

Motor Control Application Kit

For XMC1000 Family

PMSM-LV-15W

PMSM Low Voltage 15W Motor Card

Board User's Manual

Revision 1.0, 2013-06-19

Microcontroller

Edition 2013-06-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2013 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or

Revision Histo	ory									
Page or Item	tem Subjects (major changes since previous revision)									
Revision 1.0, 2	2013-06-19									

Trademarks of Infineon Technologies AG

AURIXTM, C166TM, CanPAKTM, CIPOSTM, CIPURSETM, EconoPACKTM, CoolMOSTM, CoolSETTM, CORECONTROLTM, CROSSAVETM, DAVETM, DI-POLTM, EasyPIMTM, EconoBRIDGETM, EconoDUALTM, EconoPIMTM, EconoPACKTM, EiceDRIVERTM, eupecTM, FCOSTM, HITFETTM, HybridPACKTM, I²RFTM, ISOFACETM, IsoPACKTM, MIPAQTM, ModSTACKTM, my-dTM, NovalithICTM, OptiMOSTM, ORIGATM, POWERCODETM, PRIMARIONTM, PrimePACKTM, PrimeSTACKTM, PRO-SILTM, PROFETTM, RASICTM, ReverSaveTM, SatRICTM, SIEGETTM, SINDRIONTM, SIPMOSTM, SmartLEWISTM, SOLID FLASHTM, TEMPFETTM, thinQ!TM, TRENCHSTOPTM, TriCoreTM.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL[™], REALVIEW[™], THUMB[™], µVision[™] of ARM Limited, UK. AUTOSAR[™] is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-ig™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO[™] of Microsoft Corporation. FlexRay[™] is licensed by FlexRay Consortium. HYPERTERMINAL[™] of Hilgraeve Incorporated. IEC[™] of Commission Electrotechnique Internationale. IrDA[™] of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB[™] of MathWorks, Inc. MAXIM[™] of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ[™] of Texas Instruments Incorporated. VXWORKS[™], WIND RIVER[™] of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11

Table of Contents

1	Overview7
1.1	Key Features7
1.2	Boot Mode Index (BMI) Configuration7
1.3	Block Diagram8
2	Hardware Description9
2.1	Power9
2.2	SAMTEC 2x30pins connector11
2.3	Gate Driver and Power Stage12
2.4	Voltage and Current Measurements13
2.4.1	Phase Current Measurement13
2.4.2	Phase Voltage Measurement16
2.5	Encoder and Hall Interface16
2.6	PMSM Motor
2.6.1	Motor Operating Range18
2.6.2	Geometry19
3	Production Data20
3.1	Schematics
3.2	Components Placement and Geometry
3.3	Bill of Materials24

List of Figures

Figure 1	Block Diagram of PMSM Low Voltage 15W Motor Card in connection with XMC1300 CPU Card8
Figure 2	PMSM Low Voltage 15W Motor Card9
Figure 3	Hardware Connection of Power Supply10
Figure 4	SAMTEC 2x30pins connector to the CPU card11
Figure 5	Pin Mapping to XMC1300 CPU card with 2x30 pins SAMTEC Connector on PMSM Low Voltage 15W
	Motor Card11
Figure 6	Hardware connection of the Date Driver and Power Stage13
Figure 7	Hardware Circuit Op-Amp of DC Link Current Sensing14
Figure 8	Hardware Connection of Shunt Amplifier15
Figure 9	Encoder Line Driver and Connector for differential encoder signals17
Figure 10	Hall Sensor Connector Interface17
Figure 11	EC 32 flat 32 mm, brushless 15 Watt Motor Specification18
Figure 12	Motor Operating Range18
Figure 13	Motor Geometry19
Figure 14	Schematic of SAMTEC Connector, Power Supply, Encoder Line Driver and Connector, Hall Sensor
	Connector
Figure 15	Schematic of Gate Driver, Power Stage, Shunt Amplifier, Motor Connector22
Figure 16	PMSM Low Voltage 15W Motor Card layout and geometry23

List of Tables

Table 1	Power and ground signals connection to the SAMTEC 2x30pins connector	10
Table 2	Gate Driver signals connection to the SAMTEC 2x30pins Connector	13
Table 3	Voltage and Current signals at the SAMTEC Connector	16
Table 4	Encoder / hall signals at the SAMTEC connector	17
Table 5	PMSM Low Voltage 15W Motor Card BOM	24

Introduction

This document describes the features and hardware details of the PMSM Low Voltage 15W Motor Card (PMSM-LV-15W) designed to work with Infineon's XMC1300 CPU Card. This board is part of Infineon's XMC1000 Motor Control Application Kits.

1 Overview

The PMSM Low Voltage 15W Motor Card is an application expansion card of XMC1000 Motor Control. The combination of PMSM Low Voltage 15 W Motor card and XMC1300 boot kit is the best kit to evaluate the motor control capabilities of XMC1300. The main use case for this application card is to demonstrate the various motor control algorithms (e.g. Block commutation with Hall sensor, V/F control, Field Orientation Control) by using XMC1300 device including the toolchain. The focus is safe operation under evaluation conditions. The board is not cost optimized and cannot be seen as reference design.

1.1 Key Features

The PMSM LV15W Card is equipped with the following features

- Connection to XMC1300 CPU Cards via 2x30 pins (0.8mm pitch) SAMTEC HSEC8 connector
- 3 phase low voltage full bridge inverter using Infineon N-channel Dual OptiMOS power transistors
- Gate Driver IC (6EDL04N02PR) with over-current detection circuit (ITRIP)
- Current measurement by using single or triple shunts (amplified)
- Positioning sensing via
 - Hall sensor Interface
 - o Quadrature encoder interface for both single ended and differential signals
- Input voltage range: 12V-24V +/- 20%
- Power supply
 - Low drop voltage regulator (5V) for hall sensor power supply
 - Low drop voltage regulator (5V) for XMC1300 power supply
 - Low dropout linear voltage regulator (15V) for MOSFET gate driver power supply
- Maximum DC-link current: 3A & Maximum motor phase current: 3A

1.2 Boot Mode Index (BMI) Configuration

A micronctroller would normally have a few boot mode selection pins that determine its Boot Mode after power on reset. However, the XMC1000 devices from Infineon, is a low pin count device, so the use of a few pins just for Boot-up mode selection is not desirable.

The XMC1100, XMC1200 and XMC1300 bootkit are programmed to User mode with debug enabled (SWD0), so that the application program will start to run after power-up. The selection of the port pin to be used depends on BMI value. If the XMC1000 bootkits are programmed to SWD mode, the specified pin P0.14 and P0.15 are used to communicate.

Referring the schematic connection of PMSM Low Voltage 15W Motor card, the hall sensor interface pin ENCI-POSIF.IN2 is connected to P0.15 at XMC1300 CPU card. Therefore, the XMC1300 CPU card has to be programmed the BMI to SPD mode to avoid using P0.15 as programming pin. After the XMC1300 CPU card BMI has changed, the DIP switch SWCLK on Jlink Debugger on XMC1300 CPU card has to be off. The user code will run after power up and supports debugging using single pin debug protocol.

For more information about how to handle BMI for XMC1000 family, please refer to the <u>XMC1000 Family</u> <u>Tooling Guide</u>.

1.3 Block Diagram

Figure 1 shows the block diagram of the PMSM Low Voltage 15W Motor Card in connection with XMC1300 CPU Card.

Figure 1 Block Diagram of PMSM Low Voltage 15W Motor Card in connection with XMC1300 CPU Card

2 Hardware Description

The following sections give a detailed description of the hardware and how it can be used.

Figure 2 PMSM Low Voltage 15W Motor Card

2.1 Power

The PMSM Low Voltage 15W Motor Card must be supplied by an external DC power supply (12V to 24V) connected to its power jack X201. The power to be delivered by the external power supply depends on the overall load mainly defined by the power consumption of the motor. The power supply unit (24V/1A) delivered with the motor control kit is sufficient to drive the enclosed motor as well as the CPU card. The power supply schematic is shown in Figure 3.

An on-board voltage regulator (IC203) steps down the 24 V input voltage from the power jack to 15 V (VDD15). The input voltage up is regulated to an output voltage 15 V with a precision of \pm 2%. The output voltage can be configured to regulate between 2.5V and 20V. The 5 V supply for hall sensor VDD5 is derived from VDD15 regulated by LDO (IC201). Another LDO voltage regulator generates stable 5 V (VCC) out of VDD15 for microcontroller power supply and operational amplifier.

Two power LEDs indicate the presence of the generated supply voltages.

Table 1	Power LED		
LED	Power Rail	Voltage	Note
V202	VDD15	15 V	Must always be "ON"
V201	VCC	5 V	Must always be "ON"

Figure 3	Hardware Connection of Power Supply	

Table 1	Power and ground signals connection to the SAMTEC 2x30pins connector
---------	--

Pin No.	Signal Name	Description
13	VAGND	Analog ground
14	GND	Digital ground
15	VAREF	Analog VDD +5V
16	VDD	Digital VDDP +5V

2.2 SAMTEC 2x30pins connector

The SAMTEC connector of the PMSM Low Voltage 15W Motor Card is the interface to the XMC1000 CPU card e.g. XMC1300 CPU card as shown in Figure 4.

Figure 4 SAMTEC 2x30pins connector to the CPU card

Figure 5 is a view of the signal mapping between the PMSM Low Voltage 15W Motor card SAMTEC 2x30 pins connector and the "XMC1300 CPU card". It shows in details which pin of the XMC1300 is mapped to which signal on the motor drive card. The inner rows show the general function of the 30 pins of the SAMTEC connector, which is common for all CPU cards. The outer rows show the signals of the PMSM Low Voltage 15W Motor Card.

The PMSM Low Voltage 15W Motor Card provides 5 functional groups of signals (marked by color code) at its pins of the SAMTEC connector:

- The encoder and hall sensor signals (ENCA, ENCB, ENCI): pin 43, 45 and 47
- Control and TRAP signals (ENENC#, ENPOW, FAULT#, P0.4, P0.5): pin 37, 39, 41, 25 and 27
- Voltage and current measurement signals: (UU, UV, UZ, AMP_IW...) located from pin 1 to 9
- PWM signals for the 3 phase power stage (HIN1#, LIN1#, HIN2...): pin 17, 19, 29, 31, 33 and 35

		XMC Pin		P2.11	P2.10	P2.9	P2.8	P2.7	P2.6	GND	VDDP	P0.8	P0.9	P0.10	P0.11	P0.12	P0.13	P0.14	P0.15	P1.5	P0.9	P0.10	P1.4	P1.3	P1.2	P1.1	P1.0	P2.0	P2.1	P1.1	P0.0	P0.6	P0.7	
	XMC1300 Boot Kit	XMCFunctid		SH0.IN3	SH0.IN4	SH0.IN2	SH0.IN1	SH1.IN1	SH0.INO	VSSP	VDDP																				-		1	
		Function	M Motor Card	AMP_IU	AMP_IV	AMP_IW	AGND	SH1-1	AGND	GND	VCC	nc	nc	ц	nc	nc	ц	ц	ц	TP305	ц	nc	TP306	nc	ц	nc	nc	ц	ц	nc	nc	nc	nc	15 W Motor Card
	SAMTEC Connector	Pin	15	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	15
		٩.	age	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49	51	53	55	57	59	age
		Function	PMSM Low Voltage 15 W	nn	۸N	ΜΠ	Ν	IAVG	RESERVED (POT)	AGND	DDV	HIN1	LIN1	HIN3	LIN3	P0.4	P0.5	LIN2	HINZ	HIN3	LIN3	ENENC	ENPOW	FAULT#	ENCA-POSIF.IN0	ENCB-POSIF.IN1	ENCI-POSIF.IN2	ч	ŭ	пс	пс	nc	nc	PMSM Low Voltage
	XMC1300 Boot Kit	XMCFunction		SH0.IN5	SH0.IN6	SH0.IN7	SH1.IN5	SH1.IN6	SH1.IN7	VAGND	VDDP	CCU8.OUT00	CCU8.OUT01	CCU8.OUT02	CCU8.OUT03	CCU8.OUT13	CCU8.OUT12	CCU8.OUT11	CCU8.OUT10	CCU8.OUT20	CCU8.OUT21	CCU8.OUT22	CCU8.OUT23	CCU8.OUT33	POSIF0.IN0B	POSIF0.IN1A	POSIF0.IN2B				-			
		XMC Pin		P2.0	P2.1	P2.2	P2.3	P2.4	P2.5	AGND	VAREF	P0.0	P0.1	P0.2	P0.3	P0.4	P0.5	P0.6	P0.7	P0.8	P0.9	P0.10	P0.11	P0.12	P0.13	P1.1	P0.15	P1.0	P1.1	P1.2	P1.3	P0.8	P0.9	

Figure 5 Pin Mapping to XMC1300 CPU card with 2x30 pins SAMTEC Connector on PMSM Low Voltage 15W Motor Card

2.3 Gate Driver and Power Stage

The power stage consists of three half-bridges using Infineon's Dual N-channel OptiMOS[™] power transistors. They are selected for a safe operation area with huge headroom, hence no cooling is needed when using at norminal current of 7.5 Ampere.

The gate driver (6EDL04N02PR) is Infineon's 2nd generation full bridge driver to control power devices like MOS-transistors or IGBTs in 3-phase systems. The gate driver offers several protection features like undervoltage lockout, signal interlocking of every phase to prevent cross-conduction and overcurrent detection. Therefore, the current signal of the DC-link reference is measured in order to recognize overcurrent or halfbridge short circuit events. A shunt resistor generates a voltage drop. A small RC-filter for attenuating voltage spikes is recommended. Such spikes may be generated by parasitic elements in the practical layout.

In an error situation a FAULT# signal is generated and must be handled by the microcontroller. The FAULT# signal changes to low state if an over-current condition has been detected by the ITRIP circuit. The ITRIP current level is measured as the amplified voltage drop over the DC-link shunt (see Figure 6). The minimum input voltage level to trigger an over-current event is specified at 375mV.

$$I_{trip} = \frac{V}{RS104}$$
$$I_{trip} = \frac{375 \text{ mV}}{50 \text{ m}\Omega}$$
$$I_{trip} = 7.5 \text{ A}$$

The external circuit at pin RCIN defines the overcurrent recovery of the drive system. This circuit consist of a single capacitor C_{RCin} according to Figure 6. There is also the option for a path to the supply voltage Vcc via resistor R_{RCin} . The fault-clear time t_{FLTCLR} is dependent on the re-charging of C_{RCin} , because the system recovers, when the threshold of the integrated Schmitt-trigger.

The datasheet specifies the typical fault clear time $t_{FLTCLR} = 1.9$ ms which the current source needs to charge an external capacitor of 1nF without pull up resistor. This parameter can be scaled linearly to any other capacitor value and results immediately in the according fault clear time. This means with 22nF capacitor will realize a fault clear time of 22 * 1.9 ms = 41.8 ms.

The microcontroller must provide the PWM signals (LIN1/2/3, HIN1/2/3) for the high-side and low-side switches. The PWM signals must be generated high-active.

The gate driver must be enabled via signal ENPOW.

A phase current measurement is provided via shunt resistors

- a) Single shunt (50 m Ω) in the DC-link path and/or
- b) Triple shunt (50 m Ω) in the low-side path

The resistance of the shunts limits the system behaviour and may not fit to the low-ohmic power transistors. This is intended as the main purpose of this board is to proof SW algorithms and methods over a wide range.

Figure 6 Hardware connection of the Date Driver and Power Stage

Table 2 shows the connection of the Gate Driver signals to the SAMTEC 2x30pins connector.

Pin No.	Signal Name	Description
19	FAULT#	This signal indicates over-current and under-voltage (low active)
25	ENPOW	High level enables the power stage (high active)
27	HIN1	High-side logic input 1 (high-active)
29	LIN1	Low-side logic input 1 (high-active)
31	HIN2	High-side logic input 2 (high-active)
33	LIN2	Low-side logic input 2 (high-active)
35	HIN3	High-side logic input 3 (high-active)
37	LIN3	Low-side logic input 3 (high-active)

Table 2 Gate Driver signals connection to the SAMTEC 2x30pins Connector

2.4 Voltage and Current Measurements

The phase current measurement is illustrated on the top side of Figure 8; the right side shows the voltage divider for the voltage measurement.

2.4.1 Phase Current Measurement

The current measurement can be done via a single shunt (signal IZ) in the DC-link path or via triple shunts (IU, IV, IW) at the low side. In both cases the measurement is dimensioned for the following requirements:

Motor power range up to 15W which leads to a nominal DC-link current of about 0.625 A. The phase current range is -3 A to +3 A. The output of the operational amplifier (AMP_IU, AMP_IV, AMP_IW, and AMP_IZ) is available at the PMSM Low Voltage 15 W Motor card connector and connected to ADC input channels of the XMC1000 microcontroller. The DC offset voltage level is about 2.5V at the ouput of the Op -Amps when there is no current flow through the shunts.

In order to get Op-Amp DC offset, AC gain, and DC link maximum current, the calculation can be done as below:

Figure 7 Hardware Circuit Op-Amp of DC Link Current Sensing

To get the Op-Amp DC offset:

$$\frac{OFFS - V_{+}}{R145} + \frac{IZ - V_{+}}{R147} + \frac{-V_{+}}{R151} = 0$$

$$\frac{V_{out} - V_{+}}{R153} - \frac{V_{+}}{R152} = 0$$

$$V_{out} = \frac{R153 + R152}{R152} \cdot V_{+}$$

$$V_{out} = \frac{\frac{R153 + R152}{R152}}{R152} \cdot \frac{1}{1 + R145 \left(\frac{R147 + R151}{R147 R151}\right)} \cdot OFFS + \frac{\frac{R153 + R152}{R152} \cdot \frac{1}{\frac{R147}{R145} \left(\frac{R147 + R151}{R151}\right)} \cdot IZ$$
Op-Amp DC Offset AC Gain

By substituting all the resistor value into the formula, the Op-Amp DC offset with 2.5V is generated. The AC gain of the operation amplifier is set to 16.4, which leads to DC link phase current range of 0V @ -3 A and 5V @ +3 A. The DC-Link shunt resistor is 50 m Ω .

Assuming the V_{out} of the operation amplifier is 5 V,

$$AC \ Gain = \frac{V_{out} - V_{DC \ Offset}}{V_{in}}$$

Board User's Manual

$$V_{in} = \frac{5 V - 2.5 V}{16.4}$$
$$I_{in} = \frac{(5 V - 2.5 V)}{16.4} \cdot \frac{1}{R_{DC-link shunt}}$$

 I_{in} , DC link maximum current = 3A

Figure 8 Hardware Connection of Shunt Amplifier

The IAVG is the average current measurement of DC-link after low pass RC filter. To get 159Hz cutoff frequency:

$$f_{cutoff} = \frac{1}{2\pi R_{149} C_{115}}$$

2.4.2 Phase Voltage Measurement

The phase voltage is directly measured using resistive dividers at the phases (signals UZ, UU, UV, and UW). The divider is dimensioned to divide the measured voltage UZ, UU, UV, UW by factor 10.21. The formula to calculate the phase voltage U_{PHx} from the measured voltage U_x is:

$$U_{PHx} = 10.21 \times U_x$$

Table 3 summarizes all the voltage and current signals available at SAMTEC connector.

Pin No.	Signal Name	Description
2	AMP_IU	Amplified shunt voltage output representing the current of phase U
4	AMP_IV	Amplified shunt voltage output representing the current of phase V
6	AMP_IW	Amplified shunt voltage output representing the current of phase W
9	IAVG	Amplified shunt voltage output representing the DC-link current after filter
10	SH1-1	Shunt voltage output representing the DC-link current
1	UU	Divided voltage output of phase U (divided by 10.21)
3	UV	Divided voltage output of phase V (divided by 10.21)
5	UW	Divided voltage output of phase W (divided by 10.21)
7	UZ	Divided DC-link voltage (divided by 10.21)

 Table 3
 Voltage and Current signals at the SAMTEC Connector

2.5 Encoder and Hall Interface

A quadrature encoder can be used for detecting the actual rotor position. There are single-ended and differential encoders, the board supports both types. For the differential types an encoder line receiver is required as the microcontroller needs single ended signals.

The differential signals from the encoder (ENCA +/-, ENCB +/-, ENCI +/-) must be connected to the 10-pin encoder connector X204 (Figure 9). The Encoder Line Driver must be enabled by the signal ENENC (set to 1). In case of using a single ended encoder or a hall sensor the signals must be applied to the connector X203 and the encoder line receiver must be disabled by setting the signal ENENC to low level (default). The signal ENENC controls the transistor to enable/disable the supply to the hall interface as shown in Figure 10.

Figure 10	Hall Sensor Connector Interface
-----------	---------------------------------

Table 4 summarizes all the encoder/hall sensors signals available at the SAMTEC connector

Table 4 Encoder / hall signals at the SAMTEC co	onnector
---	----------

Pin No. Signal Name Description		Description
37	ENENC	Enable signal for encoder line receiver (active high)
43	POSIF.IN0	Encoder Channel A / Hall Channel A
45	POSIF.IN1	Encoder Channel B / Hall Channel B
49	POSIF.IN2	Encoder Channel I / Hall Channel C

2.6 PMSM Motor

In this section, the technical data of the motor can be found.

Please refer directly to Maxon Motor internet page <u>http://www.maxonmotor.com/</u> for the latest information about this ECflat motor with part number 267121.

1 2 3 4 5 6 7 8 9 9 10 11 12 13	otor Data Values at nominal voltage Nominal voltage No load speed No load current Nominal speed Nominal torque (max. continuous torque) Nominal torque (max. continuous torque) Nominal current (max. continuous current) Stall torque Starting current Max. efficiency Characteristics Terminal resistance phase to phase Terminal inductance phase to phase Torque constant Speed constant	mNm A % Ω mH mNm/A rpm/V	267121 226006 24 4530 36.9 2760 25.5 0.5 85.8 1.75 74 13.7 7.73 49 195	Connection Pin 1 Pin 2 Pin 3 Pin 4 Pin 5	with Hall sensors V _{Hall} 3.524 VDC Hall sensor 3 Hall sensor 1 Hall sensor 2 GND
	· · ·			Pin 4	Hall sensor 2
	Speed constant Speed/torque gradient	rpm/V rpm/mNm	195 54.5	Pin 5 Pin 6	GND Motor winding 3
15	Mechanical time constant Rotor inertia	rpm/mixm ms gcm ²	20 35	Pin 7 Pin 8	Motor winding 2 Motor winding 1

2.6.2 Geometry

Figure 13 Motor Geometry

3 Production Data

3.1 Schematics

This chapter contains the schematics for the PMSM Low Voltage 15W Motor Card:

- Figure 14: SAMTEC Connector, Power Supply, Encoder Line Driver and Connector, Hall Sensor Connector
- Figure 15: Gate Driver, Power Stage, Shunt Amplifier, Motor Connector

Figure 14 Schematic of SAMTEC Connector, Power Supply, Encoder Line Driver and Connector, Hall Sensor Connector

Figure 15 Schematic of Gate Driver, Power Stage, Shunt Amplifier, Motor Connector

3.2 Components Placement and Geometry

Figure 16 PMSM Low Voltage 15W Motor Card layout and geometry

3.3 Bill of Materials

The list of material is valid for a certain assembly version for the PMSM Low Voltage 15W Motor Card. This version is stated in the header of the Table 5.

No.	Qty	Value	Device	Reference Designator
1	1	HSEC8-130-01-L-RA	HSEC8 socket, SAMTEC	X202
2	1	MKDS1/2-3,81	3.81mm pitch, 2 way, Phoenix	X101
3	1	MPT0, 5/5-2, 54	PC terminal block	X203
4	1	52207-11	Molex Connector	X205
5	1	BUCHSE-LP-5A/SPC4007	Connector Jack	X201
6	1	PAK100/2500-10	Connector	X204
7	5	no ass./0603/10V	Capacitor	C111, C112, C113, C114, C119
8	1	4.7uF/10V/0805	Capacitor	C207
9	1	47uF/50V/6.6	Electrolytic capacitor	C203
10	4	33pF/10V/0603	Capacitor	C108, C109, C110, C118
11	1	10nF/10V/0603	Capacitor	C115
12	1	22nF/25V/0603	Capacitor	C106
13	3	220nF/25V/0603	Capacitor	C102, C103, C105
14	5	100nF/0603	Capacitor	C202, C204, C116, C206, C208
15	3	10uF/25V/0805	Capacitor	C117, C209, C101
16	2	150pF/0603	Capacitor	C104, C107
17	3	15nF/25V/0603	Capacitor	C210, C211, C212
18	2	22uF/25V	Capacitor	C201, C205
19	4	0R/0603	Resistor	R126, R146, R218, R220
20	4	no ass./0603	Resistor	R148, R219, R102, R125
21	4	0R050/1206	Resistor	RS101, RS102, RS103, RS104
22	6	68R/0603	Resistor	R103, R104, R105, R113, R114, R115
23	3	120R/0603	Resistor	R207, R209, R210
24	4	1KR/0603	Resistor	R133, R134, R135, R150
25	1	1K8R/0603	Resistor	R214
26	1	2KR/0603	Resistor	R208
27	6	3K3R/0603	Resistor	R211, R212, R213, R215, R216, R217
28	4	5K1R/0603	Resistor	R119, R120, R121, R122
29	1	6K8R/0603	Resistor	R205
30	1	8K25R/0603	Resistor	R206
31	3	10KR/0603	Resistor	R101, R124, R201
32	8	22K/0603	Resistor	R127, R128, R129, R140, R142, R144, R145, R153
33	1	41K2R/0603	Resistor	R202
34	11	47KR/0603	Resistor	R106, R107, R108, R109, R110, R111, R112, R116, R117, R118, R203
35	2	100KR/0603	Resistor	R123, R149

 Table 5
 PMSM Low Voltage 15W Motor Card BOM

No.	Qty	Value	Device	Reference
	-			Designator
36	3	BSZ0907ND	MOSFET	Q101, Q102, Q103
37	2	BCR198W	Transistor	T201, T202
38	1	6EDL04N02PR	Gate Driver	IC101
39	1	AD8618ARUZ	Operational Amplifier	U101
40	1	AM26LS32ACPW	Quadrature Line Driver	U201
41	1	IFX20001MBV59	Voltage Regulator	IC201
42	1	IFX25001TFV50	Voltage Regulator	IC202
43	1	IFX25401TEV	Voltage Regulator	IC203
44	3	LED-GRN/0603	LED	V201, V202, V203
45	1	ECF32-267121	Maxon Motor	PMSM101
46	3	Farnell 1419294	Screw	
47	3	Farnell 1466915	Spacer	
48	4	Transparent (D7.9mm, H2.2mm)	Support	
49	1	230VAC, 24VDC, 1A	Power Supply	
50	7	No assembly	Test Pad	P0.4, P0.5, TP305, TP306, TP301, TP302, TP309, TP303

www.infineon.com

Published by Infineon Technologies AG