

2-INPUT 3CHANNEL VIDEO SWITCH

■ GENERAL DESCRIPTION

NJM2286 is a switching IC for switching over from one audio or video input signal to another. Internalizing 2 inputs, 1 output, and then each set of 3 can be operated independently. They are a Clamp type", and it can be operated while DC level fixed in position of the video signal. It is a higher efficiency video switch, featuring the operating supply voltage 4.75 to 13.0V, the frequency feature 10MHz, and then the Crosstalk 75dB (at 4.43MHz).

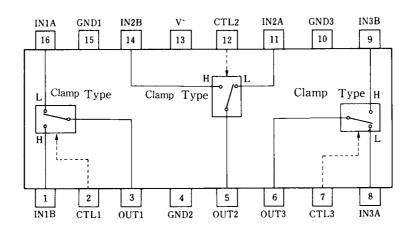
■ PACKAGE OUTLINE

NJM2286M

NJM2286V

■ FEATURES

- 2 Input-1 Output Internalizing 3 Circuits (Clamp type).
- Wide Operating Voltage


(4.75 to 13.0V)

- Crosstalk 75dB (at 4.43MHz)
- Wide Bandwidth Frequency Feature 10MHz (2V_{P-P} Input)
- Package Outline

DMP16, SSOP16

• Bipolar Technology

■ BLOCK DIAGRAM

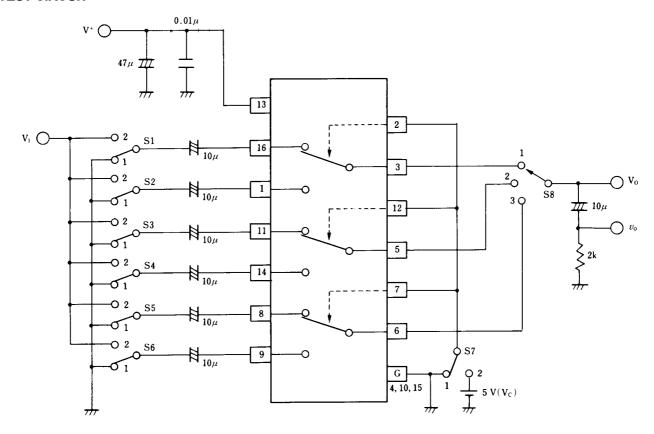
NJM2286V NJM2286M

■ MAXIMUM RATINGS

 $(T_a = 25^{\circ}C)$

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	14	V
Power Dissipation	P_D	(SSOP16) 300 (DMP16) 350	mW mW
Operating Temperature Range	T _{opr}	-40 to +85	℃
Storage Temperature Range	T _{stg}	-40 to +125	°C

■ ELECTRICAL CHARACTERISTICS

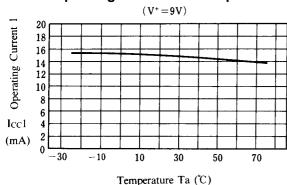

 $(V^{+} = 5V, T_a = 25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	I _{CC1}	V ⁺ = 5V (Note1)	7.9	11.3	14.7	mA
Operating Current (2)	I _{CC2}	V ⁺ = 9V (Note1)	9.8	14.1	18.4	mA
Voltage Gain	G_V	$V_{I} = 100kHz, 2V_{P-P}, V_{O} / V_{I}$	-0.6	-0.1	+0.4	dB
Frequency Gain	G_{F}	$V_1 = 2V_{P-P}, V_O (10MHz) / V_O (100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	V _I = 2V _{P-P} , Standard Staircase Signal	-	0.3	-	%
Differential Phasa	DP	V _I = 2V _{P-P} , Standard Staircase Signal	-	0.3	-	deg
Output Offset Voltage	Vos	(Note2)	-15	0	+15	mV
Crosstalk	CT	$V_{I} = 2V_{P-P}, 4.43MHz, V_{O} / V_{I}$	-	-75	-	dB
Switch Change Over Voltage	V_{CH}	All inside Switch ON	2.5	-	-	V
Switch Change Over Voltage	V_{CL}	All inside Switch OFF	-	-	1.0	V

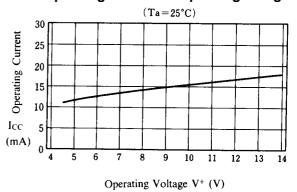
(Note1) S1 = S2 = S3 = S4 = S5 = S6 = S7 = 1

(Note2) S1 = S2 = S3 = S4 = S5 = S6 =1, S7= $1\rightarrow2$ Measure the output DC voltage difference

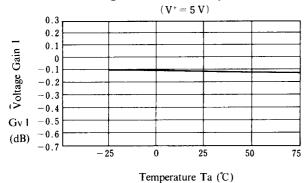
■ TEST CIRCUIT

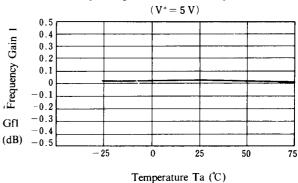


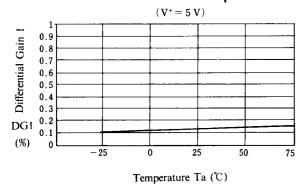
PARAMETER	S1	S2	S3	S4	S5	S6	S7	S8	TEST PART
I _{CC1}	1	1	1	1	1	1	1	1	V ⁺
I_{CC2}	1	1	1	1	1	1	1	1	
G_{v1}	2	1	1	1	1	1	1	1	<i>V</i> ₀
G_{f1}	2	1	1	1	1	1	1	1	
DG ₁	2	1	1	1	1	1	1	1	
DP_1	2	1	1	1	1	1	1	1	
CT 1	2	1	1	1	1	1	2	1	V _o
CT 2	1	2	1	1	1	1	1	1	
CT3	1	1	2	1	1	1	2	2	
CT 4	1	1	1	2	1	1	1	2	
CT 5	1	1	1	1	2	1	2	3	
CT 6	1	1	1	1	1	2	1	3	
V _{OS1}	1	1	1	1	1	1	1/2	1	Vo
V _{C1}	1/2	2/1	1	1	1	1	V_{C}	1	V _C
THD	2	1	1	1	1	1	1	1	V ₀

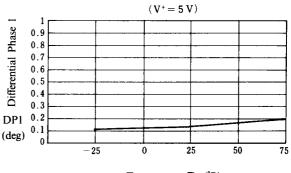

■ TERMINLAL EXPLANATION

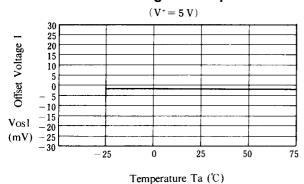
PIN No.	PIN NAME	VOLTAGE	INSIDE EQUIVALENT CIRCUIT
16 1 11 14 8 9	IN 1 A IN 1 B IN 2 A IN 2 B IN 3 A IN 3 B [Input]	1.5V	500
2 12 7	CTL 1 CTL 2 CTL 3 [Switching]		2.3V 1.9V 20k
3 5 6	OUT1 OUT2 OUT3 [Output]	0.8V	OUT
13	V ⁺	5V	
15 4 10	GND 1 GND 2 GND 3		

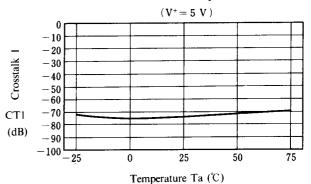

Operating Current 1 vs. Temperature

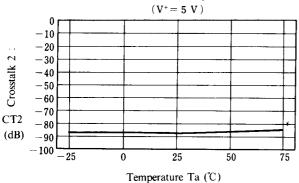

Operating Current vs. Operating Voltage

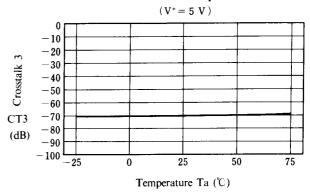

Voltage Gain 1 vs. Temperature

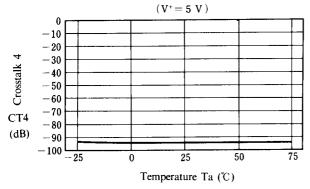

Frequency Gain 1 vs. Temperature

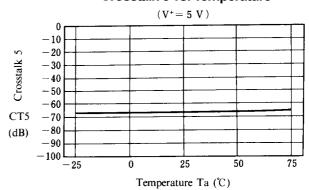

Differential Gain 1 vs. Temperature

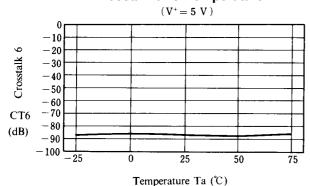

Differential Phase 1 vs. Temperature

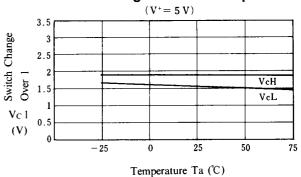

Offset Voltage vs. Temperature

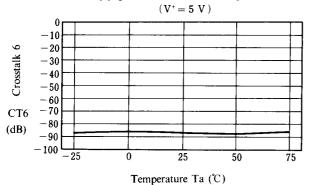

Crosstalk 1 vs. Temperature

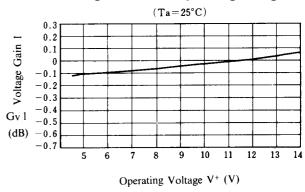

Crosstalk 2 vs. Temperature

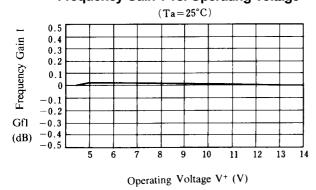

Crosstalk 3 vs. Temperature

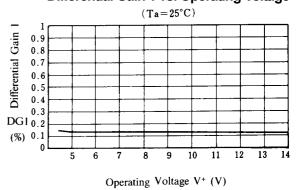

Crosstalk 4 vs. Temperature

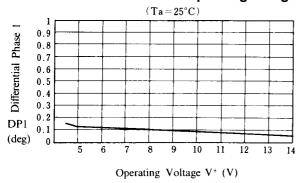

Crosstalk 5 vs. Temperature

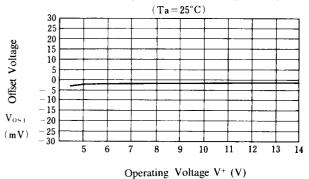

Crosstalk 6 vs. Temperature

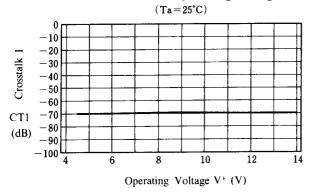

Switch Change Over 1 vs. Temperature

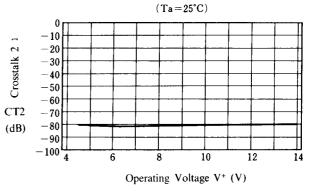

Supply Current 2 vs. Temperature

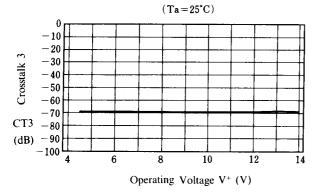

Voltage Gain 1 vs. Operating Voltage

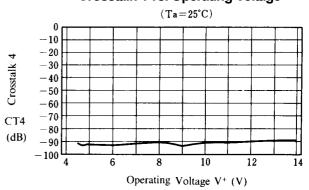

Frequency Gain 1 vs. Operating Voltage

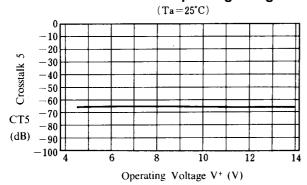

Differential Gain 1 vs. Operating Voltage

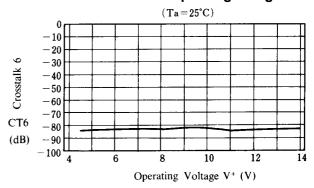

Differential Phase 1 vs. Operating Voltage

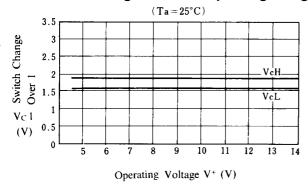

Offset Voltage 1 vs. Operating Voltage

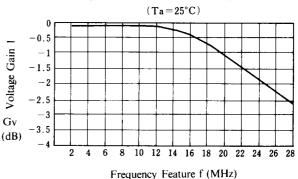

Crosstalk 1 vs. Operating Voltage

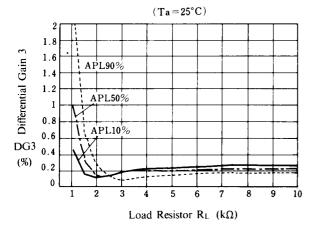

Crosstalk 2 vs. Operating Voltage

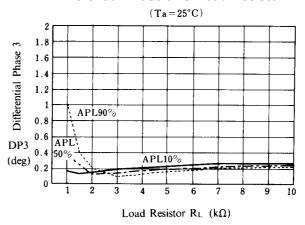

Crosstalk 3 vs. Operating Voltage

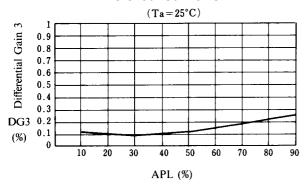

Crosstalk 4 vs. Operating Voltage

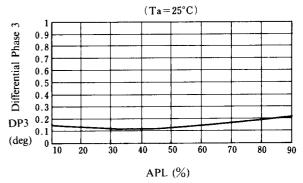

Crosstalk 5 vs. Operating Voltage


Crosstalk 6 vs. Operating Voltage

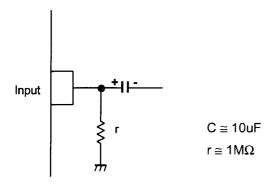

Switch Change Over 1 vs. Operating Voltage


Voltage Gain 1 vs. Frequency Feature

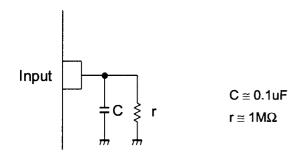

Differential Gain 3 vs. Load Resistor


Differential Phase 3 vs. Load Resistor

Differential Gain 3 vs. APL



Differential Phase 3 vs. APL



■ APPLICATION

This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

This IC requires $0.1\mu F$ capacitor between INPUT and GND, $1M\Omega$ resistance between INPUT and GND for clamp type input at mute mode.

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.