LV5061V #### **Bi-CMOS IC** # Low power consumption and high efficiency Step-down Switching Regulator Controller http://onsemi.com #### Overview LV5061V is 1ch step-down switching regulator. The operation current is about 90µA, and low power consumption is achieved. #### **Functions** - 1ch SBD rectification controller IC - Maximum value of light load mode current is 90µA. - Built-in OCP circuit with P-by-P method - When P-by-P is generated continuously, it shifts to the HICCUP operation. - If connect C-HICCUP to GND pin, then latch-off when over current. - The oscillatory frequency can be set by the external pin. The oscillatory frequency is 300 kHz to 2.2MHz - Built-in UVLO, TSD #### **Specifications** **Maximum Ratings** at $Ta = 25^{\circ}C$ | Parameter | Symbol | Conditions | Ratings | Unit | |-----------------------------|----------------------|------------------------|-----------------|------| | Input voltage | V _{IN} max | | 22 | V | | Allowable pin voltage | PDR,HDRV,RSNS, | | V _{IN} | V | | | ILIM,EN,PG | | | | | | V _{IN} -PDR | | 6 | V | | | REF | | 6 | V | | | SS,FB,COMP, | | REF | V | | | C-HICCUP,RT | | | | | Allowable power dissipation | Pd max | Specified substrate *1 | 0.74 | W | | Operating temperature | Topr | | -40 to +85 | Ç | | Storage temperature | Tstg | | -55 to +150 | °C | ^{*1:} Specified substrate 114.3mm×76.1mm×1.6mm³ glass-epoxy Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. # LV5061V ## Recommended Operating Conditions at $Ta=25^{\circ}C$ | Parameter | Symbol | Conditions | Ratings | Unit | |---------------------|-----------------|------------|-----------|------| | Input voltage range | V _{IN} | | 4.5 to 18 | V | ## **Electrical Characteristics** at Ta = 25°C, $V_{\mbox{\footnotesize{IN}}} = 15V$ | Parameter | Symbol | Conditions | Ratings | | | Unit | |-------------------------------------|-----------------------|--|------------------------|----------------------|----------------------|-------| | 1 didillotoi | Cymbol | Conditions | min | typ | max | Onic | | Reference voltage | | _ | | | | 1 | | Internal reference voltage | Vref | | 1.235 | 1.260 | 1.285 | V | | Pch drive voltage | V_{PDR} | I _{OUT} =0 to -5mA | V _{IN} -5.5 | V _{IN} -5.0 | V _{IN} -4.5 | V | | Saw wave oscillator | | | | | | | | Oscillatory frequency | Fosc | RT=470kΩ | 280 | 330 | 380 | kHz | | ON/OFF circuit | | | | | | | | IC start-up voltage | VCNT_ON | | 1.5 | | v_{IN} | ٧ | | Disable voltage | VCNT_OFF | | | | 0.3 | > | | Soft start circuit | | | | | | | | Soft start source current | I _{SS} _SC | EN>1.5V | 1.3 | 2.0 | 2.7 | μΑ | | Soft start sink current | I _{SS} _SK | EN>1.5V, I _{LIM} >RSNS
SS=4V at HICCUP | 1.2 | 2.0 | 2.8 | mA | | UVLO circuit | | | I | <u> </u> | | | | UVLO release voltage | V _{UVLON} | FB=COMP | 3.0 | 3.4 | 3.8 | V | | UVLO lock voltage | VUVLOF | FB=COMP | 2.5 | 2.9 | 3.3 | V | | Error amplifier | | • | , | L | | | | Input bias current | I _{EA} _IN | | -100 | -50 | 100 | nA | | Error amplifier gain | GEA | | 100 | 250 | 400 | μA/V | | Output sink current | I _{EA} _OSK | FB=1.75V | -40 | -20 | -10 | μΑ | | Output source current | I _{ES} _OSC | FB=0.75V | 10 | 20 | 40 | μΑ | | Over current limit circuit | | | <u> </u> | L | | | | Reference current | I _{LIM} 1 | | 48.4 | 55 | 61.6 | μΑ | | Over current detection | V _{LIM_OFS} | | -5 | | +5 | mV | | comparator offset voltage | | | | | | | | RSNS pin input range | V _{RSNS} | | V _{IN} -0.175 | | v_{IN} | V | | HICCUP timer start-up cycle | NLCYCLES | | | 15 | | cycle | | HICCUP comparator threshold voltage | V _{tHIC} | | 1.2 | 1.26 | 1.32 | V | | HICCUP timer change current | IHIC | | 1 | 2 | 3 | μΑ | | PWM comparator | | | | | | | | Maximum On-duty | D max | | 95 | | | % | | Logic output | | | | • | | | | Power good "L" sink current | I _{PWRGD} _L | PG=5V | 4 | 5 | 6 | mA | | Power good "H" leakage current | I _{PWRGD} _H | PG=5V | | | 1 | μА | | Power good threshold voltage | V _{tPG} | | 1.0 | 1.1 | 1.2 | V | | Power good hysteresis | V _{PG} _H | | 40 | 50 | 60 | mV | | Output | | 1 | | L | | | | Output on-resistance (High) | R _{ON} H | | | 3 | | Ω | | Output on-resistance (Low) | R _{ON} L | | | 3 | | Ω | | Output on-current (High) | I _{ON} H | | 500 | | | mA | | Output on-current (Low) | I _{ON} L | | 500 | | | mA | | The entire device | | 1 | ı | L | | | | Stand-by current | lccs | EN<0.3V | | | 1 | μΑ | | Light load mode consumption | I _{SLEEP} 1 | EN>1.5V, | 50 | 70 | 90 | μΑ | | current | | No switching | | | | l | ^{*2:} Design certification #### **Package Dimensions** unit: mm (typ) 3178B # **Block Diagram** # **Pin Assignment** #### **Pin Descriptions** | | -iii Descriptions | | | | | | |------------|-------------------|---|--|--|--|--| | Pin
No. | Pin name | Descriptions | Equivalent circuit | | | | | 1 | PG | Power good pin. Connect to open drain of MOS-FET in ICs inside. Setting output voltage to "L", when FB voltage is 1.05V or less | PG | | | | | 2 | EN | ON/OFF pin | V _{IN} 4.8MΩ 5 | | | | | 3 | ILIM | For current detection. Sink current is about $55\mu A$. The current limiter comparator works when an external resistor is connected between this pin and V_{IN} , and if the voltage of this resistor is less than the voltage of RSNS then Pch MOS is turned off. This operation is reset each PWM pulse. | VIN $\frac{5k\Omega}{1k\Omega}$ | | | | | 4 | VIN | Supply voltage pin. It is observed by the UVLO function. When its voltage becomes 3.4V or more, ICs startup in soft start. | V _{IN} ———————————————————————————————————— | | | | | 5 | RSNS | Current detection resistor connection pin. Resistor is connected between V _{IN} and this pin, and the current flows to MOSFET are measured. | RSNS $\frac{5k\Omega}{5k\Omega}$ | | | | Continued on next page. ## LV5061V Continued from preceding page. | Continued from preceding page. | | | | | | | | |--------------------------------|----------|--|--|--|--|--|--| | Pin
No. | Pin name | Descriptions | Equivalent circuit | | | | | | 6 | HDRV | The external high-side MOSFET gate drive pin. | VIN | | | | | | 7 | PDR | Gate drive voltage of the external Pch MOSFET. Meanwhile, the bypass capacitor is connected between V _{IN} and this pin. | 1.1MΩ \$ 1.3MΩ \$ 10kΩ PDR 10kΩ PDR 10kΩ GND | | | | | | 8 | GND | Ground Pin. Ground pin voltage is reference voltage. | GND | | | | | | 9 | NC | N.C. pin. | | | | | | | 10 | RT | Oscillation frequency setting pin. Resistor is connected between this pin and GND. | V _{IN} 21kΩ | | | | | | 11 | C-HICCUP | It is capacitor connection pin for setting re-startup cycle in HICCUP mode. If connect it to GND pin, then latch-off when over current. | C-HICCUP TKQ GND | | | | | | 12 | SS | Capacitor connection pin for soft start. About 2μA current charges the soft start capacitor. | V_{IN} $1_{\text{K}\Omega}$ 1_{O} $1_{\text{K}\Omega}$ 1_{O} $1_{\text{K}\Omega}$ | | | | | | 13 | NC | NC pin. | | | | | | | 14 | COMP | Error Amplifier Output Pin. The phase compensation network is connected between GND pin and COMP pin. Thanks to current-mode control, COMP pin voltage would tell you the output current amplitude. COMP pin is connected internally to an int.comparator which comparators with 0.9V reference. If COMP pin voltage is larger than. 0.9V, IC operates in "continuous mode". If COMP pin voltage is smaller than 0.9V, IC operates in "discontinuous mode (low consumption mode)". | V _{IN} 70kΩ 1kΩ GND | | | | | Continued on next page. Continued from preceding page. | Pin
No. | Pin name | Descriptions | Equivalent circuit | |------------|----------|---|---| | 15 | FB | Error amplifier reverse input pin. ICs make its voltage keep 1.26V. Output voltage is divided by external resistors and it across FB. | V_{IN} $10k\Omega$ $1k\Omega$ $1k\Omega$ $1k\Omega$ $1k\Omega$ | | 16 | REF | Reference voltage. | VIN 10Ω | ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa