing PCI specifications.
Processor	The 64-bit, single-core or multi-core component (package).
Processor Core	The term "processor core" refers to Si die itself which can contain multiple execution cores. Each execution core has an instruction cache, data cache, and 256-KB L2 cache. All execution cores share the L3 cache.
Rank	A unit of DRAM corresponding four to eight devices in parallel, ignoring ECC. These devices are usually, but not always, mounted on a single side of a SO-DIMM.
SCI	System Control Interrupt. Used in ACPI protocol.

Term	Description
Storage Conditions	A non-operational state. The processor may be installed in a platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air. Under these conditions, processor landings should not be connected to any supply voltages, have any I/Os biased or receive any clocks. Upon exposure to "free air" (i.e., unsealed packaging or a device removed from packaging material) the processor must be handled in accordance with moisture sensitivity labeling (MSL) as indicated on the packaging material.
TAC	Thermal Averaging Constant.
TDP	Thermal Design Power.
V _{CC}	Processor core power supply.
V _{SS}	Processor ground.
V _{AXG}	Graphics core power supply.
V _{TT}	L3 shared cache, memory controller, and processor I/O power rail.
V _{DDQ}	DDR3 power rail.
VLD	Variable Length Decoding.
x1	Refers to a Link or Port with one Physical Lane.
x4	Refers to a Link or Port with four Physical Lanes.
×8	Refers to a Link or Port with eight Physical Lanes.
x16	Refers to a Link or Port with sixteen Physical Lanes.

1.8 Related Documents

Refer to the following documents for additional information.

Table 1.Processor Documents

Document	Document Number/ Location
[Calpella] Platform, for Arrandale, Clarksfield and Mobile Intel® 5 Series Chipset – Design Guide	398905
RS - Calpella Small Form Factor (SFF) Platform Design Guide	407364
[Calpella] Platform Power Sequence - Product Specification	393353
[Calpella Platform] Thermal Mechanical Design Guide	386682
Intel® Mobile Voltage Positioning (Intel® MVP). 6.5 Mobile Processor and Chipset Voltage Regulation – Product Specification	414591
RS - Nehalem Processor Family BIOS Writer's Guide (BWG)	1
RS - Platform Environment Control Interface (PECI) Specification	1
[Calpella] Platform, Arrandale and Clarksfield Processor Testability – Boundary Scan Description Language (BSDL) File	410630
RS - Clarkdale/Arrandale Integrated Memory Controller (IMC) BIOS Specification	1

NOTE:

1. Contact your Intel representative for the latest revision of this item.

Table 2. PCH Documents

Document	Document Number/ Location
Intel® 5 Series Express Chipset and Intel® 3400 Series Chipset Platform Controller Hub (PCH) – External Design Specification (EDS)	401376
Intel® 5 Series Express Chipset and Intel® 3400 Series Chipset Platform Controller Hub (PCH) – Thermal Mechanical Specifications & Design Guidelines	407051

Table 3.Public Specifications

Document	Document Number/ Location	
Advanced Configuration and Power Interface Specification 3.0	http://www.acpi.info/	
PCI Local Bus Specification 3.0	http://www.pcisig.com/ specifications	
PCI Express Base Specification 2.0	http://www.pcisig.com	
DDR3 SDRAM Specification	http://www.jedec.org	
DisplayPort Specification	http://www.vesa.org	
Intel® 64 and IA-32 Architectures Software Developer's Manuals	http://www.intel.com/ products/processor/ manuals/index.htm	
Volume 1: Basic Architecture	253665	
Volume 2A: Instruction Set Reference, A-M	253666	
Volume 2B: Instruction Set Reference, N-Z	253667	
Volume 3A: System Programming Guide	253668	
Volume 3B: System Programming Guide	253669	

§

2 Interfaces

This chapter describes the interfaces supported by the processor.

2.1 System Memory Interface

2.1.1 System Memory Technology Supported

The Integrated Memory Controller (IMC) supports DDR3 protocols with two, independent, 64-bit wide channels each accessing one SO-DIMM. It supports a maximum of one, unbuffered non-ECC DDR3 SO-DIMM per-channel thus allowing up to two device ranks per-channel.

DDR3 Data Transfer Rates:

- 800 MT/s (PC3-6400), and 1066 MT/s (PC3-8500)
- DDR3 SO-DIMM Modules:
 - Raw Card A double-sided x16 unbuffered non-ECC
 - Raw Card B single-sided x8 unbuffered non-ECC
 - Raw Card C single-sided x16 unbuffered non-ECC
 - Raw Card D double-sided x8 (stacked) unbuffered non-ECC
 - Raw Card F double-sided x8 (planar) unbuffered non-ECC
- DDR3 DRAM Device Technology:
 - Standard 1-Gb, and 2-Gb technologies and addressing are supported for x16 and x8 devices. There is no support for memory modules with different technologies or capacities on opposite sides of the same memory module. If one side of a memory module is populated, the other side is either identical or empty.

Raw Card Version	DIMM Capacity	DRAM Device Technology	DRAM Organization	# of DRAM Devices	# of Physical Device Ranks	# of Row/ Col Address Bits	# of Banks Inside DRAM	Page Size
А	1 GB	1 Gb	64 M x 16	8	2	13/10	8	8K
А	2 GB	2 Gb	128 M x 16	8	2	14/10	8	8K
В	1 GB	1 Gb	128 M x 8	8	1	14/10	8	8K
В	2 GB	2 Gb	256 M x 8	8	1	15/10	8	8K
С	512 MB	1 Gb	64 M x 16	4	1	13/10	8	8K
С	1 GB	2 Gb	128 M x 16	4	1	14/10	8	8K
D ²	4 GB	2 Gb	256 M x 8	16	2	15/10	8	8K
F	2 GB	1 Gb	128 M x 8	16	2	14/10	8	8K
F	4 GB	2 Gb	256 M x 8	16	2	15/10	8	8K

 Table 4.
 Supported SO-DIMM Module Configurations¹

NOTES:

1. System memory configurations are based on availability and are subject to change.

2. Only Raw Card D SO-DIMMS at 1066 MT/s are supported.

2.1.2 System Memory Timing Support

The IMC supports the following DDR3 Speed Bin, CAS Write Latency (CWL), and command signal mode timings on the main memory interface:

- tCL = CAS Latency
- tRCD = Activate Command to READ or WRITE Command delay
- tRP = PRECHARGE Command Period
- CWL = CAS Write Latency
- Command Signal modes = 1n indicates a new command may be issued every clock and 2n indicates a new command may be issued every 2 clocks. Command launch mode programming depends on the transfer rate and memory configuration.

Table 5.DDR3 System Memory Timing Support

Transfer Rate (MT/s)	tCL (tCK)	tRCD (tCK)	tRP (tCK)	CWL (tCK)	CMD Mode	Notes
800	6	6	6	5	1n	1
1066	7	7	7	6	1n	1
	8	8	8	0 11	111	1

NOTES:

1. System memory timing support is based on availability and is subject to change.

2.1.3 System Memory Organization Modes

The IMC supports two memory organization modes, single-channel and dual-channel. Depending upon how the SO-DIMM Modules are populated in each memory channel, a number of different configurations can exist.

2.1.3.1 Single-Channel Mode

In this mode, all memory cycles are directed to a single-channel. Single-channel mode is used when either Channel A or Channel B SO-DIMM connectors are populated in any order, but not both.

2.1.3.2 Dual-Channel Mode - Intel® Flex Memory Technology Mode

The IMC supports Intel Flex Memory Technology Mode. This mode combines the advantages of the Dual-Channel Symmetric (Interleaved) and Dual-Channel Asymmetric Modes. Memory is divided into a symmetric and a asymmetric zone. The symmetric zone starts at the lowest address in each channel and is contiguous until the asymmetric zone begins or until the top address of the channel with the smaller capacity is reached. In this mode, the system runs with one zone of dual-channel mode and one zone of single-channel mode, simultaneously, across the whole memory array.

Figure 2.Intel Flex Memory Technology Operation

2.1.3.2.1 Dual-Channel Symmetric Mode

Dual-Channel Symmetric mode, also known as interleaved mode, provides maximum performance on real world applications. Addresses are ping-ponged between the channels after each cache line (64-byte boundary). If there are two requests, and the second request is to an address on the opposite channel from the first, that request can be sent before data from the first request has returned. If two consecutive cache lines are requested, both may be retrieved simultaneously, since they are ensured to be on opposite channels. Use Dual-Channel Symmetric mode when both Channel A and Channel B SO-DIMM connectors are populated in any order, with the total amount of memory in each channel being the same.

When both channels are populated with the same memory capacity and the boundary between the dual channel zone and the single channel zone is the top of memory, IMC operates completely in Dual-Channel Symmetric mode.

Note: The DRAM device technology and width may vary from one channel to the other.

2.1.3.2.2 Dual-Channel Asymmetric Mode

This mode trades performance for system design flexibility. Unlike the previous mode, addresses start at the bottom of Channel A and stay there until the end of the highest rank in Channel A, and then addresses continue from the bottom of Channel B to the top. Real world applications are unlikely to make requests that alternate between addresses that sit on opposite channels with this memory organization, so in most cases, bandwidth is limited to a single channel.

This mode is used when Intel Flex Memory Technology is disabled and both Channel A and Channel B SO-DIMM connectors are populated in any order with the total amount of memory in each channel being different.

Figure 3. Dual-Channel Symmetric (Interleaved) and Dual-Channel Asymmetric Modes

2.1.4 Rules for Populating Memory Slots

In all modes, the frequency of system memory is the lowest frequency of all memory modules placed in the system, as determined through the SPD registers on the memory modules. The system memory controller supports only one SO-DIMM connector per channel. For dual-channel modes both channels must have an SO-DIMM connector populated. For single-channel mode, only a single-channel can have an SO-DIMM connector populated.

2.1.5 Technology Enhancements of Intel[®] Fast Memory Access (Intel[®] FMA)

The following sections describe the Just-in-Time Scheduling, Command Overlap, and Out-of-Order Scheduling Intel FMA technology enhancements.

2.1.5.1 Just-in-Time Command Scheduling

The memory controller has an advanced command scheduler where all pending requests are examined simultaneously to determine the most efficient request to be issued next. The most efficient request is picked from all pending requests and issued to system memory Just-in-Time to make optimal use of Command Overlapping. Thus, instead of having all memory access requests go individually through an arbitration mechanism forcing requests to be executed one at a time, they can be started without interfering with the current request allowing for concurrent issuing of requests. This allows for optimized bandwidth and reduced latency while maintaining appropriate command spacing to meet system memory protocol.

2.1.5.2 Command Overlap

Command Overlap allows the insertion of the DRAM commands between the Activate, Precharge, and Read/Write commands normally used, as long as the inserted commands do not affect the currently executing command. Multiple commands can be issued in an overlapping manner, increasing the efficiency of system memory protocol.

2.1.5.3 Out-of-Order Scheduling

While leveraging the Just-in-Time Scheduling and Command Overlap enhancements, the IMC continuously monitors pending requests to system memory for the best use of bandwidth and reduction of latency. If there are multiple requests to the same open page, these requests would be launched in a back to back manner to make optimum use of the open memory page. This ability to reorder requests on the fly allows the IMC to further reduce latency and increase bandwidth efficiency.

2.1.6 DRAM Clock Generation

Every supported SO-DIMM has two differential clock pairs. There are total of four clock pairs driven directly by the processor to two SO-DIMMs.

2.1.7 System Memory Pre-Charge Power Down Support Details

The IMC supports and enables slow exit DDR3 DRAM Device pre-charge power down DLL control. During a pre-charge power down, a slow exit is where the DRAM device DLL is disabled after entering pre-charge power down for potential power savings.

2.2 PCI Express Interface

This section describes the PCI Express interface capabilities of the processor. See the *PCI Express Base Specification* for details of PCI Express.

The processor has one PCI Express controller that can support one external x16 PCI Express Graphics Device or two external x8 PCI Express Graphics Devices. The primary PCI Express Graphics port is referred to as PEG 0 and the secondary PCI Express Graphics port is referred to as PEG 1.

2.2.1 PCI Express Architecture

Compatibility with the PCI addressing model is maintained to ensure that all existing applications and drivers operate unchanged.

The PCI Express configuration uses standard mechanisms as defined in the PCI Plug-and-Play specification. The initial recovered clock speed of 1.25 GHz results in 2.5 Gb/s/direction which provides a 250 MB/s communications channel in each direction (500 MB/s total). That is close to twice the data rate of classic PCI. The fact that 8b/10b encoding is used accounts for the 250 MB/s where quick calculations would imply 300 MB/s.

The PCI Express architecture is specified in three layers: Transaction Layer, Data Link Layer, and Physical Layer. The partitioning in the component is not necessarily along these same boundaries. Refer to Figure 4 for the PCI Express Layering Diagram.

Figure 4. PCI Express Layering Diagram

PCI Express uses packets to communicate information between components. Packets are formed in the Transaction and Data Link Layers to carry the information from the transmitting component to the receiving component. As the transmitted packets flow through the other layers, they are extended with additional information necessary to handle packets at those layers. At the receiving side, the reverse process occurs and packets get transformed from their Physical Layer representation to the Data Link Layer representation and finally (for Transaction Layer Packets) to the form that can be processed by the Transaction Layer of the receiving device.

Figure 5. Packet Flow through the Layers

2.2.1.1 Transaction Layer

The upper layer of the PCI Express architecture is the Transaction Layer. The Transaction Layer's primary responsibility is the assembly and disassembly of Transaction Layer Packets (TLPs). TLPs are used to communicate transactions, such as read and write, as well as certain types of events. The Transaction Layer also manages flow control of TLPs.

2.2.1.2 Data Link Layer

The middle layer in the PCI Express stack, the Data Link Layer, serves as an intermediate stage between the Transaction Layer and the Physical Layer. Responsibilities of Data Link Layer include link management, error detection, and error correction.

The transmission side of the Data Link Layer accepts TLPs assembled by the Transaction Layer, calculates and applies data protection code and TLP sequence number, and submits them to Physical Layer for transmission across the Link. The

receiving Data Link Layer is responsible for checking the integrity of received TLPs and for submitting them to the Transaction Layer for further processing. On detection of TLP error(s), this layer is responsible for requesting retransmission of TLPs until information is correctly received, or the Link is determined to have failed. The Data Link Layer also generates and consumes packets which are used for Link management functions.

2.2.1.3 Physical Layer

The Physical Layer includes all circuitry for interface operation, including driver and input buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance matching circuitry. It also includes logical functions related to interface initialization and maintenance. The Physical Layer exchanges data with the Data Link Layer in an implementation-specific format, and is responsible for converting this to an appropriate serialized format and transmitting it across the PCI Express Link at a frequency and width compatible with the remote device.

2.2.2 PCI Express Configuration Mechanism

The PCI Express (external graphics) link is mapped through a PCI-to-PCI bridge structure.

Figure 6. PCI Express Related Register Structures in the Processor

PCI Express extends the configuration space to 4096 bytes per-device/function, as compared to 256 bytes allowed by the *Conventional PCI Specification*. PCI Express configuration space is divided into a PCI-compatible region (which consists of the first 256 bytes of a logical device's configuration space) and an extended PCI Express region (which consists of the remaining configuration space). The PCI-compatible region can be accessed using either the mechanisms defined in the PCI specification or using the enhanced PCI Express configuration access mechanism described in the *PCI Express Enhanced Configuration Mechanism* section.

The PCI Express Host Bridge is required to translate the memory-mapped PCI Express configuration space accesses from the host processor to PCI Express configuration cycles. To maintain compatibility with PCI configuration addressing mechanisms, it is recommended that system software access the enhanced configuration space using 32-bit operations (32-bit aligned) only. See the *PCI Express Base Specification* for details of both the PCI-compatible and PCI Express Enhanced configuration mechanisms and transaction rules.

2.2.3 PCI Express* Ports and Bifurcation

The external graphics attach (PEG) on the processor is a single, 16-lane (x16) port that can be:

- configured at narrower widths
- bifucated into two x8 PCI Express ports that may train to narrower widths

The PEG port is being designed to be compliant with the PCI Express Base Specification, Revision 2.0.

2.2.3.1 PCI Express Bifurcated Mode

When bifurcated, the signals which had previously been assigned to Lanes 15:8 of the single x16 Primary port are reassigned to lanes 7:0 of the x8 Secondary Port. This assignment applies whether the lane numbering is reversed or not. PCI Express Port 0 is mapped to PCI Device 1 and PCI Express Port 1 is mapped to PCI Device 6.

2.2.3.2 Static Lane Numbering Reversal

Does not support dynamic lane reversal, as defined (optional) by the *PCI Express Base Specification.*

PCI Express 1x16 configuration:

- Normal (1x16): PEG_RX[15:0]; PEG_TX[15:0]
- Reversal (1x16): PEG_RX[0:15]; PEG_TX[0:15]

PCI Express 2x8 configration

- Normal (Port 0): PEG_RX[7:0]; PEG_TX[7:0]
- Normal (Port 1): PEG_RX[15:8]; PEG_TX[15:8]
- Reversal (Port 0): PEG_RX[8:15]; PEG_TX[8:15]
- Reversal (Port 1): PEG_RX[0:7]; PEG_TX[0:7]

2.3 DMI

DMI connects the processor and the PCH chip-to-chip. DMI2 is supported. The DMI is similar to a four-lane PCI Express supporting up to 1 GB/s of bandwidth in each direction.

Note: Only DMI x4 configuration is supported.

2.3.1 DMI Error Flow

DMI can only generate SERR in response to errors, never SCI, SMI, MSI, PCI INT, or GPE. Any DMI related SERR activity is associated with Device 0.

2.3.2 Processor/PCH Compatibility Assumptions

The processor is compatible with the PCH and is not compatible with any previous (G)MCH or ICH products.

2.3.3 DMI Link Down

The DMI link going down is a fatal, unrecoverable error. If the DMI data link goes to data link down, after the link was up, then the DMI link hangs the system by not allowing the link to retrain to prevent data corruption. This is controlled by the PCH.

Downstream transactions that had been successfully transmitted across the link prior to the link going down may be processed as normal. No completions from downstream, non-posted transactions are returned upstream over the DMI link after a link down event.

2.4 Intel[®] HD Graphics Controller

This section details the 2D, 3D and video pipeline and their respective capabilities.

The integrated graphics is powered by a refresh of the fifth generation graphics core and supports twelve, fully-programmable execution cores. Full-precision, floating-point operations are supported to enhance the visual experience of compute-intensive applications.The integrated graphics controller contains several types of components; the graphics engines, planes, pipes, port and the Intel FDI. The integrated graphics has a 3D/2D Instruction Processing unit to control the 3D and 2D engines respectively. The integrated graphics controller's 3D and 2D engines are fed with data through the IMC. The outputs of the graphics engine are surfaces sent to memory, which are then retrieved and processed by the planes. The surfaces are then blended in the pipes and the display timings are transitioned from display core clock to the pixel (dot) clock.

Figure 7. Integrated Graphics Controller Unit Block Diagram

2.4.1 3D and Video Engines for Graphics Processing

The 3D graphics pipeline architecture simultaneously operates on different primitives or on different portions of the same primitive. All the cores are fully programmable, increasing the versatility of the 3D Engine. The Gen 5.75 3D engine provides the following performance and power-management enhancements:

- Execution units (EUs) increased to 12 from the previous 10 EUsin Gen 5.0.
- Includes Hierarchal-Z
- Includes video quality enhancements

Intel Confidential

Interfaces

2.4.1.1 3D Engine Execution Units

- Support 12 EUs. The EUs perform 128-bit wide execution per clock.
- Support SIMD8 instructions for vertex processing and SIMD16 instructions for pixel processing.

2.4.1.2 3D Pipeline

2.4.1.2.1 Vertex Fetch (VF) Stage

The VF stage executes 3DPRIMITIVE commands. Some enhancements have been included to better support legacy D3D APIs as well as SGI OpenGL*.

2.4.1.2.2 Vertex Shader (VS) Stage

The VS stage performs shading of vertices output by the VF function. The VS unit produces an output vertex reference for every input vertex reference received from the VF unit, in the order received.

2.4.1.2.3 Geometry Shader (GS) Stage

The GS stage receives inputs from the VS stage. Compiled application-provided GS programs, specifying an algorithm to convert the vertices of an input object into some output primitives. For example, a GS shader may convert lines of a line strip into polygons representing a corresponding segment of a blade of grass centered on the line. Or it could use adjacency information to detect silhouette edges of triangles and output polygons extruding out from the edges.

2.4.1.2.4 Clip Stage

The Clip stage performs general processing on incoming 3D objects. However, it also includes specialized logic to perform a Clip Test function on incoming objects. The Clip Test optimizes generalized 3D Clipping. The Clip unit examines the position of incoming vertices, and accepts/rejects 3D objects based on its Clip algorithm.

2.4.1.2.5 Strips and Fans (SF) Stage

The SF stage performs setup operations required to rasterize 3D objects. The outputs from the SF stage to the Windower stage contain implementation-specific information required for the rasterization of objects and also supports clipping of primitives to some extent.

2.4.1.2.6 Windower/IZ (WIZ) Stage

The WIZ unit performs an early depth test, which removes failing pixels and eliminates unnecessary processing overhead.

The Windower uses the parameters provided by the SF unit in the object-specific rasterization algorithms. The WIZ unit rasterizes objects into the corresponding set of pixels. The Windower is also capable of performing dithering, whereby the illusion of a higher resolution when using low-bpp channels in color buffers is possible. Color dithering diffuses the sharp color bands seen on smooth-shaded objects.

2.4.1.3 Video Engine

The Video Engine handles the non-3D (media/video) applications. It includes support for VLD and MPEG2 decode in hardware.

2.4.1.4 2D Engine

The 2D Engine contains BLT (Block Level Transfer) functionality and an extensive set of 2D instructions. To take advantage of the 3D during engine's functionality, some BLT functions make use of the 3D renderer.

2.4.1.4.1 Integrated Graphics VGA Registers

The 2D registers consists of original VGA registers and others to support graphics modes that have color depths, resolutions, and hardware acceleration features that go beyond the original VGA standard.

2.4.1.4.2 Logical 128-Bit Fixed BLT and 256 Fill Engine

This BLT engine accelerates the GUI of Microsoft Windows* operating systems. The 128-bit BLT engine provides hardware acceleration of block transfers of pixel data for many common Windows operations. The BLT engine can be used for the following:

- Move rectangular blocks of data between memory locations
- Data alignment
- To perform logical operations (raster ops)

The rectangular block of data does not change, as it is transferred between memory locations. The allowable memory transfers are between: cacheable system memory and frame buffer memory, frame buffer memory and frame buffer memory, and within system memory. Data to be transferred can consist of regions of memory, patterns, or solid color fills. A pattern is always 8 x 8 pixels wide and may be 8, 16, or 32 bits per pixel.

The BLT engine expands monochrome data into a color depth of 8, 16, or 32 bits. BLTs can be either opaque or transparent. Opaque transfers move the data specified to the destination. Transparent transfers compare destination color to source color and write according to the mode of transparency selected.

Data is horizontally and vertically aligned at the destination. If the destination for the BLT overlaps with the source memory location, the BLT engine specifies which area in memory to begin the BLT transfer. Hardware is included for all 256 raster operations (source, pattern, and destination) defined by Microsoft, including transparent BLT.

The BLT engine has instructions to invoke BLT and stretch BLT operations, permitting software to set up instruction buffers and use batch processing. The BLT engine can perform hardware clipping during BLTs.

2.4.2 Integrated Graphics Display Pipes

The integrated graphics controller display pipe can be broken down into three components:

- Display Planes
- Display Pipes
- Embedded DisplayPort and Intel FDI

Figure 8. Processor Display Block Diagram

2.4.2.1 Display Planes

A display plane is a single displayed surface in memory and contains one image (desktop, cursor, overlay). It is the portion of the display HW logic that defines the format and location of a rectangular region of memory that can be displayed on display output device and delivers that data to a display pipe. This is clocked by the Core Display Clock.

2.4.2.1.1 Planes A and B

Planes A and B are the main display planes and are associated with Pipes A and B respectively. The two display pipes are independent, allowing for support of two independent display streams. They are both double-buffered, which minimizes latency and improves visual quality.

2.4.2.1.2 Sprite A and B

Sprite A and Sprite B are planes optimized for video decode, and are associated with Planes A and B respectively. Sprite A and B are also double-buffered.

2.4.2.1.3 Cursors A and B

Cursors A and B are small, fixed-sized planes dedicated for mouse cursor acceleration, and are associated with Planes A and B respectively. These planes support resolutions up to 256 x 256 each.

2.4.2.1.4 VGA

Used for boot, safe mode, legacy games, etc. Can be changed by an application without OS/driver notification, due to legacy requirements.

2.4.2.2 Display Pipes

The display pipe blends and synchronizes pixel data received from one or more display planes and adds the timing of the display output device upon which the image is displayed. This is clocked by the Display Reference clock inputs.

The display pipes A and B operate independently of each other at the rate of 1 pixel per clock. They can attach to any of the display ports. Each pipe sends display data to the PCH over the Intel Flexible Display Interface (Intel FDI).

2.4.2.3 Display Ports

The display ports consist of output logic and pins that transmit the display data to the associated encoding logic and send the data to the display device (i.e., LVDS, HDMI, DVI, SDVO, etc.). All display interfaces connecting external displays are now repartitioned and driven from the PCH with the exception of the eDP DisplayPort. Refer to the Calpella Platform Design Guide and the PCH EDS for more details on DisplayPort support on the Calpella platform.

2.4.2.4 Embedded DisplayPort (eDP)

The DisplayPort abbreviated as DP (different than the generic term display port) specification is a VESA standard. DisplayPort consolidates internal and external connection methods to reduce device complexity, support cross industry applications, and provide performance scalability. The integrated graphics supports an embedded DisplayPort (eDP) interface for display devices that are integrated into the system (e.g., laptop LCD panel). All other display interfaces connecting to the LVDS or external panels are driven from the PCH.

The eDP interface is physically shared with a subset of the PCIe interface. Specifically, eDP[3:0] map to Logical Lanes PEG[12:15] of the PCIe interface. Mapping for reversed case is: eDP[3:0] maps to PEG[3:0], ex: eDP[0]=PEG[15] in non reversed case. In reversed case: eDP[0] = PEG[0].

eDP Signal	PEG Signal	Lane Reversal
eDP_AUX	PEG_RX[13]	PEG_RX[2]
eDP_AUX#	PEG_RX#[13]	PEG_RX#[2]
eDP_HPD#	PEG_RX[12]	PEG_RX[3]
eDP_TX[0]	PEG_TX[15]	PEG_TX[0]
eDP_TX#[0]	PEG_TX#[15]	PEG_TX#[0]
eDP_TX[1]	PEG_TX[14]	PEG_TX[1]
eDP_TX#[1]	PEG_TX#[14]	PEG_TX#[1]
eDP_TX[2]	PEG_TX[13]	PEG_TX[2]
eDP_TX#[2]	PEG_TX#[13]	PEG_TX#[2]
eDP_TX[3]	PEG_TX[12]	PEG_TX[3]
eDP_TX#[3]	PEG_TX#[12]	PEG_TX#[3]

Table 6.eDP/PEG Ball Mapping

When eDP is enabled, the lower logical lanes are still available for standard PCIe devices, using the PEG 0 controller. PEG 0 is limited to x1. The board manufacture chooses whether to use eDP and whether to use lane numbering reversal.

The eDP interface supports link-speeds of 1.62 Gbps and 2.7 Gbps on 1, 2 or 4 data lanes. The eDP and PCI Express x1 may be supported concurrently. eDP interface may support -0.5% SSC and non-SSC clock settings.

2.4.3 Intel Flexible Display Interface

The Intel Flexible Display Interface (Intel FDI) is a proprietary link for carrying display traffic from the integrated graphics controller to the PCH display I/O's. Intel FDI supports two independent channels; one for pipe A and one for pipe B.

- Each channel has four transmit (Tx) differential pairs used for transporting pixel and framing data from the display engine.
- Each channel has one single-ended LineSync and one FrameSync input (1-V CMOS signaling).
- One display interrupt line input (1-V CMOS signaling).
- Intel FDI may dynamically scalable down to 2X or 1X based on actual display bandwidth requirements.
- Common 100-MHz reference clock is sent to both processor and PCH.
- Each channel transports at a rate of 2.7 Gbps.
- PCH supports end-to-end lane reversal across both channels (no reversal support required)

2.5 Platform Environment Control Interface (PECI)

The PECI is a one-wire interface that provides a communication channel between a PECI client (processor) and a PECI master, usually the PCH. The processor implements a PECI interface to:

- Allow communication of processor thermal and other information to the PECI master.
- Read averaged Digital Thermal Sensor (DTS) values for fan speed control.

2.6 Interface Clocking

2.6.1 Internal Clocking Requirements

Table 7.Processor Reference Clocks

Reference Input Clocks	Input Frequency	Associated PLL
BCLK/BCLK#	133 MHz	Processor/Memory/Graphics
PEG_CLK/PEG_CLK#	100 MHz	PCI Express*/DMI/Intel® FDI
DPLL_REF_SSCLK/DPLL_REF_SSCLK#	120 MHz	Embedded DisplayPort* (eDP)

§

3 Technologies

3.1 Intel® Virtualization Technology (Intel® VT)

Intel Virtualization Technology (Intel VT) is the technology that makes a single system appear as multiple independent systems to software. This allows multiple, independent operating systems to be running simultaneously on a single system. Intel VT comprises technology components to support virtualization of platforms based on Intel architecture microprocessors and chipsets. Intel Virtualization Technology (Intel VT-x) added hardware support in the processor to improve the virtualization performance and robustness. Intel Virtualization Technology for Directed I/O (Intel VT-d) adds chipset hardware implementation to support and improve I/O virtualization performance and robustness.

Intel VT-x specifications and functional descriptions are included in the *Intel®* 64 and *IA-32 Architectures Software Developer's Manual, Volume 3B* and is available at http://www.intel.com/products/processor/manuals/index.htm.

The Intel VT-d spec and other Intel VT documents can be referenced at http://www.intel.com/technology/virtualization/index.htm.

3.1.1 Intel® VT-x Objectives

Intel VT-x provides hardware acceleration for virtualization of IA platforms. Virtual Machine Monitor (VMM) can use Intel VT-x features to provide improved reliable virtualized platform. By using Intel VT-x, a VMM is:

- **Robust**: VMMs no longer need to use para-virtualization or binary translation. This means that they will be able to run off-the-shelf operating systems and applications without any special steps.
- Enhanced: Intel VT enables VMMs to run 64-bit guest operating systems on IA x86 processors.
- **More reliable**: Due to the hardware support, VMMs can now be smaller, less complex, and more efficient. This improves reliability and availability and reduces the potential for software conflicts.
- **More secure**: The use of hardware transitions in the VMM strengthens the isolation of VMs and further prevents corruption of one VM from affecting others on the same system.

3.1.2 Intel VT-x Features

The processor core supports the following, new, Intel VT-x features:

- Extended Page Tables (EPT)
 - Hardware-assisted page table virtualization.
 - Eliminates VM exits from guest OS to the VMM for shadow page-table maintenance.
- Virtual Processor IDs (VPID)
 - Ability to assign a VM ID to tag processor core hardware structures (e.g., TLBs).
 - Avoids flushes on VM transitions to give a lower-cost VM transition time and an overall reduction in virtualization overhead.
- Guest Preemption Timer
 - Mechanism for a VMM to preempt the execution of a guest OS after an amount of time specified by the VMM. The VMM sets a timer value before entering a guest.
 - The feature aids VMM developers in flexibility and Quality of Service (QoS) guarantees.
- Descriptor-Table Exiting
 - Descriptor-table exiting allows a VMM to protect a guest OS from internal (malicious software based) attack by preventing relocation of key system data structures like IDT (interrupt descriptor table), GDT (global descriptor table), LDT (local descriptor table), and TSS (task segment selector).
 - A VMM using this feature can intercept (by a VM exit) attempts to relocate these data structures and prevent them from being tampered by malicious software.

3.2 Intel[®] Graphics Dynamic Frequency

3.2.1 Intel Graphics Dynamic Frequency

Graphics render frequency are selected by the Intel graphics driver dynamically based on graphics workload demand as permitted by Intel Turbo Boost Technology Driver. Intel Turbo Boost Technology Driver can optimize both processor and integrated graphics performance through Intelligent Power Sharing. The processor core die and the integrated graphics and memory controller core die have an individual TDP limit. If one component is not consuming enough thermal power to reach its TDP, the other component can increase its TDP limit and take advantage of the unused thermal power headroom. For the integrated graphics, this could mean an increase in the render core frequency (above its rated frequency) and increased graphics performance.

Processor Utilization of Intel Graphics Dynamic Frequency require the following

- Graphics driver
- Intel Turbo Boost Technology Driver

Enabling Intel Graphics Dynamic Frequency will maximize the performance of the processor core and the GPU within its specified power levels. Compared with previous generation products, Intel Graphics Dynamic Frequency will increase the ratio of application power to TDP. Thus, thermal solutions and platform cooling that are designed to less than thermal design guidance might experience thermal and performance issues since more applications will tend to run at the maximum power limit for significant periods of time. For more details, refer to Chapter 5, "Thermal Management".

Power Management

This chapter provides information on the following power management topics:

- ACPI States
- Processor Core
- Integrated Memory Controller (IMC)
- PCI Express
- Direct Media Interface (DMI)
- Integrated Graphics Controller

4.1 ACPI States Supported

The ACPI states supported by the processor are described in this section.

4.1.1 System States

Table 8.System States

State	Description	
G0/S0	Full On	
G1/S3-Cold	Suspend-to-RAM (STR). Context saved to memory (S3-Hot is not supported by the processor).	
G1/S4	Suspend-to-Disk (STD). All power lost (except wakeup on PCH).	
G2/S5	Soft off. All power lost (except wakeup on PCH). Total reboot.	
G3	Mechanical off. All power (AC and battery) removed from system.	

4.1.2 **Processor Core/Package I dle States**

Table 9. Processor Core/Package State Support

State	Description		
C0	Active mode, processor executing code.		
C1	AutoHALT state.		
C1E	AutoHALT state with lowest frequency and voltage operating point.		
С3	Execution cores in C3 flush their L1 instruction cache, L1 data cache, and L2 cache to the L3 shared cache. Clocks are shut off to each core.		
C6	Execution cores in this state save their architectural state before removing core voltage.		

4.1.3 Integrated Memory Controller States

Table 10. Integrated Memory Controller States

State	Description	
Power up	CKE asserted. Active mode.	
Pre-charge Power down	CKE deasserted (not self-refresh) with all banks closed.	
Active Power down	CKE deasserted (not self-refresh) with minimum one bank active.	
Self-Refresh	CKE deasserted using device self-refresh.	

4.1.4 PCI e Link States

Table 11.PCI e Link States

State	Description
LO	Full on – Active transfer state.
LOs	First Active Power Management low power state – Low exit latency.
L1	Lowest Active Power Management - Longer exit latency.
L3	Lowest power state (power-off) – Longest exit latency.

4.1.5 DMI States

Table 12.DMI States

State	Description	
LO	Full on – Active transfer state.	
LOs	First Active Power Management low power state – Low exit latency.	
L1	Lowest Active Power Management - Longer exit latency.	
L3	Lowest power state (power-off) – Longest exit latency.	

4.1.6 Integrated Graphics Controller States

Table 13. Integrated Graphics Controller States

State	Description	
D0	Full on, display active.	
D3 Cold	Power-off.	

4.1.7 Interface State Combinations

Table 14. G, S and C State Combinations

Global (G) State	Sleep (S) State	Processor Core (C) State	Processor State	System Clocks	Description
G0	S0	C0	Full On	On	Full On
G0	S0	C1/C1E	Auto-Halt	On	Auto-Halt
G0	S0	C3	Deep Sleep	On	Deep Sleep
G0	S0	C6	Deep Power Down	On	Deep Power Down
G1	S3	Power off		Off, except RTC	Suspend to RAM
G1	S4	Power off		Off, except RTC	Suspend to Disk
G2	S5	Power off		Off, except RTC	Soft Off
G3	NA	Power off		Power off	Hard off

Table 15. D, S, and C State Combination

Graphics Adapter (D) State	Sleep (S) State	Package (C) State	Description
D0	S0	C0	Full On, Displaying
D0	S0	C1/C1E	Auto-Halt, Displaying
D0	S0	C3	Deep sleep, Displaying
D0	S0	C6	Deep Power Down, Displaying
D3	S0	Any	Not displaying
D3	S3	N/A	Not displaying, Graphics Core is powered off
D3	S4	N/A	Not displaying, suspend to disk

4.2 Processor Core Power Management

While executing code, Enhanced Intel SpeedStep Technology optimizes the processor's frequency and core voltage based on workload. Each frequency and voltage operating point is defined by ACPI as a P-state. When the processor is not executing code, it is idle. A low-power idle state is defined by ACPI as a C-state. In general, lower power C-states have longer entry and exit latencies.

4.2.1 Enhanced Intel SpeedStep® Technology

The following are the key features of Enhanced Intel SpeedStep Technology:

- Multiple frequency and voltage points for optimal performance and power efficiency. These operating points are known as P-states.
- Frequency selection is software controlled by writing to processor MSRs. The voltage is optimized based on the selected frequency and the number of active processor cores.
 - $-\,$ If the target frequency is higher than the current frequency, V_{CC} is ramped up in steps to an optimized voltage. This voltage is signaled by the VID[6:0] pins to the voltage regulator. Once the voltage is established, the PLL locks on to the target frequency.
 - If the target frequency is lower than the current frequency, the PLL locks to the target frequency, then transitions to a lower voltage by signaling the target voltage on the VID[6:0] pins.
 - All active processor cores share the same frequency and voltage. In a multicore processor, the highest frequency P-state requested amongst all active cores is selected.
 - Software-requested transitions are accepted at any time. If a previous transition is in progress, the new transition is deferred until the previous transition is completed.
- The processor controls voltage ramp rates internally to ensure glitch-free transitions.
- Because there is low transition latency between P-states, a significant number of transitions per-second are possible.

4.2.2 Low-Power Idle States

When the processor is idle, low-power idle states (C-states) are used to save power. More power savings actions are taken for numerically higher C-states. However, higher C-states have longer exit and entry latencies. Resolution of C-states occur at the thread, processor core, and processor package level. Thread-level C-states are available if Intel Hyper-Threading Technology is enabled.

Figure 9. Idle Power Management Breakdown of the Processor Cores

Entry and exit of the C-States at the thread and core level are shown in Figure 10.

Figure 10. Thread and Core C-State Entry and Exit

While individual threads can request low power C-states, power saving actions only take place once the core C-state is resolved. Core C-states are automatically resolved by the processor. For thread and core C-states, a transition to and from C0 is required before entering any other C-state.

Table 16. Coordination of Thread Power States at the Core Level

Processor Core		Thread 1			
C-S	tate	CO	C1	C3	C6
	СО	C0	C0	C0	C0
ad 0	C1	C0	C1 ¹	C1 ¹	C1 ¹
Thread	C3	C0	C1 ¹	C3	C3
	C6	C0	$C1^1$	C3	C6

NOTE: If enabled, the core C-state will be C1E if all actives cores have also resolved a core C1 state or higher

4.2.3 Requesting Low-Power Idle States

The primary software interfaces for requesting low power idle states are through the MWAIT instruction with sub-state hints and the HLT instruction (for C1 and C1E). However, software may make C-state requests using the legacy method of I/O reads from the ACPI-defined processor clock control registers, referred to as P_LVLx. This method of requesting C-states provides legacy support for operating systems that initiate C-state transitions via I/O reads.

For legacy operating systems, P_LVLx I/O reads are converted within the processor to the equivalent MWAIT C-state request. Therefore, P_LVLx reads do not directly result in I/O reads to the system. The feature, known as I/O MWAIT redirection, must be enabled in the BIOS. To enable it, refer to the *RS-Nehalem Processor Family BIOS Writer's Guide (BWG)*.

Note: The P_LVLx I/O Monitor address needs to be set up before using the P_LVLx I/O read interface. Each P-LVLx is mapped to the supported MWAIT(Cx) instruction as follows.

Table 17.P_LVLx to MWAIT Conversion

P_LVLx	MWAIT(Cx)	Notes
P_LVL2	MWAIT(C3)	The P_LVL2 base address is defined in the PMG_IO_CAPTURE MSR, described in the RS - Nehalem Processor Family BWG.
P_LVL3	MWAIT(C6)	C6. No sub-states allowed.

The BIOS can write to the C-state range field of the PMG_IO_CAPTURE MSR to restrict the range of I/O addresses that are trapped and emulate MWAIT like functionality. Any P_LVLx reads outside of this range does not cause an I/O redirection to MWAIT(Cx) like request. They fall through like a normal I/O instruction.

Note: When P_LVLx I/O instructions are used, MWAIT substates cannot be defined. The MWAIT substate is always zero if I/O MWAIT redirection is used. By default, P_LVLx I/O redirections enable the MWAIT 'break on EFLAGS.IF' feature which triggers a wakeup on an interrupt even if interrupts are masked by EFLAGS.IF.

4.2.4 Core C-states

The following are general rules for all core C-states, unless specified otherwise:

- A core C-State is determined by the lowest numerical thread state (e.g., Thread 0 requests C1E while Thread 1 requests C3, resulting in a core C1E state). See Table 14.
- A core transitions to C0 state when:
 - An interrupt occurs
 - $-\,$ There is an access to the monitored address if the state was entered via an MWAIT instruction
- For core C1/C1E, and core C3, an interrupt directed toward a single thread wakes only that thread. However, since both threads are no longer at the same core C-state, the core resolves to C0.
- For core C6, an interrupt coming into either thread wakes both threads into C0 state.
- Any interrupt coming into the processor package may wake any core.

4.2.4.1 Core CO State

The normal operating state of a core where code is being executed.

4.2.4.2 Core C1/C1E State

C1/C1E is a low power state entered when all threads within a core execute a HLT or MWAIT(C1/C1E) instruction.

A System Management Interrupt (SMI) handler returns execution to either Normal state or the C1/C1E state. See the Intel[®] 64 and IA-32 Architecture Software Developer's Manual, Volume 3A/3B: System Programmer's Guide for more information.

While a core is in C1/C1E state, it processes bus snoops and snoops from other threads. For more information on C1E, see "Package C1/C1E".

4.2.4.3 Core C3 State

Individual threads of a core can enter the C3 state by initiating a P_LVL2 I/O read to the P_BLK or an MWAIT(C3) instruction. A core in C3 state flushes the contents of its L1 instruction cache, L1 data cache, and L2 cache to the shared L3 cache, while maintaining its architectural state. All core clocks are stopped at this point. Because the core's caches are flushed, the processor does not wake any core that is in the C3 state when either a snoop is detected or when another core accesses cacheable memory.

4.2.4.4 Core C6 State

Individual threads of a core can enter the C6 state by initiating a P_LVL3 I/O read or an MWAIT(C6) instruction. Before entering core C6, the core will save its architectural state to a dedicated SRAM.Once complete, a core will have its voltage reduced to zero volts. During exit, the core is powered on and its architectural state is restored.

4.2.4.5 C-State Auto-Demotion

In general, deeper C-states such as C6 have long latencies and have higher energy entry/exit costs. The resulting performance and energy penalties become significant when the entry/exit frequency of a deeper C-state is high. Therefore incorrect or inefficient usage of deeper C-states have a negative impact on battery life. In order to increase residency and improve battery life in deeper C-states, the processor supports C-state auto-demotion.

There are two C-State auto-demotion options:

- C6 to C3
- C6/C3 To C1

The decision to demote a core from C6 to C3 or C3/C6 to C1 is based on each core's immediate residency history. Upon each core C6 request, the core C-state is demoted to C3 or C1 until a sufficient amount of residency has been established. At that point, a core is allowed to go into C3/C6. Each option can be run concurrently or individually.

This feature is disabled by default. BIOS must enable it in the PMG_CST_CONFIG_CONTROL register. The auto-demotion policy is also configured by this register. See the *RS- Nehalem Processor Family BIOS Writer's Guide* for more details.

4.2.5 Package C-States

The processor supports C0, C1/C1E, C3, and C6 package idle power states. The following is a summary of the general rules for package C-state entry. These apply to all package C-states unless specified otherwise:

- A package C-state request is determined by the lowest numerical core C-state amongst all cores.
- A package C-state is automatically resolved by the processor depending on the core idle power states and the status of the platform components.
 - Each core can be at a lower idle power state than the package if the platform does not grant the processor permission to enter a requested package C-state.
 - The platform may allow additional power savings to be realized in the processor. "Conditional Self-Refresh" on page 50
- For package C-states, the processor is not required to enter C0 before entering any other C-state.

The processor exits a package C-state when a break event is detected. Depending on the type of break event, the processor does the following:

- If a core break event is received, the target core is activated and the break event message is forwarded to the target core.
 - If the break event is not masked, the target core enters the core C0 state and the processor enters package C0.
 - If the break event is masked, the processor attempts to re-enter its previous package state.
- If the break event was due to a memory access or snoop request.
 - But the platform did not request to keep the processor in a higher package Cstate, the package returns to its previous C-state.
 - And the platform requests a higher power C-state, the memory access or snoop request is serviced and the package remains in the higher power C-state.

Table 18 shows package C-state resolution for a dual-core processor. Figure 11 summarizes package C-state transitions.

Table 18. Coordination of Core Power States at the Package Level

Package C-State		Core 1			
		CO	C1	C3	C6
	CO	C0	C0	C0	CO
e 0	C1	C0	C1 ¹	C1 ¹	C1 ¹
Core	C3	C0	C1 ¹	C3	C3
	C6	C0	C1 ¹	C3	C6

NOTE:

1.

If enabled, the package C-state will be C1E if all actives cores have resolved a core C1 state or higher.

Figure 11. Package C-State Entry and Exit

4.2.5.1 Package CO

The normal operating state for the processor. The processor remains in the normal state when at least one of its cores is in the C0 or C1 state or when the platform has not granted permission to the processor to go into a low power state. Individual cores may be in lower power idle states while the package is in C0.

4.2.5.2 Package C1/C1E

No additional power reduction actions are taken in the package C1 state. However, if the C1E sub-state is enabled, the processor automatically transitions to the lowest supported core clock frequency, followed by a reduction in voltage.

The package enters the C1 low power state when:

- At least one core is in the C1 state.
- The other cores are in a C1 or lower power state.

The package enters the C1E state when:

- All cores have directly requested C1E via MWAIT(C1) with a C1E sub-state hint.
- All cores are in a power state lower that C1/C1E but the package low power state is limited to C1/C1E via the PMG_CST_CONFIG_CONTROL MSR.
- All cores have requested C1 using HLT or MWAIT(C1) and C1E auto-promotion is enabled in IA32_MISC_ENABLES.

No notification to the system occurs upon entry to C1/C1E.

4.2.5.3 Package C3 State

A processor enters the package C3 low power state when:

- At least one core is in the C3 state.
- The other cores are in a C3 or lower power state, and the processor has been granted permission by the platform.
- The platform has not granted a request to a package C6 state but has allowed a package C6 state.

In package C3-state, the L3 shared cache is snoopable.

4.2.5.4 Package C6 State

A processor enters the package C6 low power state when:

- At least one core is in the C6 state.
- The other cores are in a C6 or lower power state, and the processor has been granted permission by the platform.

In package C6 state, all cores have saved their architectural state and have had their core voltages reduced to zero volts. The L3 shared cache is still powered and snoopable in this state. The processor remains in package C6 state as long as any part of the L3 cache is active.

4.2.5.5 Power Status Indicator (PSI#) and DPRSLPVR#

PSI# and DPRSLPVR# are signals used to optimize VR efficiency over a wide power range depending on amount of activity within the processor core. The PSI# signal is utilized by the processor core to:

- Improve intermediate and light load efficiency of the voltage regulator when the processor is active (P-states).
- Optimize voltage regulator efficiency in very low power states. Assertion of DPRSLPVR# indicates that the processor core is in a C6 low power state.

The VR efficiency gains result in overall platform power savings and extended battery life. For more details, refer to the platform design guide and *Intel® Mobile Voltage Positioning (Intel® MVP). 6.5 Mobile Processor and Chipset Voltage Regulation – Product Specification*

4.3 IMC Power Management

The main memory is power managed during normal operation and in low-power ACPI Cx states.

4.3.1 Disabling Unused System Memory Outputs

Any system memory (SM) interface signal that goes to a memory module connector in which it is not connected to any actual memory devices (such as SO-DIMM connector is unpopulated, or is single-sided) is tri-stated. The benefits of disabling unused SM signals are:

- Reduced power consumption.
- Reduced possible overshoot/undershoot signal quality issues seen by the processor I/O buffer receivers caused by reflections from potentially un-terminated transmission lines.

When a given rank is not populated, the corresponding chip select and CKE signals are not driven.

At reset, all rows must be assumed to be populated, until it can be proven that they are not populated. This is due to the fact that when CKE is tristated with an SO-DIMM present, the SO-DIMM is not guaranteed to maintain data integrity.

4.3.2 DRAM Power Management and Initialization

The processor implements extensive support for power management on the SDRAM interface. There are four SDRAM operations associated with the Clock Enable (CKE) signals, which the SDRAM controller supports. The processor drives four CKE pins to perform these operations.

4.3.2.1 Initialization Role of CKE

During power-up, CKE is the only input to the SDRAM that has its level is recognized (other than the DDR3 reset pin) once power is applied. It must be driven LOW by the DDR controller to make sure the SDRAM components float DQ and DQS during power-up. CKE signals remain LOW (while any reset is active) until the BIOS writes to a configuration register. Using this method, CKE is guaranteed to remain inactive for much longer than the specified 200 micro-seconds after power and clocks to SDRAM devices are stable.

4.3.2.2 Conditional Self-Refresh

The processor conditionally places memory into self-refresh in the package C3 and C6 low-power states.

When entering the Suspend-to-RAM (STR) state, the processor core flushes pending cycles and then enters all SDRAM ranks into self refresh. In STR, the CKE signals remain LOW so the SDRAM devices perform self-refresh.

The target behavior is to enter self-refresh for the package C3 and C6 states as long as there are no memory requests to service. The target usage is shown in Table 19.

Table 19. Targeted Memory State Conditions

Mode	Memory State with Internal Graphics	Memory State with External Graphics	
C0, C1, C1E	Dynamic memory rank power down based on idle conditions.	Dynamic memory rank power down based on idle conditions.	
C3, C6	If the internal graphics engine is idle and there are no pending display requests when in single display mode, then enter self-refresh. Otherwise use dynamic memory rank power down based on idle conditions.		
S3	Self-Refresh Mode.	Self-Refresh Mode.	
S4	Memory power down (contents lost).	Memory power down (contents lost)	

4.3.2.3 Dynamic Power Down Operation

Dynamic power-down of memory is employed during normal operation. Based on idle conditions, a given memory rank may be powered down. The IMC implements aggressive CKE control to dynamically put the DRAM devices in a power down state. The processor core controller can be configured to put the devices in *active power down* (CKE deassertion with open pages) or *precharge power down* (CKE deassertion with all pages closed). Precharge power down provides greater power savings but has a bigger performance impact, since all pages will first be closed before putting the devices in power down mode.

If dynamic power-down is enabled, all ranks are powered up before doing a refresh cycle and all ranks are powered down at the end of refresh.

4.3.2.4 DRAM I/O Power Management

Unused signals should be disabled to save power and reduce electromagnetic interference. This includes all signals associated with an unused memory channel. Clocks can be controlled on a per SO-DIMM basis. Exceptions are made for per SO-DIMM control signals such as CS#, CKE, and ODT for unpopulated SO-DIMM slots.

The I/O buffer for an unused signal should be tri-stated (output driver disabled), the input receiver (differential sense-amp) should be disabled, and any DLL circuitry related ONLY to unused signals should be disabled. The input path must be gated to prevent spurious results due to noise on the unused signals (typically handled automatically when input receiver is disabled).

4.4 PCI e Power Management

- Active power management support using L0s, and L1 states.
- All inputs and outputs disabled in L2/L3 Ready state.

4.5 DMI Power Management

Active power management support using L0s/L1 state.

4.6 Integrated Graphics Power Management

4.6.1 Intel[®] Display Power Saving Technology 5.0 (Intel[®] DPST 5.0)

Intel DPST maintains visual experience by managing display image brightness and contrast while adaptively dimming the backlight. As a result, the display backlight power can be reduced by up to 25% depending on Intel DPST settings and system use. Intel DPST 5.0 provides enhanced image quality over the previous version of Intel DPST.

4.6.2 Graphics Render C-State

Render C-State (RC6) is a technique designed to optimize the average power to the graphics render engine during times of idleness of the render engine. RC6 is entered when the graphics render engine, blitter engine and the video engine have no workload being currently worked on and no outstanding graphics memory transactions. When the render engine idleness condition is met: The graphics VR will lower the graphics voltage rail (V_{AXG}) into a lower voltage state (0.3 V).The render frequency clock will shut down.

4.6.3 Graphics Performance Modulation Technology

Graphics Performance Modulation Technology (GPMT) is a method for optimizing the power efficiency in the graphics render engine while continuing to render 3D objects during battery operation. The GPMT feature will dynamically switch the render frequency based on the render workload, on power policy, skew, and environmental conditions.

4.6.4 Intel[®] Smart 2D Display Technology (Intel[®] S2DDT)

Intel S2DDT reduces display refresh memory traffic by reducing memory reads required for display refresh. Power consumption is reduced by less accesses to the IMC.

Intel S2DDT is most effective with:

- Display images well suited to compression, such as text windows, slide shows, etc. Poor examples are 3D games.
- Static screens such as screens with significant portions of the background showing 2D applications, CPU benchmarks, etc., or conditions when the CPU is idle. Poor examples are full-screen 3D games and benchmarks that flip the display image at or near display refresh rates.

4.7 Thermal Power Management

• See Section 5, "Thermal Management" on page 53 for all graphics thermal power management-related features.

§

5 Thermal Management

A multi-chip package (MCP) processor requires a thermal solution to maintain temperatures of the processor core and graphics/memory core within operating limits. A complete thermal solution provides both the component-level and the system-level thermal management. To allow for the optimal operation and long-term reliability of Intel processor-based systems, the system/processor thermal solution should be designed so that the processor:

- Remains below the maximum junction temperature $(T_{j,Max})$ specification at the maximum thermal design power (TDP).
- Conforms to system constraints, such as system acoustics, system skintemperatures, and exhaust-temperature requirements.
- *Caution:* Thermal specifications given in this chapter are on the component and package level and apply specifically to the processor. Operating the processor outside the specified limits may result in permanent damage to the processor and potentially other components in the system.

5.1 Thermal Design Power and Junction Temperature

The TDP of an MCP processor is the expected maximum power from each of its components (processor core and integrated graphics and memory controller) while running realistic, worst case applications (TDP applications). TDP is not the absolute worst case power of each component. It could, for example, be exceeded under a synthetic worst case condition or under short power spikes. In production, a range of power is to be expected from the components due to the natural variation in the manufacturing process. The thermal solution, at a minimum, needs to ensure that the junction temperatures of both components do not exceed the maximum junction temperature ($T_{j,max}$) limit while running TDP applications.

5.1.1 Intel Graphics Dynamic Frequency

Typical workloads are not intensive enough to push both the processor core and the integrated graphics and memory controller towards their TDP limit simultaneously. As such, the opportunity exists to share thermal power between the components and boost the performance of either the processor core or integrated graphics and memory controller on demand. This intelligent power sharing capability is implemented by Intel Turbo Boost Technology Driver on these processors. When enabled, the processor core or the integrated graphics and memory controller can increase its thermal power consumption above its own component TDP limit. However, the sum of component thermal powers adhere to the specified MCP thermal power limit.

On this processor, Intel Graphics Dynamic Frequency is implemented via a combination of Intel silicon capabilities, graphics driver and the Intel Turbo Boost Technology driver. If Intel provides Intel Graphics Dynamic Frequency support for the target operating system that is shipped with the customer's platform and Intel Graphics Dynamic Frequency is enabled, the Intel Turbo Boost Technology driver and graphics driver must be installed and operating to keep the product operating within specification limits.

Caution: The TURBO_POWER_CURRENT_LIMIT MSR is exclusively reserved for Intel Turbo Technology Driver use. Under no circumstances should this value be altered from the

default register value after reset of the processor. Altering this MSR value may result in unpredictable behavior.

5.1.2 Intel Graphics Dynamic Frequency Thermal Design Considerations and Specifications

When designing a thermal solution for Graphics Dynamic frequency enabled processor:

- Both component TDPs as well as extreme thermal power levels for the processor core and integrated graphics and memory controller must be considered.
- Note that the processor can consume close to its maximum thermal power limit more frequently, and for prolonged periods of time.
- One must ensure that the component T_{j,max} limits are not exceeded when either component is operating at its extreme thermal power limit.

There are two "extreme" design points:

- The processor core operating at maximum thermal power level (which is greater than its component TDP) and the integrated graphics and memory controller operating at its minimum thermal power.
- The integrated graphics operates at its maximum thermal power level, while the processor core consumes the remaining thermal power budget.

In both cases, the combined component thermal power will not exceed the total MCP package power limit. The design approach accommodating two extreme power levels is referred to as a "two-point" design. For more details on two-point design, refer to the *Calpella Platform Thermal and Mechanical Design Guide*.

The following notes apply to Table 25, Table 28, and Table 29.

Note	Definition
1	The component TDPs given are not the maximum power the components can generate. Analysis indicates that real applications are unlikely to cause the processor to consume the theoretical maximum power dissipation for sustained periods of time.
2	A range of power is to be expected among the components due to the natural variation in the manufacturing process. Nevertheless, the individual component powers are not to exceed the component TDPs specified.
3	Concurrent package power refers to the actual power consumed by the package while TDP applications are running simultaneously by the processor core and the integrated graphics controller. An example of this could be the processor core running a Prime95* application, and the integrated graphics core running a Star Wars: Jedi Knight* menu simultaneously.
4	The thermal solution needs to ensure that the temperatures of both components do not exceed the maximum junction temperature $(T_{j,max})$ limit, as measured by the DTS and the critical temperature bit. Please refer to processor Specification Update for Tjmax value per sku.
5	Processor core and integrated graphics and memory controller junction temperatures are monitored by their respective DTS. A DTS outputs a temperature relative to the maximum supported junction temperature. The error associated with DTS measurements will not exceed $\pm 5^{\circ}$ C within the operating range.
6	The power supply to the processor core and the integrated graphics /Memory core should be designed as per Intel's guidelines in the Intel® Mobile Voltage Positioning (Intel® MVP). 6.5 Mobile Processor and Chipset Voltage Regulation – Product Specification

Note	Definition
7	Processor core currents is monitored by IMON VR feedback (ISENSE) and calculated using a moving average method. Error associated with power monitoring will depend upon individual VR design. Refer to the Intel® Mobile Voltage Positioning (Intel® MVP). 6.5 Mobile Processor and Chipset Voltage Regulation – Product Specification for more details.
8	A thermal solution for an power sharing enabled system needs to ensure that the Tj limit is not exceeded while operating under the two extreme power conditions between the processor core and the integrated graphics and memory controller components. For more details on two-point design, refer to the <i>Calpella Platform Thermal and Mechanical Design Guide</i> .
9	Projected range in advance of the measured product data. Measured values will be available after silicon characterization.
10	For power sharing designs it is recommended to establish the full cooling capability within 10°C of the $T_{j,max}$ specifications. Some processors may have a different Tj max value, please refer to the processor Specification Update for details.
11	In rare occasions the specified maximum power limits may be violated when the package is not at a thermally constrained environment
12	Tj, min =0 deg
13	While running intensive graphical and computational workloads simultaneously the concurrent package power may exceed specified limits in exceptional occasions. Nevertheless, the individual component powers are not to exceed the component TDPs specified.

Table 20. Intel® Celeron™ P4000 mobile processor series Dual-Core SV Thermal Power Specifications

			TDP ^{1,2,6,}	7	Frequ	iency	Power Sha	aring Design	Points ⁸	T _{j,max} 2	4,5,10,12
Processor number	State	CPU Core(W)	Int. Gfx & Memeory Controller(w)	Pkg Concurrent Power(w) ³	CPU Core(GHz)	Int. Gfx(MHz)	CPU Core Extreme (W) ^{6,7,11}	Int. Gfx Extreme (W) ^{6,7}	MCP Thermal Power Limit (W)	CPU Core(°C)	Int. Gfx & Memory Controller(°C)
P4500	HFM	25	12.5	35	1.86	500 up to 667	Proc: 29 Int Gfx: 6	Proc: 15 Int Gfx: 20	35	90	85
	LFM	20	12.5	32.5	933 MHz	N/A	N/A	N/A	N/A		

			TDP ^{1,2,6}	,7	Freq	uency	Power Sha	ring Design	Points ⁸	T _{j,max} 4	,5,10,12
Processor number	State	CPU Core(W)	Int. Gfx & Memeory Controller(w)	Pkg Concurrent Power(w) ^{3,13}	CPU Core(GHz)	Int. Gfx(MHz)	CPU Core Extreme (W) ^{6,7}	Int. Gfx Extreme (W) ^{6,7}	MCP Thermal Power Limit (W)	CPU Core(°C)	Int. Gfx & Memory Controller(°C)
U3400	HFM	10.5	8.5	18	1.06	166 up to 500	Proc: 10.5 Int. Gfx: 4	Proc: 7 Int Gfx: 11	18	105	100
	LFM	9	8.5	17.5	667 MHz	N/A	N/A	N/A	N/A		

Table 21.Intel® Celeron™ U3000 mobile processor series Dual-Core ULV Thermal
Power Specifications

5.1.3 Idle Power Specifications

The idle power specifications in Table 22, Table 34, and Table 23 are not 100% tested. These power specifications are determined by the characterization of the processor currents at higher temperatures and extrapolating the values for the junction temperature indicated.

Table 22. 35W Standard Voltage(SV) Processor Idle Power

Symbol	Parameter	Min	Тур	Max	Тj
P _{C1E}	Idle power in the Package C1e state	-	-	16 W	50°C
P _{C3}	Idle power in the Package C3 state	-	-	7.5 W	35°C

Table 23. 18W Ultra Low Voltage(ULV) Processor Idle Power

Symbol	Parameter	Min	Тур	Max	Тj
P _{C1E}	Idle power in the Package C1e state	-	-	12 W	50°C
P _{C3}	Idle power in the Package C3 state	-	-	5.0 W	35°C
P _{C6}	Idle power in the Package C6 state	-	-	2.6 W	35°C

5.1.4 Intelligent Power Sharing Control Overview

Based upon knowledge of the processor core and integrated graphics and memory controller thermal power, performance state, and temperature, power sharing control does the following:

- Utilizes and internal graphics controller dynamic frequency performance states to achieve their highest performance within the rated thermal power envelope. Intel Dynamic Frequency enabled processors will offer a range of upside performance capability beyond their rated or guaranteed frequency.
- Controls the processor core and internal graphics controller Intel Turbo Boost performance states to ensure that overall MCP thermal power consumption does not exceed the specified MCP thermal power limit.
- Limits MCP component usage to ensure that each of the components' $\mathsf{T}_{j,\text{max}}$ value is not exceeded.

It is possible that the thermal influence between the MCP components could potentially cause a component to reach its $T_{j,max}$, invoking undesirable component hardware auto-throttling. It is expected that when running the TDP workload, power sharing control may limit the entire range of component turbo capabilities (effectively, disabling them).

The principal component of the power sharing control architecture is the policy manager within the Intel Turbo Boost Technology driver which:

- Communicates with the graphics software driver to limit, or increase, internal graphics thermal power.
- Communicates with the processor core via the PCH to processor core PECI interface to limit, or increase, processor core thermal power.

The Intel Turbo Boost Technology policy manager will set a thermal power limit to which the graphics driver and processor core will adjust their turbo Technology performance dynamically, to stay within the limit.

Note: The processor PECI pin must be connected to the PCH PECI pin in order for graphics dynamic frequency to properly function.

5.1.5 Component Power Measurement/Estimation Error

The processor input pin (ISENSE) informs the processor core of how much amperage the processor core is consuming. This information is provided by the processor core VR. The process will calculate its current power based upon the ISENSE input information and current voltage state. The internal graphics and memory controller power is estimated by the GFX driver using PMON.

Any error in power estimation or measurement may limit or completely eliminate the performance benefit of Intel Turbo Boost Technology. When a power limit is reached, Power sharing control will adaptively remove Intel Turbo Boost Technology states to remain with the MCP thermal power limit. Power sharing control assumes the power error is always accurate so if the ISENSE input reports power greater than the actual power, control mechanisms will lower performance before the actual TDP power limit is reached. Intelligent Power sharing will provide better overall Intel Turbo Boost Technology performance with increasing VR current sense accuracy. Designers and system manufacturers should study trade-offs on VR component accuracy characteristics, such as inductors, to find the best balance of cost vs. performance for their system price and performance targets.

5.2 Thermal Management Features

This section will cover thermal management features for the processor.

5.2.1 **Processor Core Thermal Features**

Occasionally the processor core will operate in conditions that exceed its maximum allowable operating temperature. This can be due to internal overheating or due to overheating in the entire system. In order to protect itself and the system from thermal failure, the processor core is capable of reducing its power consumption and thereby its temperature until it is back within normal operating limits via the Adaptive Thermal Monitor.

The Adaptive Thermal Monitor can be activated when any core temperature, monitored by a digital thermal sensor (DTS), exceeds its maximum junction temperature ($T_{j,Max}$) and asserts PROCHOT#. The assertion of PROCHOT# activates the thermal control circuit (TCC). The TCC will remain active as long as any core exceeds its temperature limit. Therefore, the Adaptive Thermal Monitor will continue to reduce the processor core power consumption until the TCC is de-activated.

Caution: The Adaptive Thermal Monitor must be enabled for the processor to remain within specification.

5.2.1.1 Adaptive Thermal Monitor

The purpose of the Adaptive Thermal Monitor is to reduce processor core power consumption and temperature until it operates at or below its maximum operating temperature. Processor core power reduction is achieved by:

- Adjusting the operating frequency (via the core ratio multiplier) and input voltage (via the VID signals).
- Modulating (starting and stopping) the internal processor core clocks (duty cycle).

The Adaptive Thermal Monitor dynamically selects the appropriate method. BIOS is not required to select a specific method as with previous-generation processors supporting Intel® Thermal Monitor 1 (TM1) or Intel® Thermal Monitor 2 (TM2). The temperature at which the Adaptive Thermal Monitor activates the Thermal Control Circuit is not user configurable but is software visible in the IA32_TEMPERATURE_TARGET (0x1A2) MSR, Bits 23:16. The Adaptive Thermal Monitor does not require any additional hardware, software drivers, or interrupt handling routines. Note that the Adaptive Thermal Monitor is not intended as a mechanism to maintain processor TDP. The system design should provide a thermal solution that can maintain TDP within its intended usage range.

5.2.1.1.1 Frequency/VID Control

Upon TCC activation, the processor core attempts to dynamically reduce processor core power by lowering the frequency and voltage operating point. The operating points are automatically calculated by the processor core itself and do not require the BIOS to program them as with previous generations of Intel processors. The processor core will scale the operating points such that:

- The voltage will be optimized according to the temperature, the core bus ratio, and number of cores in deep C-states.
- The core power and temperature are reduced while minimizing performance degradation.

A small amount of hysteresis has been included to prevent an excessive amount of operating point transitions when the processor temperature is near its maximum operating temperature. Once the temperature has dropped below the maximum operating temperature and the hysteresis timer has expired, the operating frequency and voltage transition back to the normal system operating point. This is illustrated in Figure 12.

Once a target frequency/bus ratio is resolved, the processor core will transition to the new target automatically.

- On an upward operating point transition, the voltage transition precedes the frequency transition.
- On a downward transition, the frequency transition precedes the voltage transition.

When transitioning to a target core operating voltage, a new VID code to the voltage regulator is issued. The voltage regulator must support dynamic VID steps to support this method.

During the voltage change:

- It will be necessary to transition through multiple VID steps to reach the target operating voltage.
- Each step is 12.5 mV for Intel MVP-6.5 compliant VRs.
- The processor continues to execute instructions. However, the processor will halt instruction execution for frequency transitions.

If a processor load-based Enhanced Intel SpeedStep Technology/P-state transition (through MSR write) is initiated while the Adaptive Thermal Monitor is active, there are two possible outcomes:

- If the P-state target frequency is higher than the processor core optimized target frequency, the p-state transition will be deferred until the thermal event has been completed.
- If the P-state target frequency is lower than the processor core optimized target frequency, the processor will transition to the P-state operating point.

5.2.1.1.2 Clock Modulation

If the frequency/voltage changes are unable to end an Adaptive Thermal Monitor event, the Adaptive Thermal Monitor will utilize clock modulation. Clock modulation is done by alternately turning the clocks off and on at a duty cycle (ratio between clock "on" time and total time) specific to the processor. The duty cycle is factory configured to 37.5% on and 62.5% off and cannot be modified. The period of the duty cycle is configured to 32 microseconds when the TCC is active. Cycle times are independent of processor frequency. A small amount of hysteresis has been included to prevent excessive clock modulation when the processor temperature is near its maximum operating temperature. Once the temperature has dropped below the maximum operating temperature, and the hysteresis timer has expired, the TCC goes inactive and clock modulation ceases. Clock modulation is automatically engaged as part of the TCC activation when the frequency/VID targets are at their minimum settings. Processor performance will be decreased by the same amount as the duty cycle when clock modulation is active. Snooping and interrupt processing are performed in the normal manner while the TCC is active.

5.2.1.2 Digital Thermal Sensor

Each processor execution core has an on-die Digital Thermal Sensor (DTS) which detects the core's instantaneous temperature. The DTS is the preferred method of monitoring processor die temperature because

- It is located near the hottest portions of the die.
- It can accurately track the die temperature and ensure that the Adaptive Thermal Monitor is not excessively activated.

Temperature values from the DTS can be retrieved through

- A software interface via processor Model Specific Register (MSR).
- A processor hardware interface as described in "Platform Environment Control Interface (PECI)" on page 66.
- *Note:* When temperature is retrieved by processor MSR, it is the instantaneous temperature of the given core. When temperature is retrieved via PECI, it is the average temperature of each execution core's DTS over a programmable window (default window of 256 ms.) Intel recommends using the PECI output reading for fan speed or other platform thermal control.

Code execution is halted in C1-C6. Therefore temperature cannot be read via the processor MSR without bringing a core back into C0. However, temperature can still be monitored through PECI in lower C-states.

Unlike traditional thermal devices, the DTS outputs a temperature relative to the maximum supported operating temperature of the processor ($T_{j,max}$). It is the responsibility of software to convert the relative temperature to an absolute temperature. The absolute reference temperature is readable in an MSR. The temperature returned by the DTS is an implied negative integer indicating the relative offset from $T_{j,max}$. The DTS does not report temperatures greater than $T_{j,max}$. Refer to the *RS* - *Nehalem Processor Family BIOS Writer's Guide (BWG)* for specific register details.

The DTS-relative temperature readout directly impacts the Adaptive Thermal Monitor trigger point. When a DTS indicates that the maximum processor core temperature has been reached (a reading of 0x0 on any core), the TCC will activate and indicate a Adaptive Thermal Monitor event.

Changes to the temperature can be detected via two programmable thresholds located in the processor thermal MSRs. These thresholds have the capability of generating interrupts via the core's local APIC. Refer to the *Intel® 64 and IA-32 Architectures Software Developer's Manuals* for specific register and programming details.

5.2.1.3 PROCHOT# Signal

PROCHOT# (processor hot) is asserted when the processor core temperature has reached its maximum operating temperature ($T_{j,max}$). This will activate the TCC and signal a thermal event which is then resolved by the Adaptive Thermal Monitor. See Figure 12 (above) for a timing diagram of the PROCHOT# signal assertion relative to the Adaptive Thermal Response. Only a single PROCHOT# pin exists at a package level of the processor. When any core arrives at the TCC activation point, the PROCHOT# signal will be driven by the processor core. PROCHOT# assertion policies are independent of Adaptive Thermal Monitor enabling.

Note: Bus snooping and interrupt latching are active while the TCC is active.

5.2.1.3.1 Bi-Directional PROCHOT#

By default, the PROCHOT# signal is defined as an output only. However, the signal may be configured as bi-directional. When configured as a bi-directional signal, PROCHOT# can be used for thermally protecting other platform components should they overheat as well. When PROCHOT# is signaled externally:

- The processor core will immediately reduce processor power to the minimum voltage and frequency supported. This is contrary to the internally-generated Adaptive Thermal Monitor response.
- Clock modulation is not activated.

The TCC will remain active until the system deasserts PROCHOT#. The processor can be configured to generate an interrupt upon assertion and deassertion of the PROCHOT# signal. Refer to the *RS* - *Nehalem Processor Family BIOS Writer's Guide* (*BWG*) for specific register and programming details. Refer to the *Calpella Design Guide* and *Intel® Mobile Voltage Positioning (Intel® MVP). 6.5 Mobile Processor and Chipset Voltage Regulation – Product Specification – Rev. 1.1* for details on implementing the bi-directional PROCHOT# feature.

5.2.1.3.2 Voltage Regulator Protection

PROCHOT# may be used for thermal protection of voltage regulators (VR). System designers can create a circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low) and activating the TCC, the VR will cool down as a result of reduced processor power consumption. Bi-directional PROCHOT# can allow VR thermal designs to target thermal design current (I_{TDC}) instead of maximum current. Systems should still provide proper

cooling for the VR and rely on bi-directional PROCHOT# only as a backup in case of system cooling failure. Overall, the system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its TDP.

5.2.1.3.3 Thermal Solution Design and PROCHOT# Behavior

With a properly designed and characterized thermal solution, it is anticipated that PROCHOT# will only be asserted for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be so minor that it would be immeasurable.

However, an under-designed thermal solution that is not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may:

- Cause a noticeable performance loss
- Result in prolonged operation at or above the specified maximum junction temperature and affect the long-term reliability of the processor
- May be incapable of cooling the processor even when the TCC is active continuously (in extreme situations)

Refer to the *Calpella Platform Thermal and Mechanical Design Guide* for information on implementing the bi-directional PROCHOT# feature and designing a compliant thermal solution.

5.2.1.3.4 Low-Power States and PROCHOT# Behavior

If the processor enters a low-power package idle state such as C3 or C6 with PROCHOT# asserted, PROCHOT# will remain asserted until:

- The processor exits the low-power state
- The processor junction temperature drops below the thermal trip point

Note that the PECI interface is fully operational during all C-states and it is expected that the platform continues to manage processor core thermals even during idle states by regularly polling for thermal data over PECI.

5.2.1.4 On-Demand Mode

The processor provides an auxiliary mechanism that allows system software to force the processor to reduce its power consumption via clock modulation. This mechanism is referred to as "On-Demand" mode and is distinct from Adaptive Thermal Monitor and bi-directional PROCHOT#. platforms must not rely on software usage of this mechanism to limit the processor temperature. On-Demand Mode can be done via processor MSR or chipset I/O emulation.

On-Demand Mode may be used in conjunction with the Adaptive Thermal Monitor. However, if the system software tries to enable On-Demand mode at the same time the TCC is engaged, the factory configured duty cycle of the TCC will override the duty cycle selected by the On-Demand mode. If the I/O based and MSR-based On-Demand modes are in conflict, the duty cycle selected by the I/O emulation-based On-Demand mode will take precedence over the MSR-based On-Demand Mode. For more details, refer to the *RS-Nehalem Processor BIOS Writer's Guide*.

5.2.1.4.1 MSR Based On-Demand Mode

If Bit 4 of the IA32_CLOCK_MODULATION MSR is set to a 1, the processor will immediately reduce its power consumption via modulation of the internal core clock, independent of the processor temperature. The duty cycle of the clock modulation is programmable via Bits 3:1 of the same IA32_CLOCK_MODULATION MSR. In this mode,

the duty cycle can be programmed from 12.5% on/87.5% off to 87.5% on/12.5% off in 12.5% increments. Thermal throttling using this method will modulate each processor core's clock independently.

5.2.1.4.2 I/O Emulation-Based On-Demand Mode

I/O emulation-based clock modulation provides legacy support for operating system software that initiates clock modulation through I/O writes to ACPI defined processor clock control registers on the chipset (PROC_CNT). Thermal throttling using this method will modulate all processor cores simultaneously. For more details, refer to the *RS-Nehalem Processor BIOS Writer's Guide*.

5.2.1.5 THERMTRIP# Signal

Regardless of enabling the automatic or on-demand modes, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached an elevated temperature that risks physical damage to the processor. At this point the THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles.

5.2.1.6 Critical Temperature Detection

Critical Temperature detection is performed by monitoring the processor temperature and temperature gradient. This feature is intended for graceful shutdown before the THERMTRIP# is activated. If the processor's Adaptive Thermal Monitor is triggered and the temperature remains high, a critical temperature status and sticky bit are latched in the thermal status MSR register and also generates a thermal interrupt if enabled. The assertion of critical temperature bit indicates that processor can no longer be assumed to be working reliably.For more details on the interrupt mechanism, refer to the *Intel® 64 and IA-32 Architectures Software Developer's Manuals* or *RS - Nehalem Processor BIOS Writer's Guide*.

5.2.2 Integrated Graphics and Memory Controller Thermal Features

The integrated graphics and memory controller provides the following features for monitoring the integrated graphics and memory controller temperature and triggering thermal management:

- One internal digital thermal sensor
- Hooks for an external thermal sensor mechanism which can either be TS-on-DIMM or TS-on-Board

The integrated graphics and memory controller has implemented several silicon level thermal management features that can lower both integrated graphics and memory controller and DDR3 power during periods of high activity. As a result, these features can help control temperature and help prevent thermally induced component failures. These features include:

- Bandwidth throttling triggered by memory loading
- Bandwidth throttling triggered by integrated graphics and memory controller heating
- THERMTRIP# support
- Render Thermal Throttling

5.2.2.1 Internal Digital Thermal Sensor

The integrated graphics and memory controller incorporates one on-die digital thermal sensor for thermal management. The thermal sensor may be programmed to cause hardware throttling and/or software interrupts. Hardware throttling includes render thermal throttling and main memory programmable throttling thresholds. Sensor trip points may also be programmed to generate various interrupts including SCI, SMI, INTR, and SERR. The internal thermal sensor reports six trip points: Aux0, Aux1, Aux2, Aux3, Hot, and Catastrophic trip points in order of increasing temperature.

5.2.2.1.1 Aux0, Aux1, Aux2, Aux3 Temperature Trip Points

These trip points may be set dynamically if desired and provides a configurable interrupt mechanism to allow software to respond when a trip is crossed in either direction. These auxiliary temperature trip points do not automatically cause any hardware throttling but may be used by software to trigger interrupts.

5.2.2.1.2 Hot Temperature Trip Point

This trip point is set at the temperature at which the integrated graphics and memory controller must start throttling. It may optionally enable integrated graphics and memory controller throttling when the temperature is exceeded. This trip point may provide an interrupt to ACPI (or other software) when it is crossed in either direction. Software could optionally set this as an interrupt when the temperature exceeds this level setting.

5.2.2.1.3 Catastrophic Trip Point

This trip point is set at the temperature at which the integrated graphics and memory controller must be shut down immediately without any software support. This trip point may be programmed to generate an interrupt, enable throttling, or immediately shut down the system (via Halt or via THERMTRIP# assertion). Crossing a trip point in either direction may generate several types of interrupts.

5.2.2.1.4 Recommended Programming for Available Trip Points

See the integrated graphics and memory controller BIOS Specification for recommended Trip Point programming. Aux Trip Points (0, 1, 2, 3) should be programmed for software and firmware control via interrupts. HOT Trip Point should be set to throttle integrated graphics and memory controller to avoid $T_{j,max}$ of 100°C. Catastrophic Trip Point should be set to halt operation to avoid maximum Tj of 130°C.

Note: Crossing a trip point in either direction may generate several types of interrupts. Each trip point has a register that can be programmed to select the type of interrupt to be generated. Crossing a trip point is implemented as edge detection on each trip point to generate the interrupts. Either edge (i.e., crossing the trip point in either direction) generates the interrupt.

5.2.2.1.5 Thermal Sensor Accuracy (T_{accuracy})

The error associated with DTS measurement will not exceed $\pm 5^{\circ}$ C within the operating range. Integrated graphics and memory controller may not operate above T_{j,max} spec. This value is based on product characterization and is not guaranteed by manufacturing test.

Software has the ability to program the T_{cat} , T_{hot} , and T_{aux} trip points, but these trip points should be selected with consideration for the thermal sensor accuracy and the quality of the platform thermal solution. Overly conservative (unnecessarily low)

temperature settings may unnecessarily degrade performance due to frequent throttling, while overly aggressive (dangerously high) temperature settings may fail to protect the part against permanent thermal damage.

5.2.2.1.6 Hysteresis Operation

Hysteresis provides a small amount of positive feedback to the thermal sensor circuit to prevent a trip point from flipping back and forth rapidly when the temperature is right at the trip point. The digital hysteresis offset is programmable via processor registers.

5.2.2.2 Memory Thermal Throttling Options

The integrated graphics and memory controller has two, independent mechanisms that cause system memory throttling:

TDP Controller: The TDP Controller is the main mechanism for limiting MCH power by limiting memory bandwidth. Utilized as a thermal throttling mechanism, this feature is triggered by the Hot temperature trip point of the Graphics and Memory Controller digital thermal sensor (DTS) and initiates duty cycle throttling to delay memory transactions and thereby reducing MCH power. Power reduction is memory configuration and application dependant but duty cycle throttling intervals can be customized for maximum throttling efficiency. The TDP Controller can also be used as a bandwidth limiter using programmable memory read/write bandwidth thresholds. Intel sets the default thresholds that will not restrict bandwidth and performance for most applications but these thresholds can be modified to reduce MCH power regardless of DTS temperature.

- *Note:* The TDP controller can be used as a closed loop thermal throttling (CLTT) mechanism or an open loop thermal throttling (OLTT) mechanism, although CLTT is recommended.
 - DRAM Thermal Management: Ensures that the DRAM chips are operating within thermal limits. The integrated graphics and memory controller can control the amount of integrated graphics and memory controller-initiated bandwidth per rank to a programmable limit via a weighted input averaging filter.

5.2.2.3 External Thermal Sensor Interface Overview

The integrated graphics and memory controller supports two inputs for external thermal sensor notifications, based on which it can regulate memory accesses.

Note: The thermal sensors should be capable of measuring the ambient temperature only and should be able to assert PM_EXT_TS#[0] and/or PM_EXT_TS#[1] if the pre-programmed thermal limits/conditions are met or exceeded.

An external thermal sensor with a serial interface may be placed next to a SO-DIMM (or any other appropriate platform location), or a remote Thermal Diode may be placed next to the SO-DIMM (or any other appropriate platform location) and connected to the external Thermal Sensor.

Additional external thermal sensor's outputs, for multiple sensors, can be wire-OR'd together allow signaling from multiple sensors that are physically located separately. Software can, if necessary, distinguish which SO-DIMM(s) is the source of the overtemp through the serial interface. However, since the SO-DIMM's is located on the same Memory Bus Data lines, any integrated graphics and memory controller-based read throttle will apply equally.

Thermal sensors can either be directly routed to the integrated graphics and memory controller $PM_EXT_TS\#[0]$ and $PM_EXT_TS\#[1]$ pins or indirectly routed to integrated graphics and memory controller by invoking an Embedded Controller (EC) connected in between the thermal sensor and integrated graphics and memory controller pins. Both

routing methods are applicable for both thermal sensors placed on the motherboard (TS-on-Board) and/or thermal sensors located on the memory modules (TS-on-DIMM). Please refer to the *Calpella Platform Design Guide* for further details.

5.2.2.4 THERMTRIP# Operation

The integrated graphics and memory controller can assert THERMTRIP# (Thermal Trip) to indicates that its junction temperature has reached a level beyond which damage may occur. Upon assertion of THERMTRIP#, the integrated graphics and memory controller will shut off its internal clocks (thus halting program execution) in an attempt to reduce the core junction temperature. Once activated, THERMTRIP# remains latched until RSTIN# is asserted.

5.2.2.5 Render Thermal Throttling

Render Thermal Throttling of the integrated graphics and memory controller allows for the reduction the render core engine frequency and voltage, thus reducing internal graphics controller power and integrated graphics and memory controller thermals. Performance is degraded, but the platform thermal burden is relieved.

Render Thermal Throttling using several frequency/voltage operating points that can be used to throttle the render core. If the temperature of the integrated graphics and memory controller internal DTS exceeds the Hot-trip point, the integrated graphics will switch to a lower frequency/voltage operating point. After a timeout, the DTS is rechecked, and if the DTS temperature is still greater than the designed hysteresis, the integrated graphics will continue to switch to lower frequency/voltage operating points. Once the DTS reports a temperature below the hysteresis value, the render clock frequency and voltage will be restored to its pre-thermal event state.

Caution: The Render Thermal Throttling must be enabled for the product to remain within specification.

5.2.3 Platform Environment Control Interface (PECI)

The Platform Environment Control Interface (PECI) is a one-wire interface that provides a communication channel between Intel processor and chipset components to external monitoring devices. The processor implements a PECI interface to allow communication of processor thermal information to other devices on the platform. The processor provides a digital thermal sensor (DTS) for fan speed control. The DTS is calibrated at the factory to provide a digital representation of relative processor temperature. Averaged DTS values are read via the PECI interface.

The PECI physical layer is a self-clocked one-wire bus that begins each bit with a driven, rising edge from an idle level near zero volts. The duration of the signal driven high depends on whether the bit value is a Logic 0 or Logic 1. PECI also includes variable data transfer rate established with every message. The single wire interface provides low board routing overhead for the multiple load connections in the congested routing area near the processor and chipset components. Bus speed, error checking, and low protocol overhead provides adequate link bandwidth and reliability to transfer critical device operating conditions and configuration information.

5.2.3.1 Fan Speed Control with Digital Thermal Sensor

Digital Thermal Sensor based fan speed control (T_{FAN}) is a recommended feature to achieve optimal thermal performance. At the T_{FAN} temperature, Intel recommends full cooling capability well before the DTS reading reaches $T_{j,max}$. An example of this would be $T_{FAN} = T_{j,max} - 10^{\circ}$ C.

5.2.3.2 Processor Thermal Data Sample Rate and Filtering

The processor digital thermal sensor (DTS) provides an improved capability to monitor device hot spots, which inherently leads to more varying temperature readings over short time intervals. To reduce the sample rate requirements on PECI and improve thermal data stability vs. time the processor DTS implements an averaging algorithm that filters the incoming data. This filter is expressed mathematically as:

 $PECI(t) = PECI(t-1)+1/(2^X)^{Temp} - PECI(t-1)$

where:

- PECI(t) is the new averaged temperature
- PECI(t-1) is the previous averaged temperature
- Temp is the raw temperature data from the DTS
- X is the Thermal Averaging Constant (TAC)

The Thermal Averaging Constant is a BIOS configurable value that determines the time in milliseconds over which the DTS temperature values are averaged (the default time is 256 ms). Short averaging times will make the averaged temperature values respond more quickly to DTS changes. Long averaging times will result in better overall thermal smoothing but also incur a larger time lag between fast DTS temperature changes and the value read via PECI.

Within the processor, the DTS converts an analog signal into a digital value representing the temperature relative to PROCHOT# circuit activation. The conversions are in integers with each single number change corresponding to approximately 1°C. DTS values reported via the internal processor MSR will be in whole integers.

As a result of the PECI averaging function described above, DTS values reported over PECI will include a 6-bit fractional value. Under typical operating conditions, where the temperature is close to PROCHOT#, the fractional values may not be of interest. But when the temperature approaches zero, the fractional values can be used to detect the activation of the PROCHOT# circuit. An averaged temperature value between 0 and 1 can only occur if the PROCHOT# circuit has been activated during the averaging window. As PROCHOT# circuit activation time increases, the fractional value will approach zero. Fan control circuits can detect this situation and take appropriate action as determined by the system designers. Of course, fan control chips can also monitor the PROCHOT# pin to detect PROCHOT# circuit activation via a dedicated input pin on the package.

§

This chapter describes the processor signals. They are arranged in functional groups according to their associated interface or category. The following notations are used to describe the signal type:

Notations	Signal Type
I	Input Pin
0	Output Pin
I/O	Bi-directional Input/Output Pin

The signal description also includes the type of buffer used for the particular signal:

Table 24. Signal Description Buffer Types

Signal	Description
PCI Express*	PCI Express interface signals. These signals are compatible with PCI Express 2.0 Signalling Environment AC Specifications and are AC coupled. The buffers are not 3.3-V tolerant. Refer to the PCIe specification.
FDI	Intel Flexible Display interface signals. These signals are compatible with PCI Express 2.0 Signaling Environment AC Specifications, but are DC coupled. The buffers are not 3.3-V tolerant.
DMI	Direct Media Interface signals. These signals are compatible with PCI Express 2.0 Signaling Environment AC Specifications, but are DC coupled. The buffers are not 3.3-V tolerant.
CMOS	CMOS buffers. 1.1-V tolerant
DDR3	DDR3 buffers: 1.5-V tolerant
A	Analog reference or output. May be used as a threshold voltage or for buffer compensation
GTL	Gunning Transceiver Logic signaling technology
Ref	Voltage reference signal
Asynchronous ¹	Signal has no timing relationship with any reference clock.

NOTES:

1. Qualifier for a buffer type.

6.1 System Memory Interface

Table 25.Memory Channel A (Sheet 1 of 2)

Signal Name	Description	Direction/Buffer Type
SA_BS[2:0]	Bank Select: These signals define which banks are selected within each SDRAM rank.	O DDR3
SA_WE#	Write Enable Control Signal: Used with SA_RAS# and SA_CAS# (along with SA_CS#) to define the SDRAM Commands.	O DDR3
SA_RAS#	RAS Control Signal : Used with SA_CAS# and SA_WE# (along with SA_CS#) to define the SRAM Commands.	O DDR3
SA_CAS#	CAS Control Signal: Used with SA_RAS# and SA_WE# (along with SA_CS#) to define the SRAM Commands.	O DDR3
SA_DM[7:0]	Data Mask: These signals are used to mask individual bytes of data in the case of a partial write and to interrupt burst writes. When activated during writes, the corresponding data groups in the SDRAM are masked. There is one SA_DM[7:0] for every data byte lane.	O DDR3
SA_DQS[7:0]	Data Strobes: SA_DQS[7:0] and its complement signal group make up a differential strobe pair. The data is captured at the crossing point of SA_DQS[7:0] and its SA_DQS#[7:0] during read and write transactions	I/O DDR3
SA_DQS#[7:0]	Data Strobe Complements : These are the complementary strobe signals.	I/O DDR3
SA_DQ[63:0]	Data Bus: Channel A data signal interface to the SDRAM data bus.	I/O DDR3
SA_MA[15:0]	Memory Address : These signals are used to provide the multiplexed row and column address to the SDRAM.	O DDR3
SA_CK[1:0]	SDRAM Differential Clock : Channel A SDRAM Differential clock signal pair. The crossing of the positive edge of SA_CK and the negative edge of its complement SA_CK# are used to sample the command and control signals on the SDRAM.	O DDR3
SA_CK#[1:0]	SDRAM Inverted Differential Clock: Channel A SDRAM Differential clock signal- pair complement.	O DDR3

Table 25.Memory Channel A (Sheet 2 of 2)

Signal Name	Description	Direction/Buffer Type
SA_CKE[1:0]	Clock Enable: (1 per rank) Used to: - Initialize the SDRAMs during power-up - Power-down SDRAM ranks - Place all SDRAM ranks into and out of self- refresh during STR	O DDR3
SA_CS#[1:0]	Chip Select : (1 per rank) Used to select particular SDRAM components during the active state. There is one Chip Select for each SDRAM rank.	O DDR3
SA_ODT[1:0]	On Die Termination: Active Termination Control.	O DDR3

Table 26.Memory Channel B (Sheet 1 of 2)

Signal Name	Description	Direction/Buffer Type
SB_BS[2:0]	Bank Select : These signals define which banks are selected within each SDRAM rank.	O DDR3
SB_WE#	Write Enable Control Signal: Used with SB_RAS# and SB_CAS# (along with SB_CS#) to define the SDRAM Commands.	O DDR3
SB_RAS#	RAS Control Signal: Used with SB_CAS# and SB_WE# (along with SB_CS#) to define the SRAM Commands.	O DDR3
SB_CAS#	CAS Control Signal: Used with SB_RAS# and SB_WE# (along with SB_CS#) to define the SRAM Commands.	O DDR3
SB_DM[7:0]	Data Mask: These signals are used to mask individual bytes of data in the case of a partial write and to interrupt burst writes. When activated during writes, the corresponding data groups in the SDRAM are masked. There is one SB_DM[7:0] for every data byte lane.	O DDR3
SB_DM[7:0]	Data Mask : These signals are used to mask individual bytes of data in the case of a partial write, and to interrupt burst writes. When activated during writes, the corresponding data groups in the SDRAM are masked. There is one SB_DM[7:0] for every data byte lane.	O DDR3
SB_DQS[7:0]	Data Strobes : SB_DQS[7:0] and its complement signal group make up a differential strobe pair. The data is captured at the crossing point of SB_DQS[7:0] and its SB_DQS#[7:0] during read and write transactions.	I/O DDR3

Table 26.Memory Channel B (Sheet 2 of 2)

Signal Name	Description	Direction/Buffer Type
SB_DQS#[7:0]	Data Strobe Complements: These are the complementary strobe signals.	I/O DDR3
SB_DQ[63:0]	Data Bus : Channel B data signal interface to the SDRAM data bus.	I/O DDR3
SB_MA[15:0]	Memory Address : These signals are used to provide the multiplexed row and column address to the SDRAM.	O DDR3
SB_CK[1:0]	SDRAM Differential Clock : Channel B SDRAM Differential clock signal pair. The crossing of the positive edge of SB_CK and the negative edge of its complement SB_CK# are used to sample the command and control signals on the SDRAM.	O DDR3
SB_CK#[1:0]	SDRAM Inverted Differential Clock: Channel B SDRAM Differential clock signal- pair complement.	O DDR3
SB_CKE[1:0]	Clock Enable: (1 per rank) Used to: - Initialize the SDRAMs during power-up. - Power-down SDRAM ranks. - Place all SDRAM ranks into and out of self- refresh during STR.	O DDR3
SB_CS#[1:0]	Chip Select : (1 per rank) Used to select particular SDRAM components during the active state. There is one Chip Select for each SDRAM rank.	O DDR3
SB_ODT[1:0]	On Die Termination : Active Termination Control.	O DDR3

6.2 Memory Reference and Compensation

Table 27. Memory Reference and Compensation

Signal Name	Description	Direction/Buffer Type
SM_RCOMP[2:0]	System Memory Impedance Compensation: Refer to the Calpella Platform Design Guide for implementation.	I A
SA_DIMM_VREFDQ SB_DIMM_VREFDQ	Memory Channel A/B DIMM Voltage Reference: Refer to the Calpella Platform Design Guide.	O A

6.3 Reset and Miscellaneous Signals

Table 28. Reset and Miscellaneous Signals (Sheet 1 of 2)

Signal Name	Description	Direction/Buffer Type
SM_DRAMRST#	DDR3 DRAM Reset : Reset signal from processor to DRAM devices. One for all channels or SO-DIMMs.	O DDR3
PM_EXT_TS#[0] PM_EXT_TS#[1]	External Thermal Sensor Input : If the system temperature reaches a dangerously high value then this signal can be used to trigger the start of system memory throttling.	I CMOS
СОМРО	Impedance compensation must be terminated on the system board using a precision resistor.	I A
COMP1	Impedance compensation must be terminated on the system board using a precision resistor.	I A
COMP2	Impedance compensation must be terminated on the system board using a precision resistor.	I A
СОМРЗ	Impedance compensation must be terminated on the system board using a precision resistor.	I A
PM_SYNC	Power Management Sync : A sideband signal to communicate power management status from the platform to the processor.	I CMOS
RESET_OBS#	This signal is an indication of the processor being reset.	O Asynchronous CMOS
RSTIN#	Reset In : When asserted this signal will asynchronously reset the processor logic. This signal is connected to the PLTRST# output of the PCH.	I CMOS

Configuration Signals: The CFG signals have a default value of '1' if not terminated on the board. Refer to the	
Calpella Platform Design Guide for pull-down recommendations when a logic low is desired.CFG[17:0]CFG[17:0]CFG[17:0]CFG[3] - PCI Express* Static Lane Numbering Reversal. Lane Reversal will be applied across all 16 Lanes.•1: No lane reversal ••0: Reversal CFG[4] - Embedded DisplayPort Detection: 	I CMOS
VCCPWRGOOD_1 and latched inside the processor. Breakpoint and Performance Monitor Signals: Outputs from the processor that indicate the status of breakpoints and programmable counters used for monitoring processor performance.	I/O GTL
Debug Reset: Used only in systems where no debug port is implemented on the system board. DBR# is used by a debug port interposer so that an in-target probe can drive system reset. This signal only routes through the package and does not connect to the the processor silicon itself.	0
PRDY#: A processor output used by debug tools to determine processor debug readiness.	O Asynchronous GTL
PREQ# PREO# : Used by debug tools to request debug operation of the processor.	I Asynchronous GTL
RSVD RSVD_TP RSVD_NCTF RSVD_NCTF RSVD_NCTF RSVD_NCTF RSVD_NCTF RSVD_TP signals have via test points.	No Connect Test Point Non-Critical to Function

Table 28. Reset and Miscellaneous Signals (Sheet 2 of 2)

6.4 PCI Express Graphics Interface Signals

Signal Name	Description	Direction/Buffer Type
PEG_RX[15:0] PEG_RX#[15:0]	PCI Express Graphics Receive Differential Pair	I PCI Express
PEG_TX[15:0] PEG_TX#[15:0]	PCI Express Graphics Transmit Differential Pair	O PCI Express
PEG_ICOMPI	PCI Express Graphics Input Current Compensation	I A
PEG_ICOMPO	PCI Express Graphics Output Current Compensation	I A
PEG_RCOMPO	PCI Express Graphics Resistance Compensation	I A
PEG_RBIAS	PCI Express Resistor Bias Control	I A

Table 29. PCI Express Graphics Interface Signals

6.5 Embedded DisplayPort (eDP)

Table 30. Embedded Display Port Signals (Sheet 1 of 2)

Signal Name	Description	Direction/Buffer Type
eDP_TX[3:0] eDP_TX#[3:0]	Embedded DisplayPort Transmit Differential Pair : Nominally, eDP_TX[3:0] is multiplexed with PEG_TX[12:15] and eDP_TX#[3:0] is multiplexed with PEG_TX#[12:15]. When reversed, eDP_TX[3:0] is multiplexed with PEG_TX[3:0] and eDP_TX#[3:0] is multiplexed with PEG_TX#[3:0]	O PCI Express
eDP_AUX eDP_AUX#	Embedded DisplayPort Auxiliary Differential Pair : Nominally, eDP_AUX is multiplexed with PEG_RX[13] and eDP_AUX# is multiplexed with PEG_RX#[13]. When reversed, eDP_AUX is multiplexed with PEG_RX[2] and eDP_AUX# is multiplexed with PEG_RX#[2]	I/O PCI Express
eDP_HPD#	Embedded DisplayPort Hot Plug Detect: Nominally, eDP_HPD# is multiplexed with PEG_RX[12]. When reversed, eDP_HPD# is multiplexed with PEG_RX[3]	I PCI Express
eDP_ICOMPI	Embedded DisplayPort Input Current Compensation: Multiplexed with PEG_ICOMPI	I A

Table 30. Embedded Display Port Signals (Sheet 2 of 2)

Signal Name	Description	Direction/Buffer Type
eDP_ICOMPO	Embedded DisplayPort Output Current and Resistance Compensation: Multiplexed with PEG_ICOMPO	I A
eDP_RCOMPO	Embedded DisplayPort Resistance Compensation: Multiplexed with PEG_RCOMPO	I A
eDP_RBIAS	Embedded DisplayPort Resistor Bias Control: Multiplexed with PEG_RBIAS	I A

6.6 Intel Flexible Display Interface Signals

Signal Name	Description	Direction/Buffer Type
FDI_TX[3:0] FDI_TX#[3:0]	Intel® Flexible Display Interface Transmit Differential Pair - Pipe A	O FDI
FDI_FSYNC[0]	Intel® Flexible Display Interface Frame Sync - Pipe A	I CMOS
FDI_LSYNC[0]	Intel® Flexible Display Interface Line Sync - Pipe A	I CMOS
FDI_TX[7:4] FDI_TX#[7:4]	Intel® Flexible Display Interface Transmit Differential Pair - Pipe B	O FDI
FDI_FSYNC[1]	Intel® Flexible Display Interface Frame Sync - Pipe B	I CMOS
FDI_LSYNC[1]	Intel® Flexible Display Interface Line Sync - Pipe B	I CMOS
FDI_INT	Intel® Flexible Display Interface Hot Plug Interrupt	I CMOS

Table 31. Intel® Flexible Display Interface

6.7 DMI

Table 32. DMI - Processor to PCH Serial Interface

Signal Name	Description	Direction/Buffer Type
DMI_RX[3:0] DMI_RX#[3:0]	DMI Input from PCH : Direct Media Interface receive differential pair.	I DMI
DMI_TX[3:0] DMI_TX#[3:0]	DMI Output to PCH: Direct Media Interface transmit differential pair.	O DMI

6.8 PLL Signals

Table 33. PLL Signals

Signal Name	Description	Direction/Buffer Type
BCLK BCLK#	Differential bus clock input to the processor	I Diff Clk
BCLK_ITP BCLK_ITP#	Buffered differential bus clock pair to ITP	O Diff Clk
PEG_CLK PEG_CLK#	Differential PCI Express Based Graphics/DMI Clock In: These pins receive a 100-MHz Serial Reference clock from the external clock synthesizer. This clock is used to generate the clocks necessary for the support of PCI Express. This also is the reference clock for Intel® FDI.	I Diff Clk
DPLL_REF_SSCLK DPLL_REF_SSCLK#	Embedded Display Port PLL Differential Clock In: With or without SSC -120 MHz.	I Diff Clk

6.9 TAP Signals

Table 34. TAP Signals

Signal Name	Description	Direction/Buffer Type
ТСК	TCK (Test Clock) : Provides the clock input for the processor Test Bus (also known as the Test Access Port).	I CMOS
TDI	TDI (Test Data In) : Transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support.	I CMOS
TDO	Test Data Output	O CMOS
TDI_M	Test Data In for the GPU/Memory core: Tie TDI_M and TDO_M together on the motherboard	I CMOS
TDO_M	Test Data Output from the processor core: Tie TDO_M and TDI_M together on the motherboard.	O CMOS
TMS	TMS (Test Mode Select) : A JTAG specification support signal used by debug tools.	I CMOS
TRST#	TRST# (Test Reset) Boundary-Scan test reset pin	I CMOS
TAPPWRGOOD	Power good for ITP	O Asynchronous CMOS

6.10 Error and Thermal Protection

Table 35. Error and Thermal Protection

Signal Name	Description	Direction/Buffer Type
CATERR#	Catastrophic Error : This signal indicates that the system has experienced a catastrophic error and cannot continue to operate. The processor will set this for non- recoverable machine check errors or other unrecoverable internal errors. External agents are allowed to assert this pin which will cause the processor to take a machine check exception.	I/O GTL
PECI	PECI (Platform Environment Control Interface) : A serial sideband interface to the processor, it is used primarily for thermal, power, and error management. Details regarding the PECI electrical specifications, protocols, and functions can be found in the RS - Platform Environment Control Interface (PECI) Specification, Revision 2.0.	I/O Asynchronous
PROCHOT#	Processor Hot: PROCHOT# goes active when the processor temperature monitoring sensor(s) detects that the processor has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit (TCC) has been activated, if enabled. This signal can also be driven to the processor to activate the TCC.	I/O Asynchronous GTL
THERMTRIP#	Thermal Trip: The processor protects itself from catastrophic overheating by use of an internal thermal sensor. This sensor is set well above the normal operating temperature to ensure that there are no false trips. The processor will stop all execution when the junction temperature exceeds approximately 130°C. This is signaled to the system by the THERMTRIP# pin. Refer to the appropriate platform design guide for termination requirements.	O Asynchronous GTL

6.11 Power Sequencing

Table 36.Power Sequencing

Signal Name	Description	Direction/Buffer Type
VCCPWRGOOD_0 VCCPWRGOOD_1	VCCPWRGOOD_0 and VCCPWRGOOD_1 (Power Good) Processor Input: The processor requires these signals to be a clean indication that: -VCC, VCCPLL, and VTT supplies are stable and within their specifications -BCLK is stable and has been running for a minimum number of cycles. Both signals must then transition monotonically to a high state. VCCPWRGOOD_0 and VCCPWRGOOD_1 can be driven inactive at any time, but BCLK and power must again be stable before a subsequent rising edge of these signals. VCCPWRGOOD_0 and VCCPWRGOOD_1 should be tied together and connected to the PROCPWRGD output signal of the PCH.	I Asynchronous CMOS
SM_DRAMPWROK	SM_DRAMPWROK Processor Input: Connects to PCH DRAMPWROK.	I Asynchronous CMOS
VTTPWRGOOD	VTTPWRGOOD Processor Input: The processor requires this input signal to be a clean indication that the VTT power supply is stable and within specifications. Clean implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. Note it is not valid for VTTPWRGOOD to be deasserted while VCCPWRGOOD_0 and VCCPWRGOOD_1 is asserted.	I Asynchronous CMOS
SKTOCC#(rPGA988A only) PROC_DETECT (BGA only)	SKTOCC# (Socket Occupied)/ PROC_DETECT (Processor Detect): pulled to ground on the processor package. There is no connection to the processor silicon for this signal. System board designers may use this signal to determine if the processor is present.	

6.12 Processor Power Signals

Table 37. Processor Power Signals (Sheet 1 of 3)

Signal Name	Description	Direction/Buffer Type
VCC	Processor core power rail.	Ref
VTT (VTT0 and VTT1)	Processor I/O power rail (1.05 V). VTT0 and VTT1 should share the same VR	Ref
VDDQ	DDR3 power rail (1.5 V)	Ref
VCCPLL	Power rail for filters and PLLs (1.8 V)	Ref
ISENSE	Current Sense from an Intel® MVP6.5 Compliant Regulator to the processor core.	I A
PROC_DPRSLPVR	Processor output signal to Intel MVP-6.5 controller to indicate that the processor is in the package C6 state.	O CMOS
PSI#	Processor Power Status Indicator : This signal is asserted when the processor core current consumption is less than 15 A. Assertion of this signal is an indication that the VR controller does not currently need to provide ICC above 15 A. The VR controller can use this information to move to a more efficient operating point. This signal will deassert at least 3.3 µs before the current consumption will exceed 15 A. The minimum PSI# assertion and de-assertion time is 1 BCLK. Refer to the <i>Intel® MVP-6.5 Mobile Processor and Mobile Chipset Voltage Regulator Specification</i> for more details on the PSI# Signal	O Asynchronous CMOS

Table 37.Processor Power Signals (Sheet 2 of 3)

Signal Name	Description	Direction/Buffer Type
VID[6] VID[5:3]/CSC[2:0] VID[2:0]/MSID[2:0]	 VID[6:0] (Voltage ID) Pins: Used to support automatic selection of power supply voltages (VCC). These are CMOS signals that are driven by the processor. CSC[2:0]/VID[5:3] - Current Sense Configuration bits, for ISENSE gain setting. See I-MVP6.5 Mobile Processor and Mobile Chipset Voltage Regulator Specification for more information. This value is latched on the rising edge of VTTPWRGOOD. MSID[2:0]/VID[2:0]- Market Segment Identification is used to indicate the maximum platform capability to the processor. A processor will only boot if the MSID[2:0] pins are strapped to the appropriate setting (or higher) on the platform (see "Market Segment Selection Truth Table for MSID[2:0]" on page 89 for MSID encodings). MSID is used to help protect the platform by preventing a higher power processor from booting in a platform designed for lower power processors. Refer to the appropriate platform design guide for implementation details. MSID[2:0] are latched on the rising edge of VTTPWRGOOD. NOTE: VID[5:3] and VID[2:0] are bi- directional. As an input, they are CSC[2:0] and MSID[2:0] respectively. 	O CMOS
VTT_SELECT	The VTT_SELECT signal is used to select the correct VTT voltage level for the processor. Refer to the Platform Design Guide for implementation details.	O CMOS
VCC_SENSE VSS_SENSE	Voltage Feedback Signals to an Intel MVP-6.5 Compliant VR: Use VCC_SENSE to sense voltage and VSS_SENSE to sense ground near the silicon with little noise.	O A
VTT_SENSE VSS_SENSE_VTT	Isolated low impedance connection to the processor VTT voltage and ground. They can be used to sense or measure voltage near the silicon.	O A
VAXG	Graphics core power rail.	Ref
VAXG_SENSE VSSAXG_SENSE	VAXG_SENSE and VSSAXG_SENSE provide an isolated, low impedance connection to the VAXG voltage and ground. They can be used to sense or measure voltage near the silicon.	O A
GFX_VID[6:0]	GFX_VID[6:0] (Voltage ID) pins are used to support automatic selection of nominal voltages (VAXG). These are CMOS signals that are driven by the processor.	O CMOS

Table 37.Processor Power Signals (Sheet 3 of 3)

Signal Name	Description	Direction/Buffer Type
GFX_VR_EN	GPU output signal to Intel MVP6.5 compliant VR. This signal is used as an on/off control to enable/disable the GPU VR.	O CMOS
GFX_DPRSLPVR	GPU output signal to Intel MVP6.5 compliant VR. When asserted this signal indicates that the GPU is in render suspend mode. This signal is also used to control render suspend state exit slew rate.	O CMOS
GFX_IMON	Current Sense from an Intel MVP6.5 Compliant Regulator to the GPU.	I A
VDDQ_CK	Filtered power for VDDQ (BGA Only)	Ref
VTT0_DDR	Filtered power for VTT0 (BGA Only)	Ref
VCAP0 VCAP1 VCAP2	Processor Connection to On-board decoupling capacitors (BGA only)	PWR

6.13 Ground and NCTF

Table 38. Ground and NCTF

Signal Name	Description	Direction/Buffer Type
VSS	Processor ground node	GND
VSS_NCTF	Non-Critical to Function : The pins are for package mechanical reliability.	
DC_TEST_xx#	Daisy Chain Test - These pins are for solder joint reliability and are non-critical to function. See [Calpella] Platform, for Arrandale, Clarksfield and Mobile Intel® 5 Series Chipset – Design Guide for more details on implementation. (BGA only)	NC

6.14 Processor Internal Pull Up/Pull Down

Table 39. Processor Internal Pull Up/Pull Down

Signal Name	Pull Up/Pull Down	Rail	Value
SM_DRAMPWROK	Pull Down	VSS	10 - 20 kΩ
VCCPWRGOOD_0 VCCPWRGOOD_1	Pull Down	VSS	10 - 20 kΩ
VTTPWRGOOD	Pull Down	VSS	10 - 20 kΩ
BPM#[7:0]	Pull Up	VTT	44 - 55 kΩ
ТСК	Pull Up	VTT	44 - 55 kΩ
TDI	Pull Up	VTT	44 - 55 kΩ

Table 39.Processor Internal Pull Up/Pull Down

Signal Name	Pull Up/Pull Down	Rail	Value
TMS	Pull Up	VTT	44 - 55 kΩ
TRST#	Pull Up	VTT	1 - 5 kΩ
TDI_M	Pull Up	VTT	44 - 55 kΩ
PREQ#	Pull Up	VTT	44 - 55 kΩ
CFG[17:0]	Pull Up	VTT	5 - 14 kΩ

§

Signal Description

7 Electrical Specifications

7.1 Power and Ground Pins

The processor has V_{CC}, V_{TT}, V_{DDQ}, V_{CCPLL}, V_{AXG} and V_{SS} (ground) inputs for on-chip power distribution. All power pins must be connected to their respective processor power planes, while all V_{SS} pins must be connected to the system ground plane. Use of multiple power and ground planes is recommended to reduce I*R drop. The V_{CC} pins must be supplied with the voltage determined by the processor **V**oltage **ID**entification (VID) signals. Likewise, the V_{AXG} pins must also be supplied with the voltage determined by the voltage level for the various VIDs. The voltage levels are the same for both the processor VIDs and GFX_VIDs.

7.2 Decoupling Guidelines

Due to its large number of transistors and high internal clock speeds, the processor is capable of generating large current swings between low- and full-power states. To keep voltages within specification, output decoupling must be properly designed.

Caution: Design the board to ensure that the voltage provided to the processor remains within the specifications listed in Table 40. Failure to do so can result in timing violations or reduced lifetime of the processor. For further information and design guidelines, refer to the *Calpella Platform Design Guide* and the *RS - Intel® Mobile Voltage Positioning (Intel® MVP). 6.5 Mobile Processor and Chipset Voltage Regulation – Product Specification*

7.2.1 Voltage Rail Decoupling

The voltage regulator solution must:

- provide sufficient decoupling to compensate for large current swings generated during different power mode transitions.
- provide low parasitic resistance from the regulator to the socket.
- meet voltage and current specifications as defined in Table 40.

For further information regarding power delivery, decoupling, and layout guidelines refer to the *Calpella Platform Design Guide* and the *Intel® Mobile Voltage Positioning* (*Intel® MVP*). 6.5 Mobile Processor and Chipset Voltage Regulation – Product Specification

7.3 Processor Clocking (BCLK, BCLK#)

The processor utilizes a differential clock to generate the processor core(s) operating frequency, memory controller frequency, and other internal clocks. The processor core frequency is determined by multiplying the processor core ratio by 133 MHz. Clock multiplying within the processor is provided by an internal phase locked loop (PLL), which requires a constant frequency input, with exceptions for Spread Spectrum Clocking (SSC).

The processor's maximum core frequency is configured during power-on reset by using its manufacturing default value. This value is the highest core multiplier at which the processor can operate.

7.3.1 PLL Power Supply

An on-die PLL filter solution is implemented on the processor. Refer to Table 40 for DC specifications and to the *Calpella Platform Design Guide* for decoupling and routing guidelines.

7.4 Voltage Identification (VID)

The processor uses seven voltage identification pins, VID[6:0], to support automatic selection of the processor power supply voltages. VID pins for the processor are CMOS outputs driven by the processor VID circuitry. A dedicated graphics voltage regulator is required to deliver voltage to the integrated graphics controller. Like the processor core, the integrated graphics controller will use seven voltage identification pins, GFX_VID[6:0], to set the nominal operating voltage GFX_VID pins for the graphics core are CMOS outputs driven by the graphics core VID circuitry. Table 40 specifies the voltage level for VID[6:0] and GFX_VID[6:0]; 0 refers to a low-voltage level. For more details about VR design and how to satisfy processor power supply requirements, please refer to the Intel® Mobile Voltage Positioning (Intel® MVP). 6.5 Mobile Processor and Chipset Voltage Regulation – Product Specification

VID signals are CMOS push/pull drivers. Refer to Table 49 for the DC specifications for these signals. The VID codes will change due to temperature, frequency, and/or power mode load changes in order to minimize the power of the part. A voltage range is provided in Table 40. The specifications are set so that one voltage regulator can operate with all supported frequencies.

Individual processor VID values may be set during manufacturing so that two devices at the same core frequency may have different default VID settings. This is shown in the VID range values in Table 40. The processor provides the ability to operate while transitioning to an adjacent VID and its associated processor core voltage (V_{CC}). This will represent a DC shift in the loadline.

Note: A low-to-high or high-to-low voltage state change will result in as many VID transitions as necessary to reach the target core voltage. Transitions above the maximum or below the minimum specified VID are not permitted. One VID transition occurs in 2.5 µs.

The VR utilized must be capable of regulating its output to the value defined by the new VID values issued. DC specifications for dynamic VID transitions are included in Table 40, while AC specifications are included in Table 65. See the *Intel® MVP6.5 Mobile Processor and Mobile Chipset Voltage Regulation Specification* for further details.

Several of the VID signals (VID[5:3]/CSC[2:0] and VID[2:0]/MSID[2:0]) serve a dual purpose and are sampled during reset. Refer to the signal description table in Chapter 6 for more information. Refer to the [Calpella] Platform, for Arrandale, Clarksfield and Mobile Intel® 5 Series Chipset – Design Guide and the Intel® MVP6.5 Mobile Processor and Mobile Chipset Voltage Regulation Specification for additional implementation details.

ĺ	VID6	VID5	VID4	VID3	VID2	VID1	VIDO	V _{CC} (V)
	0	0	0	0	0	0	0	1.5000
	0	0	0	0	0	0	1	1.4875
	0	0	0	0	0	1	0	1.4750
	0	0	0	0	0	1	1	1.4625
_	0	0	0	0	1	0	0	1.4500
	0	0	0	0	1	0	1	1.4375
	0	0	0	0	1	1	0	1.4250
	0	0	0	0	1	1	1	1.4125
-	0	0	0	1	0	0	0	1.4000
-	0	0	0	1	0	0	1	1.3875
-	0	0	0	1	0	1	0	1.3750
	0	0	0	1	0	1 0	1	1.3625 1.3500
	0	0	0	1	1	0	1	1.3300
-	0	0	0	1	1	0	0	1.3250
-	0	0	0	1	1	1	1	1.3250
-	0	0	1	0	0	0	0	1.3125
	0	0	1	0	0	0	1	1.2875
	0	0	1	0	0	1	0	1.2750
-	0	0	1	0	0	1	1	1.2625
-	0	0	1	0	1	0	0	1.2500
-	0	0	1	0	1	0	1	1.2375
-	0	0	1	0	1	1	0	1.2250
	0	0	1	0	1	1	1	1.2125
	0	0	1	1	0	0	0	1.2000
	0	0	1	1	0	0	1	1.1875
	0	0	1	1	0	1	0	1.1750
-	0	0	1	1	0	1	1	1.1625
-	0	0	1	1	1	0	0	1.1500
-	0	0	1	1	1	0	1	1.1375
	0	0	1	1	1	1	0	1.1250
	0	0	1	1	1	1	1	1.1125
-	0	1	0	0	0	0	0	1.1000
-	0	1	0	0	0	0	1	1.0875
	0	1	0	0	0	1	0	1.0750
-	0	1	0	0	0	1	1	1.0625
ļ	0	1	0	0	1	0	0	1.0500
Ē	0	1	0	0	1	0	1	1.0375
ľ	0	1	0	0	1	1	0	1.0250
F	0	1	0	0	1	1	1	1.0125
F	0	1	0	1	0	0	0	1.0000
ľ	0	1	0	1	0	0	1	0.9875
	0	1	0	1	0	1	0	0.9750
F	0	1	0	1	0	1	1	0.9625
	0	1	0	1	1	0	0	0.9500
	0	1	0	1	1	0	1	0.9375
-								

Table 40.Voltage Identification Definition (Sheet 1 of 3)

VID6	VID5	VID4	VID3	VID2	VID1	VIDO	V _{cc} (
0	1	0	1	1	1	0	0.92
0	1	0	1	1	1	1	0.912
0	1	1	0	0	0	0	0.900
0	1	1	0	0	0	1	0.887
0	1	1	0	0	1	0	0.875
0	1	1	0	0	1	1	0.862
0	1	1	0	1	0	0	0.850
0	1	1	0	1	0	1	0.83
0	1	1	0	1	1	0	0.82
0	1	1	0	1	1	1	0.812
0	1	1	1	0	0	0	0.80
0	1	1	1	0	0	1	0.78
0	1	1	1	0	1	0	0.77
0	1	1	1	0	1	1	0.762
0	1	1	1	1	0	0	0.75
0	1	1	1	1	0	1	0.73
0	1	1	1	1	1	0	0.72
0	1	1	1	1	1	1	0.712
1	0	0	0	0	0	0	0.70
1	0	0	0	0	0	1	0.68
1	0	0	0	0	1	0	0.67
1	0	0	0	0	1	1	0.662
1	0	0	0	1	0	0	0.65
1	0	0	0	1	0	1	0.63
1	0	0	0	1	1	0	0.62
1	0	0	0	1	1	1	0.612
1	0	0	1	0	0	0	0.60
1	0	0	1	0	0	1	0.58
1	0	0	1	0	1	0	0.57
1	0	0	1	0	1	1	0.562
1	0	0	1	1	0	0	0.550
1	0	0	1	1	0	1	0.53
1	0	0	1	1	1	0	0.52
1	0	0	1	1	1	1	0.512
1	0	1	0	0	0	0	0.500
1	0	1	0	0	0	1	0.48
1	0	1	0	0	1	0	0.47
1	0	1	0	0	1	1	0.462
1	0	1	0	1	0	0	0.450
1	0	1	0	1	0	1	0.43
1	0	1	0	1	1	0	0.42
1	0	1	0	1	1	1	0.412
1	0	1	1	0	0	0	0.400
1	0	1	1	0	0	1	0.38
1	0	1	1	0	1	0	0.37
1	0	1	1	0	1	1	0.362
1	0	1	1	1	0	0	0.350

Table 40.Voltage Identification Definition (Sheet 2 of 3)

VID6	VID5	VID4	VID3	VID2	VID1	VIDO	V _{CC} (V
1	0	1	1	1	0	1	0.3375
1	0	1	1	1	1	0	0.3250
1	0	1	1	1	1	1	0.3125
1	1	0	0	0	0	0	0.3000
1	1	0	0	0	0	1	0.2875
1	1	0	0	0	1	0	0.2750
1	1	0	0	0	1	1	0.262
1	1	0	0	1	0	0	0.2500
1	1	0	0	1	0	1	0.2375
1	1	0	0	1	1	0	0.2250
1	1	0	0	1	1	1	0.2125
1	1	0	1	0	0	0	0.2000
1	1	0	1	0	0	1	0.187
1	1	0	1	0	1	0	0.1750
1	1	0	1	0	1	1	0.162
1	1	0	1	1	0	0	0.1500
1	1	0	1	1	0	1	0.137
1	1	0	1	1	1	0	0.1250
1	1	0	1	1	1	1	0.1125
1	1	1	0	0	0	0	0.1000
1	1	1	0	0	0	1	0.087
1	1	1	0	0	1	0	0.0750
1	1	1	0	0	1	1	0.062
1	1	1	0	1	0	0	0.0500
1	1	1	0	1	0	1	0.037
1	1	1	0	1	1	0	0.0250
1	1	1	0	1	1	1	0.012
1	1	1	1	0	0	0	0.000
1	1	1	1	0	0	1	0.000
1	1	1	1	0	1	0	0.000
1	1	1	1	0	1	1	0.000
1	1	1	1	1	0	0	0.000
1	1	1	1	1	0	1	0.000
1	1	1	1	1	1	0	0.000
1	1	1	1	1	1	1	0.0000

Table 40. Voltage Identification Definition (Sheet 3 of 3)

		•		
MSID[2]	MSID[1]	MSID[0]	Description ^{1,2}	Notes
0	0	0	Reserved	
0	0	1	Reserved	
0	1	0	Reserved	
0	1	1	Reserved	
1	0	0	Standard Voltage (SV) 35-W Supported	3
1	0	1	Reserved	
1	1	0	Reserved	
1	1	1	Reserved	

Table 41. Market Segment Selection Truth Table for MSID[2:0]

NOTES:

- 1. MSID[2:0] signals are provided to indicate the maximum platform capability to the processor.
- 2. MSID is used on rPGA988A platforms only.
- 3. Processors specified for use with a -1.9 $m\Omega$

7.5 Reserved or Unused Signals

The following are the general types of reserved (RSVD) signals and connection guidelines:

- RSVD these signals should not be connected
- RSVD_TP these signals should be routed to a test point
- RSVD_NCTF these signals are non-critical to function and may be left unconnected

Arbitrary connection of these signals to V_{CC}, V_{TT}, V_{DDQ}, V_{CCPLL}, V_{AXG}, V_{SS}, or to any other signal (including each other) may result in component malfunction or incompatibility with future processors. See Chapter 8 for a pin listing of the processor and the location of all reserved signals.

For reliable operation, always connect unused inputs or bi-directional signals to an appropriate signal level. Unused active high inputs should be connected through a resistor to ground (V_{SS}). Unused outputs maybe left unconnected; however, this may interfere with some Test Access Port (TAP) functions, complicate debug probing, and prevent boundary scan testing. A resistor must be used when tying bi-directional signals to power or ground. When tying any signal to power or ground, a resistor will also allow for system testability. Resistor values should be within $\pm 20\%$ of the impedance of the baseboard trace, unless otherwise noted in the appropriate platform design guidelines. For details see Table 49.

7.6 Signal Groups

Signals are grouped by buffer type and similar characteristics as listed in Table 42. The buffer type indicates which signaling technology and specifications apply to the signals. All the differential signals, and selected DDR3 and Control Sideband signals have On-Die Termination (ODT) resistors. There are some signals that do not have ODT and need to be terminated on the board.

Table 42.	Signal Groups ¹	(Sheet 1 of 3)
-----------	----------------------------	----------------

Signal Group	Alpha Group	Туре	Signals
System Reference Clock			
Differential	(a)	CMOS Input	BCLK, BCLK# PEG_CLK, PEG_CLK# DPLL_REF_SSCLK, DPLL_REF_SSCLK#
Differential	(b)	CMOS Output	BCLK_ITP, BCLK_ITP#
DDR3 Reference Clocks ²	•		
Differential	(c)	DDR3 Output	SA_CK[1:0], SA_CK#[1:0] SB_CK[1:0], SB_CK#[1:0]
DDR3 Command Signals ²	•		
Single Ended	(d)	DDR3 Output	SA_RAS#, SB_RAS#, SA_CAS#, SB_CAS# SA_WE#, SB_WE# SA_MA[15:0], SB_MA[15:0] SA_BS[2:0], SB_BS[2:0] SA_DM[7:0], SB_DM[7:0] SM_DRAMRST# SA_CS#[1:0], SB_CS#[1:0] SA_ODT[1:0], SB_ODT[1:0] SA_CKE[1:0], SB_CKE[1:0]
DDR3 Data Signals ²		I	
Single ended	(e)	DDR3 Bi-directional	SA_DQ[63:0], SB_DQ[63:0]
Differential	(f)	DDR3 Bi-directional	SA_DQS[7:0], SA_DQS#[7:0] SB_DQS[7:0], SB_DQS#[7:0]
TAP (ITP/XDP)		·	
Single Ended	(g)	CMOS Input	TCK, TMS, TRST#
Single Ended	(ga)	CMOS Input	TDI,TDI_M
Single Ended	(h)	CMOS Open-Drain Output	TDO, TDO_M
Single Ended	(i)	Asynchronous CMOS Output	TAPPWRGOOD

Table 42. Signal Gro			1
Signal Group	Alpha Group	Туре	Signals
Control Sideband			
Single Ended	(ja)	Asynchronous CMOS Input	V _{CCPWRGOOD_0} , V _{CCPWRGOOD_1} , V _{TTPWRGOOD}
Single Ended	(jb)	Asynchronous CMOS Input	SM_DRAMPWROK
Single Ended	(k)	Asynchronous CMOS Output	RESET_OBS#
Single Ended	(I)	Asynchronous GTL Output	PRDY#, THERMTRIP#
Single Ended	(m)	Asynchronous GTL Input	PREQ#
Single Ended	(n)	GTL Bi-directional	CATERR#, BPM#[7:0]
Single Ended	(0)	Asynchronous Bi- directional	PECI
Single Ended	(p)	Asynchronous GTL Bi-directional	PROCHOT#
Single Ended	(qa)	CMOS Input	PM_SYNC, PM_EXT_TS#[0], PM_EXT_TS#[1], CFG[17:0]
Single Ended	(qb)	CMOS Input	RSTIN#
Single Ended	(r)	CMOS Output	PROC_DPRSLPVR VID[6] V _{TT_SELECT}
Single Ended	(s)	CMOS Bi-directional	VID[5:3]/CSC[2:0] VID[2:0]/MSID[2:0]
Single Ended	(t)	Analog Input	COMP0, COMP1, COMP2, COMP3, SM_RCOMP[2:0], I _{SENSE}
Single Ended	(ta)	Analog Output	SA_DIMM_VREFDQ ⁵ , SB_DIMM_VREFDQ ⁵
Power/Ground/Other			
	(u)	Power	V _{CC} , V _{TT0} , V _{TT1} , V _{CCPLL} , V _{DDQ} , V _{AXG} , V _{TT0_DDR} ³ , V _{DDQ_CK} ³
	(v)	Ground	V _{SS} , V _{SS_NCTF} , DC_TEST_xx# ³
	(w)	No Connect /Test Point	RSVD, RSVD_TP, RSVD_NCTF
Single Ended	(x)	Asynchronous CMOS Output	PSI#
	(y)	Sense Points	V _{CC_SENSE} , V _{SS_SENSE} , V _{TT_SENSE} , V _{SS_SENSE_VTT} , V _{AXG_SENSE} , V _{SSAXG_SENSE}
	(z)	Other	SKTOCC#, DBR#, PROC_DETECT ³ , VCAP0 ³ , VCAP ³ , VCAP2 ³

Table 42.Signal Groups1 (Sheet 2 of 3)

Signal Group	Alpha Group	Туре	Signals
Integrated Graphics	ł		
Single Ended	(aa)	Analog Input	GFX_IMON
Single Ended	(ab)	CMOS Output	GFX_VID[6:0], GFX_VR_EN, GFX_DPRSLPVR
PCI Express* Graphics	•		•
Differential	(ac)	PCI Express Input	PEG_RX[15:0], PEG_RX#[15:0]
Differential	(ad)	PCI Express Output	PEG_TX[15:0], PEG_TX#[15:0]
Single Ended	(ae)	Analog Input	PEG_ICOMP0, PEG_ICOMPI, PEG_RCOMP0, PEG_RBIAS
DMI			
Differential	(af)	DMI Input	DMI_RX[3:0], DMI_RX#[3:0]
Differential	(ag)	DMI Output	DMI_TX[3:0], DMI_TX#[3:0]
Intel® FDI	1		•
Single Ended	(ah)	CMOS Input	FDI_FSYNC[1:0], FDI_LSYNC[1:0], FDI_INT
Differential	(ai)	Analog Output	FDI_TX[7:0], FDI_TX#[7:0]

Table 42.Signal Groups1 (Sheet 3 of 3)

NOTES:

1. Refer to Chapter 6 for signal description details.

- 2. SA and SB refer to DDR3 Channel A and DDR3 Channel B.
- 3. These signals are only applicable for the ARD BGA package
- 4. These signals are only applicable for the rPGA988A package.
- 5. These signals are not applicable for Arrandale processors and should be left as no connects on platforms using only Arrandale processors.

All Control Sideband Asynchronous signals are required to be asserted/deasserted for at least eight BCLKs in order for the processor to recognize the proper signal state. See Section 7.10 and Section 7.12 for the DC and AC specifications.

7.7 Test Access Port (TAP) Connection

Due to the voltage levels supported by other components in the Test Access Port (TAP) logic, Intel recommends the processor be first in the TAP chain, followed by any other components within the system. Please refer to the *Arrandale and Clarksfield Processor Testability Information – Boundary Scan Description Language (BSDL) File* for more details. A translation buffer should be used to connect to the rest of the chain unless one of the other components is capable of accepting an input of the appropriate voltage. Two copies of each signal may be required with each driving a different voltage level.

7.8 Absolute Maximum and Minimum Ratings

Table 43 specifies absolute maximum and minimum ratings. At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits (but within the absolute maximum and minimum ratings) the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time it will either not function or its reliability will be severely degraded when returned to conditions within the functional operating condition limits.

Although the processor contains protective circuitry to resist damage from Electro-Static Discharge (ESD), precautions should always be taken to avoid high static voltages or electric fields.

Symbol	Parameter	Min	Max	Unit	Notes
V _{CC}	Processor Core voltage with respect to V_{SS}	-0.3	1.40	V	1, 2, 3
V _{TT}	Voltage for the memory controller and Shared Cache with respect to V_{SS}	-0.3	1.40	V	1, 2
V _{DDQ}	Processor I/O supply voltage for DDR3 with respect to $V_{\rm SS}$	-0.3	1.80	V	1, 2
V _{CCPLL}	Processor PLL voltage with respect to V _{SS}	-0.3	1.98	V	1, 2
V _{AXG}	Graphics voltage with respect to V _{SS} SV LV ULV	-0.3 -0.3 -0.3	1.55 1.55 1.55	V V V	1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4

Table 43. Processor Absolute Minimum and Maximum Ratings

NOTES:

- 1. For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied.
- 2. Overshoot and undershoot voltage guidelines for input, output, and I/O signals are outlined in Section .
- Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor. 3. V_{CC} and V_{AXG} are VID based rails.

7.9 Storage Conditions Specifications

Environmental storage condition limits define the temperature and relative humidity to which the device is exposed to while being stored in a moisture barrier bag. The specified storage conditions are for component level prior to board attach.

Table 44 specifies absolute maximum and minimum storage temperature limits which represent the maximum or minimum device condition beyond which damage, latent or otherwise, may occur. The table also specifies sustained storage temperature, relative humidity, and time-duration limits. these limits specify the maximum or minimum device storage conditions for a sustained period of time. At conditions outside sustained limits, but within absolute maximum and minimum ratings, quality and reliability may be affected.

Table 44. Storage Condition Ratings

Symbol	Parameter	Min	Мах	Notes
T _{absolute} storage	The non-operating device storage temperature. Damage (latent or otherwise) may occur when exceeded for any length of time.	-25°C	125°C	1, 2, 3, 4
T _{sustained} storage	The ambient storage temperature (in shipping media) for a sustained period of time)	-5°C	40°C	5,6
RH _{sustained} storage	The maximum device storage relative humidity for a sustained period of time.	60% @ 24°C		6, 7
Time _{sustained} storage	A prolonged or extended period of time; typically associated with customer shelf life.	0 Months	6 Months	7

NOTES:

- 1. Refers to a component device that is not assembled in a board or socket and is not electrically connected to a voltage reference or I/O signal.
- 2. Specified temperatures are not to exceed values based on data collected. Exceptions for surface mount reflow are specified by the applicable JEDEC standard. Non-adherence may affect processor reliability.
- 3. T_{absolute storage} applies to the unassembled component only and does not apply to the shipping media, moisture barrier bags, or desiccant.
- 4. Component product device storage temperature qualification methods may follow JESD22-A119 (low temp) and JESD22-A103 (high temp) standards when applicable for volatile memory.
- 5. Intel® branded products are specified and certified to meet the following temperature and humidity limits that are given as an example only (Non-Operating Temperature Limit: -40°C to 70°C and Humidity: 50% to 90%, non-condensing with a maximum wet bulb of 28°C.) Post board attach storage temperature limits are not specified for non-Intel branded boards.
- 6. The JEDEC J-JSTD-020 moisture level rating and associated handling practices apply to all moisture sensitive devices removed from the moisture barrier bag.
- Nominal temperature and humidity conditions and durations are given and tested within the constraints imposed by T_{sustained storage} and customer shelf life in applicable Intel boxes and bags.

7.10 DC Specifications

The processor DC specifications in this section are defined at the processor pins, unless noted otherwise. See Chapter 8 for the processor pin listings and Chapter 6 for signal definitions.

The DC specifications for the DDR3 signals are listed in Table 48 Control Sideband and Test Access Port (TAP) are listed in Table 49.

Table 55 lists the DC specifications for the processor and are valid only while meeting specifications for junction temperature, clock frequency, and input voltages. Care should be taken to read all notes associated with each parameter.

7.10.1 Voltage and Current Specifications

Table 45. Arrandale Processor Core (VCC) Active and Idle Mode DC Voltage and Current Specifications

Symbol	Parameter	Segment	Min	Тур	Мах	Unit	Note
HFM_VID	VID Range for Highest Frequency Mode	SV ULV	0.800 0.750		1.4 1.4	V	1,2,7
LFM_VID	VID Range for Lowest Frequency Mode	SV ULV	0.775 0.725		1.0 1.0	V	1,2
V _{CC}	V _{CC} for processor core		See Fig	ure 13 and F	igure 14	V	2, 3, 4
I _{CCMAX}	Maximum Processor Core I _{CC}	SV ULV			48 27	A	5,7
I _{CC_TDC}	Thermal Design I_{CC}	SV ULV			32 16	A	6,7
I _{CC_LFM}	I _{CC} at LFM	SV ULV			18 8	A	6
I _{C6}	I _{CC} at C6 Idle-state	SV ULV			0.3 0.3	A	
TOL _{VID}	VID Tolerance		See Fig	ure 13 and F	igure 14		
VR Step	VID resolution			12.5		mV	
SLOPELL	Processor Loadline	SV ULV		-1.9 -3.0		mΩ	
Non-VR LL contribution	Non-VR Loadline Contribution for V _{CC}			-0.9		mΩ	

- 1. Unless otherwise noted, all specifications in this table are based on pre-silicon estimates and simulations or empirical data. These specifications will be updated with characterized data from silicon measurements at a later date.
- 2. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range. Please note this differs from the VID employed by the processor during a power or thermal management event (Intel Adaptive Thermal Monitor, Enhanced Intel SpeedStep Technology, or Low Power States).
- 3. The voltage specification requirements are defined across VCC_SENSE and VSS_SENSE pins on the bottom side of the baseboard. Please refer to 7.10.2 for core voltage validation.
- 4. Refer to Figure 13 and Figure 14 for the minimum, typical, and maximum V_{CC} allowed for a given current. The processor should not be subjected to any V_{CC} and I_{CC} combination wherein V_{CC} exceeds V_{CC_MAX} for a given current.
- 5. Processor core VR to be designed to electrically support this current
- 6. Processor core VR to be designed to thermally support this current indefinitely.
- 7. This specification assumes that Intel Turbo Boost Technology with Intelligent Power Sharing is enabled.

Figure 13. Active V_{CC} and I_{CC} Loadline (PSI# Asserted)

Figure 14. Active V_{CC} and I_{CC} Loadline (PSI# Not Asserted)

Symbol	Parameter	Min	Тур	Мах	Unit	Note
ν _π	Voltage for the memory controller and shared cache defined at the motherboard Vtt pinfield via	0.9975	1.05	1.1025	V	1
	Voltage for the memory controller and shared cache defined across VTT_SENSE and VSS_SENSE_VTT	0.9765	1.05	1.1235	V	2
V _{DDQ} (DC+AC)	Processor I/O supply voltage for DDR3 (DC + AC specification)	1.425	1.5	1.575	V	
V _{CCPLL}	PLL supply voltage (DC + AC specification)	1.710	1.8	1.890	V	
TOL _{TT}	$V_{\mbox{\scriptsize TT}}$ Tolerance defined at the socket motherboard VTT pinfield via	DC: ±2% AC: ±3% i	ncluding ri	ople	%	1
	V _{TT} Tolerance defined across VTT_SENSE and VSS_SENSE_VTT	DC: ±2% AC: ±5% including ripple				2
TOL _{DDQ}	VDDQ Tolerance	DC= ±3% AC= ±2% AC+DC= ±5%			%	
TOL _{CCPLL}	VCCPLL Tolerance	AC+DC= ±	=5%		%	
I _{CCMAX_VTT}	Max Current for V _{TT} Rail SV ULV		-	18 16	A	3
I _{CCMAX_VDDQ}	Max Current for V _{DDQ} Rail		-	3	А	
I _{CCMAX_VDDQ_CK}	BGA Only.			0.2	А	4
I _{CCMAX_VTT0_DDR}	BGA Only	1		2.6	А	4
I _{CCMAX_VCCPLL}	Max Current for V _{CCPLL} Rail	1	-	1.35	А	1
I _{CCTDC_VTT}	Thermal Design Current (TDC) for V _{TT} Rail SV ULV		-	18 16	A	3
I _{CCAVG_VDDQ} (Standby)	Average Current for V_{DDQ} Rail during Standby		-	0.33	А	5

Table 46. Processor Uncore I/O Buffer Supply DC Voltage and Current Specifications

NOTES:

1. The voltage specification requirements are defined across at the socket motherboard pinfield vias on the bottom side of the baseboard. Please refer to 7.10.3 for uncore voltage validation.

2. The voltage specification requirements are defined across VTT_SENSE and VSS_SENSE_VTT pins on the bottom side of the baseboard. Please refer to 7.10.3 for uncore voltage validation.

3. Defined at nominal VTT voltage

4. These are pre-silicon estimates and are subject to change.

5. Based on junction temperature of 50°C.

Symbol	Parameter	Min	Тур	Max	Unit	Note ¹
GFX_VID	VID Range for V _{AXG} SV ULV	0 0		1.4 1.35	V V	2,3,4
V _{AXG}	Graphics core voltage	9	See Figure 15			
TOL _{AXG}	V _{AXG} Tolerance	9	See Figure 15			
Non-VR LL contribution	Non-VR Load Line Contribution for V _{AXG} rPGA BGA		4 4.25		mΩ mΩ	
LL _{AXG}	V _{AXG} Loadline		-7		mΩ	
I _{CCMAX_VAXG}	Max Current for Integrated Graphics Rail SV ULV		-	22 12	A	4
I _{CCTDC_VAXG}	Thermal Design Current (TDC) for Integrated Graphics Rail SV ULV		-	12 6	A	4

Processor Graphics VID based ($V_{\mbox{AXG}}$) Supply DC Voltage and Current Specifications Table 47.

- These are pre-silicon estimates and are subject to change. 1.
- 2.
- 3.
- Minimum values assume Graphics Render C-state (RC6) is enabled. V_{AXG} is a VID-Based rail driven by an Intel MVP6.5 compliant voltage regulator. This specification assumes Intel Turbo Boost Technology with Intelligent Power Sharing is enabled. Please refer to Section 7.10.2 for V_{AXG} Validation. 4.
- 5.

Figure 15. V_{AXG}/I_{AXG} Static and Ripple Voltage Regulation

Symbol	Parameter	Alpha Group	Min	Тур	Мах	Units	Notes ¹
V _{IL}	Input Low Voltage	(e,f)			0.43*V _{DDQ}	V	2,4
$V_{\rm IH}$	Input High Voltage	(e,f)	0.57*V _{DDQ}			V	3
V _{OL}	Output Low Voltage	(c,d,e,f)		(V _{DDQ} / 2)* (R _{ON} / (R _{ON} +R _{VTT_TERM}))			6
V _{OH}	Output High Voltage	(c,d,e,f)		V _{DDQ} - ((V _{DDQ} / 2)* (R _{ON} / (R _{ON} +R _{VTT_TERM}))		V	4,6
R _{ON}	DDR3 Clock Buffer On Resistance		21		31	Ω	5
R _{ON}	DDR3 Clock Buffer On Resistance		21		36	Ω	5
R _{ON}	DDR3 Command Buffer On Resistance		16		24	Ω	5
R _{ON}	DDR3 Command Buffer On Resistance		20		31	Ω	5
R _{ON}	DDR3 Control Buffer On Resistance		21		31	Ω	5
R _{ON}	DDR3 Control Buffer On Resistance		20		31	Ω	5
R _{ON}	DDR3 Data Buffer On Resistance		21		31	Ω	5
R _{ON}	DDR3 Data Buffer On Resistance		21		36	Ω	5
Data ODT	On-Die Termination for Data Signals	(d)	102 51		138 69	Ω	7
ILI	Input Leakage Current				±500	μA	
SM_RCOMP0	COMP Resistance	(t)	99	100	101	Ω	8
SM_RCOMP1	COMP Resistance	(t)	24.7	24.9	25.1	Ω	8
SM_RCOMP2	COMP Resistance	(t)	128.7	130	131.3	Ω	8

Table 48. DDR3 Signal Group DC Specifications

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. V_{IL} is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.
- 3. V_{IH} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value.
- 4. V_{IH} and V_{OH} may experience excursions above V_{DDQ}. However, input signal drivers must comply with the signal quality specifications.
- 5. This is the pull down driver resistance. Refer to processor *I/O Buffer Models* for I/V characteristics.
- 6. R_{VTT_TERM} is the termination on the DIMM and in not controlled by the Processor.
- 7. The minimum and maximum values for these signals are programmable by BIOS to one of the two sets.
- 8. COMP resistance must be provided on the system board with 1% resistors. COMP resistors are to V_{SS}.

Symbol	Alpha Group	Parameter	Min	Тур	Max	Units	Notes ^{1,8}
V_{IL}	(m),(n),(p),(s)	Input Low Voltage			0.64 * V _{TT}	V	2,3
V_{IH}	(m),(n),(p),(s)	Input High Voltage	0.76 _* V _{TT}			V	2,3,5
V_{IL}	(g)	Input Low Voltage			0.25 _* V _{TT}	V	2,3
V_{IH}	(g)	Input High Voltage	0.80 * V _{TT}			V	2,3,5
V_{IL}	(ga)	Input Low Voltage			0.4 * V _{TT}	V	2,3
V_{IH}	(ga)	Input High Voltage	0.75 _* V _{TT}			V	2,3,5
V_{IL}	(qa)	Input Low Voltage			0.38 _* V _{TT}	V	2,3
V_{IH}	(qa)	Input High Voltage	0.70 _* V _{TT}			V	2,3,5
V_{IL}	(ja),(qb)	Input Low Voltage			0.25 _* V _{TT}	V	2,3
V_{IH}	(ja),(qb)	Input High Voltage	0.75 _* V _{TT}			V	2,3,5
V_{IL}	(jb)	Input Low Voltage			0.29		2,3
V_{IH}	(jb)	Input High Voltage	0.87			V	2,3,5
V _{OL}	(k),(l),(n),(p), (r),(s),(ab),(h),(i)	Output Low Voltage			V _{TT} * R _{ON} / (R _{ON} + R _{SYS_TERM})	V	2,7
V _{OH}	(k),(l),(n),(p),(r),(s),(ab),(i)	Output High Voltage	V _{TT}			V	2,5
R _{ON}	(k),(l),(n),(p),(r),(s),(i)	Buffer on Resistance	10		18	Ω	
R _{ON}	(ab)	Buffer on Resistance	20-30		27-45	Ω	
I_{LI}	(ja),(jb),(m),(n),(p),(qa),(s),(t),(aa),(g)	Input Leakage Current			±200	μA	4
I_{LI}	(qb)	Input Leakage Current			±150	μA	4
COMP0	(t)	COMP Resistance	49.4	49.9	50.4	Ω	6
COMP1	(t)	COMP Resistance	49.4	49.9	50.4	Ω	6
COMP2	(t)	COMP Resistance	19.8	20	20.2	Ω	6
COMP3	(t)	COMP Resistance	19.8	20	20.2	Ω	6

Table 49. Control Sideband and TAP Signal Group DC Specifications

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. The V_{TT} referred to in these specifications refers to instantaneous V_{TT} .
- 3. Refer to the processor *I/O Buffer Models* for I/V characteristics.
- 4. For $V_{\rm IN}$ between "0" V and V_{TT} . Measured when the driver is tristated.
- 5. V_{IH} and V_{OH} may experience excursions above V_{TT} . However, input signal drivers must comply with the signal quality specifications.
- 6. COMP resistance must be provided on the system board with 1% resistors. COMP resistors are to V_{SS}.
- 7. $R_{SYS TERM}$ is the system termination on the signal.

Symbol	Alpha Group	Parameter	Min	Тур	Max	Units	Notes ¹
V _{TX-DIFF-p-p}	(ad)	Differential Peak-to-Peak Tx Voltage Swing	0.8		1.2	V	4
V _{TX_CM-AC-p}	(ad)	Tx AC Peak Common Mode Output Voltage (Gen 1 Only)			20	mV	1,2,7
Z _{TX-DIFF-DC}	(ad)	DC Differential Tx Impedance (Gen 1 Only)	80		120	Ω	1,11
Z _{RX-DC}	(ac)	DC Common Mode Rx Impedance	40		60	Ω	1,9,10
Z _{RX-DIFF-DC}	(ac)	DC Differential Rx Impedance (Gen1 Only)	80		120	Ω	1
V _{RX-DIFFp-p}	(ac)	Differential Rx Input Peak-to-Peak Voltage (Gen 1 only)	0.175		1.2	V	1,3,12
V _{RX_CM-AC-p}	(ac)	Rx AC Peak Common Mode Input Voltage			150	mV	1,8
PEG_ICOMPO	(ae)	Comp Resistance	49.5	50	50.5	Ω	5,6
PEG_ICOMPI	(ae)	Comp Resistance	49.5	50	50.5	Ω	5,6
PEG_RCOMPO	(ae)	Comp Resistance	49.5	50	50.5	Ω	5,6
PEG_RBIAS	(ae)	Comp Resistance	742.5	750	757.5	Ω	5,6

Table 50. **PCI Express DC Specifications**

- Refer to the PCI Express Base Specification for more details. 1.
- $V_{TX-AC-CM-PP}$ and $V_{TX-AC-CM-P}$ are defined in the *PCI Express Base Specification*. Measurement is made over at least 10^{-6} UI. 2.
- 3. Refer to Figure 22, "PCI Express Receiver Eye Margins" on page 119.
- As measured with compliance test load. Defined as $2*|V_{TXD+} V_{TXD-}|$. 4.
- COMP resistance must be provided on the system board with 1% resistors. COMP resistors are to V_{SS} . 5.
- 6. PEG ICOMPO, PEG ICOMPI, PEG RCOMPO are the same resistor
- 7. RMS value.
- 8. Measured at Rx pins into a pair of $50-\Omega$ terminations into ground. Common mode peak voltage is defined by the expression: max{|(Vd+ - Vd-) - V-CMDC|}.
- 9. DC impedance limits are needed to guarantee Receiver detect.
- The Rx DC Common Mode Impedance must be present when the Receiver terminations are first enabled to 10. ensure that the Receiver Detect occurs properly. Compensation of this impedance can start immediately and the 15 Rx Common Mode Impedance (constrained by RLRX-CM to 50 Ω ±20%) must be within the specified range by the time Detect is entered.
- 11. Low impedance defined during signaling. Parameter is captured for 5.0 GHz by RLTX-DIFF.

Table 51.	eDP DC Specifications
-----------	-----------------------

Symbol	Parameter	Min	Тур	Мах	Units	Notes ⁴			
eDP_HPD#	eDP_HPD#								
V _{IL}	Input Low Voltage	-0.3		0.3	V				
V _{IH}	Input High Voltage	0.6		1.155	V				
eDP_AUX, eDP_AUX	(#								
V _{AUX-DIFFp-p} (Tx)	AUX Peak-to-Peak Voltage at the transmitting device	0.39		1.38		1			
V _{AUX-DIFFp-p} (Rx)	AUX Peak-to-Peak Voltage at the receiving device	0.32		1.36	V	1			
eDP COMPs	· ·								
eDP_ICOMPO	Comp Resistance	49.5	50	50.5	Ω	2,3			
eDP_ICOMPI	Comp Resistance	49.5	50	50.5	Ω	2,3			
eDP_RCOMPO	Comp Resistance	49.5	50	50.5	Ω	2,3			
eDP_RBIAS	Comp Resistance	742.5	750	757.5	Ω	2,3			

NOTES:

1. $V_{AUX-DIFFp-p} = 2*|V_{AUXP} - V_{AUXM}|$. Please refer to the VESA DisplayPort Standard specification for more details.

2. COMP resistance must be provided on the system board with 1% resistors. See the applicable platform design guide for implementation details. COMP resistors are to V_{SS} .

3. eDP_ICOMPO, eDP_ICOMPI, eDP_RCOMPO are the same resistor.

4. These are pre-silicon estimates and are subject to change.

7.10.2 V_{CC} and V_{AXG} Validation

The following calculation for spec minimum V_{CC} voltage is applicable to both Arrandale rPGA and BGA platforms at V_{CC_SENSE}/V_{SS_SENSE} with 20-MHz bandwidth limiting.

$$V \min = VID - I_{CCMAX} * Slope_{LL} - x\% * VID - ripple$$

VID under maximum load, x% set-point tolerance, and ripple have to be measured on the system under test. Use the spec loadline slope and $I_{\rm CCMAX}$ for the spec minimum voltage Vmin calculation. It might be difficult to reach spec max current in lab environment and please try different stresses on Vcc core rail. Then, compare the measured Vmin to the calculated spec Vmin to determine if system passes or fails.

The following calculation for spec minimum V_{AXG} voltage is applicable to both Calpella rPGA and BGA platforms at V_{AXG} SENSE/V_{SSAXG} SENSE with 20-MHz bandwidth limiting.

$$V \min = VID - I_{CCMAX, AXG} * Slope_{ILAXG} - x\% * VID$$

VID under maximum load, x% total tolerance, and ripple have to be measured on the system under test. Notice the tolerance on AXG rail combined set-point tolerance and ripple. Use the spec AXG loadline slope and I_{CCMAX_AXG} for the spec minimum voltage Vmin calculation. It might be difficult to reach spec max current in lab environment and please try different stresses on Vcc core rail. Then, compare the measured Vmin to the calculated spec Vmin to determine if system passes or fails.

The following step-by-step procedure is recommended for minimum V_{CC} and V_{AXG} validation. Step 1 to 5 is for the calculation of spec minimum voltage and step 6 is to collect actual minimum voltage on the system under test.

- 1. Measure the DC voltage at test points with $\rm V_{\rm RTT}$ or Chroma load. Calculate set-point tolerance.
- 2. Land differential probes at the designated test points under CPU on the secondary layer.
- 3. Operating the CPU with maximum load on all threads. For example, try Prime95*, CPU2000*, 3D games, etc., on CPU $V_{\rm CC_CORE}$ rail. For $V_{\rm AXG}$, try various 3D games and benchmarks.
- 4. Measure VID signals and find the corresponding voltage in EDS. The VID signals should be very stable with max load.

Measure ripple. 20-MHz bandwidth limiting or Low-pass filter function can be applied.Set manual trigger on the voltage waveform. Lower the trigger level slowly to capture the worst case Vmin with 20-MHz bandwidth limiting. Low-pass filtering function with 20-MHz cut-off frequency can be used for bandwidth limiting.

Symbol	Parameter	Min	Тур	Мах	Units	Notes ⁴			
eDP_HPD#	eDP_HPD#								
V _{IL}	Input Low Voltage	-0.3		0.3	V				
V _{IH}	Input High Voltage	0.6		1.155	V				
eDP_AUX, eDP_AUX	#								
V _{AUX-DIFFp-p} (Tx)	AUX Peak-to-Peak Voltage at the transmitting device	0.39		1.38		1			
V _{AUX-DIFFp-p} (Rx)	AUX Peak-to-Peak Voltage at the receiving device	0.32		1.36	V	1			
eDP COMPs									
eDP_ICOMPO	Comp Resistance	49.5	50	50.5	Ω	2,3			
eDP_ICOMPI	Comp Resistance	49.5	50	50.5	Ω	2,3			
eDP_RCOMPO	Comp Resistance	49.5	50	50.5	Ω	2,3			
eDP_RBIAS	Comp Resistance	742.5	750	757.5	Ω	2,3			

Table 52. eDP DC Specifications

NOTES:

1. $V_{AUX-DIFFp-p} = 2*|V_{AUXP} - V_{AUXM}|$. Please refer to the VESA DisplayPort Standard specification for more details.

2. COMP resistance must be provided on the system board with 1% resistors. See the applicable platform design guide for implementation details. COMP resistors are to V_{SS}.

3. eDP_ICOMPO, eDP_ICOMPI, eDP_RCOMPO are the same resistor.

4. These are pre-silicon estimates and are subject to change.

7.10.3 Uncore Voltage Validation

AC tolerance is defined at power/ground pins where the voltage transient has to be within spec with 20-MHz bandwidth limiting. DC tolerance is defined at power/ground pins where the DC voltage error has to be within spec. The new tolerance spec for V_{TT} rail defined at V_{TT_SENSE}/V_{SS_SENSE_VTT} pins with 20-MHz bandwidth limiting has to be met along with the tolerance spec defined at power/ground pins.

The following procedure is recommended for DC tolerance validation.

- 1. Connect Chroma load
- 2. Start at 0 A
- 3. Measure DC voltage at test points with multimeter.
- 4. Increase load current by small step and re-measure DC voltage again till reach spec maximum current. Check if all voltage points are within DC tolerance spec.

The following procedure is recommended for AC tolerance validation.

- 1. Land differential probes at test points under CPU on the secondary layer.
- 2. Operate the CPU with maximum load on all threads. For example, try Prime95, CPU2000, 3D games, etc. For V_{DDO} , try Mem stress and other DDR stresses
- 3. Measure the average voltage on scope with at least 2 μ s/div
- 4. Set manual trigger on the voltage waveform.
- Lower the trigger level slowly to capture the worst case $V_{\rm MIN}$ with 20-MHz bandwidth limiting.
 - Check V_{MIN} against min voltage spec
 - Droop (undershoot) = V_{AVG} - V_{MIN} has to be within AC tolerance spec
- Raise the trigger level slowly to capture the worst case V_{MAX} with 20-MHz bandwidth limiting.
 - Check V_{MAX} against max voltage spec
 - Overshoot = V_{MAX} - V_{AVG} has to be within AC tolerance spec

7.11 Platform Environmental Control Interface (PECI) DC Specifications

PECI is an Intel proprietary interface that provides a communication channel between Intel processors and chipset components to external Adaptive Thermal Monitor devices. The processor contains a Digital Thermal Sensor (DTS) that reports a relative die temperature as an offset from Thermal Control Circuit (TCC) activation temperature. Temperature sensors located throughout the die are implemented as analog-to-digital converters calibrated at the factory. PECI provides an interface for external devices to read the DTS temperature for thermal management and fan speed control. More detailed information may be found in the *Platform Environment Control Interface (PECI) Specification*.

7.11.1 DC Characteristics

The PECI interface operates at a nominal voltage set by V_{TT}. The set of DC electrical specifications shown in Table 53 is used with devices normally operating from a V_{TT} interface supply. V_{TT} nominal levels will vary between processor families. All PECI devices will operate at the V_{TT} level determined by the processor installed in the system. For specific nominal V_{TT} levels, refer to Table 48.

Symbol	Definition and Conditions	Min	Мах	Units	Notes ¹
V _{in}	Input Voltage Range	-0.150	V _{TT}	V	
V _{hysteresis}	Hysteresis	0.1 * V _{TT}	N/A	V	
V _n	Negative-edge Threshold Voltage	0.275 * V _{TT}	0.500 * V _{TT}	V	
Vp	Positive-edge Threshold Voltage	0.550 * V _{TT}	0.725 * V _{TT}	V	
I _{source}	High-Level Output Source ($V_{OH} = 0.75 * V_{TT}$)	-6.0	N/A	mA	
I _{sink}	Low-Level Output Sink ($V_{OL} = 0.25 * V_{TT}$)	0.5	1.0	mA	
I _{leak+}	High-Impedance State Leakage to V_{TT} ($V_{leak} = V_{OL}$)	N/A	100	μA	2
I _{leak-}	High-Impedance Leakage to GND $(V_{leak} = V_{OH})$	N/A	100	μA	2
C _{bus}	Bus Capacitance Per Node	N/A	10	pF	
V _{noise}	Signal Noise Immunity above 300 MHz	0.1 * V _{TT}	N/A	V _{p-p}	

Table 53. PECI DC Electrical Limits

NOTES:

1. V_{TT} supplies the PECI interface. PECI behavior does not affect V_{TT} min/max specifications.

2. The leakage specification applies to powered devices on the PECI bus.

7.11.2 Input Device Hysteresis

The input buffers in both client and host models must use a Schmitt-triggered input design for improved noise immunity. Use Figure 16 as a guide for input buffer design.

Figure 16. Input Device Hysteresis

7.12 AC Specifications

The processor timings specified in this section are defined at the processor pads. Therefore, proper simulation of the signals is the only means to verify proper timing and signal quality.

See Chapter 8 for the pin listing and Chapter 6 for signal definitions. Table 63 through Table 65 list the AC specifications associated with the processor.

The timings specified in this section should be used in conjunction with the processor signal integrity models provided by Intel.

Note: Care should be taken to read all notes associated with a particular timing parameter.

SSC ON	1CLK	1 μ s	0.1 s		0.1 s	1 μ s	1CLK	
Signal Name	-Jitter c-c Abs PerMin	-SSC Short AvgMin	-ppm Long AvgMin	Ideal DC Target	+ppm Long AvgMax	+SSC Short AvgMax	+Jitter c-c Abs PerMax	Units
BCLK	7.349297	7.499297	7.518043	7.518797	7.519551	7.538399	7.688399	ns
PEG_CLK	9.849063	9.999063	10.02406	10.02506	10.02607	10.05120	10.20120	ns
DPLL_REF_ SSCLK	7.982552	8.332552	8.353381	8.354219	8.355056	8.375999	8.725999	ns

Table 54. Differential Clocks (SSC on)

NOTES:

1. Ideal DC Target: This serves only as an ideal reference target (0 ppm) to use for calculating the rest of the period measurement values

- 0.1-second Measurement Window (frequency counter): Valuable measurement done using a frequency counter to determine near DC average frequency (filtering out all jitter including SSC and cycle to cycle). This is used to determine if the system has a frequency static offset caused usually by incorrect crystal, crystal loading or incorrect clock configuration.
- 1.0-μs Measurement Window (scope): This measurement is only used in conjunction with clock post processing software (Jit3 Advanced for example) with "filters = LPF 3RD order 1-MHz pole" to filter out high frequency jitter (FM) and show the underlying SSC profile. The numbers here bound the SSC min/ max excursions (SSC magnitude).
- 4. 1CLK No Filter: Any 1 Period measured with a scope. Measured on a real time Oscilloscope using no filters, a simple period measurement (or a Jit3 period measurement more accurate), provides absolute Min/Max timing information.
| SSC OFF | 1CLK | 0.1s | | 0.1s | 1CLK | |
|----------------|--------------------------|--------------------|---------------------|--------------------|--------------------------|-------|
| Signal Name | -Jitter c-c
AbsPerMin | -ppm
LongAvgMin | I deal DC
target | +ppm
LongAvgMax | +Jitter c-c
AbsPerMax | Units |
| BCLK | 7.34925 | 7.499250 | 7.500000 | 7.50075 | 7.650750 | ns |
| PEG_CLK | 9.849000 | 9.999000 | 10.00000 | 10.00100 | 10.15100 | ns |
| DPLL_REF_SSCLK | 7.98250 | 8.322500 | 8.333333 | 8.33417 | 8.684167 | ns |

Table 55. Differential Clocks (SSC off)

NOTES:

- 1. Ideal DC Target: This serves only as an ideal reference target (0ppm) to use for calculating the rest of the period measurement values
- 0.1-second Measurement Window (frequency counter): Valuable measurement done using a frequency counter to determine near DC average frequency (filtering out all jitter including SSC and cycle to cycle). This is used to determine if the system has a frequency static offset caused usually by incorrect crystal, crystal loading or incorrect clock configuration.
- 3. 1CLK No Filter: Any 1 Period measured with a scope. Measured on a real time Oscilloscope using no filters, a simple period measurement (or a Jit3 period measurement more accurate), provides absolute Min / Max timing information.

Table 56. Processor Clock Jitter Specifications (cycle-cycle)

Symbol	Frequency (MHz)	Туре	Source (ps)	Destination	Notes
BCLK _{JIT_CC}	133	Input Diff	150	processor/memory/graphics	1
PEG_CLK _{JIT_CC}	100	Input Diff	150	PCI Express*/DMI/Intel® FDI	1
DPLL_REF_SSCLK _{JIT_CC}	120	Input Diff	350	eDP	1

NOTES:

1. On all jitter measurements care should be taken to set the zero crossing voltage (for rising edge) of the clock to be the point where the edge rate is the fastest. Using a Math function = Average(Derivative(Ch1)) and set the averages to 64, place the cursors where the slope is the highest on the rising edge - usually the lower half of the rising edge. This is defined because Flip Chip components prevent probing at the end of the transmission line. This will result in a reflection induced ledge in the middle of the rising edge and will significantly increase measured jitter.

Symbol	Frequency (MHz)	Туре	Source (ps)	Destination	Notes
BCLK _{JIT_CC}	133	Input Diff	150	processor/memory/graphics	1,2
PEG_CLK _{JIT_CC}	100	Input Diff	150	PCI Express*/DMI/Intel® FDI	1,2
DPLL_REF_SSCLK _{JIT_CC}	120	Input Diff	350	eDP	1,2

Table 57. Intel 5 Series Chipset Clock Jitter Specifications (cycle-cycle)

NOTES:

- 1. On all jitter measurements care should be taken to set the zero crossing voltage (for rising edge) of the clock to be the point where the edge rate is the fastest. Using a Math function = Average (Derivative(Ch1)) and set the averages to 64, place the cursors where the slope is the highest on the rising edge usually the lower half of the rising edge. This is defined because Flip Chip components prevent probing at the end of the transmission line. This will result in a reflection induced ledge in the middle of the rising edge and will significantly increase measured jitter.
- 2. The values in these table are sourced from the CK505 Platform clock synthesizer; they have been derrated slightly to account for in system noise etc. (duty cycle and cycle-cycle jitter). See the CK505 clock specification for additional information on these specific clocks.

Symbol	Parameter	Signal	Min	Max	Unit	Meas	Figure	Notes
Slew_rise	Rising Slew Rate	Diff	1.5	4.0	V/ns	Avg	Figure 17	2,3
Slew_fall	Falling Slew Rate	Diff	1.5	4.0	V/ns	Avg	Figure 17	2,3
Slew_var	Slew Rate Matching	Single Ended		20	%	Avg	Figure 18	1,9
V _{SWING}	Differential Output Swing	Diff	300		mV	RT	Figure 17	2
V _{CROSS}	Crossing Point Voltage	Single Ended	300	550	mV	RT	Figure 18	1,4,5
V _{CROSS_DELTA}	Variation of V _{CROSS}	Single Ended		140	mV	RT	Figure 18	1,4,8
V _{MAX}	Max Output Voltage	Single Ended		1.15	V	RT	Figure 18	1,6
V _{MIN}	Min Output Voltage	Single Ended	-0.3		V	RT	Figure 18	1,7
DTY_CYC	Duty Cycle	Diff	40	60	%	Avg	Figure 17	2

Table 58. System Reference Clock DC and AC Specifications

NOTES:

- 1. Measurement taken from single-ended waveform on a component test board.
- 2. Measurement taken from differential waveform on a component test board.
- 3. Slew rate measured through V_{SWING} voltage range centered about differential zero.
- 4. V_{CROSS} is defined as the voltage where Clock = Clock#.
- 5. Only applies to the differential rising edge (i.e., Clock rising and Clock# falling).
- 6. The max voltage including overshoot.
- 7. The min voltage including undershoot.
- 8. The total variation of all V_{CROSS} measurements in any particular system. Note that this is a subset of $V_{CROSS_MIN/MAX}$ (V_{CROSS} absolute) allowed. The intent is to limit V_{CROSS} induced modulation by setting V_{CROSS_DELTA} to be smaller than V_{CROSS} absolute.
- 9. Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75 mV window centered on the average cross point where Clock rising meets Clock# falling (See Figure 17, "Differential Clock Differential Measurements" on page 117). The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

7.12.1 DDR3 AC Specifications

The following notes apply to Table 59, Table 60.

Note	Definition
1	Unless otherwise noted, all specifications in this table apply to all processor frequencies. Timing specifications only depend on the operating frequency of the memory channel and not the maximum rated frequency.
2	When the single ended slew rate of the input Data or Strobe signals, within a byte group, are below 1.0 V/ns, the T_{SU} and T_{HD} specifications must be increased by a derrating factor. The input single ended slew rate is measured DC to AC levels; V_{IL_DC} to V_{IH_AC} for rising edges, and V_{IH_DC} to V_{IL_AC} for falling edges. Use the worse case minimum slew rate measured between Data and Strobe, within a byte group, to determine the required derrating value. No derrating is required for single ended slew rates equal to or greater than 1.0 V/ns.
3	Edge Placement Accuracy (EPA): The silicon contains digital logic that automatically adjusts the timing relationship between the DDR reference clocks and DDR signals. The BIOS initiates a training procedure that will place a given signal appropriately within the clock period. The difference in delay between the signal and clock is accurate to within \pm EPA. This EPA includes jitter, skew, within die variation and several other effects.
4	Data to Strobe read setup and Data from Strobe read hold minimum requirements specified at the processor pad are determined with the minimum Read DQS/DQS# delay.
5	C_{WL} (CAS Write Latency) is the delay, in clock cycles, between the rising edge of CK where a write command is referenced and the first rising strobe edge where the first byte of write data is present. The C_{WL} value is determined by the value of the CL (CAS Latency) setting.
6	The system memory clock outputs are differential (CLK and CLK#), the CLK rising edge is referenced at the crossing point where CLK is rising and CLK# is falling.
7	The system memory strobe outputs are differential (DQS and DQS#), the DQS rising edge is referenced at the crossing point where DQS is rising and DQS# is falling, and the DQS falling edge is referenced at the crossing point where DQS is falling and DQS# is rising.
8	This value specifies the parameter after write levelling, representing the residual error in the controller after training, and does not include any effects from the DRAM itself.

Table 59. DDR3 Electrical Characteristics and AC Timings at 800 MT/s, V_{DDQ} = 1.5 V ±0.075 V

Symbol	Parameter	Chanı Chanı		Unit	Figure	Note ^{1,9}	
		Max	Min				
System M	emory Latency Timings					1	
T _{CL} – T _{RCD} – T _{RP}	CAS Latency – RAS to CAS Delay – Pre-charge Command Period	6 - 6	- 6	Т _{СК}			
Electrical	Characteristics				•		
T _{SLR_D}	DQ[63:0], DQS[7:0], DQS#[7:0] Input Slew Rate	4.0	1.0	V/ns		2	
System M	emory Clock Timings						
Т _{СК}	CK Period	2.50		ns			
Т _{СН}	CK High Time		1.17	ns			
T _{CL}	CK Low Time		1.17	ns			
T _{SKEW}	Skew Between Any System Memory Differential Clock Pair (CK/CKB)		+155	ps			
System Me	mory Command Signal Timings						
T _{CMD_CO}	RAS#, CAS#, WE#, MA[14:0], BA[2:0] Edge Placement Accuracy	+375	-375	ps	Figure 19	3,4,6	
System Me	mory Control Signal Timings	<u>.</u>			<u>.</u>	*	
T _{CTRL_CO}	CS#[1:0], CKE[1:0], ODT[1:0] Edge Placement Accuracy	+375	-375	ps	Figure 19	3,6	
System Me	mory Data and Strobe Signal Timings						
T _{DVB} +T _{DV} A	DQ[63:0] Valid before DQS[7:0] Rising or Falling Edge		0.67*UI	UI		7	
T _{Su+HD}	DQ Input Setup plus Hold Time to DQS Rising or Falling Edge		0.25*UI	ns	Figure 20	1,2,7	
T _{DQS_CO}	DQS Edge Placement Accuracy to CK Rising Edge BEFORE write levelling	+375	-375	ns	Figure 21	3,6,7	
T _{DQS_CO}	DQS Edge Placement Accuracy to CK Rising Edge AFTER write levelling	+275	-275	ns	Figure 21	8	
T _{WPRE}	DQS/DQS# Write Preamble Duration		2.750	ns			
T _{WPST}	DQS/DQS# Write Postamble Duration	1.375	1.125	ns			
T _{DQSS}	CK Rising Edge Output Access Time, Where a Write Command Is Referenced, to the First DQS Rising Edge	C _{WL} x (T _{CK} + 4)		ns		5,6	

Table 60. DDR3 Electrical Characteristics and AC Timings at 1066 MT/s, $V_{DDQ} = 1.5 V \pm 0.075 V$

Symbol	Parameter	Chanı Chanı		Unit	Figure	Note ^{1,9}
		Мах	Min			
System Me	emory Latency Timings					
T _{CL} – T _{RCD} – T _{RP}	CAS Latency – RAS to CAS Delay – Pre-charge Command Period	7 - 7 8- 8		Т _{СК}		
Electrica	Characteristics					
T _{SLR_D}	DQ[63:0], DQS[7:0], DQS#[7:0] Input Slew Rate	4.0	1.0	V/ns		2
System Me	emory Clock Timings					
Т _{СК}	CK Period	1.875		ns		
T _{CH}	CK High Time		0.88	ns		
T _{CL}	CK Low Time		0.88	ns		
T _{SKEW}	Skew Between Any System Memory Differential Clock Pair (CK/CKB)		+155	ps		
System Me	emory Command Signal Timings	•	•			1
T _{CMD_CO}	RAS#, CAS#, WE#, MA[14:0], BA[2:0] Edge Placement Accuracy	+300	-300	ps	Figure 19	3,4,6
System Me	emory Control Signal Timings					
T _{CTRL_CO}	CS#[1:0], CKE[1:0], ODT[1:0] Edge Placement Accuracy	+300	-300	ps	Figure 19	3,6
System Me	emory Data and Strobe Signal Timings	•	•			
T _{DVB} +T _D va	DQ[63:0] Valid before DQS[7:0] Rising or Falling Edge		0.67*UI	UI		7
T _{Su+HD}	DQ Input Setup plus Hold Time to DQS Rising or Falling Edge		0.25*UI	ns	Figure 20	1,2,7
T _{DQS_CO}	DQS Edge Placement Accuracy to CK Rising Edge BEFORE write levelling	+300	-300	ns	Figure 21	3,6,7
T _{DQS_CO}	DQS Edge Placement Accuracy to CK Rising Edge AFTER write levelling	+206	-206	ns	Figure 21	8
T _{WPRE}	DQS/DQS# Write Preamble Duration		2.063	ns		
T _{WPST}	DQS/DQS# Write Postamble Duration	1.031	0.844	ns		
T _{DQSS}	CK Rising Edge Output Access Time, Where a Write Command Is Referenced, to the First DQS Rising Edge	C _{WL} x (T _{CK} + 4)		ns		5,6

Symbol	Parameter	Min	Max	Units	Figure	Notes ¹
UI	Unit Interval (Gen 1)	399.88	400.12	ps		3,4 for Tx, 5 for Rx
T _{TX-EYE}	Minimum Transmission Eye Width	0.75		UI		6,7,8,9,10
T _{TX-RISE/FALL}	D+/D- TX Out put Rise/Fall time (Gen 1)	0.125		UI		7,11
T _{RX-EYE}	Minimum Receiver Eye Width (Gen 1)	0.4		UI	Figure 22	12,14

Table 61. PCI Express AC Specification

1. Refer to the *PCI Express Base Specification* for more details.

2. Max Rx inherent total timing error for common Refclk Rx architecture.

 The specified UI is equivalent to a tolerance of ±300 ppm for each Refclk source. Period does not account for SSC induced variations.

- 4. SSC permits a +0, 5000 ppm modulation of the clock frequency at a modulation rate not to exceed 33 kHz.
- 5. UI does not account for SSC caused variations.
- 6. Does not include SSC or Refclk jitter. Includes Rj at 10^{-12}
- 7. Measurements made at 2.5 GT/s require a scope with at least 6.2 GHz bandwidth. 2.5 GT/s may be measured within 200 mils of Tx device's pins, although deconvolution is recommended. For measurement setup details, refer to the *PCI Express Base Specification*. At least 10⁶ UI of data must be acquired.
- 8. Transmitter jitter is measured by driving the Transmitter under test with a low jitter "ideal" clock and connecting the DUT to a reference load.
- 9. Transmitter raw jitter data must be convolved with a filtering function that represents the worst case CDR tracking BW. 2.5 GT/s use different filter functions that are defined in the PCI Express Base Specification. After the convolution process has been applied, the center of the resulting eye must be determined and used as a reference point for obtaining eye voltage and margins.
- 10. For 5.0 GT/s, de-emphasis timing jitter must be removed. An additional HPF function must be applied as shown in the *PCI Express Base Specification*. This parameter is measured by accumulating a record length of 10^6 UI while the DUT outputs a compliance pattern. TMIN-PULSE is defined to be nominally 1 UI wide and is bordered on both sides by pulses of the opposite polarity. Refer to the *PCI Express Base Specification* for more details.
- 11. Measured differentially from 20% to 80% of swing.
- 12. Receiver eye margins are defined into a 2 x 50 Ω reference load. A Receiver is characterized by driving it with a signal whose characteristics are defined by the parameters specified in the *PCI Express Base Specification*.
- 13. The four inherent timing error parameters are defined for the convenience of Rx designers, and they are measured during Receiver tolerancing.
- 14. Minimum eye time at Rx pins to yield a 10^{-12} BER.

Symbol	Parameter	Min	Тур	Max	Unit	Notes ¹
UI _{HR}	Unit Interval for High Bit Rate (2.7 Gbps/ lane)		370		pS	3
UI _{LR}	Unit Interval for Reduced Bit Rate (1.62 Gbps/lane)		617		pS	3
Down_Spread_ Amplitude	Link clock down spreading	0		0.5	%	
Down_Spread_ Frequency	Link clock down-spreading frequency	30		33	kHz	
V _{TX-DIFFp-p-} level1	Differential Peak-to-peak Output Voltage Level 1	0.34	0.40	0.46	V	2
V _{TX-DIFFp-p-} level2	Differential Peak-to-peak Output Voltage Level 2	0.51	0.60	0.68	V	2
Pre-emphasis 0dB	No Pre-emphasis	0	0	0	dB	2
Pre-emphasis 3.5dB	3.5 dB Pre-emphasis Level	2.8	3.5	4.2	dB	2
L _{TX-SKEW-} INTER_PAIR	Lane-to-Lane Output Skew at Tx package pins			2	UI	
TJ _{HBR}	Total Jitter at Tx package pins. High-Bit Rate (2.7 Gbps/lane)			0.294	UI	
TJ _{RBR}	Total Jitter at Tx package pins. Reduced- Bit Rate (1.62 Gbps/lane)			0.180	UI	

eDP AC Specifications Table 62.

NOTES:

All values are measured at the processor package pin level. 1.

2. For embedded connection, support of level 2 pre-emphasis and V_{SWING} is optional.

3. Range is nominal +300 to -5300 ppm.

7.12.2 **Miscellaneous AC Specifications**

Miscellaneous AC Specifications Table 63.

T# Parameter	Min	Мах	Unit	Figure	Notes 1,2,3
T1: Asynchronous GTL input pulse width	8	-	BCLKs	24	
T4: PROCHOT# pulse width	500	-	μS	24	
T5: THERMTRIP# assertion until V _{CC} removed	-	500	ms	25	

NOTES:

Unless otherwise noted, all specifications in this table apply to all processor frequencies. 1.

- All AC timing for the Asynchronous GTL signals are referenced to the BCLK rising edge at Crossing Voltage 2. (V_{CROSS}) . $V_{CCPWRGOOD_0}$, $V_{CCPWRGOOD_1}$, $V_{TTPWRGOOD}$, and SM_DRAMPWROK are referenced to the BCLK rising edge at 0.5 * V_{TT} . These signals may be driven asynchronously.
- 3.

7.12.3 TAP Signal Group AC Specifications

Table 64. TAP Signal Group AC Specifications

T# Parameter	Min	Мах	Unit	Figure	Notes 1, 2,3
T14: TCK Period	31.25		ns		
T15: TDI, TMS Setup Time	8		ns	23	
T16: TDI, TMS Hold Time	5		ns	23	
T17: TDO Clock to Output Delay	0.5	7	ns	23	
T18: TRST# Assert Time	2		Т _{ТСК}	24	

NOTES:

1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.

2. Not 100% tested. Specified by design characterization.

3. It is recommended that TMS be asserted while TRST# is being deasserted.

7.12.4 VID Signal Group AC Specifications

Table 65. VID Signal Group AC Specifications

T # Parameter	Min	Max	Unit	Figure	Notes ^{1, 2}
T19: VID Step Time	2.5	-	μs	27	
T20: VID Down Transition to Valid V _{CC} (min)	-	0	μs	26, 27	
T21: VID Up Transition to Valid V_{CC} (min)	-	15	μs	26, 27	
T22: VID Down Transition to Valid V _{CC} (max)	-	15	μs	26, 27	
T23: VID Up Transition to Valid V_{CC} (max)	-	0	μs	26, 27	

NOTES:

1. See the voltage regulator design guidelines for additional information.

2. Platform support for VID transitions is required for the processor to operate within specifications.

7.13 Processor AC Timing Waveforms

The following figures are used in conjunction with the AC timing tables, Table 63 through Table 65.

Note: For Figure 17 through Figure 27, the following apply:

- 1. All common clock AC timings signals are referenced to the Crossing Voltage (V_{CROSS}) of the BCLK, BCLK# at rising edge of BCLK.
- 2. All source synchronous AC timings are referenced to their associated strobe (address or data). Source synchronous data signals are referenced to the falling edge of their associated data strobe. Source synchronous address signals are referenced to the rising and falling edge of their associated address strobe.
- 3. All AC timings for the TAP signals are referenced to the TCK at 0.5 * V_{TT} at the processor lands. All TAP signal timings (TMS, TDI, etc.) are referenced at 0.5 * V_{TT} at the processor die (pads).
- 4. All CMOS signal timings are referenced at 0.5 * V_{TT} at the processor pins.

Figure 17. Differential Clock – Differential Measurements

Intel Confidential

Figure 19. DDR3 Command / Control and Clock Timing Waveform

Figure 21. DDR3 Clock to DQS Skew Timing Waveform

Figure 22. PCI Express Receiver Eye Margins

Figure 23. TAP Valid Delay Timing Waveform

NOTE: Refer to Table 49 for TAP Signal Group DC specifications and Table 64 for TAP Signal Group AC specifications.

Figure 24. Test Reset (TRST#), Async GTL Input, and PROCHOT# Timing Waveform

Figure 25. THERMTRIP# Power Down Sequence

Figure 27. VID Step Times and V_{CC} Waveforms

Intel Confidential

7.14 Signal Quality

Data transfer requires the clean reception of data signals and clock signals. Ringing below receiver thresholds, non-monotonic signal edges, and excessive voltage swings will adversely affect system timings. Ringback and signal non-monotonicity cannot be tolerated since these phenomena may inadvertently advance receiver state machines. Excessive signal swings (overshoot and undershoot) are detrimental to silicon gate oxide integrity, and can cause device failure if absolute voltage limits are exceeded. Overshoot and undershoot can also cause timing degradation due to the build up of inter-symbol interference (ISI) effects.

For these reasons, it is crucial that the designer work towards a solution that provides acceptable signal quality across all systematic variations encountered in volume manufacturing.

This section documents signal quality metrics used to derive topology and routing guidelines through simulation. All specifications are specified at the processor die (pad measurements).

Specifications for signal quality are for measurements at the processor core only and are only observable through simulation. Therefore, proper simulation is the only way to verify proper timing and signal quality.

7.14.1 Input Reference Clock Signal Quality Specifications

Overshoot/Undershoot and Ringback specifications for BCLK/BCLK# are found in Table 67. Overshoot/Undershoot and Ringback specifications for the DDR3 Reference Clocks are specified by the DIMM.

7.14.2 DDR3 Signal Quality Specifications

Signal Quality specifications for Differential DDR3 Signals are included as part of the DDR3 DC specifications and DDR3 AC specifications. Various scenarios have been simulated to generate a set of layout guidelines which are available in the Platform Design Guide.

7.14.3 I/O Signal Quality Specifications

Signal Quality specifications for PC I Signals are included as part of the PCIDC specifications and PCIe AC specifications. Various scenarios have been simulated to generate a set of layout guidelines which are available in the Platform Design Guide.

7.15 Overshoot/Undershoot Guidelines

Overshoot (or undershoot) is the absolute value of the maximum voltage above or below V_{SS}. The overshoot/undershoot specifications limit transitions beyond V_{CCIO} or V_{SS} due to the fast signal edge rates. The processor can be damaged by single and/or repeated overshoot or undershoot events on any input, output, or I/O buffer if the charge is large enough (i.e., if the over/undershoot is great enough). Baseboard designs which meet signal integrity and timing requirements and which do not exceed the maximum overshoot or undershoot limits listed in Table 66 will insure reliable IO performance for the lifetime of the processor.

7.15.1 V_{CC} Overshoot Specification

When transitioning from a high-to-low current load condition, the processor can tolerate short transient overshoot events where V_{CC} exceeds the HFM_VID voltage. This overshoot cannot exceed VID + $V_{OS_MAX.}$ V_{OS_MAX} is the maximum allowable overshoot above VID. These specifications apply to the processor die voltage as measured across the V_{CC_SENSE} and V_{SS_SENSE} lands.

Table 66.V_{CC} and V_{AXG} Overshoot Specifications

Symbol	Parameter	Min	Max	Units	Figure	Notes
V _{OS_MAX}	Magnitude of V_{CC} overshoot above VID	-	50	mV	28	
T _{VCC_OS_MAX}	Time duration of V_{CC} overshoot above VID	-	10	μs	28	
T _{VAXG_OS_MAX}	Time duration of V_{AXG} overshoot above VID	-	10	μs	28	

Figure 28. V_{CC} Overshoot Example Waveform

Note: Oscillations below the reference voltage cannot be subtracted from the total overshoot/ undershoot pulse duration.

7.15.2 Overshoot/Undershoot Magnitude

Magnitude describes the maximum potential difference between a signal and its voltage reference level. For the processor, both are referenced to V_{SS} . It is important to note that the overshoot and undershoot conditions are separate and their impact must be determined independently.

The pulse magnitude and duration must be used to determine if the overshoot/ undershoot pulse is within specifications.

7.15.3 Overshoot/Undershoot Pulse Duration

Pulse duration describes the total amount of time that an overshoot/undershoot event exceeds the overshoot/undershoot reference voltage. The total time could encompass several oscillations above the reference voltage. Multiple overshoot/undershoot pulses within a single overshoot/undershoot event may need to be measured to determine the total pulse duration.

Note: Oscillations below the reference voltage cannot be subtracted from the total overshoot/ undershoot pulse duration.

Table 67. Processor Overshoot/Undershoot Specifications

Signal Group	Maximum Overshoot	Overshoot Duration	Minimum Undershoot	Undershoot Duration	Notes
DDR3	1.2 * V _{DDQ}	0.5 * T _{CH}	-0.2 * V _{DDQ}	0.5 * T _{CH}	1,2
Control Sideband, Graphics and TAP Signals groups	1.2 * V _{TT}	50 ns	-0.2 * V _{TT}	50 ns	1,2
PCIe and eDP	1.2 * V _{TT}	0.25 UI	-0.2 * V _{TT}	0.25 UI	

NOTES:

1. These specifications are measured at the processor pin.

2. Refer to Figure 29 for description of allowable Overshoot/Undershoot magnitude and duration.

Figure 29. Maximum Acceptable Overshoot/Undershoot Waveform

§

8 Processor Pin and Signal Information

8.1 **Processor Pin Assignments**

- provides a listing of all processor pins ordered alphabetically by <u>pin name</u> for the rPGA988A and BGA1288 package respectively.
- Table 69 and Table 71 provides a listing of all processor pins ordered alphabetically by <u>pin number</u> for the rPGA988A and BGA1288 package respectively.
- Figure 30, Figure 31, Figure 32, Figure 33 show the Top-Down view of the rPGA988A pinmap.
- Figure 34, Figure 35, Figure 36, Figure 37 show the Top-Down view of the BGA1288 ballmap.

	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18
АТ	VSS_NC TF	RSVD_ NCTF	RSVD_ NCTF	RSVD	RSVD	BCLK_I TP#	TDI	PRDY#	TRST#	СОМРО	GFX_DP RSLPVR	COMP2	СОМРЗ	VSSAX G_SENS E	VAXG	VSS	VAXG	VAXG
AR	RSVD_ NCTF	VSS_NC TF	RSVD	RSVD	VSS	BCLK_I TP	TDI_M	VSS	TDO	VSS	GFX_VR _EN	VSS	VSS	E VAXG_S ENSE	VAXG	VSS	VAXG	VAXG
AP	RSVD_ NCTF	VSS	RSVD	RSVD	CFG[2]	RSVD	TDO_M	TMS	PREQ#	RESET_ OBS#	RSVD	GFX_VI D[5]	GFX_VI D[3]	GFX_VI D[1]	VAXG	VSS	VAXG	VAXG
AN	ISENSE	VSS	PSI#	CFG[13]	VSS	CFG[12]	CFG[6]	тск	VCCPW RGOOD 0	PROCH OT#	DBR#	GFX_VI D[6]	VSS	GFX_VI D[2]	VAXG	VSS	VAXG	VAXG
АМ	VID[6]	PROC_ DPRSLP VR	VID[5]	CFG[7]	CFG[5]	CFG[0]	VSS	CFG[1]	VSS	TA PPW RGOOD	VSS	GFX_IM ON	GFX_VI D[4]	GFX_VI D[0]	VAXG	VSS	VAXG	VAXG
AL	VID[3]	VSS	VID[4]	CFG[3]	VSS	CFG[4]	RSVD	RSVD	RSVD	RSVD_T P	RSVD	RSVD	VSS	RSVD	VAXG	VSS	VAXG	VAXG
AK	VID[0]	VID[2]	VID[1]	CFG[8]	CFG[9]	CFG[17]	VSS	CFG[10]	VSS	RSVD_T P	VSS	BPM#[2]	BPM#[6]	BPM#[1]	VAXG	VSS	VAXG	VAXG
AJ	VSS_SE NSE	VCC_SE NSE	RSVD	CFG[14]	VSS	CFG[16]	CFG[15]	CFG[11]	RSVD	RSVD	BPM#[4]	BPM#[3]	VSS	BPM#[0]	VAXG	VSS	VAXG	VAXG
АН	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	RSVD	SKTOC C#	BPM#[7]	BPM#[5]	VAXG	VSS	VAXG	VAXG
AG	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
AF	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
AE	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
AD	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
AC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
АВ	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
АА	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
Y	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
w	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
v	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								

Figure 30. Socket-G (rPGA988A) Pinmap (Top View, Upper-Left Quadrant)

17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
VSS	VAXG	PECI	SA_DQ[59]	SA_DQ S#[7]	SA_DQ[60]	SA_DQ[54]	SB_DQ[63]	SB_DQ[59]	SB_DM[7]	SB_DQ[60]	SB_DQ[55]	SB_DQ[54]	SB_DQ[50]	RSVD_ NCTF	RSVD_T P	VSS_NC TF	A
VSS	VAXG	VSS	SA_DQ[62]	SA_DQ S[7]	VSS	SA_DQ[50]	SB_DQ[62]	VSS	SB_DQ S#[7]	SB_DQ S[7]	VSS	SB_DQ S#[6]	SB_DM[6]	VSS	RSVD_ NCTF	RSVD_ NCTF	AF
VSS	VAXG	PM_EXT _TS#[1 1	SA_DQ[63]	VSS	SA_DQ[55]	SA_DQ S#[6]	VSS	SB_DQ[61]	SB_DQ[58]	VSS	SB_DQ[57]	SB_DQ S[6]	VSS	SB_DQ[48]	VSS	RSVD_ NCTF	AF
VSS	VAXG	PM_EXT _TS#[0 1		SA_DM[7]	SA_DQ[57]	SA_DQ S[6]	SA_DM[6]	SA_DQ[53]	SA_DQ[48]	SB_DQ[56]	SB_DQ[51]	SB_DQ[49]	SB_DQ[52]	SB_DQ[53]	SB_DQ[43]	SM_RC OMP[2]	AI
VSS	VAXG	VTTPW RGO OD	VSS	SA_DQ[58]	SA_DQ[56]	VSS	SA_DQ[49]	SA_DQ[52]	VSS	SA_DM[5]	SB_DQ[42]	VSS	SB_DQ[46]	SB_DQ[47]	VSS	SM_RC OMP[1]	AI
VSS	VAXG	PM_SYN C	RSTIN#	SA_DQ[61]	VSS	SA_DQ[51]	SA_DQ[42]	VSS	SA_DQ[47]	SA_DQ[45]	VSS	SB_DQ S[5]	SB_DQ S#[5]	VSS	SB_DM[5]	SM_RC OMP[0]	А
VSS	VAXG	THERMT RIP#	CATER R #	SM_DR AMPWR OK	SA_DQ[43]	SA_DQ[46]	SA_DQ S[5]	SA_DQ S#[5]	SA_DQ[44]	SA_DQ[35]	SA_DQ[34]	SB_DQ[44]	SB_DQ[41]	SB_DQ[40]	SB_DQ[45]	SB_DQ[35]	А
VSS	VAXG	RSVD	VSS	RSVD_T P	RSVD_T P	VSS	SA_DQ[40]	SA_DQ[41]	VSS	SA_DQ[38]	SA_DQ[39]	VSS	SB_DQ[38]	SB_DQ[34]	VSS	VDDQ	А
VSS	VAXG	RSVD	VTT0	VSS	νττο	VTT0	νττο	VSS	SA_DQ S[4]	SA_DQ S#[4]	VSS	SA_DQ[32]	SB_DQ[39]	VSS	SB_DQ S#[4]	SB_DM[4]	А
							VSS	RSVD	SA_MA[13]	RSVD_T P	SA_DM[4]	SA_DQ[37]	SB_DQ[36]	SB_DQ[37]	SB_DQ S[4]	SB_DQ[33]	А
							VTT0	SA_OD T[1]	VSS	SB_MA[13]	SA_DQ[36]	SA_DQ[33]	VSS	SB_DQ[32]	VSS	VDDQ	A
							νττο	SA_WE #	SA_CS #[1]	VDDQ	VSS	RSVD_T P	VDDQ	RSVD_T P	SA_CS #[0]	SA_CAS #	А
							VSS	RSVD_T P	SA_OD T[0]	RSVD_T P	SB_CS #[1]	RSVD_T P	SA_MA[10]	RSVD_T P	RSVD_T P	SB_OD T[1]	A
							νττο	RSVD	VSS	SB_OD T[0]	SB_WE #	SB_CAS #	VSS	SA_BS[0]	VSS	VDDQ	А
							νττο	RSVD	SB_CS #[0]	VDDQ	VSS	SB_MA[10]	VDDQ	SA_RAS #	SA_BS[1]	SB_BS[0]	А
							VSS	SA_MA[5]	SA_MA[2]	SA_CK #[0]			RSVD_T P	SA_MA[3]	RSVD_T P	RSVD_T P	А
							νττο	SA_MA[8]	VSS	SB_RAS #	SA_CK[1]	SA_CK #[1]	VSS	SA_MA[0]	VSS	VDDQ	`
							νττο	SB_CK #[0]	SB_CK[0]	VDDQ	VSS	SB_BS[1]	VDDQ	RSVD_T P	RSVD_T P	SA_MA[1]	v
							VSS	SA_MA[15]	SA_MA[6]	SB_CK[1]	SB_CK #[1]	RSVD_T P	RSVD_T P	SB_MA[3]	SB_MA[1]	SA_MA[4]	١

Figure 31. Socket-G (rPGA988A) Pinmap (Top View, Upper-Right Quadrant)

Г

Figure 32. Socket-G (rPGA988A) Pinmap (Top View, Lower-Left Quadrant)

U	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
т	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
R	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
Ρ	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
N	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
М	PEG_TX #[1]	PEG_TX [1]	PEG_TX #[2]	PEG_TX [2]	PEG_TX [4]	PEG_TX #[3]	PEG_TX #[6]	PEG_TX [6]	RSVD	VCCPLL								
L	VSS	PEG_TX [0]	PEG_TX #[0]	VSS	PEG_TX #[4]	PEG_TX [3]	VSS	RSVD	VCCPLL	VCCPLL								
к	PEG_RX #[0]	VSS	VSS	PEG_TX #[5]	PEG_TX [5]	VSS	PEG_TX #[8]	PEG_TX [8]	VSS	VTT1								
J	PEG_RX [0]	PEG_RX #[1]	PEG_RX #[2]	VSS	PEG_TX #[7]	VSS	RSVD	RSVD	VTT1	VTT1	VTT1	VTT1	VTT1	VTT1	VSS	VTT1	VSS	VTT
н	VSS	PEG_RX [1]	PEG_RX [2]	VSS	PEG_TX [7]	PEG_TX #[9]	PEG_TX #[10]	VSS	VTT1	VSS	VTT1	VSS	DMI_TX #[3]	VSS	VTT1	VTT1	VTT1	VSS
G	PEG_RX #[3]	VSS	PEG_RX [4]	PEG_RX #[4]	VSS	PEG_TX [9]	PEG_TX [10]	VTT1	VTT1	VTT1	RSVD	DMI_TX #[1]	DMI_TX [3]	FDI_TX[4]	FDI_TX #[4]	VSS	FDI_TX[7]	FDI_7 #[7]
F	PEG_RX [3]	PEG_RX #[5]	PEG_RX [8]	PEG_RX [6]	PEG_RX #[6]	VSS	PEG_TX #[11]	PEG_TX [11]	VSS	VTT1	VSS	DMI_TX [1]	DMI_TX #[2]	VSS	FDI_TX #[6]	FDI_TX[6]	VSS	FDI_I YNC[
E	VSS	PEG_RX [5]	PEG_RX #[8]	VSS	RSVD	RSVD	VSS	PEG_TX #[12]	PEG_TX [12]	VTT1	VTT1	VSS	DMI_TX [2]	FDI_TX #[0]	VSS	FDI_TX[5]	FDI_TX #[5]	VSS
D	PEG_RX #[7]	PEG_RX [7]	VSS	PEG_RX #[10]	PEG_RX [10]	VSS	PEG_TX #[13]	PEG_TX [13]	PEG_TX #[14]	VSS	DMI_TX [0]	DMI_TX #[0]	DMI_RX [1]	FDI_TX[0]	FDI_TX #[1]	FDI_TX[2]	FDI_TX #[2]	FDI_] #[3]
с	RSVD_ NCTF	VSS	PEG_RX #[9]	VSS	PEG_RX #[12]	PEG_RX [12]	VSS	VSS	PEG_TX [14]	PEG_TX #[15]	PEG_TX [15]	VSS	DMI_RX #[1]	VSS	FDI_TX[1]	VSS	VSS	FDI_T 3]
В	RSVD_ NCTF	VSS_NC TF	PEG_RX [9]	PEG_RX #[11]	VSS	PEG_RX #[14]	PEG_RX [14]	PEG_RX #[13]	PEG_RC OMPO	PEG_IC OMPI	VSS	DMI_RX [0]	DMI_RX [2]	DMI_RX #[2]	VSS	RSVD	RSVD	VSS
A	VSS_NC TF	RSVD_ NCTF	RSVD_ NCTF	PEG_RX [11]	PEG_RX #[15]	PEG_RX [15]	VSS	PEG_RX [13]	VSS	PEG_IC OMPO	PEG_RB IAS	DMI_RX #[0]	VSS	DMI_RX [3]	DMI_RX #[3]	RSVD	RSVD	DPLL EF_S LK
	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18

Figure 33. Socket-G (rPGA988A) Pinmap (Top View, Lower-Right Quadrant)

					νττο	RSVD	VSS	SA_BS[2]	SA_MA[9]	SB_MA[0]	VSS	SA_MA[12]	VSS	VDDQ	U
					νττο	RSVD	SB_MA[5]	VDDQ	VSS	SB_MA[2]	VDDQ	SA_MA[14]	SA_MA[11]	SA_MA[7]	т
					VSS	RSVD_T P	RSVD_T P	SB_BS[2]	SB_MA[7]	SB_MA[9]	SB_MA[8]	SB_MA[12]	SB_MA[6]	SB_MA[4]	R
					νττο	SA_DQ[31]	VSS	SA_CKE [0]	SA_CKE [1]	SB_MA[14]	VSS	SB_MA[11]	VSS	VDDQ	Ρ
					νττο	SA_DQ S#[3]	SA_DQ[30]	VDDQ	VSS	SB_DQ[31]	VDDQ	RSVD_T P	RSVD_T P	SB_MA[15]	N
					VSS	SA_DQ S[3]	SA_DQ[26]	SA_DM[3]	SA_DQ[25]	SB_DQ S[3]	SB_DQ[30]	SB_CKE [0]	SB_CKE [1]	SB_DQ[27]	М
					VTT0	SA_DQ[27]	VSS	SA_DQ[24]	SA_DQ[28]	VSS	SB_DQ S#[3]	SB_DQ[26]	VSS	VDDQ	L
					νττο	VSS	SA_DQ[29]	SA_DQ[18]	VSS	SB_DQ[28]	SB_DQ[29]	VSS	SB_DQ[25]	SB_DM[3]	к
SA_DIM M_VREF VTT0 VTT0	VTT0	VTT0	VTT0	VTT0	SA_DQ[23]	SA_DQ S#[2]	SA_DQ[19]	SA_DQ[22]	SB_DQ[18]	SB_DQ[24]	SB_DQ S#[2]	SB_DQ[19]	SB_DQ[22]	SB_DQ[23]	J
SB_DIM RSVD_T M_VREF P VSS	VTT0	VSS	VTT0	VSS	SA_DQ[16]	SA_DQ S[2]	VSS	SA_DM[2]	SB_DQ[16]	VSS	SB_DQ S[2]	SB_DM[2]	VSS	VDDQ	н
RSVD COMP1 VTT_SE	VTT0	VTT0	νπο	VTT0	SA_DQ[21]	VSS	SA_DQ[17]	SA_DQ[20]	V55	SB_DQ[21]	SB_DQ[15]	VSS	SB_DQ[17]	SB_DQ[20]	G
FDI_FS YNC[0]VSSRSVD_T P	VTT0	VTT0	νπο	VTT0	SA_DQ[9]	SA_DQ S[1]	SA_DQ S#[1]	SA_DQ[11]	SM_DR AMRST #	SB_DQ[13]	SB_DQ S#[1]	SB_DQ[14]	SB_DQ[10]	SB_DQ[11]	F
FDI_FS YNC[1]PEG_CL KRSVD_T P	VTT0	VSS	νπο	VSS	SA_DQ[6]	SA_DQ[12]	VSS	SA_DQ[14]	SA_DQ[10]	VSS	SB_DQ[4]	SB_DQ S[1]	VSS	SB_DM[1]	Е
FDI_LS YNC[1]PEG_CL K#RSVD	VTT0	VTT0	νττο	VTT0	SA_DQ[5]	VSS	SA_DQ[8]	SA_DM[1]	VSS	SB_DQ S#[0]	SB_DM[0]	VSS	SB_DQ[9]	SB_DQ[8]	D
FDI_IN TVSSRSVD	VTT0	VTT0	νττο	VTT0	SA_DQ[1]	SA_DQ S#[0]	SA_DQ S[0]	SA_DQ[2]	SA_DQ[15]	SB_DQ S[0]	SB_DQ[7]	SB_DQ[2]	SB_DQ[12]	RSVD_ NCTF	с
VSS BCLK# VTT_SE	VTT0	VSS	νττο	VSS	SA_DQ[4]	SA_DM[0]	VSS	SA_DQ[13]	VSS	SB_DQ[0]	VSS	SB_DQ[3]	VSS_NC TF	VSS_NC TF	в
DPLL_R VSS_SE EF_SSC BCLK NSE_VT LK# T	VTT0	VTT0	νττο	VTT0	SA_DQ[0]	VSS	SA_DQ[7]	SA_DQ[3]	SB_DQ[5]	SB_DQ[1]	SB_DQ[6]	RSVD_ NCTF	KEY		А
17 16 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

	GA988A Pr it by Pin N		Pin		A988A Pr by Pin N	ocessor F ame	Pin
Pin Name	Pin Number	Buffer Type	Dir.	Pin Name	Pin Number	Buffer Type	Dir.
BCLK	A16	DIFF CLK	Ι	DMI_RX[0]	B24	DMI	Ι
BCLK_ITP	AR30	DIFF CLK	0	DMI_RX[1]	D23	DMI	Ι
BCLK_ITP#	AT30	DIFF CLK	0	DMI_RX[2]	B23	DMI	Ι
BCLK#	B16	DIFF CLK	Ι	DMI_RX[3]	A22	DMI	Ι
BPM#[0]	AJ22	GTL	I/O	DMI_RX#[0]	A24	DMI	Ι
BPM#[1]	AK22	GTL	I/O	DMI_RX#[1]	C23	DMI	Ι
BPM#[2]	AK24	GTL	I/O	DMI_RX#[2]	B22	DMI	Ι
BPM#[3]	AJ24	GTL	I/O	DMI_RX#[3]	A21	DMI	Ι
BPM#[4]	AJ25	GTL	I/O	DMI_TX[0]	D25	DMI	0
BPM#[5]	AH22	GTL	I/O	DMI_TX[1]	F24	DMI	0
BPM#[6]	AK23	GTL	I/O	DMI_TX[2]	E23	DMI	0
BPM#[7]	AH23	GTL	I/O	DMI_TX[3]	G23	DMI	0
CATERR#	AK14	GTL	I/O	DMI_TX#[0]	D24	DMI	0
CFG[0]	AM30	CMOS	Ι	DMI_TX#[1]	G24	DMI	0
CFG[1]	AM28	CMOS	Ι	DMI_TX#[2]	F23	DMI	0
CFG[2]	AP31	CMOS	Ι	DMI_TX#[3]	H23	DMI	0
CFG[3]	AL32	CMOS	Ι	DPLL_REF_SSCLK	A18	DIFF CLK	Ι
CFG[4]	AL30	CMOS	Ι	DPLL_REF_SSCLK#	A17	DIFF CLK	Ι
CFG[5]	AM31	CMOS	Ι	FDI_FSYNC[0]	F17	CMOS	Ι
CFG[6]	AN29	CMOS	Ι	FDI_FSYNC[1]	E17	CMOS	Ι
CFG[7]	AM32	CMOS	Ι	FDI_INT	C17	CMOS	Ι
CFG[8]	AK32	CMOS	Ι	FDI_LSYNC[0]	F18	CMOS	Ι
CFG[9]	AK31	CMOS	Ι	FDI_LSYNC[1]	D17	CMOS	Ι
CFG[10]	AK28	CMOS	Ι	FDI_TX[0]	D22	FDI	0
CFG[11]	AJ28	CMOS	Ι	FDI_TX[1]	C21	FDI	0
CFG[12]	AN30	CMOS	Ι	FDI_TX[2]	D20	FDI	0
CFG[13]	AN32	CMOS	Ι	FDI_TX[3]	C18	FDI	0
CFG[14]	AJ32	CMOS	Ι	FDI_TX[4]	G22	FDI	0
CFG[15]	AJ29	CMOS	Ι	FDI_TX[5]	E20	FDI	0
CFG[16]	AJ30	CMOS	Ι	FDI_TX[6]	F20	FDI	0
CFG[17]	AK30	CMOS	Ι	FDI_TX[7]	G19	FDI	0
COMPO	AT26	Analog	Ι	FDI_TX#[0]	E22	FDI	0
COMP1	G16	Analog	Ι	FDI_TX#[1]	D21	FDI	0
COMP2	AT24	Analog	I	FDI_TX#[2]	D19	FDI	0
СОМР3	AT23	Analog	Ι	FDI_TX#[3]	D18	FDI	0
DBR#	AN25		0	FDI_TX#[4]	G21	FDI	0

	rPGA988A Pr List by Pin N		Pin		GA988A Prost St by Pin Na		Pin
Pin Name	Pin Number	Buffer Type	Dir.	Pin Name	Pin Number	Buffer Type	D
FDI_TX#[5]	E19	FDI	0	PEG_RX[14]	B29	PCIe	
FDI_TX#[6]	F21	FDI	0	PEG_RX[15]	A30	PCIe	
FDI_TX#[7]	G18	FDI	0	PEG_RX#[0]	K35	PCIe	
GFX_DPRSLPVF	AT25	CMOS	0	PEG_RX#[1]	J34	PCIe	
GFX_IMON	AM24	Analog	Ι	PEG_RX#[2]	J33	PCIe	
GFX_VID[0]	AM22	CMOS	0	PEG_RX#[3]	G35	PCIe	
GFX_VID[1]	AP22	CMOS	0	PEG_RX#[4]	G32	PCIe	
GFX_VID[2]	AN22	CMOS	0	PEG_RX#[5]	F34	PCIe	
GFX_VID[3]	AP23	CMOS	0	PEG_RX#[6]	F31	PCIe	
GFX_VID[4]	AM23	CMOS	0	PEG_RX#[7]	D35	PCIe	
GFX_VID[5]	AP24	CMOS	0	PEG_RX#[8]	E33	PCIe	
GFX_VID[6]	AN24	CMOS	0	PEG_RX#[9]	C33	PCIe	
GFX_VR_EN	AR25	CMOS	0	PEG_RX#[10]	D32	PCIe	
ISENSE	AN35	Analog	Ι	PEG_RX#[11]	B32	PCIe	
KEY	A2			PEG_RX#[12]	C31	PCIe	
PECI	AT15	Async	I/O	PEG_RX#[13]	B28	PCIe	
PEG_CLK	E16	DIFF CLK	Ι	PEG_RX#[14]	B30	PCIe	
PEG_CLK#	D16	DIFF CLK	Ι	PEG_RX#[15]	A31	PCIe	
PEG_ICOMPI	B26	Analog	Ι	PEG_TX[0]	L34	PCIe	
PEG_ICOMPO	A26	Analog	Ι	PEG_TX[1]	M34	PCIe	
PEG_RBIAS	A25	Analog	Ι	PEG_TX[2]	M32	PCIe	
PEG_RCOMPO	B27	Analog	Ι	PEG_TX[3]	L30	PCIe	
PEG_RX[0]	J35	PCIe	Ι	PEG_TX[4]	M31	PCIe	
PEG_RX[1]	H34	PCIe	Ι	PEG_TX[5]	K31	PCIe	
PEG_RX[2]	H33	PCIe	Ι	PEG_TX[6]	M28	PCIe	
PEG_RX[3]	F35	PCIe	Ι	PEG_TX[7]	H31	PCIe	
PEG_RX[4]	G33	PCIe	Ι	PEG_TX[8]	K28	PCIe	
PEG_RX[5]	E34	PCIe	Ι	PEG_TX[9]	G30	PCIe	
PEG_RX[6]	F32	PCIe	Ι	PEG_TX[10]	G29	PCIe	
PEG_RX[7]	D34	PCIe	Ι	PEG_TX[11]	F28	PCIe	
PEG_RX[8]	F33	PCIe	Ι	PEG_TX[12]	E27	PCIe	
PEG_RX[9]	B33	PCIe	Ι	PEG_TX[13]	D28	PCIe	
PEG_RX[10]	D31	PCIe	Ι	PEG_TX[14]	C27	PCIe	
PEG_RX[11]	A32	PCIe	Ι	PEG_TX[15]	C25	PCIe	
PEG_RX[12]	C30	PCIe	Ι	PEG_TX#[0]	L33	PCIe	
PEG_RX[13]	A28	PCIe	Ι	PEG_TX#[1]	M35	PCIe	(

External Design Specification

	A988A Pro by Pin Na		Pin		GA988A Prost by Pin Na		Pin
Pin Name	Pin Number	Buffer Type	Dir.	Pin Name	Pin Number	Buffer Type	Dir.
PEG_TX#[2]	M33	PCIe	0	RSVD	AJ27		
PEG_TX#[3]	M30	PCIe	0	RSVD	AJ33		
PEG_TX#[4]	L31	PCIe	0	RSVD	AL22		
PEG_TX#[5]	K32	PCIe	0	RSVD	AL24		
PEG_TX#[6]	M29	PCIe	0	RSVD	AL25		
PEG_TX#[7]	J31	PCIe	0	RSVD	AL27		
PEG_TX#[8]	K29	PCIe	0	RSVD	AL28		
PEG_TX#[9]	H30	PCIe	0	RSVD	AL29		
PEG_TX#[10]	H29	PCIe	0	RSVD	AP25		
PEG_TX#[11]	F29	PCIe	0	RSVD	AP30		
PEG_TX#[12]	E28	PCIe	0	RSVD	AP32		
PEG_TX#[13]	D29	PCIe	0	RSVD	AP33		
PEG_TX#[14]	D27	PCIe	0	RSVD	AR32		
PEG_TX#[15]	C26	PCIe	0	RSVD	AR33		
PM_EXT_TS#[0]	AN15	CMOS	Ι	RSVD	AT31		
PM_EXT_TS#[1]	AP15	CMOS	Ι	RSVD	AT32		
PM_SYNC	AL15	CMOS	Ι	RSVD	B19		
PRDY#	AT28	Async GTL	0	RSVD	B20		
		Async		RSVD	C15		
PREQ#	AP27	GTL	Ι	RSVD	D15		
PROC_DPRSLPVR	AM34	CMOS	0	RSVD	E30		
PROCHOT#	AN26	Async GTL	I/O	RSVD RSVD	E31 G17		
		Async		RSVD	G17 G25		
PSI#	AN33	CMOS	0	RSVD	H17		
RESET_OBS#	AP26	Async CMOS	0	RSVD	J17		
RSTIN#	AL14	CMOS	I	RSVD	J28		
RSVD	AL14 A19	CM05	1	RSVD	J29		
RSVD	A19 A20			RSVD	L28		
RSVD	A20 AB9			RSVD	M27		
				RSVD	Т9		
RSVD RSVD	AC9 AG9		$\left \right $	RSVD	U9		
RSVD	AG9 AH15			RSVD_NCTF	A3		
			$\left \right $	RSVD_NCTF	A33		1
RSVD	AH25		$\left \right $	 RSVD_NCTF	A34		
RSVD	AJ15		$\left \right $	RSVD_NCTF	AP1		1
RSVD	AJ26						1

L	ist by Pin Na	ame			ist by Pin Na	ame	-
Pin Name	Pin Number	Buffer Type	Dir.	Pin Name	Pin Number	Buffer Type	Di
RSVD_NCTF	AP35			RSVD_TP	W2		
RSVD_NCTF	AR1			RSVD_TP	W3		
RSVD_NCTF	AR2			SA_BS[0]	AC3	DDR3	C
RSVD_NCTF	AR35			SA_BS[1]	AB2	DDR3	C
RSVD_NCTF	AT3			SA_BS[2]	U7	DDR3	C
RSVD_NCTF	AT33			SA_CAS#	AE1	DDR3	C
RSVD_NCTF	AT34			SA_CK[0]	AA6	DDR3	C
RSVD_NCTF	B35			SA_CK[1]	Y6	DDR3	C
RSVD_NCTF	C1			SA_CK#[0]	AA7	DDR3	С
RSVD_NCTF	C35			SA_CK#[1]	Y5	DDR3	C
RSVD_TP	AA1			SA_CKE[0]	P7	DDR3	С
RSVD_TP	AA2			SA_CKE[1]	P6	DDR3	C
RSVD_TP	AA4			SA_CS#[0]	AE2	DDR3	C
RSVD_TP	AA5			SA_CS#[1]	AE8	DDR3	C
RSVD_TP	AD2			SA_DM[0]	B9	DDR3	C
RSVD_TP	AD3			SA_DM[1]	D7	DDR3	C
RSVD_TP	AD5			SA_DM[2]	H7	DDR3	C
RSVD_TP	AD7			SA_DM[3]	M7	DDR3	C
RSVD_TP	AD9			SA_DM[4]	AG6	DDR3	C
RSVD_TP	AE3			SA_DM[5]	AM7	DDR3	C
RSVD_TP	AE5			SA_DM[6]	AN10	DDR3	C
RSVD_TP	AG7			SA_DM[7]	AN13	DDR3	C
RSVD_TP	AJ12			SA_DQ[0]	A10	DDR3	I/
RSVD_TP	AJ13			SA_DQ[1]	C10	DDR3	I/
RSVD_TP	AK26			SA_DQ[2]	C7	DDR3	I/
RSVD_TP	AL26			SA_DQ[3]	A7	DDR3	I/
RSVD_TP	AT2			SA_DQ[4]	B10	DDR3	I/
RSVD_TP	E15			SA_DQ[5]	D10	DDR3	I/
RSVD_TP	F15			SA_DQ[6]	E10	DDR3	I/
RSVD_TP	H16			SA_DQ[7]	A8	DDR3	I/
RSVD_TP	N2			SA_DQ[8]	D8	DDR3	I/
RSVD_TP	N3			SA_DQ[9]	F10	DDR3	I/
RSVD_TP	R8			SA_DQ[10]	E6	DDR3	I/
RSVD_TP	R9			SA_DQ[11]	F7	DDR3	I/
RSVD_TP	V4			SA_DQ[12]	E9	DDR3	I/
RSVD TP	V5		+	SA_DQ[13]	B7	DDR3	I/

	GA988A Pro t by Pin Na		Pin		PGA988A Pr ist by Pin Na		Pin
Pin Name	Pin Number	Buffer Type	Dir.	Pin Name	Pin Number	Buffer Type	Dir.
SA_DQ[14]	E7	DDR3	I/O	SA_DQ[50]	AR11	DDR3	I/O
SA_DQ[15]	C6	DDR3	I/O	SA_DQ[51]	AL11	DDR3	I/O
SA_DQ[16]	H10	DDR3	I/O	SA_DQ[52]	AM9	DDR3	I/O
SA_DQ[17]	G8	DDR3	I/O	SA_DQ[53]	AN9	DDR3	I/O
SA_DQ[18]	K7	DDR3	I/O	SA_DQ[54]	AT11	DDR3	I/O
SA_DQ[19]	J8	DDR3	I/O	SA_DQ[55]	AP12	DDR3	I/O
SA_DQ[20]	G7	DDR3	I/O	SA_DQ[56]	AM12	DDR3	I/O
SA_DQ[21]	G10	DDR3	I/O	SA_DQ[57]	AN12	DDR3	I/O
SA_DQ[22]	J7	DDR3	I/O	SA_DQ[58]	AM13	DDR3	I/O
SA_DQ[23]	J10	DDR3	I/O	SA_DQ[59]	AT14	DDR3	I/O
SA_DQ[24]	L7	DDR3	I/O	SA_DQ[60]	AT12	DDR3	I/O
SA_DQ[25]	M6	DDR3	I/O	SA_DQ[61]	AL13	DDR3	I/O
SA_DQ[26]	M8	DDR3	I/O	SA_DQ[62]	AR14	DDR3	I/O
SA_DQ[27]	L9	DDR3	I/O	SA_DQ[63]	AP14	DDR3	I/O
SA_DQ[28]	L6	DDR3	I/O	SA_DQS[0]	C8	DDR3	I/O
SA_DQ[29]	K8	DDR3	I/O	SA_DQS[1]	F9	DDR3	I/O
SA_DQ[30]	N8	DDR3	I/O	SA_DQS[2]	H9	DDR3	I/O
SA_DQ[31]	P9	DDR3	I/O	SA_DQS[3]	M9	DDR3	I/O
SA_DQ[32]	AH5	DDR3	I/O	SA_DQS[4]	AH8	DDR3	I/O
SA_DQ[33]	AF5	DDR3	I/O	SA_DQS[5]	AK10	DDR3	I/O
SA_DQ[34]	AK6	DDR3	I/O	SA_DQS[6]	AN11	DDR3	I/O
SA_DQ[35]	AK7	DDR3	I/O	SA_DQS[7]	AR13	DDR3	I/O
SA_DQ[36]	AF6	DDR3	I/O	SA_DQS#[0]	C9	DDR3	I/O
SA_DQ[37]	AG5	DDR3	I/O	SA_DQS#[1]	F8	DDR3	I/O
SA_DQ[38]	AJ7	DDR3	I/O	SA_DQS#[2]]9	DDR3	I/O
SA_DQ[39]	AJ6	DDR3	I/O	SA_DQS#[3]	N9	DDR3	I/O
SA_DQ[40]	AJ10	DDR3	I/O	SA_DQS#[4]	AH7	DDR3	I/O
SA_DQ[41]	AJ9	DDR3	I/O	SA_DQS#[5]	AK9	DDR3	I/O
SA_DQ[42]	AL10	DDR3	I/O	SA_DQS#[6]	AP11	DDR3	I/O
SA_DQ[43]	AK12	DDR3	I/O	SA_DQS#[7]	AT13	DDR3	I/O
SA_DQ[44]	AK8	DDR3	I/O	SA_MA[0]	Y3	DDR3	0
SA_DQ[45]	AL7	DDR3	I/O	SA_MA[1]	W1	DDR3	0
SA_DQ[46]	AK11	DDR3	I/O	SA_MA[2]	AA8	DDR3	0
SA_DQ[47]	AL8	DDR3	I/O	SA_MA[3]	AA3	DDR3	0
SA_DQ[48]	AN8	DDR3	I/O	SA_MA[4]	V1	DDR3	0
SA_DQ[49]	AM10	DDR3	I/O	SA_MA[5]	AA9	DDR3	0

	PGA988A Pr ist by Pin Na		Pin		GA988A Pro t by Pin Na		F
Pin Name	Pin Number	Buffer Type	Dir.	Pin Name	Pin Number	Buffer Type	
SA_MA[6]	V8	DDR3	0	SB_DQ[2]	C3	DDR3	-
SA_MA[7]	T1	DDR3	0	SB_DQ[3]	B3	DDR3	-
SA_MA[8]	Y9	DDR3	0	SB_DQ[4]	E4	DDR3	-
SA_MA[9]	U6	DDR3	0	SB_DQ[5]	A6	DDR3	-
SA_MA[10]	AD4	DDR3	0	SB_DQ[6]	A4	DDR3	
SA_MA[11]	T2	DDR3	0	SB_DQ[7]	C4	DDR3	
SA_MA[12]	U3	DDR3	0	SB_DQ[8]	D1	DDR3	
SA_MA[13]	AG8	DDR3	0	SB_DQ[9]	D2	DDR3	
SA_MA[14]	Т3	DDR3	0	SB_DQ[10]	F2	DDR3	-
SA_MA[15]	V9	DDR3	0	SB_DQ[11]	F1	DDR3	-
SA_ODT[0]	AD8	DDR3	0	SB_DQ[12]	C2	DDR3	-
SA_ODT[1]	AF9	DDR3	0	SB_DQ[13]	F5	DDR3	
SA_RAS#	AB3	DDR3	0	SB_DQ[14]	F3	DDR3	-
SA_WE#	AE9	DDR3	0	SB_DQ[15]	G4	DDR3	
SB_BS[0]	AB1	DDR3	0	SB_DQ[16]	H6	DDR3	
SB_BS[1]	W5	DDR3	0	SB_DQ[17]	G2	DDR3	-
SB_BS[2]	R7	DDR3	0	SB_DQ[18]	J6	DDR3	-
SB_CAS#	AC5	DDR3	0	SB_DQ[19]	J3	DDR3	-
SB_CK[0]	W8	DDR3	0	SB_DQ[20]	G1	DDR3	-
SB_CK[1]	V7	DDR3	0	SB_DQ[21]	G5	DDR3	-
SB_CK#[0]	W9	DDR3	0	SB_DQ[22]	J2	DDR3	
SB_CK#[1]	V6	DDR3	0	SB_DQ[23]	J1	DDR3	
SB_CKE[0]	M3	DDR3	0	SB_DQ[24]	J5	DDR3	
SB_CKE[1]	M2	DDR3	0	SB_DQ[25]	K2	DDR3	
SB_CS#[0]	AB8	DDR3	0	SB_DQ[26]	L3	DDR3	
SB_CS#[1]	AD6	DDR3	0	SB_DQ[27]	M1	DDR3	-
SB_DM[0]	D4	DDR3	0	SB_DQ[28]	K5	DDR3	
SB_DM[1]	E1	DDR3	0	SB_DQ[29]	K4	DDR3	-
SB_DM[2]	H3	DDR3	0	SB_DQ[30]	M4	DDR3	
SB_DM[3]	K1	DDR3	0	SB_DQ[31]	N5	DDR3	
SB_DM[4]	AH1	DDR3	0	SB_DQ[32]	AF3	DDR3	
SB_DM[5]	AL2	DDR3	0	SB_DQ[33]	AG1	DDR3	
SB_DM[6]	AR4	DDR3	0	SB_DQ[34]	AJ3	DDR3	
SB_DM[7]	AT8	DDR3	0	SB_DQ[35]	AK1	DDR3	-
SB_DQ[0]	B5	DDR3	I/O	SB_DQ[36]	AG4	DDR3	
SB_DQ[1]	A5	DDR3	I/O	SB_DQ[37]	AG3	DDR3	

Table 68.	rPGA988A F List by Pin		Pin		PGA988A Pr ist by Pin Na		Pin
Pin Nam	e Pin Numbe	er Buffer Type	Dir.	Pin Name	Pin Number	Buffer Type	Dir.
SB_DQ[38]	AJ4	DDR3	I/O	SB_DQS#[2]]4	DDR3	I/O
SB_DQ[39]	AH4	DDR3	I/O	SB_DQS#[3]	L4	DDR3	I/O
SB_DQ[40]	AK3	DDR3	I/O	SB_DQS#[4]	AH2	DDR3	I/O
SB_DQ[41]	AK4	DDR3	I/O	SB_DQS#[5]	AL4	DDR3	I/O
SB_DQ[42]	AM6	DDR3	I/O	SB_DQS#[6]	AR5	DDR3	I/O
SB_DQ[43]	AN2	DDR3	I/O	SB_DQS#[7]	AR8	DDR3	I/O
SB_DQ[44]	AK5	DDR3	I/O	SB_MA[0]	U5	DDR3	0
SB_DQ[45]	AK2	DDR3	I/O	SB_MA[1]	V2	DDR3	0
SB_DQ[46]	AM4	DDR3	I/O	SB_MA[2]	T5	DDR3	0
SB_DQ[47]	AM3	DDR3	I/O	SB_MA[3]	V3	DDR3	0
SB_DQ[48]	AP3	DDR3	I/O	SB_MA[4]	R1	DDR3	0
SB_DQ[49]	AN5	DDR3	I/O	SB_MA[5]	Т8	DDR3	0
SB_DQ[50]	AT4	DDR3	I/O	SB_MA[6]	R2	DDR3	0
SB_DQ[51]	AN6	DDR3	I/O	SB_MA[7]	R6	DDR3	0
SB_DQ[52]	AN4	DDR3	I/O	SB_MA[8]	R4	DDR3	0
SB_DQ[53]	AN3	DDR3	I/O	SB_MA[9]	R5	DDR3	0
SB_DQ[54]	AT5	DDR3	I/O	SB_MA[10]	AB5	DDR3	0
SB_DQ[55]	AT6	DDR3	I/O	SB_MA[11]	P3	DDR3	0
SB_DQ[56]	AN7	DDR3	I/O	SB_MA[12]	R3	DDR3	0
SB_DQ[57]	AP6	DDR3	I/O	SB_MA[13]	AF7	DDR3	0
SB_DQ[58]	AP8	DDR3	I/O	SB_MA[14]	P5	DDR3	0
SB_DQ[59]	AT9	DDR3	I/O	SB_MA[15]	N1	DDR3	0
SB_DQ[60]	AT7	DDR3	I/O	SB_ODT[0]	AC7	DDR3	0
SB_DQ[61]	AP9	DDR3	I/O	SB_ODT[1]	AD1	DDR3	0
SB_DQ[62]	AR10	DDR3	I/O	SB_RAS#	¥7	DDR3	0
SB_DQ[63]	AT10	DDR3	I/O	SB_WE#	AC6	DDR3	0
SB_DQS[0]	C5	DDR3	I/O	SKTOCC#	AH24		
SB_DQS[1]	E3	DDR3	I/O	SM_DRAMPWRO	< AK13	DDR3	0
SB_DQS[2]	H4	DDR3	I/O	SM_DRAMRST#	F6	DDR3	0
SB_DQS[3]	M5	DDR3	I/O	SM_RCOMP[0]	AL1	Analog	Ι
SB_DQS[4]	AG2	DDR3	I/O	SM_RCOMP[1]	AM1	Analog	Ι
SB_DQS[5]	AL5	DDR3	I/O	SM_RCOMP[2]	AN1	Analog	Ι
SB_DQS[6]	AP5	DDR3	I/O	TAPPWRGOOD	AM26	Async CMOS	0
SB_DQS[7]	AR7	DDR3	I/O	тск	AN28	CMOS	I
SB_DQS#[0]	D5	DDR3	I/O	TDI	AT29	CMOS	I
SB_DQS#[1]	F4	DDR3	I/O	TDI_M	AR29	CMOS	I

	rPGA988APr List by Pin Na		Table 68.	rPGA988A Pr List by Pin Na	88A Processor Pin Pin Name			
Pin Name	Pin Number	Buffer Type	Dir.	Pin Nam	e Pin Number	Buffer Type	Dir	
TDO	AR27	CMOS	0	VAXG	AR21	REF		
TDO_M	AP29	CMOS	0	VAXG	AT16	REF		
THERMTRIP#	AK15	Async	0	VAXG	AT18	REF		
		GTL	Ŭ	VAXG	AT19	REF		
TMS	AP28	CMOS	Ι	VAXG	AT21	REF		
TRST#	AT27	CMOS	Ι	VAXG_SENSE	AR22	Analog	0	
VAXG	AH16	REF		VCC	AA26	REF		
VAXG	AH18	REF		VCC	AA27	REF		
VAXG	AH19	REF		VCC	AA28	REF		
VAXG	AH21	REF		VCC	AA29	REF		
VAXG	AJ16	REF		VCC	AA30	REF		
VAXG	AJ18	REF		VCC	AA31	REF		
VAXG	AJ19	REF		VCC	AA32	REF		
VAXG	AJ21	REF		VCC	AA33	REF		
VAXG	AK16	REF		VCC	AA34	REF		
VAXG	AK18	REF		VCC	AA35	REF		
VAXG	AK19	REF		VCC	AC26	REF		
VAXG	AK21	REF		VCC	AC27	REF		
VAXG	AL16	REF		VCC	AC28	REF		
VAXG	AL18	REF		VCC	AC29	REF		
VAXG	AL19	REF		VCC	AC30	REF		
VAXG	AL21	REF		VCC	AC31	REF		
VAXG	AM16	REF		VCC	AC32	REF		
VAXG	AM18	REF		VCC	AC33	REF		
VAXG	AM19	REF		VCC	AC34	REF		
VAXG	AM21	REF		VCC	AC34 AC35	REF		
VAXG	AN16	REF		VCC	AC33 AD26	REF		
VAXG	AN18	REF						
VAXG	AN19	REF		VCC	AD27	REF		
VAXG	AN21	REF		VCC	AD28	REF		
VAXG	AP16	REF		VCC	AD29	REF		
VAXG	AP18	REF		VCC	AD30	REF		
VAXG	AP19	REF		VCC	AD31	REF		
VAXG	AP21	REF		VCC	AD32	REF	-	
VAXG	AR16	REF		VCC	AD33	REF		
VAXG	AR18	REF		VCC	AD34	REF		
VAXG	AR19	REF		VCC	AD35	REF		

	GA988A Prost by Pin Na		Pin		GA988A Pr st by Pin Na		Pin
Pin Name	Pin Number	Buffer Type	Dir.	Pin Name	Pin Number	Buffer Type	Dir.
VCC	AF26	REF		VCC	R32	REF	
VCC	AF27	REF		VCC	R33	REF	
VCC	AF28	REF		VCC	R34	REF	
VCC	AF29	REF		VCC	R35	REF	
VCC	AF30	REF		VCC	U26	REF	
VCC	AF31	REF		VCC	U27	REF	
VCC	AF32	REF		VCC	U28	REF	
VCC	AF33	REF		VCC	U29	REF	
VCC	AF34	REF		VCC	U30	REF	
VCC	AF35	REF		VCC	U31	REF	
VCC	AG26	REF		VCC	U32	REF	
VCC	AG27	REF		VCC	U33	REF	
VCC	AG28	REF		VCC	U34	REF	
VCC	AG29	REF		VCC	U35	REF	
VCC	AG30	REF		VCC	V26	REF	
VCC	AG31	REF		VCC	V27	REF	
VCC	AG32	REF		VCC	V28	REF	
VCC	AG33	REF		VCC	V29	REF	
VCC	AG34	REF		VCC	V30	REF	1
VCC	AG35	REF		VCC	V31	REF	1
VCC	P26	REF		VCC	V32	REF	
VCC	P27	REF		VCC	V33	REF	1
VCC	P28	REF		VCC	V34	REF	
VCC	P29	REF		VCC	V35	REF	
VCC	P30	REF		VCC	Y26	REF	
VCC	P31	REF		VCC	Y27	REF	
VCC	P32	REF		VCC	Y28	REF	1
VCC	P33	REF		VCC	Y29	REF	
VCC	P34	REF		VCC	Y30	REF	1
VCC	P35	REF		VCC	Y31	REF	1
VCC	R26	REF		VCC	Y32	REF	1
VCC	R27	REF		VCC	Y33	REF	1
VCC	R28	REF		VCC	Y34	REF	1
VCC	R29	REF		VCC	Y35	REF	
VCC	R30	REF		VCC_SENSE	AJ34	Analog	0
VCC	R31	REF		VCCPLL	L26	REF	1

Table 68.	rPGA988A Pr List by Pin Na		Table 68. rPGA988A Processor List by Pin Name				
Pin Nam	e Pin Number	Buffer Type	Dir.	Pin Nam	ne Pin Number	Buffer Type	Dir
VCCPLL	L27	REF		VSS	AB27	GND	
VCCPLL	M26	REF		VSS	AB28	GND	
VCCPWRGOOI	D 0 AN27	Async	I	VSS	AB29	GND	
		CMOS	-	VSS	AB30	GND	
VCCPWRGOOI	D_1 AN14	Async CMOS	Ι	VSS	AB31	GND	
VDDQ	AB4	REF		VSS	AB32	GND	
VDDQ	AB7	REF		VSS	AB33	GND	
VDDQ	AC1	REF		VSS	AB34	GND	
VDDQ	AE4	REF		VSS	AB35	GND	
VDDQ	AE7	REF		VSS	AB6	GND	
VDDQ	AF1	REF		VSS	AC2	GND	
VDDQ	AJ1	REF		VSS	AC4	GND	
VDDQ	H1	REF		VSS	AC8	GND	
VDDQ	L1	REF		VSS	AD10	GND	
VDDQ	N4	REF		VSS	AE26	GND	
VDDQ	N7	REF		VSS	AE27	GND	
VDDQ	P1	REF		VSS	AE28	GND	
VDDQ	T4	REF		VSS	AE29	GND	
VDDQ	T7	REF		VSS	AE30	GND	
VDDQ	U1	REF		VSS	AE31	GND	
VDDQ	W4	REF		VSS	AE32	GND	
VDDQ	W7	REF		VSS	AE33	GND	
VDDQ	Y1	REF		VSS	AE34	GND	
VID[0]	AK35	CMOS	0	VSS	AE35	GND	
VID[1]	AK33	CMOS	0	VSS	AE6	GND	
VID[2]	AK34	CMOS	0	VSS	AF2	GND	
CSC[0]/VID[3] AL35	CMOS	I/O	VSS	AF4	GND	
CSC[1]/VID[4] AL33	CMOS	I/O	VSS	AF8	GND	
CSC[2]/VID[5] AM33	CMOS	I/O	VSS	AG10	GND	
VID[6]	AM35	CMOS	0	VSS	AH13	GND	
VSS	A23	GND		VSS	AH17	GND	
VSS	A27	GND		VSS	AH20	GND	
VSS	A29	GND		VSS	AH26	GND	
VSS	A9	GND		VSS	AH27	GND	
VSS	AA10	GND		VSS	AH28	GND	
VSS	AB26	GND		VSS	AH29	GND	1

	PGA988A Prost by Pin Na		Pin		GA988A Prost by Pin Na		Pin
Pin Name	Pin Number	Buffer Type	Dir.	Pin Name	Pin Number	Buffer Type	Dir.
VSS	AH3	GND		VSS	AM20	GND	
VSS	AH30	GND		VSS	AM25	GND	
VSS	AH31	GND		VSS	AM27	GND	
VSS	AH32	GND		VSS	AM29	GND	
VSS	AH33	GND		VSS	AM5	GND	
VSS	AH34	GND		VSS	AM8	GND	
VSS	AH35	GND		VSS	AN17	GND	
VSS	AH6	GND		VSS	AN20	GND	
VSS	AH9	GND		VSS	AN23	GND	
VSS	AJ11	GND		VSS	AN31	GND	
VSS	AJ14	GND		VSS	AN34	GND	
VSS	AJ17	GND		VSS	AP10	GND	
VSS	AJ2	GND		VSS	AP13	GND	
VSS	AJ20	GND		VSS	AP17	GND	
VSS	AJ23	GND		VSS	AP2	GND	
VSS	AJ31	GND		VSS	AP20	GND	
VSS	AJ5	GND		VSS	AP34	GND	
VSS	AJ8	GND		VSS	AP4	GND	
VSS	AK17	GND		VSS	AP7	GND	
VSS	AK20	GND		VSS	AR12	GND	
VSS	AK25	GND		VSS	AR15	GND	
VSS	AK27	GND		VSS	AR17	GND	
VSS	AK29	GND		VSS	AR20	GND	
VSS	AL12	GND		VSS	AR23	GND	
VSS	AL17	GND		VSS	AR24	GND	
VSS	AL20	GND		VSS	AR26	GND	
VSS	AL23	GND		VSS	AR28	GND	
VSS	AL3	GND		VSS	AR3	GND	
VSS	AL31	GND		VSS	AR31	GND	
VSS	AL34	GND		VSS	AR6	GND	
VSS	AL6	GND		VSS	AR9	GND	
VSS	AL9	GND		VSS	AT17	GND	
VSS	AM11	GND		VSS	AT20	GND	
VSS	AM14	GND		VSS	B11	GND	1
VSS	AM17	GND		VSS	B13	GND	
VSS	AM2	GND		VSS	B17	GND	

	st by Pin Na				t by Pin Na		_
Pin Name	Pin Number	Buffer Type	Dir.	Pin Name	Pin Number	Buffer Type	
VSS	B18	GND		VSS	F25	GND	
VSS	B21	GND		VSS	F27	GND	
VSS	B25	GND		VSS	F30	GND	
VSS	B31	GND		VSS	G20	GND	
VSS	B4	GND		VSS	G3	GND	
VSS	B6	GND		VSS	G31	GND	
VSS	B8	GND		VSS	G34	GND	ļ
VSS	C16	GND		VSS	G6	GND	
VSS	C19	GND		VSS	G9	GND	
VSS	C20	GND		VSS	H11	GND	
VSS	C22	GND		VSS	H13	GND	
VSS	C24	GND		VSS	H15	GND	
VSS	C28	GND		VSS	H18	GND	
VSS	C29	GND		VSS	H2	GND	
VSS	C32	GND		VSS	H22	GND	
VSS	C34	GND		VSS	H24	GND	
VSS	D26	GND		VSS	H26	GND	
VSS	D3	GND		VSS	H28	GND	
VSS	D30	GND		VSS	H32	GND	_
VSS	D33	GND		VSS	H35	GND	
VSS	D6	GND		VSS	H5	GND	
VSS	D9	GND		VSS	H8	GND	
VSS	E11	GND		VSS	J19	GND	
VSS	E13	GND		VSS	J21	GND	
VSS	E18	GND		VSS	J30	GND	
VSS	E2	GND		VSS	J32	GND	
VSS	E21	GND		VSS	K27	GND	
VSS	E24	GND		VSS	К3	GND	
VSS	E29	GND		VSS	K30	GND	
VSS	E32	GND		VSS	K33	GND	
VSS	E35	GND		VSS	K34	GND	
VSS	E5	GND		VSS	K6	GND	
VSS	E8	GND		VSS	К9	GND	
VSS	F16	GND		VSS	L2	GND	
VSS	F19	GND		VSS	L29	GND	
VSS	F22	GND		VSS	L32	GND	T

Table 68.rPGA988A Processor Pin List by Pin Name					GA988A Pr st by Pin Na		Pin
Pin Nan	ne Pin Numbe	er Buffer Type	Dir.	Pin Name	Pin Number	Buffer Type	Dir.
VSS	L35	GND		VSS	W28	GND	
VSS	L5	GND		VSS	W29	GND	
VSS	L8	GND		VSS	W30	GND	
VSS	M10	GND		VSS	W31	GND	
VSS	N26	GND		VSS	W32	GND	
VSS	N27	GND		VSS	W33	GND	
VSS	N28	GND		VSS	W34	GND	
VSS	N29	GND		VSS	W35	GND	
VSS	N30	GND		VSS	W6	GND	
VSS	N31	GND		VSS	Y2	GND	
VSS	N32	GND		VSS	Y4	GND	
VSS	N33	GND		VSS	Y8	GND	
VSS	N34	GND		VSS_NCTF	A35		
VSS	N35	GND		VSS_NCTF	AR34		
VSS	N6	GND		VSS_NCTF	AT1		
VSS	P2	GND		VSS_NCTF	AT35		
VSS	P4	GND		VSS_NCTF	B1		
VSS	P8	GND		VSS_NCTF	B2		
VSS	R10	GND		VSS_NCTF	B34		
VSS	T26	GND		VSS_SENSE	AJ35	Analog	0
VSS	T27	GND		VSS_SENSE_VTT	A15	Analog	0
VSS	T28	GND		VSSAXG_SENSE	AT22	Analog	0
VSS	T29	GND		VTT_SELECT	G15	CMOS	0
VSS	Т30	GND		VTT_SENSE	B15	Analog	0
VSS	T31	GND		VTT0	A11	REF	
VSS	T32	GND		VTT0	A12	REF	
VSS	Т33	GND		VTT0	A13	REF	
VSS	T34	GND		VTT0	A14	REF	
VSS	Т35	GND		VTT0	AB10	REF	
VSS	Т6	GND		VTT0	AC10	REF	
VSS	U2	GND		VTT0	AE10	REF	
VSS	U4	GND		VTT0	AF10	REF	
VSS	U8	GND		VTT0	AH10	REF	
VSS	V10	GND		VTT0	AH11	REF	
VSS	W26	GND		VTT0	AH12	REF	
VSS	W27	GND		VTT0	AH14	REF	

Pin Name	Pin Number	Buffer Type	Dir.	Pin Name		Pin Number	Buffer Type	Dir
VTT0	B12	REF		VTT1		E25	REF	
VTT0	B14	REF		VTT1		E26	REF	
VTT0	C11	REF		VTT1		F26	REF	
VTT0	C12	REF		VTT1		G26	REF	
VTT0	C13	REF		VTT1		G27	REF	
VTT0	C14	REF		VTT1		G28	REF	
VTT0	D11	REF		VTT1		H19	REF	
VTT0	D12	REF		VTT1		H20	REF	
VTT0	D13	REF		VTT1		H21	REF	
VTT0	D14	REF		VTT1		H25	REF	
VTT0	E12	REF		VTT1		H27	REF	
VTT0	E14	REF		VTT1		J18	REF	
VTT0	F11	REF		VTT1		J20	REF	
VTT0	F12	REF		VTT1		J22	REF	
VTT0	F13	REF		VTT1		J23	REF	
VTT0	F14	REF		VTT1		J24	REF	
VTT0	G11	REF		VTT1		J25	REF	
VTT0	G12	REF		VTT1		J26	REF	
VTT0	G13	REF		VTT1		J27	REF	
VTT0	G14	REF		VTT1		K26	REF	
VTT0	H12	REF		VTTPWRG	OOD	AM15	Async	I
VTT0	H14	REF					CMOS	
VTT0	J11	REF						
VTT0	J12	REF						
VTT0	J13	REF		Table 69		4988A Pi by Pin N	rocessor lumber	Pin
VTT0	J14	REF		Din				
VTT0	J15	REF		Pin Number	Pin N	ame	Buffer Type	Dir.
VTT0	J16	REF		A2	KEY			
VTT0	K10	REF		A3	RSVD_NC	TF		
VTT0	L10	REF		A4	SB_DQ[6]		DDR3	I/O
VTT0	N10	REF		A5	SB_DQ[1]		DDR3	I/O
VTT0	P10	REF		A6	SB_DQ[5]		DDR3	I/O
VTT0	T10	REF		A7	SA_DQ[3]		DDR3	I/O
VTT0	U10	REF		A8	SA_DQ[7]		DDR3	I/O
VTT0	W10	REF		A9	VSS		GND	, -
VTT0	Y10	RFF						

VTT0

A10

SA_DQ[0]

REF

Y10

I/O

DDR3

Dia	List by Pin I	Duffer		Dia		Duffer	
Pin Number	Pin Name	Buffer Type	Dir.	Pin Number	Pin Name	Buffer Type	Dir
A11	VTT0	REF		AA10	VSS	GND	
A12	VTT0	REF		AA26	VCC	REF	
A13	VTT0	REF		AA27	VCC	REF	
A14	VTT0	REF		AA28	VCC	REF	
A15	VSS_SENSE_VTT	Analog	0	AA29	VCC	REF	
A16	BCLK	DIFF	I	AA30	VCC	REF	
	-	CLK	-	AA31	VCC	REF	
A17	DPLL_REF_SSCLK #	DIFF CLK	Ι	AA32	VCC	REF	
		DIFF		AA33	VCC	REF	
A18	DPLL_REF_SSCLK	CLK	I	AA34	VCC	REF	
A19	RSVD			AA35	VCC	REF	
A20	RSVD			AB1	SB_BS[0]	DDR3	0
A21	DMI_RX#[3]	DMI	Ι	AB2	SA_BS[1]	DDR3	0
A22	DMI_RX[3]	DMI	Ι	AB3	SA_RAS#	DDR3	0
A23	VSS	GND		AB4	VDDQ	REF	
A24	DMI_RX#[0]	DMI	Ι	AB5	SB_MA[10]	DDR3	0
A25	PEG_RBIAS	Analog	Ι	AB6	VSS	GND	
A26	PEG_ICOMPO	Analog	Ι	AB7	VDDQ	REF	
A27	VSS	GND		AB8	SB_CS#[0]	DDR3	0
A28	PEG_RX[13]	PCIe	Ι	AB9	RSVD		
A29	VSS	GND		AB10	VTT0	REF	
A30	PEG_RX[15]	PCIe	Ι	AB26	VSS	GND	
A31	PEG_RX#[15]	PCIe	Ι	AB27	VSS	GND	
A32	PEG_RX[11]	PCIe	Ι	AB28	VSS	GND	
A33	RSVD_NCTF			AB29	VSS	GND	
A34	RSVD_NCTF			AB30	VSS	GND	
A35	VSS_NCTF			AB31	VSS	GND	
AA1	RSVD_TP			AB32	VSS	GND	
AA2	RSVD_TP			AB33	VSS	GND	
AA3	SA_MA[3]	DDR3	0	AB34	VSS	GND	
AA4	RSVD_TP			AB35	VSS	GND	
AA5	RSVD_TP			AC1	VDDQ	REF	
AA6	SA_CK[0]	DDR3	0	AC2	VSS	GND	
AA7	SA_CK#[0]	DDR3	0	AC3	SA_BS[0]	DDR3	0
AA8	SA_MA[2]	DDR3	0	AC4	VSS	GND	
AA9	SA_MA[5]	DDR3	0	AC5	SB_CAS#	DDR3	0

	P. rPGA988A I List by Pin			Table 69	List by Pin	Number	
Pin Number	Pin Name	Buffer Type	Dir.	Pin Number	Pin Name	Buffer Type	Dir
AC6	SB_WE#	DDR3	0	AE2	SA_CS#[0]	DDR3	0
AC7	SB_ODT[0]	DDR3	0	AE3	RSVD_TP		
AC8	VSS	GND		AE4	VDDQ	REF	
AC9	RSVD			AE5	RSVD_TP		
AC10	VTT0	REF		AE6	VSS	GND	
AC26	VCC	REF		AE7	VDDQ	REF	
AC27	VCC	REF		AE8	SA_CS#[1]	DDR3	0
AC28	VCC	REF		AE9	SA_WE#	DDR3	0
AC29	VCC	REF		AE10	VTT0	REF	
AC30	VCC	REF		AE26	VSS	GND	
AC31	VCC	REF		AE27	VSS	GND	
AC32	VCC	REF		AE28	VSS	GND	
AC33	VCC	REF		AE29	VSS	GND	
AC34	VCC	REF		AE30	VSS	GND	
AC35	VCC	REF		AE31	VSS	GND	
AD1	SB_ODT[1]	DDR3	0	AE32	VSS	GND	
AD2	RSVD_TP			AE33	VSS	GND	
AD3	RSVD_TP			AE34	VSS	GND	
AD4	SA_MA[10]	DDR3	0	AE35	VSS	GND	
AD5	RSVD_TP			AF1	VDDQ	REF	
AD6	SB_CS#[1]	DDR3	0	AF2	VSS	GND	
AD7	RSVD_TP			AF3	SB_DQ[32]	DDR3	I/C
AD8	SA_ODT[0]	DDR3	0	AF4	VSS	GND	
AD9	RSVD_TP			AF5	SA_DQ[33]	DDR3	I/C
AD10	VSS	GND		AF6	SA_DQ[36]	DDR3	I/C
AD26	VCC	REF		AF7	SB_MA[13]	DDR3	0
AD27	VCC	REF		AF8	VSS	GND	
AD28	VCC	REF		AF9	SA_ODT[1]	DDR3	0
AD29	VCC	REF		AF10	VTT0	REF	
AD30	VCC	REF		AF26	VCC	REF	
AD31	VCC	REF		AF27	VCC	REF	
AD32	VCC	REF		AF28	VCC	REF	
AD33	VCC	REF		AF29	VCC	REF	
AD34	VCC	REF		AF30	VCC	REF	
AD35	VCC	REF		AF31	VCC	REF	
AE1	SA_CAS#	DDR3	0	AF32	VCC	REF	1

5		D				D	
Pin Number	Pin Name	Buffer Type	Dir.	Pin Number	Pin Name	Buffer Type	Dir.
AF33	VCC	REF		AH14	VTT0	REF	
AF34	VCC	REF		AH15	RSVD		
AF35	VCC	REF		AH16	VAXG	REF	
AG1	SB_DQ[33]	DDR3	I/O	AH17	VSS	GND	
AG2	SB_DQS[4]	DDR3	I/O	AH18	VAXG	REF	
AG3	SB_DQ[37]	DDR3	I/O	AH19	VAXG	REF	
AG4	SB_DQ[36]	DDR3	I/O	AH20	VSS	GND	
AG5	SA_DQ[37]	DDR3	I/O	AH21	VAXG	REF	
AG6	SA_DM[4]	DDR3	0	AH22	BPM#[5]	GTL	I/O
AG7	RSVD_TP			AH23	BPM#[7]	GTL	I/O
AG8	SA_MA[13]	DDR3	0	AH24	SKTOCC#		
AG9	RSVD			AH25	RSVD		
AG10	VSS	GND		AH26	VSS	GND	
AG26	VCC	REF		AH27	VSS	GND	
AG27	VCC	REF		AH28	VSS	GND	
AG28	VCC	REF		AH29	VSS	GND	
AG29	VCC	REF		AH30	VSS	GND	
AG30	VCC	REF		AH31	VSS	GND	
AG31	VCC	REF		AH32	VSS	GND	
AG32	VCC	REF		AH33	VSS	GND	
AG33	VCC	REF		AH34	VSS	GND	
AG34	VCC	REF		AH35	VSS	GND	
AG35	VCC	REF		AJ1	VDDQ	REF	
AH1	SB_DM[4]	DDR3	0	AJ2	VSS	GND	
AH2	SB_DQS#[4]	DDR3	I/O	AJ3	SB_DQ[34]	DDR3	I/O
AH3	VSS	GND		AJ4	SB_DQ[38]	DDR3	I/O
AH4	SB_DQ[39]	DDR3	I/O	AJ5	VSS	GND	
AH5	SA_DQ[32]	DDR3	I/O	AJ6	SA_DQ[39]	DDR3	I/O
AH6	VSS	GND		AJ7	SA_DQ[38]	DDR3	I/O
AH7	SA_DQS#[4]	DDR3	I/O	AJ8	VSS	GND	1
AH8	SA_DQS[4]	DDR3	I/O	AJ9	SA_DQ[41]	DDR3	I/O
AH9	VSS	GND		AJ10	SA_DQ[40]	DDR3	I/O
AH10	VTT0	REF		AJ11	VSS	GND	
AH11	VTT0	REF		AJ12	RSVD_TP		
AH12	VTT0	REF		AJ13	RSVD_TP		
AH13	VSS	GND		AJ14	VSS	GND	

Pin Number	Pin Name	Buffer Type	Dir.	Pin Number	Pin Name	Buffer Type	Dir
AJ15	RSVD			AK16	VAXG	REF	
AJ16	VAXG	REF		AK17	VSS	GND	
AJ17	VSS	GND		AK18	VAXG	REF	
AJ18	VAXG	REF		AK19	VAXG	REF	
AJ19	VAXG	REF		AK20	VSS	GND	
AJ20	VSS	GND		AK21	VAXG	REF	
AJ21	VAXG	REF		AK22	BPM#[1]	GTL	I/C
AJ22	BPM#[0]	GTL	I/O	AK23	BPM#[6]	GTL	I/C
AJ23	VSS	GND		AK24	BPM#[2]	GTL	I/C
AJ24	BPM#[3]	GTL	I/O	AK25	VSS	GND	
AJ25	BPM#[4]	GTL	I/O	AK26	RSVD_TP		
AJ26	RSVD			AK27	VSS	GND	
AJ27	RSVD			AK28	CFG[10]	CMOS	I
AJ28	CFG[11]	CMOS	Ι	AK29	VSS	GND	
AJ29	CFG[15]	CMOS	Ι	AK30	CFG[17]	CMOS	Ι
AJ30	CFG[16]	CMOS	Ι	AK31	CFG[9]	CMOS	Ι
AJ31	VSS	GND		AK32	CFG[8]	CMOS	I
AJ32	CFG[14]	CMOS	Ι	AK33	VID[1]	CMOS	0
AJ33	RSVD			AK34	VID[2]	CMOS	0
AJ34	VCC_SENSE	Analog	0	AK35	VID[0]	CMOS	0
AJ35	VSS_SENSE	Analog	0	AL1	SM_RCOMP[0]	Analog	Ι
AK1	SB_DQ[35]	DDR3	I/O	AL2	SB_DM[5]	DDR3	0
AK2	SB_DQ[45]	DDR3	I/O	AL3	VSS	GND	
AK3	SB_DQ[40]	DDR3	I/O	AL4	SB_DQS#[5]	DDR3	I/C
AK4	SB_DQ[41]	DDR3	I/O	AL5	SB_DQS[5]	DDR3	I/C
AK5	SB_DQ[44]	DDR3	I/O	AL6	VSS	GND	
AK6	SA_DQ[34]	DDR3	I/O	AL7	SA_DQ[45]	DDR3	I/C
AK7	SA_DQ[35]	DDR3	I/O	AL8	SA_DQ[47]	DDR3	I/C
AK8	SA_DQ[44]	DDR3	I/O	AL9	VSS	GND	
AK9	SA_DQS#[5]	DDR3	I/O	AL10	SA_DQ[42]	DDR3	I/C
AK10	SA_DQS[5]	DDR3	I/O	AL11	SA_DQ[51]	DDR3	I/C
AK11	SA_DQ[46]	DDR3	I/O	AL12	VSS	GND	
AK12	SA_DQ[43]	DDR3	I/O	AL13	SA_DQ[61]	DDR3	I/C
AK13	SM_DRAMPWROK	DDR3	0	AL14	RSTIN#	CMOS	I
AK14	CATERR#	GTL	I/O	AL15	PM_SYNC	CMOS	I
AK15	THERMTRIP#	Async GTL	0	AL16	VAXG	REF	

External Design Specification

Table 69	. rPGA988A List by Pin		r Pin	Table 69). rPGA988A F List by Pin I		Pin
Pin Number	Pin Name	Buffer Type	Dir.	Pin Number	Pin Name	Buffer Type	Dir.
AL17	VSS	GND		AM18	VAXG	REF	
AL18	VAXG	REF		AM19	VAXG	REF	
AL19	VAXG	REF		AM20	VSS	GND	
AL20	VSS	GND		AM21	VAXG	REF	
AL21	VAXG	REF		AM22	GFX_VID[0]	CMOS	0
AL22	RSVD			AM23	GFX_VID[4]	CMOS	0
AL23	VSS	GND		AM24	GFX_IMON	Analog	Ι
AL24	RSVD			AM25	VSS	GND	
AL25	RSVD			AM26	TAPPWRGOOD	Async	0
AL26	RSVD_TP					CMOS	
AL27	RSVD			AM27	VSS	GND	
AL28	RSVD			AM28	CFG[1]	CMOS	I
AL29	RSVD			AM29	VSS	GND	
AL30	CFG[4]	CMOS	I	AM30	CFG[0]	CMOS	I
AL31	VSS	GND		AM31	CFG[5]	CMOS	I
AL32	CFG[3]	CMOS	I	AM32	CFG[7]	CMOS	I
AL33	CSC[1]/VID[4]	CMOS	I/O	AM33	CSC[2]/VID[5]	CMOS	I/O
AL34	VSS	GND		AM34	PROC_DPRSLPVR	CMOS	0
AL35	CSC[0]/VID[3]	CMOS	I/O	AM35	VID[6]	CMOS	0
AM1	SM_RCOMP[1]	Analog	Ι	AN1	SM_RCOMP[2]	Analog	I
AM2	VSS	GND		AN2	SB_DQ[43]	DDR3	I/O
AM3	SB_DQ[47]	DDR3	I/O	AN3	SB_DQ[53]	DDR3	I/O
AM4	SB_DQ[46]	DDR3	I/O	AN4	SB_DQ[52]	DDR3	I/O
AM5	VSS	GND		AN5	SB_DQ[49]	DDR3	I/O
AM6	SB_DQ[42]	DDR3	I/O	AN6	SB_DQ[51]	DDR3	I/O
AM7	SA_DM[5]	DDR3	0	AN7	SB_DQ[56]	DDR3	I/O
AM8	VSS	GND		AN8	SA_DQ[48]	DDR3	I/O
AM9	SA_DQ[52]	DDR3	I/O	AN9	SA_DQ[53]	DDR3	I/O
AM10	SA_DQ[49]	DDR3	I/O	AN10	SA_DM[6]	DDR3	0
AM11	VSS	GND		AN11	SA_DQS[6]	DDR3	I/O
AM12	SA_DQ[56]	DDR3	I/O	AN12	SA_DQ[57]	DDR3	I/O
AM13	SA_DQ[58]	DDR3	I/O	AN13	SA_DM[7]	DDR3	0
AM14	VSS	GND		AN14	VCCPWRGOOD_1	Async CMOS	Ι
AM15	VTTPWRGOOD	Async CMOS	Ι	AN15	PM_EXT_TS#[0]	CMOS	Ι
AM16	VAXG	REF		AN16	VAXG	REF	
AM17	VSS	GND		AN17	VSS	GND	

	List by Pin I	Number			List by Pin	Number	1
Pin Number	Pin Name	Buffer Type	Dir.	Pin Number	Pin Name	Buffer Type	Dir
AN18	VAXG	REF		AP16	VAXG	REF	
AN19	VAXG	REF		AP17	VSS	GND	
AN20	VSS	GND		AP18	VAXG	REF	
AN21	VAXG	REF		AP19	VAXG	REF	
AN22	GFX_VID[2]	CMOS	0	AP20	VSS	GND	
AN23	VSS	GND		AP21	VAXG	REF	
AN24	GFX_VID[6]	CMOS	0	AP22	GFX_VID[1]	CMOS	0
AN25	DBR#		0	AP23	GFX_VID[3]	CMOS	0
AN26	PROCHOT#	Async	I/O	AP24	GFX_VID[5]	CMOS	0
		GTL	-, Ŭ	AP25	RSVD		l
AN27	VCCPWRGOOD_0	Async CMOS	Ι	AP26	RESET_OBS#	Async CMOS	0
AN28	ТСК	CMOS	Ι		PREO#	Async	I
AN29	CFG[6]	CMOS	Ι	AP27	PREQ#	GTL	1
AN30	CFG[12]	CMOS	Ι	AP28	TMS	CMOS	I
AN31	VSS	GND		AP29	TDO_M	CMOS	0
AN32	CFG[13]	CMOS	Ι	AP30	RSVD		
AN33	PSI#	Async CMOS	0	AP31 AP32	CFG[2] RSVD	CMOS	I
AN34	VSS	GND		AP33	RSVD		
AN35	ISENSE	Analog	Ι	AP34	VSS	GND	
AP1	RSVD_NCTF			AP35	RSVD_NCTF	GND	
AP2	VSS	GND		AR1	RSVD_NCTF		
AP3	SB_DQ[48]	DDR3	I/O	AR1 AR2	RSVD_NCTF		
AP4	VSS	GND		AR3	VSS	GND	
AP4	VSS	GND		AR4	SB_DM[6]	DDR3	0
AP5	SB_DQS[6]	DDR3	I/O	AR5	SB_DQS#[6]	DDR3	I/C
AP6	SB_DQ[57]	DDR3	I/O	AR6	VSS	GND	1/0
AP7	VSS	GND		AR7	SB_DQS[7]	DDR3	I/C
AP8	SB_DQ[58]	DDR3	I/O	AR8	SB_DQS[7] SB_DQS#[7]	DDR3	I/C
AP9	SB_DQ[61]	DDR3	I/O	AR9	VSS	GND	1,0
AP10	VSS	GND		AR10	SB_DQ[62]	DDR3	I/C
AP11	SA_DQS#[6]	DDR3	I/O	AR11	SA_DQ[50]	DDR3	I/C
AP12	SA_DQ[55]	DDR3	I/O	AR11 AR12	VSS	GND	1/0
AP13	VSS	GND		AR12	SA_DQS[7]	DDR3	I/C
AP14	SA_DQ[63]	DDR3	I/O	AR13 AR14	SA_DQ3[7] SA_DQ[62]	DDR3	I/C
AP15	PM_EXT_TS#[1]	CMOS	Ι	AR15	VSS	GND	1/0

Table 69	2. rPGA988A F List by Pin I		r Pin	Table 69	9. rPGA988A I List by Pin		Pin
Pin Number	Pin Name	Buffer Type	Dir.	Pin Number	Pin Name	Buffer Type	Dir.
AR16	VAXG	REF		AT17	VSS	GND	
AR17	VSS	GND		AT18	VAXG	REF	
AR18	VAXG	REF		AT19	VAXG	REF	
AR19	VAXG	REF		AT20	VSS	GND	
AR20	VSS	GND		AT21	VAXG	REF	
AR21	VAXG	REF		AT22	VSSAXG_SENSE	Analog	0
AR22	VAXG_SENSE	Analog	0	AT23	COMP3	Analog	Ι
AR23	VSS	GND		AT24	COMP2	Analog	Ι
AR24	VSS	GND		AT25	GFX_DPRSLPVR	CMOS	0
AR25	GFX_VR_EN	CMOS	0	AT26	COMP0	Analog	Ι
AR26	VSS	GND		AT27	TRST#	CMOS	Ι
AR27	TDO	CMOS	0	AT28	PRDY#	Async GTL	0
AR28	VSS	GND	T	AT29	TDI	CMOS	I
AR29 AR30	TDI_M BCLK_ITP	CMOS DIFF	I O	AT30	BCLK_ITP#	DIFF CLK	0
4021	VCC	CLK		AT31	RSVD		
AR31	VSS	GND		AT32	RSVD		
AR32	RSVD			AT33	RSVD_NCTF		
AR33	RSVD			AT34	RSVD_NCTF		
AR34 AR35	VSS_NCTF RSVD_NCTF			AT35	VSS_NCTF		
AR35 AT1	VSS NCTF			B1	VSS_NCTF		
AT1 AT2	RSVD TP			B2	VSS_NCTF		
AT2 AT3	RSVD_IF			B3	SB_DQ[3]	DDR3	I/O
AT4	SB_DQ[50]	DDR3	I/O	B4	VSS	GND	
AT4 AT5	SB_DQ[50]	DDR3	I/O I/O	B5	SB_DQ[0]	DDR3	I/O
AT6	SB_DQ[55]	DDR3	I/O I/O	B6	VSS	GND	
AT7	SB_DQ[60]	DDR3	I/O	B7	SA_DQ[13]	DDR3	I/O
AT8	SB_DQ[00] SB_DM[7]	DDR3	0	B8	VSS	GND	
AT9	SB_DQ[59]	DDR3	I/O	B9	SA_DM[0]	DDR3	0
AT10	SB_DQ[63]	DDR3	I/O I/O	B10	SA_DQ[4]	DDR3	I/O
AT10	SA_DQ[54]	DDR3	I/O I/O	B11	VSS	GND	
AT12	SA_DQ[60]	DDR3	I/O I/O	B12	VTT0	REF	
AT12	SA_DQ[00] SA_DQS#[7]	DDR3	I/O	B13	VSS	GND	
AT14	SA_DQ[59]	DDR3	I/O	B14	VTT0	REF	
AT15	PECI	Async	I/O I/O	B15	VTT_SENSE	Analog	0
AT16	VAXG	REF	1,0		•	•	

Pin	Pin Name	Buffer	Dir.	Pin	Pin Name	Buffer	D
Number	Fill Name	Туре	DII.	Number	Fin Name	Туре	
B16	BCLK#	DIFF	Ι	C17	FDI_INT	CMOS	
D17	VCC	CLK		C18	FDI_TX[3]	FDI	(
B17	VSS	GND		C19	VSS	GND	
B18	VSS	GND		C20	VSS	GND	
B19	RSVD			C21	FDI_TX[1]	FDI	(
B20	RSVD			C22	VSS	GND	
B21	VSS	GND		C23	DMI_RX#[1]	DMI	
B22	DMI_RX#[2]	DMI	Ι	C24	VSS	GND	
B23	DMI_RX[2]	DMI	Ι	C25	PEG_TX[15]	PCIe	(
B24	DMI_RX[0]	DMI	Ι	C26	PEG_TX#[15]	PCIe	(
B25	VSS	GND		C27	PEG_TX[14]	PCIe	(
B26	PEG_ICOMPI	Analog	Ι	C28	VSS	GND	
B27	PEG_RCOMPO	Analog	Ι	C29	VSS	GND	
B28	PEG_RX#[13]	PCIe	Ι	C30	PEG_RX[12]	PCIe	
B29	PEG_RX[14]	PCIe	Ι	C31	PEG_RX#[12]	PCIe	
B30	PEG_RX#[14]	PCIe	Ι	C32	VSS	GND	
B31	VSS	GND		C33	PEG_RX#[9]	PCIe	_
B32	PEG_RX#[11]	PCIe	Ι	C34	VSS	GND	_
B33	PEG_RX[9]	PCIe	Ι	C35	RSVD_NCTF		
B34	VSS_NCTF			D1	SB_DQ[8]	DDR3	I/
B35	RSVD_NCTF			D2	SB_DQ[9]	DDR3	-/ I/
C1	RSVD_NCTF			D3	VSS	GND	-,
C2	SB_DQ[12]	DDR3	I/O	D4	SB_DM[0]	DDR3	(
C3	SB_DQ[2]	DDR3	I/O	D5	SB_DQS#[0]	DDR3	I
C4	SB_DQ[7]	DDR3	I/O	D6	VSS	GND	-/
C5	SB_DQS[0]	DDR3	I/O	D7	SA_DM[1]	DDR3	(
C6	SA_DQ[15]	DDR3	I/O	D8	SA_DQ[8]	DDR3	I
C7	SA_DQ[2]	DDR3	I/O	D9	VSS	GND	-/
C8	SA_DQS[0]	DDR3	I/O	D10	SA_DQ[5]	DDR3	I/
C9	SA_DQS#[0]	DDR3	I/O	D10 D11		REF	- 1/
C10	SA_DQ[1]	DDR3	I/O	D11 D12	VTTO	REF	-
C11	VTT0	REF		D12 D13	VTTO	REF	-
C12	VTT0	REF		D13 D14		REF	-
C13	VTT0	REF		D14 D15	RSVD	KLF	-
C14	VTT0	REF		610	N3VD	DIFF	_
C15	RSVD			D16	PEG_CLK#	CLK	
C16	VSS	GND		D17	FDI_LSYNC[1]	CMOS	

Table 69	P. rPGA988A P List by Pin I		Pin	Table 69	9. rPGA988A F List by Pin I		Pin
Pin Number	Pin Name	Buffer Type	Dir.	Pin Number	Pin Name	Buffer Type	Dir.
D18	FDI_TX#[3]	FDI	0	E19	FDI_TX#[5]	FDI	0
D19	FDI_TX#[2]	FDI	0	E20	FDI_TX[5]	FDI	0
D20	FDI_TX[2]	FDI	0	E21	VSS	GND	
D21	FDI_TX#[1]	FDI	0	E22	FDI_TX#[0]	FDI	0
D22	FDI_TX[0]	FDI	0	E23	DMI_TX[2]	DMI	0
D23	DMI_RX[1]	DMI	Ι	E24	VSS	GND	
D24	DMI_TX#[0]	DMI	0	E25	VTT1	REF	
D25	DMI_TX[0]	DMI	0	E26	VTT1	REF	
D26	VSS	GND		E27	PEG_TX[12]	PCIe	0
D27	PEG_TX#[14]	PCIe	0	E28	PEG_TX#[12]	PCIe	0
D28	PEG_TX[13]	PCIe	0	E29	VSS	GND	
D29	PEG_TX#[13]	PCIe	0	E30	RSVD		
D30	VSS	GND		E31	RSVD		
D31	PEG_RX[10]	PCIe	Ι	E32	VSS	GND	
D32	PEG_RX#[10]	PCIe	Ι	E33	PEG_RX#[8]	PCIe	Ι
D33	VSS	GND		E34	PEG_RX[5]	PCIe	Ι
D34	PEG_RX[7]	PCIe	Ι	E35	VSS	GND	
D35	PEG_RX#[7]	PCIe	Ι	F1	SB_DQ[11]	DDR3	I/O
E1	SB_DM[1]	DDR3	0	F2	SB_DQ[10]	DDR3	I/O
E2	VSS	GND		F3	SB_DQ[14]	DDR3	I/O
E3	SB_DQS[1]	DDR3	I/O	F4	SB_DQS#[1]	DDR3	I/O
E4	SB_DQ[4]	DDR3	I/O	F5	SB_DQ[13]	DDR3	I/O
E5	VSS	GND		F6	SM_DRAMRST#	DDR3	0
E6	SA_DQ[10]	DDR3	I/O	F7	SA_DQ[11]	DDR3	I/O
E7	SA_DQ[14]	DDR3	I/O	F8	SA_DQS#[1]	DDR3	I/O
E8	VSS	GND		F9	SA_DQS[1]	DDR3	I/O
E9	SA_DQ[12]	DDR3	I/O	F10	SA_DQ[9]	DDR3	I/O
E10	SA_DQ[6]	DDR3	I/O	F11	VTT0	REF	
E11	VSS	GND		F12	VTT0	REF	
E12	VTT0	REF		F13	VTT0	REF	
E13	VSS	GND		F14	VTT0	REF	
E14	VTT0	REF		F15	RSVD_TP		
E15	RSVD_TP			F16	VSS	GND	
E16	PEG_CLK	DIFF	Ι	F17	FDI_FSYNC[0]	CMOS	Ι
		CLK		F18	FDI_LSYNC[0]	CMOS	Ι
E17	FDI_FSYNC[1]	CMOS	I	F19	VSS	GND	
E18	VSS	GND					

Pin		Buffer		Pin		Buffer	
Number	Pin Name	Туре	Dir.	Number	Pin Name	Туре	Dir
F20	FDI_TX[6]	FDI	0	G21	FDI_TX#[4]	FDI	0
F21	FDI_TX#[6]	FDI	0	G22	FDI_TX[4]	FDI	0
F22	VSS	GND		G23	DMI_TX[3]	DMI	0
F23	DMI_TX#[2]	DMI	0	G24	DMI_TX#[1]	DMI	0
F24	DMI_TX[1]	DMI	0	G25	RSVD		
F25	VSS	GND		G26	VTT1	REF	
F26	VTT1	REF		G27	VTT1	REF	
F27	VSS	GND		G28	VTT1	REF	
F28	PEG_TX[11]	PCIe	0	G29	PEG_TX[10]	PCIe	0
F29	PEG_TX#[11]	PCIe	0	G30	PEG_TX[9]	PCIe	0
F30	VSS	GND		G31	VSS	GND	
F31	PEG_RX#[6]	PCIe	Ι	G32	PEG_RX#[4]	PCIe	I
F32	PEG_RX[6]	PCIe	Ι	G33	PEG_RX[4]	PCIe	I
F33	PEG_RX[8]	PCIe	Ι	G34	VSS	GND	
F34	PEG_RX#[5]	PCIe	Ι	G35	PEG_RX#[3]	PCIe	I
F35	PEG_RX[3]	PCIe	Ι	H1	VDDQ	REF	
G1	SB_DQ[20]	DDR3	I/O	H2	VSS	GND	
G2	SB_DQ[17]	DDR3	I/O	H3	SB_DM[2]	DDR3	0
G3	VSS	GND		H4	SB_DQS[2]	DDR3	I/C
G4	SB_DQ[15]	DDR3	I/O	H5	VSS	GND	
G5	SB_DQ[21]	DDR3	I/O	H6	SB_DQ[16]	DDR3	I/C
G6	VSS	GND		H7	SA_DM[2]	DDR3	0
G7	SA_DQ[20]	DDR3	I/O	H8	VSS	GND	
G8	SA_DQ[17]	DDR3	I/O	H9	SA_DQS[2]	DDR3	I/C
G9	VSS	GND		H10	SA_DQ[16]	DDR3	I/C
G10	SA_DQ[21]	DDR3	I/O	H11	VSS	GND	
G11	VTT0	REF		H12	VTT0	REF	
G12	VTT0	REF		H13	VSS	GND	
G13	VTT0	REF		H14	VTT0	REF	
G14	VTT0	REF		H15	VSS	GND	
G15	VTT_SELECT	CMOS	0	H16	RSVD_TP		
G16	COMP1	Analog	Ι	H17	RSVD		
G17	RSVD			H18	VSS	GND	
G18	FDI_TX#[7]	FDI	0	H19	VTT1	REF	
G19	FDI_TX[7]	FDI	0	H20	VTT1	REF	
G20	VSS	GND		H21	VTT1	REF	

Table 69	. rPGA988A I List by Pin		Pin	Table 69	9. rPGA988A List by Pin		r Pin
Pin Number	Pin Name	Buffer Type	Dir.	Pin Number	Pin Name	Buffer Type	Dir.
H22	VSS	GND		J23	VTT1	REF	
H23	DMI_TX#[3]	DMI	0	J24	VTT1	REF	
H24	VSS	GND		J25	VTT1	REF	
H25	VTT1	REF		J26	VTT1	REF	
H26	VSS	GND		J27	VTT1	REF	
H27	VTT1	REF		J28	RSVD		
H28	VSS	GND		J29	RSVD		
H29	PEG_TX#[10]	PCIe	0	J30	VSS	GND	
H30	PEG_TX#[9]	PCIe	0	J31	PEG_TX#[7]	PCIe	0
H31	PEG_TX[7]	PCIe	0	J32	VSS	GND	
H32	VSS	GND		J33	PEG_RX#[2]	PCIe	Ι
H33	PEG_RX[2]	PCIe	Ι	J34	PEG_RX#[1]	PCIe	Ι
H34	PEG_RX[1]	PCIe	Ι	J35	PEG_RX[0]	PCIe	Ι
H35	VSS	GND		K1	SB_DM[3]	DDR3	0
J1	SB_DQ[23]	DDR3	I/O	K2	SB_DQ[25]	DDR3	I/O
J2	SB_DQ[22]	DDR3	I/O	К3	VSS	GND	
]3	SB_DQ[19]	DDR3	I/O	K4	SB_DQ[29]	DDR3	I/O
]4	SB_DQS#[2]	DDR3	I/O	К5	SB_DQ[28]	DDR3	I/O
J5	SB_DQ[24]	DDR3	I/O	K6	VSS	GND	
J6	SB_DQ[18]	DDR3	I/O	K7	SA_DQ[18]	DDR3	I/O
J7	SA_DQ[22]	DDR3	I/O	K8	SA_DQ[29]	DDR3	I/O
J8	SA_DQ[19]	DDR3	I/O	К9	VSS	GND	
]9	SA_DQS#[2]	DDR3	I/O	K10	VTT0	REF	
J10	SA_DQ[23]	DDR3	I/O	K26	VTT1	REF	
J11	VTT0	REF		K27	VSS	GND	
J12	VTT0	REF		K28	PEG_TX[8]	PCIe	0
J13	VTT0	REF		K29	PEG_TX#[8]	PCIe	0
J14	VTT0	REF		K30	VSS	GND	
J15	VTT0	REF		K31	PEG_TX[5]	PCIe	0
J16	VTT0	REF		K32	PEG_TX#[5]	PCIe	0
J17	RSVD	1		K33	VSS	GND	
J18	VTT1	REF		K34	VSS	GND	
J19	VSS	GND		K35	PEG_RX#[0]	PCIe	I
J20	VTT1	REF		L1	VDDQ	REF	
J21	VSS	GND		L2	VSS	GND	
J22	VTT1	REF		L3	SB_DQ[26]	DDR3	I/O

Table 69	 rPGA988A List by Pin 		r Pin	Table 69	 rPGA988A List by Pin 			
Pin Number	Pin Name	Buffer Type	Dir.	Pin Number	Pin Name	Buffer Type	Dir	
L4	SB_DQS#[3]	DDR3	I/O	M35	PEG_TX#[1]	PCIe	0	
L5	VSS	GND		N1	SB_MA[15]	DDR3	0	
L6	SA_DQ[28]	DDR3	I/O	N2	RSVD_TP			
L7	SA_DQ[24]	DDR3	I/O	N3	RSVD_TP			
L8	VSS	GND		N4	VDDQ	REF		
L9	SA_DQ[27]	DDR3	I/O	N5	SB_DQ[31]	DDR3	I/C	
L10	VTT0	REF		N6	VSS	GND		
L26	VCCPLL	REF		N7	VDDQ	REF		
L27	VCCPLL	REF		N8	SA_DQ[30]	DDR3	I/C	
L28	RSVD			N9	SA_DQS#[3]	DDR3	I/C	
L29	VSS	GND		N10	VTT0	REF		
L30	PEG_TX[3]	PCIe	0	N26	VSS	GND		
L31	PEG_TX#[4]	PCIe	0	N27	VSS	GND		
L32	VSS	GND		N28	VSS	GND		
L33	PEG_TX#[0]	PCIe	0	N29	VSS	GND		
L34	PEG_TX[0]	PCIe	0	N30	VSS	GND		
L35	VSS	GND		N31	VSS	GND		
M1	SB_DQ[27]	DDR3	I/O	N32	VSS	GND		
M2	SB_CKE[1]	DDR3	0	N33	VSS	GND		
M3	SB_CKE[0]	DDR3	0	N34	VSS	GND		
M4	SB_DQ[30]	DDR3	I/O	N35	VSS	GND		
M5	SB_DQS[3]	DDR3	I/O	P1	VDDQ	REF		
M6	SA_DQ[25]	DDR3	I/O	P2	VSS	GND		
M7	SA_DM[3]	DDR3	0	P3	SB_MA[11]	DDR3	0	
M8	SA_DQ[26]	DDR3	I/O	P4	VSS	GND	1	
M9	SA_DQS[3]	DDR3	I/O	P5	SB_MA[14]	DDR3	0	
M10	VSS	GND		P6	SA_CKE[1]	DDR3	0	
M26	VCCPLL	REF		P7	SA_CKE[0]	DDR3	0	
M27	RSVD			P8	VSS	GND	1	
M28	PEG_TX[6]	PCIe	0	P9	SA_DQ[31]	DDR3	I/C	
M29	PEG_TX#[6]	PCIe	0	P10	VTT0	REF	1	
M30	PEG_TX#[3]	PCIe	0	P26	VCC	REF		
M31	PEG_TX[4]	PCIe	0	P27	VCC	REF	1	
M32	PEG_TX[2]	PCIe	0	P28	VCC	REF	1	
M33	PEG_TX#[2]	PCIe	0	P29	VCC	REF	1	
M34	PEG_TX[1]	PCIe	0	P30	VCC	REF	1	

Table 69	. rPGA988A List by Pin		Pin	Table 69	. rPGA988A List by Pin		Pin
Pin Number	Pin Name	Buffer Type	Dir.	Pin Number	Pin Name	Buffer Type	Dir.
P31	VCC	REF		T27	VSS	GND	
P32	VCC	REF		T28	VSS	GND	
P33	VCC	REF		T29	VSS	GND	
P34	VCC	REF		T30	VSS	GND	
P35	VCC	REF		T31	VSS	GND	
R1	SB_MA[4]	DDR3	0	T32	VSS	GND	
R2	SB_MA[6]	DDR3	0	T33	VSS	GND	
R3	SB_MA[12]	DDR3	0	T34	VSS	GND	
R4	SB_MA[8]	DDR3	0	T35	VSS	GND	
R5	SB_MA[9]	DDR3	0	U1	VDDQ	REF	
R6	SB_MA[7]	DDR3	0	U2	VSS	GND	
R7	SB_BS[2]	DDR3	0	U3	SA_MA[12]	DDR3	0
R8	RSVD_TP			U4	VSS	GND	
R9	RSVD_TP			U5	SB_MA[0]	DDR3	0
R10	VSS	GND		U6	SA_MA[9]	DDR3	0
R26	VCC	REF		U7	SA_BS[2]	DDR3	0
R27	VCC	REF		U8	VSS	GND	
R28	VCC	REF		U9	RSVD		
R29	VCC	REF		U10	VTT0	REF	
R30	VCC	REF		U26	VCC	REF	
R31	VCC	REF		U27	VCC	REF	
R32	VCC	REF		U28	VCC	REF	
R33	VCC	REF		U29	VCC	REF	
R34	VCC	REF		U30	VCC	REF	
R35	VCC	REF		U31	VCC	REF	
T1	SA_MA[7]	DDR3	0	U32	VCC	REF	
T2	SA_MA[11]	DDR3	0	U33	VCC	REF	
Т3	SA_MA[14]	DDR3	0	U34	VCC	REF	
T4	VDDQ	REF		U35	VCC	REF	
Т5	SB_MA[2]	DDR3	0	V1	SA_MA[4]	DDR3	0
Т6	VSS	GND		V2	SB_MA[1]	DDR3	0
T7	VDDQ	REF		V3	SB_MA[3]	DDR3	0
Т8	SB_MA[5]	DDR3	0	V4	RSVD_TP		
Т9	RSVD			V5	RSVD_TP		
T10	VTT0	REF		V6	SB_CK#[1]	DDR3	0
T26	VSS	GND		V7	SB_CK[1]	DDR3	0

							1
Pin Number	Pin Name	Buffer Type	Dir.	Pin Number	Pin Name	Buffer Type	Dir
V8	SA_MA[6]	DDR3	0	Y4	VSS	GND	
V9	SA_MA[15]	DDR3	0	Y5	SA_CK#[1]	DDR3	0
V10	VSS	GND		Y6	SA_CK[1]	DDR3	0
V26	VCC	REF		Y7	SB_RAS#	DDR3	0
V27	VCC	REF		Y8	VSS	GND	
V28	VCC	REF		Y9	SA_MA[8]	DDR3	0
V29	VCC	REF		Y10	VTT0	REF	
V30	VCC	REF		Y26	VCC	REF	
V31	VCC	REF		Y27	VCC	REF	
V32	VCC	REF		Y28	VCC	REF	
V33	VCC	REF		Y29	VCC	REF	
V34	VCC	REF		Y30	VCC	REF	
V35	VCC	REF		Y31	VCC	REF	
W1	SA_MA[1]	DDR3	0	Y32	VCC	REF	
W2	RSVD_TP			Y33	VCC	REF	
W3	RSVD_TP			Y34	VCC	REF	
W4	VDDQ	REF		Y35	VCC	REF	
W5	SB_BS[1]	DDR3	0			•	
W6	VSS	GND					
W7	VDDQ	REF					
W8	SB_CK[0]	DDR3	0				
W9	SB_CK#[0]	DDR3	0				
W10	VTT0	REF					
W26	VSS	GND					
W27	VSS	GND					
W28	VSS	GND					
W29	VSS	GND					
W30	VSS	GND					
W31	VSS	GND					
W32	VSS	GND					
W33	VSS	GND					
W34	VSS	GND					
W35	VSS	GND					
Y1	VDDQ	REF					
Y2	VSS	GND					
Y3	SA_MA[0]	DDR3	0				

	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36
BV	C_TES T_BV71		DC_TES T_BV69	DC_TES T_BV68		VSS		VSS		SB_DQ S 6]	SB_DQ[4 8]		SB_DQ[4 7]		SB_DM[5]		SB_D QS #[5]	SB_D Q[3 8]		SB_DQ[3 7]		SB_DQ [3 4]		SB_DQ[3 3]	SB_DM[4]		SB_ODT[0]		SB_BS[0]		SB_BS[1	SM_R CO MP[2]		SB_CK[1]		SA_MA[2]
ΒU							SB_DM[6]		SB_D QS #[6]	VSS		SB_DQ [4 6]		VSS		SB_D QS[5]	VSS		SB_DQ[4 1]		VSS		SB_ODT[1]	VSS		SB_CAS #		VSS		SB_MA[1 0]	1	VD DQ	SB_CK#[1]		VSS	
ы	DC_TES T_BT71		DC_TES T_BT69	VSS							SB_DQ[5 3]		SB_DQ[4 2]		SB_DQ [4 3]		SB_DQ [4 5]	SB_D Q[3 9]		SB_DQS #[4]		SB_DQS[4]		SB_DQ[3 2]	SB_DQ [3 6]		SB_MA(1 3)		SB_CS#[1]		SB_WE#	SB_R AS		SA_BS[0]		SA_MA[0]
	C_TES T_BR71		VSS	VSS		SB_DQ[5 0]		SB_DQ(5 1]		SB_D Q[5 2]																										
BP												SB_DQ [4 9]		SA_DQ S #[6]		SB_DQ[4 4]			SB_DQ(4 0)				SB_DQ [3 5]			SB_CS#[0]				VSS			SM_RCO MP[1]			
BN	VSS			SB_DQ [5 4]			SA_DQ [! 0]	VSS		SA_DM[6]					SA_DQ [4 9]		SA_DQ [4 7]				SA_DQ[4 1]			SA_DQ[4 0]	SA_DQ [3 9]			SA_DQ [3 8]				SA_DQ[3 6]		VDDQ		
BM		VSS										SA_DQS[6]							SA_DQ[4 6]		VSS							VSS	SA_DQ(3 3]							
BL	VSS		SB_DQ[5 5]												VSS		VSS							VSS	SA_OD T[1]							VSS	<u> </u>	SA_RAS #		L
вк		SB_DQ [6 0]			SB_D Q(6 1]			SA_DQ[5 4]	VSS		SA_DQ[5 5]	VSS							VSS		SA_DQS #[5]							SA_DQ S[4]	SA_CAS				<u> </u>			SA_CK[1
БJ	6]		SB_D QS[7]			SA_DQ[6 0]		VSS	SA_DQ [5 6]		SA_DQ[5 1]		SA_D M[7		SA_DQ [5 3]		SA_DQ (4 3]		SA_DQ[4		SA_D QS			SA_DQ[4 5] SA_DQ[4	1]			SA_DQS	64 DOM	<u> </u>		SA_DQ[3 2] SA_CS#[<u> </u>	VDDQ		SA_CK#
зн	B_DQ [5	VSS	SB_DQ S]		VSS		VSS		2] SA_DM[6		5]			4]	VSS			#[4] SA_DM[4	7]	L		0]	<u> </u>	SA_BS[1]		1]
56	8]	SB_DQ [5	#[7]		SB_D M(7		SA_DQ [6	SA DQI5							SA_DQ [5		SA_DQ [4]		VSS			SA_DQ[3	SA DQI3]	VDD Q SA_ODT	⊢		SA_MA[1	┝──			VSS
BF	RSVD	η [.]	RSVD		<u></u>		1] VSS	7] SA_D QS		VSS SA_DQS		νπο	VTTO		2]		8]							5]	4]				0]	<u> </u>		3]	┝───	SA_WE#	<u> </u>	
BE	B_DQ[6	V55	SB_DQ[6				V55	7]		#[7]					VSS		VCAPO		VSS		VC /P0	VSS		VCAR0				VCAP1			VCAP1		VSS		VCAP1	
BD BC	2]	SA_DQ (6	3]		SB_D Q(5							νπο	VTTO		VSS		VCAPO		VSS		VC APO	VSS		VCAPO		VSS		VCAP1		VSS	VCAP1		vss	4	VCAP1	<u> </u>
BB	VSS	3]	RSVD		9]	SA_DQ[5		SA_DQ(5		VSS		νπο	VTTO		VSS		VCAPO		VSS		VC AP0	VSS		VCAR0		VSS		VCAP1		VSS	VCAP1	\vdash	VSS	┢──┦	VCAP1	<u> </u>
BA	100	VSS	NOVE			9		8]				110			100		VOATO		100		JONO	· a		TOATO		100		VOALT		100	VOALL		100	\square	TOAT T	
AY	VSS		RSVD			VSS		SA_DQ(6 2]		vss		VTTO	VSS		VCAPO		vss		VCAPO		VSS	VCAPO		VSS		VCAP1		VSS		VCAP1	VSS		VCAP1		VSS	
w		RSVD			VSS			2]		vss		νπο	VSS		VCAPO		vss	000000000	VCAPO		VSS			VSS		VCAP1	000000000	vss		VCAP1	8		VCAP1		vss	
AV	RSVD		RSVD			PM_EXT _TS#[0]		PM_EXT _TS#[1]																												
AU	RSVD	VSS	RSVD			2.0*[0]				VSS		VTTO	VTTO		VSS		VCAPO		VSS		VC AP0	VSS		VCAPO		VSS		VCAP1		VSS	VCAP1		VSS		VCAP1	
AT		RSVD			R S/D			VSS																												
AR	RSVD		RSVD							VSS		VTTO	VTTO		VSS		VCAPO		VSS		VC APO	VSS		VCARD		VSS		VCAP1		VSS	VCAP1		VSS		VCAP1	
AP		VSS				RSVD		VSS																												
AN	SF X_VID [4]		RSVD							VSS		νπο	VTTO		VCAPO		VSS		VCAPO		VSS	VCAPO		VSS		VCAP1		VSS		VCAP1	VSS		VCAP1		VSS	
١М		GF X_VI D [6]			G FX_VI D [5]	RSVD		VSS																												
AL	S FX_DP RSL P VR		GFX_M O N							VSS		VTTO	VTTO		VCAPO		VSS		VCAPO		VSS			VSS		VCAP1		VSS		VCAP1	vss		VCAP1		VSS	
٩K	RSVD	VSS	RSVD			RSVD		VSS		VCAP2		VCAP2	VCAP2		VCAPO		VSS		VCAPO		VSS	VCAPO		VSS		VCAP1		VSS		VCAP1	VSS		VCAP1		VSS	
AJ		VSS	_										_													_										

Figure 34. BGA1288 Ballmap (Top View, Upper-Left Quadrant)

35	34	33	32	31	30	29	28	27	26	25	24	23	22	21		19	18	17	16	15	14	13	12	11		9	8	7	6	5	4	3	2	1	
	SB_CK#[0]	SM_RCO MF[0]		SB_ MA[4]		SB_MA(2]		SB_MA[8]	8 SB_MA[1 4]		SB_BS[2]		SB_DQ[2 6]		SB_DQ(3 0]	SB_D Q[2 9]		SB_DQ[2 2]		SB_DQ[1 9]		SB_DQS[2]	0]		SB_DQ [1 5]		RSVD_N CTF		RSVD_N CTF	DC_TES T_BV5		DC_TES T_BV3		DC_TES T_BV1	В
DDQ		SB_CK[0]			SB_MA[3]		VDDQ		SB_MA[1 1]	VSS		SB_MA[1 5]		VSS		SB_D Q[2 5]	VSS		SB_DQ [2 3]		VSS		SB_DQ S #[2]	VSS		SB_DQ[1 4]		VSS							В
	SB_MA[0]	SB_MA[5]		SB_ MA[6]		SB_MA(1 2]		SB_MA[9]	0] SB_CKE		SB_CKE[1]		SB_DQ[2 7]		SB_DQ(3 1]	SB_DQS #[3]		3B_DQS 3]		SB_DQ[1 8]		SB_DM[2]	SB_DQ[1 7]							RSVD_N CTF		DC_TES T_BT3		DC_TES T_BT1	в
									SB MA7				SB DMI3												SB_DQ [1 6]		SB_DQ[1 1]		SB_DQ[1 0]	P P		VSS		DC_TES T_BR1	
_CK#[0]		SA_MA[1]			SB_MA[1]] SR [_] WA				38_DM[3			SB_D Q[2 8]				SB_DQ[2 4]			SB_DQ[2 1]												в
			SA_MA[5]		SA_MA[8]		SA_MA[1 4]			5]	SA_DM[3]			3]	[SA_DQ[2 4]			SA_DQ[2 5]				SA_DQS #[2]		SA_DQ[1 6]		SA_DQ[1 7]	SA_DQ[1 5]		VSS		SB_DQS[1]			VSS	В
	SA_CK[0]		VSS							VDDQ	VSS							VSS		SA_DM(2]												SB_DQS #[1]			BI
			SA_MA(6		VDDQ		VSS			0.1 D.0%	SA_CKE			SA_DQ5 #[3]	VSS			SA_DQ(2		SA_DO[1		SA_DQS[2]				0.1 DO10		SA_DO[1		SA_DQ [1	SB_DM[1]		SB_DQ[1	VSS	в
	VSS]		SA MAI7		SA_MA[1			6]	1]				SA_DQ[2			3]		9]			SM_DRA		VSS SA_DM[1	SA_DQ[2 0]		4] SA DQS		0] SA_DQ S[SB DOL		3]		в
	SA MAI1				34_MA[7] SA MA[1		2]			SA_DO				VSS SA_DQ[8]			SA_DQ[2				SA_DQ[1	MRST#]	VSS		#[1]		5A_DQ S(1]	2]		SB_DQ [7	VSS	В
	0] SA MA[3		VDDQ SA_MA(4		54_MA[1 1]		VDDQ			7]	VSS SA_DQ [3			9]	vss			2] SA_DQ[1		VSS SA_DQ[2		5A_DQ[1 1]									SB DQ[8		1	SB_DQ(9	в
]]				SA_MA[9			5/_Du(a 1]	0]				SA CKE			8]		1]				SA_DQ[8		SA_DO[1			SA_DQ[1]		SB_DQ [6	1	в
					VSS]							SA_BS[2	g SA_CKĘ				VDDQ	VDDQ		VSS] SA_DQ[9		2]	VSS SA_DO[7		3] SA_DQ[6		SB_DQ[3		J SB_DQS		В
													-]		VSS]]				#[0]	VSS SB_DQ[2	В
DDQ		VDDQ	VDDQ		VDDQ		VDDQ		VDDQ		VDDQ	VDDQ		VDDQ		VDDQ		VDDQ		VDDQ	VSS										0]		SB DQ15]	в
																					VDDQ_C		VDDQ_C		SA_DM (0	SA DOI3				SA_DQ [2	SB DMI0]		В
DDQ		VDDQ	VDDQ		VDDQ		VDDQ		VDDQ		VDDQ	VDDQ		VDDQ		VDDQ		VDDQ		VDDQ	К		К]]		VSS]]		SB_DQ [0	VSS	В
									8		:																	SA_DQS[SA_DQS			1	SB_DQ[4	B
vss		VSS	VSS VTT0_D		VSS VTT0_D		VSS VTT0_D		VSS VTT0_D		VSS VTT0_D	VSS VTT0_D		VSS		VSS VITO_D		VSS VTT0_D		VSS VTT0_D	VSS		VSS		vπo		VSS	0]		#[0]	VSS		SB_DQ[1		
/πο		VTTO	DR		DR		DR		DR		DR	DR		DR		DR		DR		DR	VTTO		VΠO			VSS		SA_DO[4	SA_DQ[5		RSVD		1	VSS	A
vss		Vee	VSS		VSS		VSS		VSS		Vee	VSS		VSS		VSS		VSS		VSS	VSS		VΠO			100		1	1		VSS		R S/D		A
			133		133		105		735		155	135		133		133		*55		7 00			110		VSS		SA_DO[0		SA_DO[1		V 30		CFG[6]	P	AL
vss		VSS	VSS		VSS		VSS		VSS		VSS	165		VSS		VSS		VSS		VSS	VSS		VΠO		133]		1		VSS		SPG[0]	VSS	A' Al
-33		133	100		100		103		755		100	-135		-135		100		155		100			- 110								100		RSVD_T	1.00	A
/Π0		VTTO	VAXG		WAXG		VAXG	-	VAXG	-	VAXG	VAXG		VAXG		VAXG		VTTO		VΠO	VTTO		VΠO			VITO		RSVD_T		VSS	V.55		P	VTT_SEL	A
			- Crista					-						- TAKG											VΠO		vss	P RGO OD		MPW RO			CFG[1]	ECT	A
vss		VSS	VAXG		WAXG		VAXG	-	VAXG	-	VAXG	VAXG		VAXG		VAXG		VTTO		VΠO	VTTO		VΠO					1		ĸ	CF G[0]		510[1]	VSS	A
/Π0		VTTO	VSS		VSS		Viss		VXXS		VSS	VSS		VSS		VSS		vss		vss	VAXG		VAXG				BCLK #	BCLK			CF G[4]		CFG[3]	CFG[2]	A
												-100		-100											VAXG						51 0[4]		CFG[5]	5, 6(2)	A

Figure 35. BGA1288 Ballmap (Top View, Upper-Right Quadrant)

Figure 36. BGA1288 Ballmap (Top View, Lower-Left Quadrant)

Figure 37. BGA1288 Ballmap (Top View, Lower-Right Quadrant)

	GA1288 P st by Ball	rocessor E Name	Ball		A1288 P t by Ball	rocessor I Name	Ball
Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	Dir
BCLKac71	AK7	DIFF CLK	Ι	DC_TEST_A5	A5		
BCLK #	AK8	DIFF CLK	Ι	DC_TEST_A68	A68		
BCLK_ITP	K71	DIFF CLK	0	DC_TEST_A69	A69		
BCLK_ITP #	J70	DIFF CLK	0	DC_TEST_A71	A71		
BPM#[0]	J69	GTL	I/O	DC_TEST_BR1	BR1		
BPM#[1]	J67	GTL	I/O	DC_TEST_BR71	BR71		
BPM#[2]	J62	GTL	I/O	DC_TEST_BT1	BT1		
BPM#[3]	K65	GTL	I/O	DC_TEST_BT3	BT3		
BPM#[4]	K62	GTL	I/O	DC_TEST_BT69	BT69		
BPM#[5]	J64	GTL	I/O	DC_TEST_BT71	BT71		
BPM#[6]	K69	GTL	I/O	DC_TEST_BV1	BV1		
BPM#[7]	M69	GTL	I/O	DC_TEST_BV3	BV3		
CATERR#	N61	GTL	I/O	DC_TEST_BV5	BV5		
CFG[0]	AL4	CMOS	Ι	DC_TEST_BV68	BV68		
CFG[1]	AM2	CMOS	Ι	DC_TEST_BV69	BV69		
CFG[2]	AK1	CMOS	Ι	DC_TEST_BV71	BV71		
CFG[3]	AK2	CMOS	Ι	DC_TEST_C3	C3		
CFG[4]	AK4	CMOS	Ι	DC_TEST_C69	C69		
CFG[5]	AJ2	CMOS	Ι	DC_TEST_C71	C71		
CFG[6]	AT2	CMOS	Ι	DC_TEST_E1	E1		
CFG[7]	AG7	CMOS	Ι	DC_TEST_E71	E71		
CFG[8]	AF4	CMOS	Ι	DMI_RX[0]	F9	DMI	Ι
CFG[9]	AG2	CMOS	Ι	DMI_RX[1]	J6	DMI	Ι
CFG[10]	AH1	CMOS	Ι	DMI_RX[2]	K9	DMI	Ι
CFG[11]	AC2	CMOS	Ι	DMI_RX[3]	J2	DMI	Ι
CFG[12]	AC4	CMOS	Ι	DMI_RX#[0]	F7	DMI	Ι
CFG[13]	AE2	CMOS	Ι	DMI_RX#[1]	J8	DMI	Ι
CFG[14]	AD1	CMOS	Ι	DMI_RX#[2]	K8	DMI	I
CFG[15]	AF8	CMOS	Ι	DMI_RX#[3]	J4	DMI	I
CFG[16]	AF6	CMOS	Ι	DMI_TX[0]	G17	DMI	0
CFG[17]	AB7	CMOS	Ι	DMI_TX[1]	M15	DMI	0
COMP0	AE66	Analog	Ι	DMI_TX[2]	G13	DMI	0
COMP1	AD69	Analog	Ι	DMI_TX[3]	J11	DMI	0
COMP2	AC70	Analog	Ι	DMI_TX#[0]	H17	DMI	0
COMP3	AD71	Analog	Ι	DMI_TX#[1]	K15	DMI	0
DBR#	W71		0	DMI_TX#[2]	J13	DMI	0

Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	Di
DMI_TX#[3]	F10	DMI	0	PEG CLK	L21	Diff CLK	I
DPLL REF SSCLK	Y2	DIFF CLK	I	PEG CLK#	J21	DIFF CLK	I
DPLL_REF_SSCLK#	W4	DIFF CLK	I	PEG ICOMPI	B12	Analog	I
FDI FSYNC[0]	AC7	CMOS	I	PEG ICOMPO	A13	Analog	I
FDI_FSYNC[1]	AC9	CMOS	I	PEG RBIAS	B11	Analog	I
FDI INT	AB5	CMOS	I	PEG RCOMPO	D11	Analog	I
FDI_LSYNC[0]	ADJ AA1	CMOS CMOS	I	PEG_RX[0]	F40	PCIe	I
FDI_LSTNC[0]	AA1 AB2	CMOS	I	PEG_RX[1]	J38	PCIe	I
FDI_TX[0]	K1	FDI	0	PEG_RX[2]	G34	PCIe	I
FDI_TX[1]	N5	FDI	0	PEG_RX[3]	M34	PCIe	I
FDI_TX[2]	N2	FDI	0	PEG_RX[4]	J28	PCIe	
FDI_TX[3]	R2	FDI	0	PEG_RX[5]	G25	PCIe	I
FDI_TX[4]	N9	FDI	0	PEG_RX[6]	K24	PCIe	I
FDI_TX[5]	R8	FDI	0	PEG_RX[7]	B28	PCIe	I
FDI_TX[6]	U6	FDI	0	PEG_RX[8]	A27	PCIe	I
FDI_TX[7]	W10	FDI	0	PEG_RX[9]	B25	PCIe	I
FDI_TX#[0]	L2	FDI	0	PEG_RX[10]	A24	PCIe	I
FDI_TX#[1]	N7	FDI	0	PEG_RX[11]	B21	PCIe	I
FDI_TX#[2]	M4	FDI	0	PEG_RX[12]	B19	PCIe	I
FDI_TX#[3]	P1	FDI	0	PEG_RX[13]	B18	PCIe	I
FDI_TX#[4]	N10	FDI	0	PEG_RX[14]	B16	PCIe	I
FDI_TX#[5]	R7	FDI	0	PEG_RX[15]	D15	PCIe	I
FDI_TX#[6]	U7	FDI	0	PEG_RX#[0]	G40	PCIe	Ι
FDI_TX#[7]	W8	FDI	0	PEG_RX#[1]	G38	PCIe	Ι
GFX_DPRSLPVR	AL71	CMOS	0	PEG_RX#[2]	H34	PCIe	I
GFX_IMON	AL69	CMOS	0	PEG_RX#[3]	P34	PCIe	I
GFX_VID[0]	AF71	CMOS	0	PEG_RX#[4]	G28	PCIe	I
GFX_VID[1]	AG67	CMOS	0	PEG_RX#[5]	H25	PCIe	I
GFX_VID[2]	AG70	CMOS	0	PEG_RX#[6]	H24	PCIe	I
GFX_VID[3]	AH71	CMOS	0	PEG_RX#[7]	D29	PCIe	I
GFX_VID[4]	AN71	CMOS	0	PEG_RX#[8]	B26	PCIe	I
GFX_VID[5]	AM67	CMOS	0	PEG_RX#[9]	D26	PCIe	I
GFX_VID[6]	AM70	CMOS	0	PEG_RX#[10]	B23	PCIe	I
GFX_VR_EN	AH69	CMOS	0	PEG_RX#[11]	D22	PCIe	I
ISENSE	A41	Analog	I	PEG_RX#[12]	A20	PCIe	I
PECI	N19	Async	I/O	PEG_RX#[13]	D19	PCIe	I

Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	Dir
PEG_RX#[14]	A17	PCIe	Ι	PM_SYNC	M17	CMOS	Ι
PEG_RX#[15]	B14	PCIe	Ι	PRDY#	U71	Async GTL	0
PEG_TX[0]	L40	PCIe	0	PREQ#	U69	Async GTL	Ι
PEG_TX[1]	N38	PCIe	0	PROC DETECT	M71		
PEG_TX[2]	N32	PCIe	0	PROC_DETECT	14171		
PEG_TX[3]	B39	PCIe	0	PROC_DPRSLPVR	F66	CMOS	0
PEG_TX[4]	B37	PCIe	0	PROCHOT#	N67	Async GTL	I/C
PEG_TX[5]	H32	PCIe	0	PSI#	F68	Async CMOS	0
PEG_TX[6]	A34	PCIe	0			Async	
PEG_TX[7]	D36	PCIe	0	RESET_OBS#	N70	CMOS	0
PEG_TX[8]	J30	PCIe	0	RSTIN#	G3	CMOS	Ι
PEG_TX[9]	B30	PCIe	0	RSVD	BE71		
PEG_TX[10]	D33	PCIe	0	RSVD	BE69		
PEG_TX[11]	N28	PCIe	0	RSVD	BB69		
PEG_TX[12]	M25	PCIe	0	RSVD	AY69		
PEG_TX[13]	N24	PCIe	0	RSVD	AW70		I/C
PEG_TX[14]	F21	PCIe	0	RSVD	A10		
PEG_TX[15]	L20	PCIe	0	RSVD	AA69		
PEG_TX#[0]	N40	PCIe	0	RSVD_TP	AA71		
PEG_TX#[1]	L38	PCIe	0	RSVD	AC69		
PEG_TX#[2]	M32	PCIe	0	RSVD_TP	AC71		
PEG_TX#[3]	D40	PCIe	0	RSVD	AH66		
PEG_TX#[4]	A38	PCIe	0	RSVD	AK66		
PEG_TX#[5]	G32	PCIe	0	RSVD	AK69		
PEG_TX#[6]	B33	PCIe	0	RSVD	AK71		
PEG_TX#[7]	B35	PCIe	0	RSVD	AM66		
PEG_TX#[8]	L30	PCIe	0	RSVD	AN69		
PEG_TX#[9]	A31	PCIe	0	RSVD	AP66		
PEG_TX#[10]	B32	PCIe	0	RSVD	AR69		
PEG_TX#[11]	L28	PCIe	0	RSVD	AR71		
PEG_TX#[12]	N26	PCIe	0	RSVD	AT67		
PEG_TX#[13]	M24	PCIe	0	RSVD	AT70		
PEG_TX#[14]	G21	PCIe	0	RSVD	AU2		
PEG_TX#[15]	J20	PCIe	0	RSVD	AU69		
PM_EXT_TS#[0]	AV66	CMOS	I/O	RSVD	AU71		
PM_EXT_TS#[1]	AV64	CMOS	I/O	RSVD	AV4		

Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	Dir
RSVD	AV69			SA_DM[0]	BB10	DDR3	0
RSVD	AV71			SA_DM[1]	BJ10	DDR3	I/C
RSVD	B7			SA_DM[2]	BM15	DDR3	0
RSVD	B9			SA_DM[3]	BN24	DDR3	0
RSVD	D8			SA_DM[4]	BG44	DDR3	0
RSVD	R64			SA_DM[5]	BG53	DDR3	0
RSVD	R66			SA_DM[6]	BN62	DDR3	0
RSVD	T2			SA_DM[7]	BH59	DDR3	I/C
RSVD	T4			SA_DQ[0]	AT8	DDR3	I/C
RSVD	U1			SA_DQ[1]	AT6	DDR3	I/C
RSVD	V2			SA_DQ[2]	BB5	DDR3	I/C
VCAP0_VSS_SENS	W64			SA_DQ[3]	BB9	DDR3	I/C
E				SA_DQ[4]	AV7	DDR3	I/C
VCAP0_SENSE	W66			SA_DQ[5]	AV6	DDR3	I/C
RSVD_NCTF	A6			SA_DQ[6]	BE6	DDR3	I/C
RSVD_TP	BR5			SA_DQ[7]	BE8	DDR3	I/C
RSVD_NCTF	BT5			SA_DQ[8]	BF11	DDR3	I/C
RSVD_NCTF	BV6			SA_DQ[9]	BE11	DDR3	I/C
RSVD_NCTF	BV8			SA_DQ[10]	BK5	DDR3	I/C
RSVD_NCTF	C5			SA_DQ[11]	BH13	DDR3	I/C
RSVD_NCTF	E3			SA_DQ[12]	BF9	DDR3	I/C
RSVD_NCTF	F1			SA_DQ[13]	BF6	DDR3	I/C
RSVD_TP	AN7			SA_DQ[14]	BK7	DDR3	I/C
RSVD_TP	AP2			SA_DQ[15]	BN8	DDR3	I/C
RSVD_TP	AU1			SA_DQ[16]	BN11	DDR3	I/C
SA_BS[0]	BT38	DDR3	0	SA_DQ[17]	BN9	DDR3	I/C
SA_BS[1]	BH38	DDR3	0	SA_DQ[18]	BG17	DDR3	I/C
SA_BS[2]	BF21	DDR3	0	SA_DQ[19]	BK15	DDR3	I/C
SA_CAS#	BK43	DDR3	0	SA_DQ[20]	BK9	DDR3	I/C
SA_CK[0]	BM34	DDR3	0	SA_DQ[21]	BG15	DDR3	I/C
SA_CK[1]	BK36	DDR3	0	SA_DQ[22]	BH17	DDR3	I/C
SA_CK#[0]	BP35	DDR3	0	SA_DQ[23]	BK17	DDR3	I/C
SA_CK#[1]	BH36	DDR3	0	SA_DQ[24]	BN20	DDR3	I/C
SA_CKE[0]	BF20	DDR3	0	SA_DQ[25]	BN17	DDR3	I/C
SA_CKE[1]	BK24	DDR3	0	SA_DQ[26]	BK25	DDR3	I/C
SA_CS#[0] SA_CS#[1]	BH40 BJ47	DDR3 DDR3	0 I/0	SA_DQ[27]	BH25	DDR3	I/C

Table 70.	BGA1288 P List by Ball		Ball	Table 70.	BGA1288 P List by Ball		Ball
Pin Nam	e Pin #	Buffer Type	Dir	Pin Name	e Pin #	Buffer Type	Dir
SA_DQ[28]	BJ20	DDR3	I/O	SA_DQS[0]	AY7	DDR3	I/O
SA_DQ[29]	BH21	DDR3	I/O	SA_DQS[1]	BJ5	DDR3	I/O
SA_DQ[30]	BG24	DDR3	I/O	SA_DQS[2]	BL13	DDR3	I/O
SA_DQ[31]	BG25	DDR3	I/O	SA_DQS[3]	BN21	DDR3	I/O
SA_DQ[32]	BJ40	DDR3	I/O	SA_DQS[4]	BK44	DDR3	I/O
SA_DQ[33]	BM43	DDR3	I/O	SA_DQS[5]	BH51	DDR3	I/O
SA_DQ[34]	BF47	DDR3	I/O	SA_DQS[6]	BM60	DDR3	I/O
SA_DQ[35]	BF48	DDR3	I/O	SA_DQS[7]	BE64	DDR3	I/O
SA_DQ[36]	BN40	DDR3	I/O	SA_DQS#[0]	AY5	DDR3	I/O
SA_DQ[37]	BH43	DDR3	I/O	SA_DQS#[1]	BJ7	DDR3	I/O
SA_DQ[38]	BN44	DDR3	I/O	SA_DQS#[2]	BN13	DDR3	I/O
SA_DQ[39]	BN47	DDR3	I/O	SA_DQS#[3]	BL21	DDR3	I/O
SA_DQ[40]	BN48	DDR3	I/O	SA_DQS#[4]	BH44	DDR3	I/O
SA_DQ[41]	BN51	DDR3	I/O	SA_DQS#[5]	BK51	DDR3	I/O
SA_DQ[42]	BH53	DDR3	I/O	SA_DQS#[6]	BP58	DDR3	I/O
SA_DQ[43]	BJ55	DDR3	I/O	SA_DQS#[7]	BE62	DDR3	I/O
SA_DQ[44]	BH48	DDR3	I/O	SA_MA[0]	BT36	DDR3	0
SA_DQ[45]	BJ48	DDR3	I/O	SA_MA[1]	BP33	DDR3	0
SA_DQ[46]	BM53	DDR3	I/O	SA_MA[2]	BV36	DDR3	0
SA_DQ[47]	BN55	DDR3	I/O	SA_MA[3]	BG34	DDR3	0
SA_DQ[48]	BF55	DDR3	I/O	SA_MA[4]	BG32	DDR3	0
SA_DQ[49]	BN57	DDR3	I/O	SA_MA[5]	BN32	DDR3	0
SA_DQ[50]	BN65	DDR3	I/O	SA_MA[6]	BK32	DDR3	0
SA_DQ[51]	BJ61	DDR3	I/O	SA_MA[7]	BJ30	DDR3	0
SA_DQ[52]	BF57	DDR3	I/O	SA_MA[8]	BN30	DDR3	0
SA_DQ[53]	BJ57	DDR3	I/O	SA_MA[9]	BF28	DDR3	0
SA_DQ[54]	BK64	DDR3	I/O	SA_MA[10]	BH34	DDR3	0
SA_DQ[55]	BK61	DDR3	I/O	SA_MA[11]	BH30	DDR3	0
SA_DQ[56]	BJ63	DDR3	I/O	SA_MA[12]	BJ28	DDR3	0
SA_DQ[57]	BF64	DDR3	I/O	SA_MA[13]	BF40	DDR3	0
SA_DQ[58]	BB64	DDR3	I/O	SA_MA[14]	BN28	DDR3	0
SA_DQ[59]	BB66	DDR3	I/O	SA_MA[15]	BN25	DDR3	0
SA_DQ[60]	BJ66	DDR3	I/O	SA_ODT[0]	BF43	DDR3	0
SA_DQ[61]	BF65	DDR3	I/O	SA_ODT[1]	BL47	DDR3	0
SA_DQ[62]	AY64	DDR3	I/O	SA_RAS#	BL38	DDR3	0
SA_DQ[63]	BC70	DDR3	I/O	SA_WE#	BF38	DDR3	0

	BGA1288 P ist by Ball.		Ball		BGA1288 P List by Ball		Ba
Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	1
SB_BS[0]	BV43	DDR3	0	SB_DQ[16]	BR10	DDR3]
SB_BS[1]	BV41	DDR3	0	SB_DQ[17]	BT12	DDR3]
SB_BS[2]	BV24	DDR3	0	SB_DQ[18]	BT15	DDR3	1
SB_CAS#	BU46	DDR3	0	SB_DQ[19]	BV15	DDR3]
SB_CK[0]	BU33	DDR3	0	SB_DQ[20]	BV12	DDR3]
SB_CK[1]	BV38	DDR3	0	SB_DQ[21]	BP12	DDR3]
SB_CK#[0]	BV34	DDR3	0	SB_DQ[22]	BV17	DDR3]
SB_CK#[1]	BU39	DDR3	0	SB_DQ[23]	BU16	DDR3]
SB_CKE[0]	BT26	DDR3	0	SB_DQ[24]	BP15	DDR3]
SB_CKE[1]	BT24	DDR3	0	SB_DQ[25]	BU19	DDR3]
SB_CS#[0]	BP46	DDR3	0	SB_DQ[26]	BV22	DDR3]
SB_CS#[1]	BT43	DDR3	0	SB_DQ[27]	BT22	DDR3]
SB_DM[0]	BB4	DDR3	0	SB_DQ[28]	BP19	DDR3]
SB_DM[1]	BL4	DDR3	0	SB_DQ[29]	BV19	DDR3]
SB_DM[2]	BT13	DDR3	0	SB_DQ[30]	BV20	DDR3]
SB_DM[3]	BP22	DDR3	0	SB_DQ[31]	BT20	DDR3]
SB_DM[4]	BV47	DDR3	0	SB_DQ[32]	BT48	DDR3]
SB_DM[5]	BV57	DDR3	0	SB_DQ[33]	BV48	DDR3]
SB_DM[6]	BU65	DDR3	0	SB_DQ[34]	BV50	DDR3]
SB_DM[7]	BF67	DDR3	0	SB_DQ[35]	BP49	DDR3]
SB_DQ[0]	BA2	DDR3	I/O	SB_DQ[36]	BT47	DDR3]
SB_DQ[1]	AW2	DDR3	I/O	SB_DQ[37]	BV52	DDR3	
SB_DQ[2]	BD1	DDR3	I/O	SB_DQ[38]	BV54	DDR3]
SB_DQ[3]	BE4	DDR3	I/O	SB_DQ[39]	BT54	DDR3]
SB_DQ[4]	AY1	DDR3	I/O	SB_DQ[40]	BP53	DDR3]
SB_DQ[5]	BC2	DDR3	I/O	SB_DQ[41]	BU53	DDR3]
SB_DQ[6]	BF2	DDR3	I/O	SB_DQ[42]	BT59	DDR3]
SB_DQ[7]	BH2	DDR3	I/O	SB_DQ[43]	BT57	DDR3]
SB_DQ[8]	BG4	DDR3	I/O	SB_DQ[44]	BP56	DDR3]
SB_DQ[9]	BG1	DDR3	I/O	SB_DQ[45]	BT55	DDR3]
SB_DQ[10]	BR6	DDR3	I/O	SB_DQ[46]	BU60	DDR3]
SB_DQ[11]	BR8	DDR3	I/O	SB_DQ[47]	BV59	DDR3]
SB_DQ[12]	BJ4	DDR3	I/O	SB_DQ[48]	BV61	DDR3]
SB_DQ[13]	BK2	DDR3	I/O	SB_DQ[49]	BP60	DDR3]
SB_DQ[14]	BU9	DDR3	I/O	SB_DQ[50]	BR66	DDR3	
SB_DQ[15]	BV10	DDR3	I/O	SB_DQ[51]	BR64	DDR3]

Table 70.	BGA1288 P List by Ball		Ball		A1288 P by Ball	rocessor E Name	Ball
Pin Name	e Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	Dir
SB_DQ[52]	BR62	DDR3	I/O	SB_MA[8]	BV27	DDR3	0
SB_DQ[53]	BT61	DDR3	I/O	SB_MA[9]	BT27	DDR3	0
SB_DQ[54]	BN68	DDR3	I/O	SB_MA[10]	BU42	DDR3	0
SB_DQ[55]	BL69	DDR3	I/O	SB_MA[11]	BU26	DDR3	0
SB_DQ[56]	BJ71	DDR3	I/O	SB_MA[12]	BT29	DDR3	0
SB_DQ[57]	BF70	DDR3	I/O	SB_MA[13]	BT45	DDR3	0
SB_DQ[58]	BG71	DDR3	I/O	SB_MA[14]	BV26	DDR3	0
SB_DQ[59]	BC67	DDR3	I/O	SB_MA[15]	BU23	DDR3	0
SB_DQ[60]	BK70	DDR3	I/O	SB_ODT[0]	BV45	DDR3	0
SB_DQ[61]	BK67	DDR3	I/O	SB_ODT[1]	BU49	DDR3	0
SB_DQ[62]	BD71	DDR3	I/O	SB_RAS#	BT40	DDR3	0
SB_DQ[63]	BD69	DDR3	I/O	SB_WE#	BT41	DDR3	0
SB_DQS[0]	BD4	DDR3	I/O	SM_DRAMPWROK	AM5	Async CMOS	I
SB_DQS[1]	BN4	DDR3	I/O	SM_DRAMRST#	BJ12	DDR3	0
SB_DQS[2]	BV13	DDR3	I/O	SM_DRAMRST#	BV33	Analog	I
SB_DQS[3]	BT17	DDR3	I/O	SM_RCOMP[1]	BP39	Analog	1
SB_DQS[4]	BT50	DDR3	I/O	SM_RCOMP[2]	BV40	Analog	I
SB_DQS[5]	BU56	DDR3	I/O		DV40	Analog Async	1
SB_DQS[6]	BV62	DDR3	I/O	TAPPWRGOOD	Y70	CMOS	0
SB_DQS[7]	BJ69	DDR3	I/O	ТСК	T67	CMOS	Ι
SB_DQS#[0]	BE2	DDR3	I/O	TDI	T69	CMOS	I
SB_DQS#[1]	BM3	DDR3	I/O	TDI_M	P71	CMOS	Ι
SB_DQS#[2]	BU12	DDR3	I/O	TDO	T71	CMOS	0
SB_DQS#[3]	BT19	DDR3	I/O	TDO_M	T70	CMOS	0
SB_DQS#[4]	BT52	DDR3	I/O	THERMTRIP#	N17	Async GTL	0
SB_DQS#[5]	BV55	DDR3	I/O	TMS	N65	CMOS	Ι
SB_DQS#[6]	BU63	DDR3	I/O	TRST#	P69	CMOS	Ι
SB_DQS#[7]	BG69	DDR3	I/O	VAXG	AD17	REF	
SB_MA[0]	BT34	DDR3	0	VAXG	AD19	REF	
SB_MA[1]	BP30	DDR3	0	VAXG	AD21	REF	
SB_MA[2]	BV29	DDR3	0	VAXG	AD23	REF	
SB_MA[3]	BU30	DDR3	0	VAXG	AD24	REF	
SB_MA[4]	BV31	DDR3	0	VAXG	AD26	REF	
SB_MA[5]	BT33	DDR3	0	VAXG	AD28	REF	
SB_MA[6]	BT31	DDR3	0	VAXG	AF14	REF	
SB_MA[7]	BP26	DDR3	0	VAXG	AF15	REF	

	st by Ball	Buffer	Dia		List by Ball	Buffer	
Pin Name	Pin #	Туре	Dir	Pin Name	Pin #	Туре	Di
VAXG	AF17	REF		VCAP0	AN53	PWR	
VAXG	AF19	REF		VCAP0	AN57	PWR	
VAXG	AF21	REF		VCAP0	AR48	PWR	
VAXG	AF23	REF		VCAP0	AR51	PWR	
VAXG	AF24	REF		VCAP0	AR55	PWR	
VAXG	AF26	REF		VCAP0	AU48	PWR	
VAXG	AF28	REF		VCAP0	AU51	PWR	
VAXG	AH12	REF		VCAP0	AU55	PWR	
VAXG	AH14	REF		VCAP0	AW50	PWR	
VAXG	AJ10	REF		VCAP0	AW53	PWR	
VAXG	AK12	REF		VCAP0	AW57	PWR	
VAXG	AK14	REF		VCAP0	AY50	PWR	
VAXG	AL19	REF		VCAP0	AY53	PWR	
VAXG	AL21	REF		VCAP0	AY57	PWR	
VAXG	AL23	REF		VCAP0	BB48	PWR	
VAXG	AL24	REF		VCAP0	BB51	PWR	
VAXG	AL26	REF		VCAP0	BB55	PWR	
VAXG	AL28	REF		VCAP0	BD48	PWR	
VAXG	AL30	REF		VCAP0	BD51	PWR	
VAXG	AL32	REF		VCAP0	BD55	PWR	
VAXG	AN19	REF		VCAP1	AK39	PWR	
VAXG	AN21	REF		VCAP1	AK42	PWR	
VAXG	AN23	REF		VCAP1	AK46	PWR	
VAXG	AN24	REF		VCAP1	AL39	PWR	
VAXG	AN26	REF		VCAP1	AL42	PWR	
VAXG	AN28	REF		VCAP1	AL46	PWR	
VAXG	AN30	REF		VCAP1	AN39	PWR	
VAXG	AN32	REF		VCAP1	AN42	PWR	
VAXG_SENSE	AF12	Analog	0	VCAP1	AN46	PWR	
VCAP0	AK50	PWR		VCAP1	AR37	PWR	
VCAP0	AK53	PWR		VCAP1	AR41	PWR	
VCAP0	AK57	PWR		VCAP1	AR44	PWR	
VCAP0	AL50	PWR		VCAP1	AU37	PWR	
VCAP0	AL53	PWR		VCAP1	AU41	PWR	1
VCAP0	AL57	PWR		VCAP1	AU44	PWR	
VCAP0	AN50	PWR	1	VCAP1	AW39	PWR	1

D: 11	5: "	Buffer			5: "	Buffer	
Pin Name	Pin #	Туре	Dir	Pin Name	Pin #	Туре	Dir
VCAP1	AW42	PWR		VCC	AA44	REF	
VCAP1	AW46	PWR		VCC	AA48	REF	
VCAP1	AY39	PWR		VCC	AA51	REF	
VCAP1	AY42	PWR		VCC	AA55	REF	
VCAP1	AY46	PWR		VCC	AB41	REF	
VCAP1	BB37	PWR		VCC	AB44	REF	
VCAP1	BB41	PWR		VCC	AB48	REF	
VCAP1	BB44	PWR		VCC	AB51	REF	
VCAP1	BD37	PWR		VCC	AB55	REF	
VCAP1	BD41	PWR		VCC	AD41	REF	
VCAP1	BD44	PWR		VCC	AD44	REF	
VCAP2	AA59	PWR		VCC	AD48	REF	
VCAP2	AA60	PWR		VCC	AD51	REF	
VCAP2	AB59	PWR		VCC	AD55	REF	
VCAP2	AB60	PWR		VCC	AF41	REF	
VCAP2	AD59	PWR		VCC	AF42	REF	
VCAP2	AD60	PWR		VCC	AF44	REF	
VCAP2	AF59	PWR		VCC	AF46	REF	
VCAP2	AF60	PWR		VCC	AF48	REF	
VCAP2	AH59	PWR		VCC	AF50	REF	
VCAP2	AH60	PWR		VCC	AF51	REF	
VCAP2	AK59	PWR		VCC	AF53	REF	
VCAP2	AK60	PWR		VCC	AF55	REF	
VCAP2	AK62	PWR		VCC	AF57	REF	
VCAP2	R59	PWR		VCC	B42	REF	
VCAP2	R60	PWR		VCC	B46	REF	1
VCAP2	U59	PWR		VCC	B49	REF	
VCAP2	U60	PWR		VCC	B53	REF	1
VCAP2	W59	PWR		VCC	B56	REF	1
VCAP2	W60	PWR		VCC	B60	REF	1
VCC	A43	REF		VCC	D43	REF	1
VCC	A47	REF		VCC	D45	REF	1
VCC	A50	REF		VCC	D47	REF	
VCC	A54	REF		VCC	D48	REF	
VCC	A57	REF		VCC	D50	REF	
VCC	AA41	REF	1	VCC	D52	REF	

							1
Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	C
VCC	D54	REF		VCC	R55	REF	
VCC	D55	REF		VCC	U41	REF	
VCC	D57	REF		VCC	U44	REF	
VCC	D59	REF		VCC	U48	REF	
VCC	E42	REF		VCC	U51	REF	
VCC	E46	REF		VCC	U55	REF	
VCC	E50	REF		VCC	W41	REF	
VCC	E53	REF		VCC	W44	REF	
VCC	E57	REF		VCC	W48	REF	
VCC	E60	REF		VCC	W51	REF	
VCC	F55	REF		VCC	W55	REF	
VCC	G44	REF		VCC_SENSE	F64	Analog	
VCC	G51	REF		VCCPLL	R37	REF	
VCC	G55	REF		VCCPLL	R39	REF	
VCC	G60	REF		VCCPLL	U37	REF	
VCC	H44	REF		VCCPLL	W37	REF	
VCC	H51	REF		VCCPLL	W39	REF	
VCC	H60	REF		VCCPWRGOOD 0	Y67	Async	
VCC	J55	REF				CMOS	
VCC	K44	REF		VCCPWRGOOD_1	AM7	Async CMOS	
VCC	K51	REF		VDDQ	BB15	REF	
VCC	K60	REF		VDDQ	BB17	REF	
VCC	L55	REF		VDDQ	BB19	REF	
VCC	M44	REF		VDDQ	BB21	REF	+
VCC	M51	REF		VDDQ	BB23	REF	
VCC	M60	REF		VDDQ	BB24	REF	\top
VCC	N42	REF		VDDQ	BB26	REF	
VCC	N44	REF		VDDQ	BB28	REF	-
VCC	N48	REF		VDDQ	BB30	REF	+
VCC	N51	REF		VDDQ	BB32	REF	+
VCC	N55	REF		VDDQ	BB33	REF	+
VCC	P60	REF		VDDQ	BB35	REF	+
VCC	R41	REF		VDDQ	BD15	REF	+
VCC	R44	REF		VDDQ	BD17	REF	+
VCC	R48	REF		VDDQ	BD19	REF	
VCC	R51	REF		VDDQ	BD21	REF	

		Buffer			_	Buffer	
Pin Name	Pin #	Туре	Dir	Pin Name	Pin #	Туре	Dir
VDDQ	BD23	REF		VSS	A36	GND	
VDDQ	BD24	REF		VSS	A40	GND	
VDDQ	BD26	REF		VSS	A45	GND	
VDDQ	BD28	REF		VSS	A48	GND	
VDDQ	BD30	REF		VSS	A52	GND	
VDDQ	BD32	REF		VSS	A55	GND	
VDDQ	BD33	REF		VSS	A59	GND	
VDDQ	BD35	REF		VSS	A64	GND	
VDDQ	BF15	REF		VSS	A66	GND	
VDDQ	BF16	REF		VSS	A8	GND	
VDDQ	BG43	REF		VSS	AA14	GND	
VDDQ	BH28	REF		VSS	AA15	GND	
VDDQ	BH32	REF		VSS	AA17	GND	
VDDQ	BJ38	REF		VSS	AA19	GND	
VDDQ	BL30	REF		VSS	AA21	GND	
VDDQ	BM25	REF		VSS	AA23	GND	
VDDQ	BN38	REF		VSS	AA24	GND	
VDDQ	BU28	REF		VSS	AA26	GND	
VDDQ	BU35	REF		VSS	AA28	GND	
VDDQ	BU40	REF		VSS	AA30	GND	
VDDQ_CK	BB12	REF		VSS	AA32	GND	
VDDQ_CK	BB14	REF		VSS	AA33	GND	
VID[0]	A61	CMOS	0	VSS	AA35	GND	
VID[1]	D61	CMOS	0	VSS	AA37	GND	
VID[2]	D62	CMOS	0	VSS	AA39	GND	
CSC[0]/VID[3]	A62	CMOS	I/O	VSS	AA4	GND	
CSC[1]VID[4]	B63	CMOS	I/O	VSS	AA42	GND	1
CSC[2]VID[5]	D64	CMOS	I/O	VSS	AA46	GND	
VID[6]	D66	CMOS	0	VSS	AA50	GND	
VSS	A12	GND		VSS	AA53	GND	1
VSS	A15	GND		VSS	AA57	GND	1
VSS	A19	GND		VSS	AA62	GND	1
VSS	A22	GND	1	VSS	AA64	GND	
VSS	A26	GND		VSS	AA66	GND	
VSS	A29	GND		VSS	AB14	GND	
VSS	A33	GND		VSS	AB15	GND	1

Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	Dir
VSS	AB17	GND		VSS	AF62	GND	
VSS	AB19	GND		VSS	AF69	GND	
VSS	AB21	GND		VSS	AG6	GND	
VSS	AB23	GND		VSS	AG64	GND	
VSS	AB24	GND		VSS	AG9	GND	
VSS	AB26	GND		VSS	AH15	GND	
VSS	AB28	GND		VSS	AH17	GND	
VSS	AB30	GND		VSS	AH19	GND	
VSS	AB32	GND		VSS	AH21	GND	
VSS	AB33	GND		VSS	AH23	GND	
VSS	AB35	GND		VSS	AH24	GND	
VSS	AB37	GND		VSS	AH26	GND	
VSS	AB39	GND		VSS	AH28	GND	
VSS	AB42	GND		VSS	AH30	GND	
VSS	AB46	GND		VSS	AH32	GND	
VSS	AB50	GND		VSS	AH33	GND	
VSS	AB53	GND		VSS	AH35	GND	
VSS	AB57	GND		VSS	AH37	GND	
VSS	AB62	GND		VSS	AH39	GND	
VSS	AB70	GND		VSS	AH4	GND	
VSS	AB9	GND		VSS	AH41	GND	
VSS	AC1	GND		VSS	AH42	GND	
VSS	AC10	GND		VSS	AH44	GND	
VSS	AC5	GND		VSS	AH46	GND	
VSS	AC64	GND		VSS	AH48	GND	
VSS	AC67	GND		VSS	AH50	GND	1
VSS	AD4	GND		VSS	AH51	GND	1
VSS	AD42	GND		VSS	AH53	GND	1
VSS	AD46	GND	1	VSS	AH55	GND	
VSS	AD50	GND		VSS	AH57	GND	
VSS	AD53	GND		VSS	AH62	GND	
VSS	AD57	GND		VSS	AJ70	GND	
VSS	AD62	GND		VSS	AK15	GND	
VSS	AE64	GND		VSS	AK17	GND	
VSS	AE70	GND		VSS	AK19	GND	
VSS	AF1	GND	1	VSS	AK21	GND	

Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	Dir
VSS	AK23	GND		VSS	AP70	GND	
VSS	AK24	GND		VSS	AR1	GND	
VSS	AK26	GND		VSS	AR14	GND	
VSS	AK28	GND		VSS	AR15	GND	
VSS	AK30	GND		VSS	AR17	GND	
VSS	AK32	GND		VSS	AR19	GND	
VSS	AK37	GND		VSS	AR21	GND	
VSS	AK41	GND		VSS	AR23	GND	
VSS	AK44	GND		VSS	AR24	GND	
VSS	AK48	GND		VSS	AR26	GND	
VSS	AK51	GND		VSS	AR28	GND	
VSS	AK55	GND		VSS	AR30	GND	
VSS	AK64	GND		VSS	AR32	GND	
VSS	AK70	GND		VSS	AR33	GND	
VSS	AL1	GND		VSS	AR35	GND	
VSS	AL33	GND		VSS	AR39	GND	
VSS	AL35	GND		VSS	AR4	GND	
VSS	AL37	GND		VSS	AR42	GND	
VSS	AL41	GND		VSS	AR46	GND	
VSS	AL44	GND		VSS	AR50	GND	
VSS	AL48	GND		VSS	AR53	GND	
VSS	AL51	GND		VSS	AR57	GND	
VSS	AL55	GND		VSS	AR62	GND	
VSS	AL62	GND		VSS	AT10	GND	
VSS	AM64	GND		VSS	AT64	GND	
VSS	AM8	GND		VSS	AU14	GND	1
VSS	AN37	GND		VSS	AU15	GND	1
VSS	AN4	GND		VSS	AU17	GND	1
VSS	AN41	GND		VSS	AU19	GND	
VSS	AN44	GND		VSS	AU21	GND	
VSS	AN48	GND		VSS	AU23	GND	
VSS	AN5	GND		VSS	AU24	GND	
VSS	AN51	GND		VSS	AU26	GND	1
VSS	AN55	GND		VSS	AU28	GND	1
VSS	AN62	GND		VSS	AU30	GND	1
VSS	AP64	GND	1	VSS	AU32	GND	1

Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	Dir
VSS	AU33	GND		VSS	AY37	GND	
VSS	AU35	GND		VSS	AY4	GND	
VSS	AU39	GND		VSS	AY41	GND	
VSS	AU4	GND		VSS	AY44	GND	
VSS	AU42	GND		VSS	AY48	GND	
VSS	AU46	GND		VSS	AY51	GND	
VSS	AU50	GND		VSS	AY55	GND	
VSS	AU53	GND		VSS	AY59	GND	
VSS	AU57	GND		VSS	AY62	GND	
VSS	AU62	GND		VSS	AY66	GND	+
VSS	AU70	GND		VSS	AY71	GND	+
VSS	AV1	GND		VSS	AY8	GND	
VSS	AV9	GND		VSS	B40	GND	
VSS	AW37	GND		VSS	B44	GND	
VSS	AW41	GND		VSS	B48	GND	
VSS	AW44	GND		VSS	B51	GND	
VSS	AW48	GND		VSS	B55	GND	
VSS	AW51	GND		VSS	B58	GND	
VSS	AW55	GND		VSS	B62	GND	
VSS	AW59	GND		VSS	B65	GND	
VSS	AW62	GND		VSS	BA70	GND	
VSS	AW67	GND		VSS	BB1	GND	
VSS	AY12	GND		VSS	BB39	GND	
VSS	AY14	GND		VSS	BB42	GND	
VSS	AY15	GND		VSS	BB46	GND	
VSS	AY17	GND		VSS	BB50	GND	
VSS	AY19	GND		VSS	BB53	GND	
VSS	AY21	GND		VSS	BB57	GND	
VSS	AY23	GND		VSS	BB62	GND	
VSS	AY24	GND		VSS	BB7	GND	
VSS	AY26	GND		VSS	BB71	GND	
VSS	AY28	GND		VSS	BD14	GND	
VSS	AY30	GND		VSS	BD39	GND	
VSS	AY32	GND		VSS	BD42	GND	
VSS	AY33	GND		VSS	BD46	GND	
VSS	AY35	GND		VSS	BD50	GND	

Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	Di
VSS	BD53	GND		VSS	BM17	GND	
VSS	BD57	GND		VSS	BM24	GND	
VSS	BE1	GND		VSS	BM32	GND	
VSS	BE65	GND		VSS	BM44	GND	
VSS	BE70	GND		VSS	BM51	GND	
VSS	BE9	GND		VSS	BM70	GND	
VSS	BF13	GND		VSS	BN1	GND	
VSS	BF30	GND		VSS	BN6	GND	
VSS	BF62	GND		VSS	BN64	GND	
VSS	BF8	GND		VSS	BN71	GND	
VSS	BG36	GND		VSS	BP42	GND	
VSS	BG51	GND		VSS	BR3	GND	
VSS	BH15	GND		VSS	BR68	GND	
VSS	BH20	GND		VSS	BR69	GND	
VSS	BH24	GND		VSS	BT68	GND	
VSS	BH47	GND		VSS	BU11	GND	
VSS	BH55	GND		VSS	BU14	GND	
VSS	BH57	GND		VSS	BU18	GND	
VSS	BH70	GND		VSS	BU21	GND	
VSS	BJ1	GND		VSS	BU25	GND	
VSS	BJ21	GND		VSS	BU32	GND	
VSS	BJ64	GND		VSS	BU37	GND	
VSS	BJ9	GND		VSS	BU44	GND	
VSS	BK10	GND		VSS	BU48	GND	
VSS	BK34	GND		VSS	BU51	GND	
VSS	BK53	GND		VSS	BU55	GND	
VSS	BK60	GND		VSS	BU58	GND	
VSS	BK63	GND		VSS	BU62	GND	
VSS	BL1	GND		VSS	BU7	GND	
VSS	BL20	GND		VSS	BV64	GND	
VSS	BL28	GND		VSS	BV66	GND	
VSS	BL40	GND		VSS	C68	GND	
VSS	BL48	GND		VSS	D10	GND	
VSS	BL55	GND		VSS	D13	GND	
VSS	BL57	GND		VSS	D17	GND	
VSS	BL71	GND		VSS	D20	GND	1

Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	Diı
VSS	D24	GND		VSS	H71	GND	
VSS	D27	GND		VSS	J40	GND	
VSS	D31	GND		VSS	J47	GND	
VSS	D34	GND		VSS	J48	GND	
VSS	D38	GND		VSS	J57	GND	
VSS	D41	GND		VSS	J65	GND	
VSS	D6	GND		VSS	J9	GND	
VSS	E12	GND		VSS	K11	GND	
VSS	E16	GND		VSS	K17	GND	
VSS	E30	GND		VSS	K25	GND	1
VSS	E33	GND		VSS	K32	GND	1
VSS	E37	GND		VSS	K34	GND	
VSS	E5	GND		VSS	K36	GND	
VSS	E68	GND		VSS	K4	GND	
VSS	E69	GND		VSS	K43	GND	
VSS	F20	GND		VSS	K53	GND	
VSS	F28	GND		VSS	К6	GND	
VSS	F4	GND		VSS	K64	GND	
VSS	F47	GND		VSS	L13	GND	
VSS	F48	GND		VSS	L47	GND	
VSS	F61	GND		VSS	L48	GND	
VSS	F71	GND		VSS	L57	GND	
VSS	G15	GND		VSS	L70	GND	
VSS	G20	GND		VSS	M1	GND	
VSS	G24	GND		VSS	M36	GND	
VSS	G30	GND		VSS	M42	GND	
VSS	G43	GND		VSS	M53	GND	
VSS	G47	GND		VSS	N15	GND	
VSS	G48	GND		VSS	N21	GND	
VSS	G53	GND		VSS	N30	GND	
VSS	G57	GND		VSS	N46	GND	
VSS	G70	GND		VSS	N50	GND	
VSS	H1	GND		VSS	N53	GND	
VSS	H36	GND		VSS	N57	GND	
VSS	H43	GND		VSS	N63	GND	
VSS	H53	GND		VSS	P4	GND	1

Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	Dir
VSS	R14	GND		VTT0	AD32	REF	
VSS	R42	GND		VTT0	AD33	REF	
VSS	R46	GND		VTT0	AD35	REF	
VSS	R5	GND		VTT0	AD37	REF	
VSS	R50	GND		VTT0	AD39	REF	
VSS	R53	GND		VTT0	AF30	REF	
VSS	R57	GND		VTT0	AF32	REF	
VSS	R62	GND		VTT0	AF33	REF	
VSS	R70	GND		VTT0	AF35	REF	
VSS	T1	GND		VTT0	AF37	REF	
VSS	U39	GND		VTT0	AF39	REF	
VSS	U4	GND		VTT0	AK33	REF	
VSS	U42	GND		VTT0	AK35	REF	
VSS	U46	GND		VTT0	AL12	REF	
VSS	U50	GND		VTT0	AL14	REF	
VSS	U53	GND		VTT0	AL15	REF	
VSS	U57	GND		VTT0	AL17	REF	
VSS	U62	GND		VTT0	AL59	REF	
VSS	U64	GND		VTT0	AL60	REF	
VSS	U9	GND		VTT0	AM10	REF	
VSS	V70	GND		VTT0	AN12	REF	
VSS	W1	GND		VTT0	AN14	REF	
VSS	W42	GND		VTT0	AN15	REF	
VSS	W46	GND		VTT0	AN17	REF	
VSS	W50	GND		VTT0	AN33	REF	
VSS	W53	GND		VTT0	AN35	REF	
VSS	W57	GND		VTT0	AN59	REF	
VSS	W6	GND		VTT0	AN60	REF	
VSS	W62	GND		VTT0	AN9	REF	
VSS	W69	GND		VTT0	AR12	REF	
VSS_SENSE	F63	Analog	0	VTT0	AR59	REF	
VSS_SENSE_VTT	R12	Analog	0	VTT0	AR60	REF	
VSSAXG_SENSE	AF10	Analog	0	VTT0	AU12	REF	1
VTT_SELECT	AN1	CMOS	0	VTT0	AU59	REF	
VTT_SENSE	N13	Analog	0	VTT0	AU60	REF	1
VTT0	AD30	REF		VTT0	AW12	REF	1

	SA1288 Pr st by Ball			Table 70. Bo	st by Ball	Name	
Pin Name	Pin #	Buffer Type	Dir	Pin Name	Pin #	Buffer Type	Dir
VTT0	AW14	REF		VTT0_DDR	AW15	REF	
VTT0	AW33	REF		VTT0_DDR	AW17	REF	
VTT0	AW35	REF		VTT0_DDR	AW19	REF	
VTT0	AW60	REF		VTT0_DDR	AW21	REF	
VTT0	AY10	REF		VTT0_DDR	AW23	REF	
VTT0	AY60	REF		VTT0_DDR	AW24	REF	
VTT0	BB59	REF		VTT0_DDR	AW26	REF	
VTT0	BB60	REF		VTT0_DDR	AW28	REF	
VTT0	BD59	REF		VTT0_DDR	AW30	REF	
VTT0	BD60	REF		VTT0_DDR	AW32	REF	
VTT0	BF59	REF		VTT1	AA12	REF	
VTT0	BF60	REF		VTT1	AB12	REF	
VTT0	R23	REF		VTT1	AD12	REF	
VTT0	R24	REF		VTT1	AD14	REF	
VTT0	R26	REF		VTT1	AD15	REF	
VTT0	R28	REF		VTT1	R15	REF	
VTT0	R30	REF		VTT1	R17	REF	
VTT0	R32	REF		VTT1	R19	REF	
VTT0	R33	REF		VTT1	R21	REF	
VTT0	R35	REF		VTT1	U12	REF	
VTT0	U23	REF		VTT1	U14	REF	
VTT0	U24	REF		VTT1	U15	REF	
VTT0	U26	REF		VTT1	U17	REF	
VTT0	U28	REF		VTT1	U19	REF	
VTT0	U30	REF		VTT1	U21	REF	
VTT0	U32	REF		VTT1	W12	REF	
VTT0	U33	REF		VTT1	W14	REF	
VTT0	U35	REF		VTT1	W15	REF	
VTT0	W23	REF		VTT1	W17	REF	1
VTT0	W24	REF		VTT1	W19	REF	1
VTT0	W26	REF	1	VTT1	W21	REF	
VTT0	W28	REF		VTTPWRGOOD	H15	Async	I
VTT0	W30	REF			1112	CMOS	1
VTT0	W32	REF					
VTT0	W33	REF					
VTT0	W35	REF					

Та	bl	е	7	1	

BGA1288 Processor Ball List by Ball Number

Table		3 Processor all Number		Pin #	Pin Name	Buffer Type	Dir
Pin #	Pin Name	Buffer Type	Dir	A66	VSS	GND	
A5	DC_TEST_A5	- 51		A68	DC_TEST_A68		
A5 A6	RSVD NCTF			A69	DC_TEST_A69		
	VSS	GND		A71	DC_TEST_A71		
A8		GND		AA1	FDI_LSYNC[0]	CMOS	I
A10	RSVD	CND		AA4	VSS	GND	
A12	VSS	GND	Ţ	AA12	VTT1	REF	
A13	PEG_ICOMPO	Analog	I	AA14	VSS	GND	
A15	VSS	GND		AA15	VSS	GND	
A17	PEG_RX#[14]	PCIe	I	AA17	VSS	GND	
A19	VSS	GND		AA19	VSS	GND	
A20	PEG_RX#[12]	PCIe	I	AA21	VSS	GND	
A22	VSS	GND	_	AA23	VSS	GND	
A24	PEG_RX[10]	PCIe	I	AA24	VSS	GND	
A26	VSS	GND		AA26	VSS	GND	
A27	PEG_RX[8]	PCIe	I	AA28	VSS	GND	
A29	VSS	GND		AA30	VSS	GND	
A31	PEG_TX#[9]	PCIe	0	AA32	VSS	GND	
A33	VSS	GND		AA33	VSS	GND	
A34	PEG_TX[6]	PCIe	0	AA35	VSS	GND	
A36	VSS	GND		AA37	VSS	GND	
A38	PEG_TX#[4]	PCIe	0	AA39	VSS	GND	
A40	VSS	GND		AA41	VCC	REF	
A41	ISENSE	Analog	Ι	AA42	VSS	GND	
A43	VCC	REF		AA44	VCC	REF	
A45	VSS	GND		AA46	VSS	GND	
A47	VCC	REF		AA40 AA48	VCC	REF	
A48	VSS	GND		AA40 AA50	VSS		
A50	VCC	REF				GND	
A52	VSS	GND		AA51	VCC	REF	
A54	VCC	REF		AA53	VSS	GND	
A55	VSS	GND		AA55	VCC	REF	
A57	VCC	REF		AA57	VSS	GND	
A59	VSS	GND		AA59	VCAP2	PWR	
A61	VID[0]	CMOS	0	AA60	VCAP2	PWR	
A62	CSC[0]/VID[3]	CMOS	I/O	AA62	VSS	GND	<u> </u>
A64	VSS	GND		AA64	VSS	GND	

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
AA66	VSS	GND		AB70	VSS	GND	
AA69	RSVD			AC1	VSS	GND	
AA71	RSVD_TP			AC2	CFG[11]	CMOS	I
AB2	FDI_LSYNC[1]	CMOS	I	AC4	CFG[12]	CMOS	I
AB5	FDI_INT	CMOS	I	AC5	VSS	GND	
AB7	CFG[17]	CMOS	I	AC7	FDI_FSYNC[0]	CMOS	I
AB9	VSS	GND		AC9	FDI_FSYNC[1]	CMOS	I
AB12	VTT1	REF		AC10	VSS	GND	
AB14	VSS	GND		AC64	VSS	GND	
AB15	VSS	GND		AC67	VSS	GND	
AB17	VSS	GND		AC69	RSVD		
AB19	VSS	GND		AC70	COMP2	Analog	I
AB21	VSS	GND		AC71	RSVD_TP		
AB23	VSS	GND		AD1	CFG[14]	CMOS	I
AB24	VSS	GND		AD4	VSS	GND	
AB26	VSS	GND		AD12	VTT1	REF	
AB28	VSS	GND		AD14	VTT1	REF	
AB30	VSS	GND		AD15	VTT1	REF	
AB32	VSS	GND		AD17	VAXG	REF	
AB33	VSS	GND		AD19	VAXG	REF	
AB35	VSS	GND		AD21	VAXG	REF	
AB37	VSS	GND		AD23	VAXG	REF	
AB39	VSS	GND		AD24	VAXG	REF	
AB41	VCC	REF		AD26	VAXG	REF	
AB42	VSS	GND		AD28	VAXG	REF	
AB44	VCC	REF		AD30	VTT0	REF	
AB46	VSS	GND		AD32	VTT0	REF	
AB48	VCC	REF		AD33	VTT0	REF	
AB50	VSS	GND		AD35	VTT0	REF	l
AB51	VCC	REF		AD37	VTT0	REF	l
AB53	VSS	GND		AD39	VTT0	REF	1
AB55	VCC	REF		AD41	VCC	REF	
AB57	VSS	GND		AD42	VSS	GND	1
AB59	VCAP2	PWR		AD44	VCC	REF	
AB60	VCAP2	PWR		AD46	VSS	GND	
AB62	VSS	GND		AD48	VCC	REF	

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
AD50	VSS	GND		AF46	VCC	REF	
AD51	VCC	REF		AF48	VCC	REF	
AD53	VSS	GND		AF50	VCC	REF	
AD55	VCC	REF		AF51	VCC	REF	
AD57	VSS	GND		AF53	VCC	REF	
AD59	VCAP2	PWR		AF55	VCC	REF	
AD60	VCAP2	PWR		AF57	VCC	REF	
AD62	VSS	GND		AF59	VCAP2	PWR	
AD69	COMP1	Analog	I	AF6	CFG[16]	CMOS	I
AD71	COMP3	Analog	Ι	AF60	VCAP2	PWR	
AE2	CFG[13]	CMOS	Ι	AF62	VSS	GND	
AE64	VSS	GND		AF69	VSS	GND	
AE66	COMP0	Analog	I	AF71	GFX_VID[0]	CMOS	0
AE70	VSS	GND		AF8	CFG[15]	CMOS	I
AF1	VSS	GND		AG2	CFG[9]	CMOS	I
AF4	CFG[8]	CMOS	Ι	AG6	VSS	GND	
AF10	VSSAXG_SENSE	Analog	0	AG7	CFG[7]	CMOS	I
AF12	VAXG_SENSE	Analog	0	AG9	VSS	GND	
AF14	VAXG	REF		AG64	VSS	GND	
AF15	VAXG	REF		AG67	GFX_VID[1]	CMOS	0
AF17	VAXG	REF		AG70	GFX_VID[2]	CMOS	0
AF19	VAXG	REF		AH1	CFG[10]	CMOS	Ι
AF21	VAXG	REF		AH4	VSS	GND	
AF23	VAXG	REF		AH12	VAXG	REF	
AF24	VAXG	REF		AH14	VAXG	REF	
AF26	VAXG	REF		AH15	VSS	GND	
AF28	VAXG	REF		AH17	VSS	GND	
AF30	VTT0	REF		AH19	VSS	GND	
AF32	VTT0	REF		AH21	VSS	GND	
AF33	VTT0	REF		AH23	VSS	GND	
AF35	VTT0	REF		AH24	VSS	GND	
AF37	VTT0	REF		AH26	VSS	GND	
AF39	VTT0	REF		AH28	VSS	GND	
AF41	VCC	REF		AH30	VSS	GND	
AF42	VCC	REF		AH32	VSS	GND	
AF44	VCC	REF		AH33	VSS	GND	

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
AH35	VSS	GND		AK28	VSS	GND	
AH37	VSS	GND		AK30	VSS	GND	
AH39	VSS	GND		AK32	VSS	GND	
AH41	VSS	GND		AK33	VTT0	REF	
AH42	VSS	GND		AK35	VTT0	REF	
AH44	VSS	GND		AK37	VSS	GND	
AH46	VSS	GND		AK39	VCAP1	PWR	
AH48	VSS	GND		AK41	VSS	GND	
AH50	VSS	GND		AK42	VCAP1	PWR	
AH51	VSS	GND		AK44	VSS	GND	
AH53	VSS	GND		AK46	VCAP1	PWR	
AH55	VSS	GND		AK48	VSS	GND	
AH57	VSS	GND		AK50	VCAP0	PWR	
AH59	VCAP2	PWR		AK51	VSS	GND	
AH60	VCAP2	PWR		AK53	VCAP0	PWR	
AH62	VSS	GND		AK55	VSS	GND	
AH66	RSVD			AK57	VCAP0	PWR	
AH69	GFX_VR_EN	CMOS	0	AK59	VCAP2	PWR	
AH71	GFX_VID[3]	CMOS	0	AK60	VCAP2	PWR	
AJ10	VAXG	REF		AK62	VCAP2	PWR	
AJ2	CFG[5]	CMOS	Ι	AK64	VSS	GND	
AJ70	VSS	GND		AK66	RSVD		
AK1	CFG[2]	CMOS	Ι	AK69	RSVD		
AK2	CFG[3]	CMOS	Ι	AK70	VSS	GND	
AK4	CFG[4]	CMOS	Ι	AK71	RSVD		
AK7	BCLK	DIFF CLK	Ι	AL1	VSS	GND	
AK8	BCLK #	DIFF CLK	Ι	AL4	CFG[0]	CMOS	Ι
AK12	VAXG	REF		AL12	VTT0	REF	1
AK14	VAXG	REF		AL14	VTT0	REF	
AK15	VSS	GND		AL15	VTT0	REF	
AK17	VSS	GND		AL17	VTT0	REF	
AK19	VSS	GND		AL19	VAXG	REF	1
AK21	VSS	GND		AL21	VAXG	REF	1
AK23	VSS	GND		AL23	VAXG	REF	1
AK24	VSS	GND		AL24	VAXG	REF	
AK26	VSS	GND		AL26	VAXG	REF	1

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
AL28	VAXG	REF		AN9	VTT0	REF	
AL30	VAXG	REF		AN12	VTT0	REF	
AL32	VAXG	REF		AN14	VTT0	REF	
AL33	VSS	GND		AN15	VTT0	REF	
AL35	VSS	GND		AN17	VTT0	REF	
AL37	VSS	GND		AN19	VAXG	REF	
AL39	VCAP1	PWR		AN21	VAXG	REF	
AL41	VSS	GND		AN23	VAXG	REF	
AL42	VCAP1	PWR		AN24	VAXG	REF	
AL44	VSS	GND		AN26	VAXG	REF	
AL46	VCAP1	PWR		AN28	VAXG	REF	
AL48	VSS	GND		AN30	VAXG	REF	
AL50	VCAP0	PWR		AN32	VAXG	REF	
AL51	VSS	GND		AN33	VTT0	REF	
AL53	VCAP0	PWR		AN35	VTT0	REF	
AL55	VSS	GND		AN37	VSS	GND	
AL57	VCAP0	PWR		AN39	VCAP1	PWR	
AL59	VTT0	REF		AN41	VSS	GND	
AL60	VTT0	REF		AN42	VCAP1	PWR	
AL62	VSS	GND		AN44	VSS	GND	
AL69	GFX_IMON	CMOS	0	AN46	VCAP1	PWR	
AL71	GFX_DPRSLPVR	CMOS	0	AN48	VSS	GND	
AM10	VTT0	REF		AN50	VCAP0	PWR	
AM2	CFG[1]	CMOS	Ι	AN51	VSS	GND	
AM5	SM DRAMPWROK	Async	Ι	AN53	VCAP0	PWR	
		CMOS		AN55	VSS	GND	
AM7	VCCPWRGOOD_1	Async CMOS	Ι	AN57	VCAP0	PWR	
AM8	VSS	GND		AN59	VTT0	REF	
AM64	VSS	GND		AN60	VTT0	REF	
AM66	RSVD			AN62	VSS	GND	
AM67	GFX_VID[5]	CMOS	0	AN69	RSVD		
AM70	GFX_VID[6]	CMOS	0	AN71	GFX_VID[4]	CMOS	0
AN1	VTT_SELECT	CMOS	0	AP2	RSVD_TP		
AN4	VSS	GND		AP64	VSS	GND	
AN5	VSS	GND		AP66	RSVD		
AN7	RSVD_TP		1	AP70	VSS	GND	

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Di
AR1	VSS	GND		AT10	VSS	GND	
AR4	VSS	GND		AT64	VSS	GND	
AR12	VTT0	REF		AT67	RSVD		
AR14	VSS	GND		AT70	RSVD		
AR15	VSS	GND		AU1	RSVD_TP		
AR17	VSS	GND		AU2	RSVD		
AR19	VSS	GND		AU4	VSS	GND	
AR21	VSS	GND		AU12	VTT0	REF	
AR23	VSS	GND		AU14	VSS	GND	
AR24	VSS	GND		AU15	VSS	GND	
AR26	VSS	GND		AU17	VSS	GND	
AR28	VSS	GND		AU19	VSS	GND	
AR30	VSS	GND		AU21	VSS	GND	
AR32	VSS	GND		AU23	VSS	GND	
AR33	VSS	GND		AU24	VSS	GND	
AR35	VSS	GND		AU26	VSS	GND	
AR37	VCAP1	PWR		AU28	VSS	GND	
AR39	VSS	GND		AU30	VSS	GND	
AR41	VCAP1	PWR		AU32	VSS	GND	
AR42	VSS	GND		AU33	VSS	GND	
AR44	VCAP1	PWR		AU35	VSS	GND	
AR46	VSS	GND		AU37	VCAP1	PWR	
AR48	VCAP0	PWR		AU39	VSS	GND	
AR50	VSS	GND		AU41	VCAP1	PWR	
AR51	VCAP0	PWR		AU42	VSS	GND	
AR53	VSS	GND		AU44	VCAP1	PWR	
AR55	VCAP0	PWR		AU46	VSS	GND	
AR57	VSS	GND		AU48	VCAP0	PWR	
AR59	VTT0	REF		AU50	VSS	GND	
AR60	VTT0	REF		AU51	VCAP0	PWR	
AR62	VSS	GND		AU53	VSS	GND	
AR69	RSVD			AU55	VCAP0	PWR	
AR71	RSVD			AU57	VSS	GND	
AT2	CFG[6]	CMOS	Ι	AU59	VTT0	REF	
AT6	SA_DQ[1]	DDR3	I/O	AU60	VTT0	REF	
AT8	SA_DQ[0]	DDR3	I/O	AU62	VSS	GND	

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	D
AU69	RSVD			AW53	VCAP0	PWR	
AU70	VSS	GND		AW55	VSS	GND	
AU71	RSVD			AW57	VCAP0	PWR	
AV1	VSS	GND		AW59	VSS	GND	
AV4	RSVD			AW60	VTT0	REF	1
AV6	SA_DQ[5]	DDR3	I/O	AW62	VSS	GND	
AV7	SA_DQ[4]	DDR3	I/O	AW67	VSS	GND	
AV9	VSS	GND		AW70	RSVD	DDR3	I,
AV64	PM_EXT_TS#[1]	CMOS	I/O	AY1	SB_DQ[4]	DDR3	I,
AV66	PM_EXT_TS#[0]	CMOS	I/O	AY4	VSS	GND	
AV69	RSVD			AY5	SA_DQS#[0]	DDR3	I,
AV71	RSVD			AY7	SA_DQS[0]	DDR3	I,
AW12	VTT0	REF		AY8	VSS	GND	
AW14	VTT0	REF		AY10	VTT0	REF	
AW15	VTT0_DDR	REF		AY12	VSS	GND	
AW17	VTT0_DDR	REF		AY14	VSS	GND	
AW19	VTT0_DDR	REF		AY15	VSS	GND	
AW2	SB_DQ[1]	DDR3	I/O	AY17	VSS	GND	
AW21	VTT0_DDR	REF		AY19	VSS	GND	
AW23	VTT0_DDR	REF		AY21	VSS	GND	
AW24	VTT0_DDR	REF		AY23	VSS	GND	
AW26	VTT0_DDR	REF		AY24	VSS	GND	
AW28	VTT0_DDR	REF		AY26	VSS	GND	
AW30	VTT0_DDR	REF		AY28	VSS	GND	
AW32	VTT0_DDR	REF		AY30	VSS	GND	
AW33	VTT0	REF		AY32	VSS	GND	
AW35	VTT0	REF		AY33	VSS	GND	
AW37	VSS	GND		AY35	VSS	GND	
AW39	VCAP1	PWR		AY37	VSS	GND	
AW41	VSS	GND		AY39	VCAP1	PWR	
AW42	VCAP1	PWR		AY41	VSS	GND	
AW44	VSS	GND		AY42	VCAP1	PWR	
AW46	VCAP1	PWR		AY44	VSS	GND	
AW48	VSS	GND		AY46	VCAP1	PWR	
AW50	VCAP0	PWR		AY48	VSS	GND	
AW51	VSS	GND		AY50	VCAP0	PWR	

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
AY51	VSS	GND		B51	VSS	GND	
AY53	VCAP0	PWR		B53	VCC	REF	
AY55	VSS	GND		B55	VSS	GND	
AY57	VCAP0	PWR		B56	VCC	REF	
AY59	VSS	GND		B58	VSS	GND	
AY60	VTT0	REF		B60	VCC	REF	
AY62	VSS	GND		B62	VSS	GND	
AY64	SA_DQ[62]	DDR3	I/O	B63	CSC[1]/VID[4]	CMOS	I/C
AY66	VSS	GND		B65	VSS	GND	
AY69	RSVD			BA2	SB_DQ[0]	DDR3	I/C
AY71	VSS	GND	1	BA70	VSS	GND	
B7	RSVD		1	BB1	VSS	GND	1
B9	RSVD			BB4	SB_DM[0]	DDR3	0
B11	PEG_RBIAS	Analog	I	BB5	SA_DQ[2]	DDR3	I/C
B12	PEG_ICOMPI	Analog	I	BB7	VSS	GND	
B14	PEG_RX#[15]	PCIe	I	BB9	SA_DQ[3]	DDR3	I/C
B16	PEG_RX[14]	PCIe	I	BB10	SA_DM[0]	DDR3	0
B18	PEG_RX[13]	PCIe	I	BB12	VDDQ_CK	REF	
B19	PEG_RX[12]	PCIe	I	BB14	VDDQ_CK	REF	
B21	PEG_RX[11]	PCIe	I	BB15	VDDQ	REF	
B23	PEG_RX#[10]	PCIe	I	BB17	VDDQ	REF	
B25	PEG_RX[9]	PCIe	I	BB19	VDDQ	REF	
B26	PEG_RX#[8]	PCIe	I	BB21	VDDQ	REF	
B28	PEG_RX[7]	PCIe	I	BB23	VDDQ	REF	
B30	PEG_TX[9]	PCIe	0	BB24	VDDQ	REF	1
B32	PEG_TX#[10]	PCIe	0	BB26	VDDQ	REF	1
B33	PEG_TX#[6]	PCIe	0	BB28	VDDQ	REF	1
B35	PEG_TX#[7]	PCIe	0	BB30	VDDQ	REF	1
B37	PEG_TX[4]	PCIe	0	BB32	VDDQ	REF	1
B39	PEG_TX[3]	PCIe	0	BB33	VDDQ	REF	1
B40	VSS	GND		BB35	VDDQ	REF	1
B42	VCC	REF		BB37	VCAP1	PWR	1
B44	VSS	GND		BB39	VSS	GND	1
B46	VCC	REF		BB41	VCAP1	PWR	1
B48	VSS	GND		BB42	VSS	GND	†
B49	VCC	REF		BB44	VCAP1	PWR	+

Table [·]		Processor all Number	Ball	Table [·]		Processor all Number	Ball
Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
BB46	VSS	GND		BD44	VCAP1	PWR	
BB48	VCAP0	PWR		BD46	VSS	GND	
BB50	VSS	GND		BD48	VCAP0	PWR	
BB51	VCAP0	PWR		BD50	VSS	GND	
BB53	VSS	GND		BD51	VCAP0	PWR	
BB55	VCAP0	PWR		BD53	VSS	GND	
BB57	VSS	GND		BD55	VCAP0	PWR	
BB59	VTT0	REF		BD57	VSS	GND	
BB60	VTT0	REF		BD59	VTT0	REF	
BB62	VSS	GND		BD60	VTT0	REF	
BB64	SA_DQ[58]	DDR3	I/O	BD69	SB_DQ[63]	DDR3	I/O
BB66	SA_DQ[59]	DDR3	I/O	BD71	SB_DQ[62]	DDR3	I/O
BB69	RSVD			BE1	VSS	GND	
BB71	VSS	GND		BE2	SB_DQS#[0]	DDR3	I/O
BC2	SB_DQ[5]	DDR3	I/O	BE4	SB_DQ[3]	DDR3	I/O
BC67	SB_DQ[59]	DDR3	I/O	BE6	SA_DQ[6]	DDR3	I/O
BC70	SA_DQ[63]	DDR3	I/O	BE8	SA_DQ[7]	DDR3	I/O
BD1	SB_DQ[2]	DDR3	I/O	BE9	VSS	GND	
BD4	SB_DQS[0]	DDR3	I/O	BE11	SA_DQ[9]	DDR3	I/O
BD14	VSS	GND		BE62	SA_DQS#[7]	DDR3	I/O
BD15	VDDQ	REF		BE64	SA_DQS[7]	DDR3	I/O
BD17	VDDQ	REF		BE65	VSS	GND	
BD19	VDDQ	REF		BE69	RSVD		
BD21	VDDQ	REF		BE70	VSS	GND	
BD23	VDDQ	REF		BE71	RSVD		
BD24	VDDQ	REF		BF2	SB_DQ[6]	DDR3	I/O
BD26	VDDQ	REF		BF6	SA_DQ[13]	DDR3	I/O
BD28	VDDQ	REF		BF8	VSS	GND	
BD30	VDDQ	REF		BF9	SA_DQ[12]	DDR3	I/O
BD32	VDDQ	REF		BF11	SA_DQ[8]	DDR3	I/O
BD33	VDDQ	REF		BF13	VSS	GND	
BD35	VDDQ	REF		BF15	VDDQ	REF	
BD37	VCAP1	PWR		BF16	VDDQ	REF	
BD39	VSS	GND		BF20	SA_CKE[0]	DDR3	0
BD41	VCAP1	PWR		BF21	SA_BS[2]	DDR3	0
BD42	VSS	GND		BF28	SA_MA[9]	DDR3	0

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
BF30	VSS	GND		BH24	VSS	GND	
BF38	SA_WE#	DDR3	0	BH25	SA_DQ[27]	DDR3	I/C
BF40	SA_MA[13]	DDR3	0	BH28	VDDQ	REF	
BF43	SA_ODT[0]	DDR3	0	BH30	SA_MA[11]	DDR3	0
BF47	SA_DQ[34]	DDR3	I/O	BH32	VDDQ	REF	
BF48	SA_DQ[35]	DDR3	I/O	BH34	SA_MA[10]	DDR3	0
BF55	SA_DQ[48]	DDR3	I/O	BH36	SA_CK#[1]	DDR3	0
BF57	SA_DQ[52]	DDR3	I/O	BH38	SA_BS[1]	DDR3	0
BF59	VTT0	REF		BH40	SA_CS#[0]	DDR3	0
BF60	VTT0	REF		BH43	SA_DQ[37]	DDR3	I/C
BF62	VSS	GND		BH44	SA_DQS#[4]	DDR3	I/C
BF64	SA_DQ[57]	DDR3	I/O	BH47	VSS	GND	
BF65	SA_DQ[61]	DDR3	I/O	BH48	SA_DQ[44]	DDR3	I/C
BF67	SB_DM[7]	DDR3	0	BH51	SA_DQS[5]	DDR3	I/C
BF70	SB_DQ[57]	DDR3	I/O	BH53	SA_DQ[42]	DDR3+C2	I/C
BG1	SB_DQ[9]	DDR3	I/O	·		85	_, -
BG4	SB_DQ[8]	DDR3	I/O	BH55	VSS	GND	
BG15	SA_DQ[21]	DDR3	I/O	BH57	VSS	GND	
BG17	SA_DQ[18]	DDR3	I/O	BH59	SA_DM[7]	DDR3	I/C
BG24	SA_DQ[30]	DDR3	I/O	BH70	VSS	GND	
BG25	SA_DQ[31]	DDR3	I/O	BJ1	VSS	GND	
BG32	SA_MA[4]	DDR3	0	BJ4	SB_DQ[12]	DDR3	I/C
BG34	SA_MA[3]	DDR3	0	BJ5	SA_DQS[1]	DDR3	I/C
BG36	VSS	GND		BJ7	SA_DQS#[1]	DDR3	I/C
BG43	VDDQ	REF		BJ9	VSS	GND	
BG44	SA_DM[4]	DDR3	0	BJ10	SA_DM[1]	DDR3	I/C
BG51	VSS	GND		BJ12	SM_DRAMRST#	DDR3	0
BG53	SA_DM[5]	DDR3	0	BJ20	SA_DQ[28]	DDR3	I/C
BG69	SB_DQS#[7]	DDR3	I/O	BJ21	VSS	GND	
BG71	SB_DQ[58]	DDR3	I/O	BJ28	SA_MA[12]	DDR3	0
BH2	SB_DQ[7]	DDR3	I/O	BJ30	SA_MA[7]	DDR3	0
BH13	SA_DQ[11]	DDR3	I/O	BJ38	VDDQ	REF	
BH15	VSS	GND		BJ40	SA_DQ[32]	DDR3	I/C
BH17	SA_DQ[22]	DDR3	I/O	BJ47	SA_CS#[1]	DDR3	I/C
BH20	VSS	GND		BJ48	SA_DQ[45]	DDR3	I/C
BH21	SA_DQ[29]	DDR3	I/O	BJ55	SA_DQ[43]	DDR3	I/C

Table 1		Processor all Number		Table ⁻		Processor all Number	Ball
Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
BJ61	SA_DQ[51]	DDR3	I/O	BL40	VSS	GND	
BJ63	SA_DQ[56]	DDR3	I/O	BL47	SA_ODT[1]	DDR3	0
BJ64	VSS	GND		BL48	VSS	GND	
BJ66	SA_DQ[60]	DDR3	I/O	BL55	VSS	GND	
BJ69	SB_DQS[7]	DDR3	I/O	BL57	VSS	GND	
BJ71	SB_DQ[56]	DDR3	I/O	BL69	SB_DQ[55]	DDR3	I/O
BK2	SB_DQ[13]	DDR3	I/O	BL71	VSS	GND	
BK5	SA_DQ[10]	DDR3	I/O	BM3	SB_DQS#[1]	DDR3	I/O
BK7	SA_DQ[14]	DDR3	I/O	BM15	SA_DM[2]	DDR3	0
BK9	SA_DQ[20]	DDR3	I/O	BM17	VSS	GND	
BK10	VSS	GND		BM24	VSS	GND	
BK15	SA_DQ[19]	DDR3	I/O	BM25	VDDQ	REF	
BK17	SA_DQ[23]	DDR3	I/O	BM32	VSS	GND	
BK24	SA_CKE[1]	DDR3	0	BM34	SA_CK[0]	DDR3	0
BK25	SA_DQ[26]	DDR3	I/O	BM43	SA_DQ[33]	DDR3	I/O
BK32	SA_MA[6]	DDR3	0	BM44	VSS	GND	
BK34	VSS	GND		BM51	VSS	GND	
BK36	SA_CK[1]	DDR3	0	BM53	SA_DQ[46]	DDR3	I/O
BK43	SA_CAS#	DDR3	0	BM60	SA_DQS[6]	DDR3	I/O
BK44	SA_DQS[4]	DDR3	I/O	BM70	VSS	GND	
BK51	SA_DQS#[5]	DDR3	I/O	BN1	VSS	GND	
BK53	VSS	GND		BN4	SB_DQS[1]	DDR3	I/O
BK60	VSS	GND		BN6	VSS	GND	
BK61	SA_DQ[55]	DDR3	I/O	BN8	SA_DQ[15]	DDR3	I/O
BK63	VSS	GND		BN9	SA_DQ[17]	DDR3	I/O
BK64	SA_DQ[54]	DDR3	I/O	BN11	SA_DQ[16]	DDR3	I/O
BK67	SB_DQ[61]	DDR3	I/O	BN13	SA_DQS#[2]	DDR3	I/O
BK70	SB_DQ[60]	DDR3	I/O	BN17	SA_DQ[25]	DDR3	I/O
BL1	VSS	GND		BN20	SA_DQ[24]	DDR3	I/O
BL4	SB_DM[1]	DDR3	0	BN21	SA_DQS[3]	DDR3	I/O
BL13	SA_DQS[2]	DDR3	I/O	BN24	SA_DM[3]	DDR3	0
BL20	VSS	GND		BN25	SA_MA[15]	DDR3	0
BL21	SA_DQS#[3]	DDR3	I/O	BN28	SA_MA[14]	DDR3	0
BL28	VSS	GND		BN30	SA_MA[8]	DDR3	0
BL30	VDDQ	REF		BN32	SA_MA[5]	DDR3	0
BL38	SA_RAS#	DDR3	0	BN38	VDDQ	REF	1

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
BN40	SA_DQ[36]	DDR3	I/O	BR66	SB_DQ[50]	DDR3	I/C
BN44	SA_DQ[38]	DDR3	I/O	BR68	VSS	GND	1
BN47	SA_DQ[39]	DDR3	I/O	BR69	VSS	GND	1
BN48	SA_DQ[40]	DDR3	I/O	BR71	DC_TEST_BR71		1
BN51	SA_DQ[41]	DDR3	I/O	BT1	DC_TEST_BT1		1
BN55	SA_DQ[47]	DDR3	I/O	BT3	DC_TEST_BT3		
BN57	SA_DQ[49]	DDR3	I/O	BT5	RSVD_NCTF		1
BN62	SA_DM[6]	DDR3	0	BT12	SB_DQ[17]	DDR3	I/C
BN64	VSS	GND		BT13	SB_DM[2]	DDR3	0
BN65	SA_DQ[50]	DDR3	I/O	BT15	SB_DQ[18]	DDR3	I/C
BN68	SB_DQ[54]	DDR3	I/O	BT17	SB_DQS[3]	DDR3	I/C
BN71	VSS	GND		BT19	SB_DQS#[3]	DDR3	I/C
BP12	SB_DQ[21]	DDR3	I/O	BT20	SB_DQ[31]	DDR3	I/C
BP15	SB_DQ[24]	DDR3	I/O	BT22	SB_DQ[27]	DDR3	I/C
BP19	SB_DQ[28]	DDR3	I/O	BT24	SB_CKE[1]	DDR3	0
BP22	SB_DM[3]	DDR3	0	BT26	SB_CKE[0]	DDR3	0
BP26	SB_MA[7]	DDR3	0	BT27	SB_MA[9]	DDR3	0
BP30	SB_MA[1]	DDR3	0	BT29	SB_MA[12]	DDR3	0
BP33	SA_MA[1]	DDR3	0	BT31	SB_MA[6]	DDR3	0
BP35	SA_CK#[0]	DDR3	0	BT33	SB_MA[5]	DDR3	0
BP39	SM_RCOMP[1]	Analog		BT34	SB_MA[0]	DDR3	0
BP42	VSS	GND		BT36	SA_MA[0]	DDR3	0
BP46	SB_CS#[0]	DDR3	0	BT38	SA_BS[0]	DDR3	0
BP49	SB_DQ[35]	DDR3	I/O	BT40	SB_RAS#	DDR3	0
BP53	SB_DQ[40]	DDR3	I/O	BT41	SB_WE#	DDR3	0
BP56	SB_DQ[44]	DDR3	I/O	BT43	SB_CS#[1]	DDR3	0
BP58	SA_DQS#[6]	DDR3	I/O	BT45	SB_MA[13]	DDR3	0
BP60	SB_DQ[49]	DDR3	I/O	BT47	SB_DQ[36]	DDR3	I/C
BR1	DC_TEST_BR1			BT48	SB_DQ[32]	DDR3	I/C
BR3	VSS	GND		BT50	SB_DQS[4]	DDR3	I/C
BR5	RSVD_TP			BT52	SB_DQS#[4]	DDR3	I/C
BR6	SB_DQ[10]	DDR3	I/O	BT54	SB_DQ[39]	DDR3	I/C
BR8	SB_DQ[11]	DDR3	I/O	BT55	SB_DQ[45]	DDR3	I/C
BR10	SB_DQ[16]	DDR3	I/O	BT57	SB_DQ[43]	DDR3	I/C
BR62	SB_DQ[52]	DDR3	I/O	BT59	SB_DQ[42]	DDR3	I/C
BR64	SB_DQ[51]	DDR3	I/O	BT61	SB_DQ[53]	DDR3	I/C

External Design Specification

Table		Processor all Number		Table		Processor all Number	Ball
Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
BT68	VSS	GND		BU65	SB_DM[6]	DDR3	0
BT69	DC_TEST_BT69			BV1	DC_TEST_BV1		
BT71	DC_TEST_BT71			BV3	DC_TEST_BV3		
BU7	VSS	GND		BV5	DC_TEST_BV5		
BU9	SB_DQ[14]	DDR3	I/O	BV6	RSVD_NCTF		
BU11	VSS	GND		BV8	RSVD_NCTF		
BU12	SB_DQS#[2]	DDR3	I/O	BV10	SB_DQ[15]	DDR3	I/O
BU14	VSS	GND		BV12	SB_DQ[20]	DDR3	I/O
BU16	SB_DQ[23]	DDR3	I/O	BV13	SB_DQS[2]	DDR3	I/O
BU18	VSS	GND		BV15	SB_DQ[19]	DDR3	I/O
BU19	SB_DQ[25]	DDR3	I/O	BV17	SB_DQ[22]	DDR3	I/O
BU21	VSS	GND		BV19	SB_DQ[29]	DDR3	I/O
BU23	SB_MA[15]	DDR3	0	BV20	SB_DQ[30]	DDR3	I/O
BU25	VSS	GND		BV22	SB_DQ[26]	DDR3	I/O
BU26	SB_MA[11]	DDR3	0	BV24	SB_BS[2]	DDR3	0
BU28	VDDQ	REF		BV26	SB_MA[14]	DDR3	0
BU30	SB_MA[3]	DDR3	0	BV27	SB_MA[8]	DDR3	0
BU32	VSS	GND		BV29	SB_MA[2]	DDR3	0
BU33	SB_CK[0]	DDR3	0	BV31	SB_MA[4]	DDR3	0
BU35	VDDQ	REF		BV33	SM_RCOMP[0]	Analog	Ι
BU37	VSS	GND		BV34	SB_CK#[0]	DDR3	0
BU39	SB_CK#[1]	DDR3	0	BV36	SA_MA[2]	DDR3	0
BU40	VDDQ	REF		BV38	SB_CK[1]	DDR3	0
BU42	SB_MA[10]	DDR3	0	BV40	SM_RCOMP[2]	Analog	Ι
BU44	VSS	GND		BV41	SB_BS[1]	DDR3	0
BU46	SB_CAS#	DDR3	0	BV43	SB_BS[0]	DDR3	0
BU48	VSS	GND		BV45	SB_ODT[0]	DDR3	0
BU49	SB_ODT[1]	DDR3	0	BV47	SB_DM[4]	DDR3	0
BU51	VSS	GND		BV48	SB_DQ[33]	DDR3	I/O
BU53	SB_DQ[41]	DDR3	I/O	BV50	SB_DQ[34]	DDR3	I/O
BU55	VSS	GND		BV52	SB_DQ[37]	DDR3	I/O
BU56	SB_DQS[5]	DDR3	I/O	BV54	SB_DQ[38]	DDR3	I/O
BU58	VSS	GND		BV55	SB_DQS#[5]	DDR3	I/O
BU60	SB_DQ[46]	DDR3	I/O	BV57	SB_DM[5]	DDR3	0
BU62	VSS	GND		BV59	SB_DQ[47]	DDR3	I/O
BU63	SB_DQS#[6]	DDR3	I/O	BV61	SB_DQ[48]	DDR3	I/O

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
BV62	SB_DQS[6]	DDR3	I/O	D50	VCC	REF	
BV64	VSS	GND		D52	VCC	REF	
BV66	VSS	GND		D54	VCC	REF	
BV68	DC_TEST_BV68			D55	VCC	REF	
BV69	DC_TEST_BV69			D57	VCC	REF	
BV71	DC_TEST_BV71			D59	VCC	REF	
C3	DC_TEST_C3			D61	VID[1]	CMOS	0
C5	RSVD_NCTF			D62	VID[2]	CMOS	0
C68	VSS	GND		D64	CSC[2]/VID[5]	CMOS	I/C
C69	DC_TEST_C69			D66	VID[6]	CMOS	0
C71	DC_TEST_C71			E1	DC_TEST_E1		
D6	VSS	GND		E3	RSVD_NCTF		
D8	RSVD			E5	VSS	GND	
D10	VSS	GND		E12	VSS	GND	
D12	PEG_RCOMPO	Analog	I	E16	VSS	GND	
D13	VSS	GND		E30	VSS	GND	
D15	PEG_RX[15]	PCIe	I	E33	VSS	GND	
D17	VSS	GND		E37	VSS	GND	
D19	PEG_RX#[13]	PCIe	I	E42	VCC	REF	
D20	VSS	GND		E46	VCC	REF	
D22	PEG_RX#[11]	PCIe	I	E50	VCC	REF	
D24	VSS	GND		E53	VCC	REF	
D26	PEG_RX#[9]	PCIe	I	E57	VCC	REF	
D27	VSS	GND		E60	VCC	REF	
D29	PEG_RX#[7]	PCIe	Ι	E68	VSS	GND	1
D31	VSS	GND		E69	VSS	GND	
D33	PEG_TX[10]	PCIe	0	E71	DC_TEST_E71		
D34	VSS	GND		F1	RSVD_NCTF		
D36	PEG_TX[7]	PCIe	0	F4	VSS	GND	
D38	VSS	GND		F7	DMI_RX#[0]	DMI	I
D40	PEG_TX#[3]	PCIe	0	F9	DMI_RX[0]	DMI	I
D41	VSS	GND		F10	DMI_TX#[3]	DMI	0
D43	VCC	REF		F20	VSS	GND	1
D45	VCC	REF		F21	PEG_TX[14]	PCIe	0
D47	VCC	REF		F28	VSS	GND	1
D48	VCC	REF		F40	PEG_RX[0]	PCIe	I

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
F47	VSS	GND		H17	DMI_TX#[0]	DMI	0
F48	VSS	GND		H24	PEG_RX#[6]	PCIe	Ι
F55	VCC	REF		H25	PEG_RX#[5]	PCIe	I
F61	VSS	GND		H32	PEG_TX[5]	PCIe	0
F63	VSS_SENSE	Analog	0	H34	PEG_RX#[2]	PCIe	I
F64	VCC_SENSE	Analog	0	H36	VSS	GND	
F66	PROC_DPRSLPVR	CMOS	0	H43	VSS	GND	
F68	PSI#	Async CMOS	0	H44	VCC	REF	
F71	VSS	GND		H51	VCC	REF	
G3	RSTIN#	CMOS	I	H53	VSS	GND	
G13	DMI TX[2]	DMI	0	H60	VCC	REF	
G15	VSS	GND	0	H71	VSS	GND	
G17	DMI_TX[0]	DMI	0	J11	DMI_TX[3]	DMI	0
G20	VSS	GND	0	J13	DMI_TX#[2]	DMI	0
G21	PEG_TX#[14]	PCIe	0	J2	DMI_RX[3]	DMI	I
G21	VSS	GND	0]4	DMI_RX#[3]	DMI	I
G24	PEG_RX[5]	PCIe	I	J6	DMI_RX[1]	DMI	I
G23	PEG_RX#[4]	PCIe	I	J8	DMI_RX#[1]	DMI	I
G30	VSS	GND	1	39	VSS	GND	
G32	PEG TX#[5]	PCIe	0	J20	PEG_TX#[15]	PCIe	0
G34	PEG RX[2]	PCIe	I	J21	PEG_CLK#	DIFF CLK	I
G38	PEG_RX#[1]	PCIe	I	J28	PEG_RX[4]	PCIe	I
G40	PEG RX#[0]	PCIe	I	J30	PEG_TX[8]	PCIe	0
G43	VSS	GND	1	J38	PEG_RX[1]	PCIe	I
G44	VCC	REF		J40	VSS	GND	
G47	VSS	GND		J47	VSS	GND	
G48	VSS	GND		J48	VSS	GND	
G51	VCC	REF		355	VCC	REF	
G53	VSS	GND		J57	VSS	GND	
G55	VCC	REF		J62	BPM#[2]	GTL	I/O
G57	vss	GND		J64	BPM#[5]	GTL	I/O
G60	VSS	REF		J65	VSS	GND	
G70	VSS	GND		J67	BPM#[1]	GTL	I/O
				J69	BPM#[0]	GTL	I/O
H1	VSS	GND		J70	BCLK_ITP #	DIFF CLK	0
H15	VTTPWRGOOD	Async CMOS	Ι	K1	FDI_TX[0]	FDI	0

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Dir
K4	VSS	GND		M4	FDI_TX#[2]	FDI	0
K6	VSS	GND		M15	DMI_TX[1]	DMI	0
K8	DMI_RX#[2]	DMI	I	M17	PM_SYNC	CMOS	I
К9	DMI_RX[2]	DMI	I	M24	PEG_TX#[13]	PCIe	0
K11	VSS	GND		M25	PEG_TX[12]	PCIe	0
K15	DMI_TX#[1]	DMI	0	M32	PEG_TX#[2]	PCIe	0
K17	VSS	GND		M34	PEG_RX[3]	PCIe	I
K24	PEG_RX[6]	PCIe	I	M36	VSS	GND	
K25	VSS	GND		M42	VSS	GND	
K32	VSS	GND		M44	VCC	REF	
K34	VSS	GND		M51	VCC	REF	
K36	VSS	GND		M53	VSS	GND	
K43	VSS	GND		M60	VCC	REF	
K44	VCC	REF		M69	BPM#[7]	GTL	I/C
K51	VCC	REF		M71	PROC_DETECT		
K53	VSS	GND				501	
K60	VCC	REF		N2	FDI_TX[2]	FDI	0
K62	BPM#[4]	GTL	I/O	N5	FDI_TX[1]	FDI	0
K64	VSS	GND		N7	FDI_TX#[1]	FDI	0
K65	BPM#[3]	GTL	I/O	N9	FDI_TX[4]	FDI	0
K69	BPM#[6]	GTL	I/O	N10	FDI_TX#[4]	FDI	0
K71	BCLK_ITP	DIFF CLK	0	N13	VTT_SENSE	Analog	0
L2	FDI_TX#[0]	FDI	0	N15	VSS	GND	
L13	VSS	GND		N17	THERMTRIP#	Async GTL	0
L20	PEG_TX[15]	PCIe	0	N19	PECI	Async	I/C
L21	PEG_CLK	Diff CLK	Ι	N21	VSS	GND	
L28	PEG_TX#[11]	PCIe	0	N24	PEG_TX[13]	PCIe	0
L30	PEG_TX#[8]	PCIe	0	N26	PEG_TX#[12]	PCIe	0
L38	PEG_TX#[1]	PCIe	0	N28	PEG_TX[11]	PCIe	0
L40	PEG_TX[0]	PCIe	0	N30	VSS	GND	
L47	VSS	GND		N32	PEG_TX[2]	PCIe	0
L48	VSS	GND		N38	PEG_TX[1]	PCIe	0
L55	VCC	REF		N40	PEG_TX#[0]	PCIe	0
L57	VSS	GND		N42	VCC	REF	
L70	VSS	GND		N44	VCC	REF	
M1	VSS	GND		N46	VSS	GND	

N50 N51 N53 N55 N61 N63 N65 N67 N70	VSS VCC VSS VCC VSS CATERR# VSS TMS PROCHOT# RESET_OBS#	GND REF GND REF GND GTL GND CMOS Async GTL	I/O I	R41 R42 R44 R46 R48 R50 R51	VCC VSS VCC VSS VCC VSS	REF GND REF GND REF GND	
N53 N55 N57 N61 N63 N65 N67	VSS VCC VSS CATERR# VSS TMS PROCHOT#	GND REF GND GTL GND CMOS		R44 R46 R48 R50	VCC VSS VCC VSS	REF GND REF	
N55 N57 N61 N63 N65 N67	VCC VSS CATERR# VSS TMS PROCHOT#	REF GND GTL GND CMOS		R46 R48 R50	VSS VCC VSS	GND REF	
N57 N61 N63 N65 N67	VSS CATERR# VSS TMS PROCHOT#	GND GTL GND CMOS		R48 R50	VCC VSS	REF	
N61 N63 N65 N67	CATERR# VSS TMS PROCHOT#	GTL GND CMOS		R50	VSS	-	
N63 N65 N67	VSS TMS PROCHOT#	GND CMOS				GND	-
N65 N67	TMS PROCHOT#	CMOS	Ι	R51	1/66		
N67	PROCHOT#		Ι		VCC	REF	
-		Async GTL		R53	VSS	GND	
N70	RESET_OBS#		I/O	R55	VCC	REF	
	112021_0000 #	Async	0	R57	VSS	GND	
		CMOS		R59	VCAP2	PWR	
P1	FDI_TX#[3]	FDI	0	R60	VCAP2	PWR	
P4	VSS	GND		R62	VSS	GND	
P34	PEG_RX#[3]	PCIe	Ι	R64	RSVD		
P60	VCC	REF		R66	RSVD		
P69	TRST#	CMOS	Ι	R70	VSS	GND	
P71	TDI_M	CMOS	Ι	T1	VSS	GND	
R2	FDI_TX[3]	FDI	0	T2	RSVD		
R5	VSS	GND		T4	RSVD		
R7	FDI_TX#[5]	FDI	0	U6	FDI_TX[6]	FDI	0
R8	FDI_TX[5]	FDI	0	U7	FDI_TX#[6]	FDI	0
R12	VSS_SENSE_VTT	Analog	0	U9	VSS	GND	
R14	VSS	GND		T67	ТСК	CMOS	I
R15	VTT1	REF		T69	TDI	CMOS	I
R17	VTT1	REF		T70	TDO_M	CMOS	0
R19	VTT1	REF		T71	TDO	CMOS	0
R21	VTT1	REF		U1	RSVD		
R23	VTT0	REF		U4	VSS	GND	
R24	VTT0	REF		U12	VTT1	REF	†
R26	VTT0	REF		U14	VTT1	REF	1
R28	VTT0	REF		U15	VTT1	REF	†
R30	VTT0	REF		U17	VTT1	REF	1
R32	VTT0	REF		U19	VTT1	REF	1
R33	VTT0	REF		U21	VTT1	REF	
R35	VTT0	REF		U23	VTT0	REF	
R37	VCCPLL	REF		U24	VTT0	REF	

Pin #	Pin Name	Buffer Type	Dir	Pin #	Pin Name	Buffer Type	Di
U26	VTT0	REF		W21	VTT1	REF	
U28	VTT0	REF		W23	VTT0	REF	
U30	VTT0	REF		W24	VTT0	REF	
U32	VTT0	REF		W26	VTT0	REF	
U33	VTT0	REF		W28	VTT0	REF	
U35	VTT0	REF		W30	VTT0	REF	
U37	VCCPLL	REF		W32	VTT0	REF	
U39	VSS	GND		W33	VTT0	REF	
U41	VCC	REF		W35	VTT0	REF	
U42	VSS	GND		W37	VCCPLL	REF	
U44	VCC	REF		W39	VCCPLL	REF	
U46	VSS	GND		W41	VCC	REF	
U48	VCC	REF		W42	VSS	GND	
U50	VSS	GND		W44	VCC	REF	
U51	VCC	REF		W46	VSS	GND	
U53	VSS	GND		W48	VCC	REF	
U55	VCC	REF		W50	VSS	GND	
U57	VSS	GND		W51	VCC	REF	
U59	VCAP2	PWR		W53	VSS	GND	
U60	VCAP2	PWR		W55	VCC	REF	
U62	VSS	GND		W57	VSS	GND	
U64	VSS	GND		W59	VCAP2	PWR	
U69	PREQ#	Async GTL	Ι	W60	VCAP2	PWR	
U71	PRDY#	Async GTL	0	W62	VSS	GND	
V2	RSVD			W64	VCAP0_VSS_SEN SE		
V70	VSS	GND		W66	VCAP0_SENSE		
W1	VSS	GND		W69	VSS	GND	
W4	DPLL_REF_SSCLK #	DIFF CLK	Ι	W71	DBR#	CITE	0
W6	VSS	GND		Y2	DPLL_REF_SSCLK	DIFF CLK	I
W8	FDI_TX#[7]	FDI	0	Y67	VCCPWRGOOD_0	Async	I
W10	FDI_TX[7]	FDI	0	107		CMOS	1
W12	VTT1	REF		Y70	TAPPWRGOOD	Async CMOS	0
W14	VTT1	REF				CMOS	
W15	VTT1	REF					
W17	VTT1	REF					
W19	VTT1	REF					

External Design Specification

8.2 Package Mechanical Information

Figure 38. Arrandale rPGA Mechanical Package (Sheet 1 of 2)

Figure 39. Arrandale rPGA Mechanical Package (Sheet 2 of 2)

Figure 40. Arrandale BGA Mechanical Package (Sheet 1 of 2)

Figure 41. Arrandale BGA Mechanical Package (Sheet 2 of 2)

The processor includes boundary-scan for board and system level testability. Refer to the *[Calpella] Program Auburndale and Clarksfield Processor Testability Information – Boundary Scan Description Language (BSDL) File – Rev. 1.1* for more details on testability.

4			
i	2		•
2	1	1	