

Wideband MMIC LNA with Integrated ESD Protection

Data Sheet

Revision 3.3, 2012-11-09

RF & Protection Devices

Edition 2012-11-09

Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGB707L7ESD, Wideband MMIC LNA with Integrated ESD Protection

Page	Subjects (changes since previous revision)
	This data sheet replaces the revision from 2010-06-30.
	The product itself has not been changed and the device characteristics remain unchanged.
	Only the product description and information available in the data sheet have been expanded and updated.

Revision History: 2012-11-09, Revision 3.3

Trademarks of Infineon Technologies AG

AURIX[™], C166[™], CanPAK[™], CIPOS[™], CIPURSE[™], EconoPACK[™], CoolMOS[™], CoolSET[™], CORECONTROL[™], CROSSAVE[™], DAVE[™], DI-POL[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPIM[™], EconoPACK[™], EiceDRIVER[™], eupec[™], FCOS[™], HITFET[™], HybridPACK[™], I²RF[™], ISOFACE[™], IsoPACK[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OptiMOS[™], ORIGA[™], POWERCODE[™]; PRIMARION[™], PrimePACK[™], PrimeSTACK[™], PRO-SIL[™], PROFET[™], RASIC[™], ReverSave[™], SatRIC[™], SIEGET[™], SINDRION[™], SIPMOS[™], SmartLEWIS[™], SOLID FLASH[™], TEMPFET[™], thinQ![™], TRENCHSTOP[™], TriCore[™].

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL[™], REALVIEW[™], THUMB[™], µVision[™] of ARM Limited, UK. AUTOSAR[™] is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO[™] of Microsoft Corporation. FlexRay[™] is licensed by FlexRay Consortium. HYPERTERMINAL[™] of Hilgraeve Incorporated. IEC[™] of Commission Electrotechnique Internationale. IrDA[™] of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM[™] of Maxim Integrated Products, Inc. MICROTEC[™], NUCLEUS[™] of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11

Table of Contents

Table of Contents

	Table of Contents	4
	List of Figures	5
	List of Tables	6
1	Product Brief	7
2	Features	8
3	Pin Configuration	9
4	Functional Block Diagram	10
5	Maximum Ratings	11
6	Thermal Characteristics	12
7	Operation Conditions	13
8 8.1 8.2 8.3 8.3.1 8.3.1.1 8.3.1.2	Electrical Characteristics	13 14 16 16 16
8.3.2 8.3.3 8.3.4	AC Characteristics in the SDMB Application	18
9	Package Information	32

List of Figures

List of Figures

Figure 3-1	Pinning of BGB707L7ESD in TSLP-7-1	9
Figure 4-1	Functional Block Diagram.	10
Figure 6-1	Total Power Dissipation $P_{tot} = f(T_s)$	12
Figure 8-1	$I_{\rm CC}$ as a Function of $R_{\rm ext}$, $V_{\rm CC}$ as Parameter	14
Figure 8-2	I_{CC} as a Function of V_{CC} , V_{Ctrl} = 3 V, R_{ext} as Parameter	14
Figure 8-3	I_{CC} as a Function of V_{Ctrl} , V_{CC} = 3 V, R_{ext} as Parameter	15
Figure 8-4	I_{CC} as a Function of Temperature, $V_{Ctrl} = V_{CC} = 3 \text{ V}$, $R_{ext} = \text{open}$	15
Figure 8-5	Testing Circuit for Frequencies from 150 MHz to 10 GHz	18
Figure 8-6	S_{11} as a Function of Frequency, $I_{\rm C}$ as Parameter	28
Figure 8-7	S_{22} as a Function of Frequency, $I_{\rm C}$ as Parameter	28
Figure 8-8	Transition Frequency as a Function of $I_{\rm C}$, $V_{\rm C}$ as Parameter	29
Figure 8-9	Optimum Source Impedance for Minimum NF as a Function of Frequency, I_{C} as Parameter 2	29
Figure 8-10	Maximum Power Gain as a Function of $I_{\rm C}$, Frequency as Parameter	30
Figure 8-11	Power Gain as a Function of $I_{\rm C}$, Frequency as Parameter	30
Figure 8-12	Power Gain and Total Supply Current as a Function of RF Input Power at 3.5 GHz	31
Figure 8-13	Output 3rd Order Intercept Point as a Function of $I_{\rm C}$ at 3.5 GHz, $V_{\rm C}$ as Parameter	31
Figure 9-1	Package Outline TSLP-7-1	32
Figure 9-2	Footprint	32
Figure 9-3	Marking Layout (top view).	32
Figure 9-4	Tape Dimensions	32

List of Tables

List of Tables

Table 3-1	Pinning Table	. 9
Table 5-1	Maximum Ratings at T_A = 25 °C (unless otherwise specified)	11
Table 6-1	Thermal Resistance	12
Table 7-1	Operation Conditions	13
Table 8-1	DC Characteristics at V_{CC} = 3 V, T_A = 25 °C	13
Table 8-2	AC Characteristics in the FM Radio Application as Described in AN177	16
Table 8-3	AC Characteristics in the FM Radio Application as Described in AN181	16
Table 8-4	AC Characteristics in the SDMB Application as Described in TR122, $T_A = 25 \degree C \dots \dots \dots$	17
Table 8-5	AC Characteristics $V_{\rm C}$ = 3 V, f = 150 MHz	19
Table 8-6	AC Characteristics $V_{\rm C}$ = 3 V, f = 450 MHz	20
Table 8-7	AC Characteristics $V_{\rm C}$ = 3 V, f = 900 MHz	21
Table 8-8	AC Characteristics $V_{\rm C}$ = 3 V, f = 1.5 GHz	22
Table 8-9	AC Characteristics $V_{\rm C}$ = 3 V, f = 1.9 GHz	23
Table 8-10	AC Characteristics $V_{\rm C}$ = 3 V, f = 2.4 GHz	24
Table 8-11	AC Characteristics $V_{\rm C}$ = 3 V, f = 3.5 GHz	25
Table 8-12	AC Characteristics $V_{\rm C}$ = 3 V, f = 5.5 GHz	26
Table 8-13	AC Characteristics $V_{\rm C}$ = 3 V, f = 10 GHz	27

Product Brief

1 Product Brief

The BGB707L7ESD is a Silicon Germanium Carbon (SiGe:C) low noise amplifier MMIC with integrated ESD protection and active biasing. The device is as flexible as a discrete transistor and features high gain, reduced power consumption and very low distortion for a very wide range of applications.

The device is based on Infineon Technologies' cost effective SiGe:C technology and comes in a low profile TSLP-7-1 leadless green package.

Features

2 Features

- High performance general purpose wideband MMIC LNA
- ESD protection integrated for all pins (3 kV for RF input vs. GND, 2 kV for all other pin combinations, HBM)
- Integrated active biasing circuit enables stable operating point against temperature- and processing-variations
- Excellent noise figure from Infineon's reliable high volume SiGe:C technology
- · High gain and linearity at low current consumption
- Supply voltage: 1.8 V to 4.0 V
- Adjustable operating current 2.1 mA to 25 mA by external resistor
- Power-off function
- Very small and leadless package TSLP-7-1, 2.0 x 1.3 x 0.4 mm³
- · Pb-free (RoHS compliant) and halogen-free package
- Qualification report according to AEC-Q101 available

Applications

As Low Noise Amplifier (LNA) in

- Mobile, portable and fixed connectivity applications: WLAN 802.11a/b/g/n, WiMax 2.5/3.5/5 GHz, UWB, WiFi, Bluetooth
- Satellite communication systems: Navigation systems (GPS, Glonass), satellite radio (SDARs, DAB) and C-band LNB
- Multimedia applications such as mobile/portable TV, CATV, FM Radio
- 3G/4G UMTS/LTE mobile phone applications
- ISM applications like RKE, AMR and Zigbee

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions

Product Name	Package	Marking		
BGB707L7ESD	TSLP-7-1	AZ		

Pin Configuration

3 Pin Configuration

Figure 3-1 Pinning of BGB707L7ESD in TSLP-7-1

Table 3-1Pinning Table

Pin	Name	Function
1	V _{CC}	Supply voltage
2	V_{Bias}	Bias reference voltage
3	RF _{in}	RF input
4	RF _{out}	RF output
5	V _{Ctrl}	On/Off control voltage
6	Adj	Current adjustment pin
7	GND	DC/RF GND

Functional Block Diagram

4 Functional Block Diagram

The functional block in **Figure 4-1** shows the principal schematic how the BGB707L7ESD is used in a circuit. The Power On/Off function is controlled by applying V_{Ctrl} . By using an external resistor R_{ext} the pre-set current of 2.1 mA (which is adjusted by the integrated biasing when R_{ext} is omitted) can be increased. Base- and collector voltages are applied to the respective pins RF_{in} and RF_{out} by external inductors L_{B} and L_{C} .

Figure 4-1 Functional Block Diagram

Maximum Ratings

5 Maximum Ratings

Parameter	Symbol		Value	Unit	Note /	
		Min.	Тур.	Max.		Test Condition
Supply Voltage	V _{CC}	-	-	4.0	V	<i>T</i> _A = 25 °C
		_	-	3.5		<i>T</i> _A = -55 °C
Supply Current at V _{CC} pin	I _{CC}	-	-	25	mA	-
DC Current at RF In pin	IB	-	-	2	mA	-
Voltage at Ctrl On/Off pin	V_{ctrl}	-	-	4.0	V	-
Total Power Dissipation ¹⁾	P _{tot}	-	-	100	mW	<i>T</i> _S ≤112 °C
Junction Temperature	TJ	-	-	150	°C	-
Storage Temperature	T _{Stg}	-55	-	150	°C	-

Table 5-1 Maximum Ratings at T_{A} = 25 °C (unless otherwise specified)

1) $T_{\rm S}$ is the soldering point temperature. $T_{\rm S}$ is measured at the GND pin (7) at the soldering point to the pcb

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Thermal Characteristics

6 Thermal Characteristics

Table 6-1 Thermal Resistance

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Junction - Soldering Point ¹⁾	R _{thJS}	-	375	-	K/W	-	

1)For the definition of R_{thJS} please refer to Application Note AN077 (Thermal Resistance Calculation)

Figure 6-1 Total Power Dissipation $P_{\text{tot}} = f(T_s)$

Operation Conditions

7 Operation Conditions

Table 7-1 Operation Conditions

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Supply Voltage	V _{CC}	1.8	3.0	4.0	V	-
Voltage Ctrl On/Off pin in On mode	$V_{\rm ctrl}$	1.2	_	V _{CC}	V	-
Voltage Ctrl On/Off pin in Off mode	V_{ctrl}	-0.3	_	0.3	V	-

8 Electrical Characteristics

8.1 DC Characteristics

Table 8-1 DC Characteristics at V_{CC} = 3 V, T_A = 25 °C

Parameter	Symbol		Value	s	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply Current	I _{CC}	-	-	_	mA	$V_{\rm Ctrl}$ = 3 V	
		1.6	2.1	2.6		$R_{\rm ext}$ = open	
		_	3	_		$R_{\rm ext}$ = 12 k Ω	
		-	4.2	_		$R_{\rm ext}$ = 4.7 k Ω	
		-	6	_		$R_{\rm ext}$ = 2.4 k Ω	
		-	10	_		$R_{\rm ext}$ = 1 k Ω	
Supply current in Off mode	$I_{\rm CC-off}$	-	-	6	μA	$V_{\rm Ctrl}$ = 0 V	
Current into V_{Ctrl} pin in On mode	I _{Ctrl-on}	-	14	20	μA	$V_{\rm Ctrl}$ = 3 V	
Current into V_{Ctrl} pin in Off mode	I _{Ctrl-off}	_	_	0.1	μA	$V_{\rm Ctrl}$ = 0 V	

8.2 Typical DC Characteristic Curves

The measurement setup is an application circuit according to **Figure 4-1** using the integrated biasing. $T_A = 25 \degree$ C unless otherwise specified.

Figure 8-1 I_{CC} as a Function of R_{ext} , V_{CC} as Parameter

Figure 8-2 $I_{\rm CC}$ as a Function of $V_{\rm CC}$, $V_{\rm Ctrl}$ = 3 V, $R_{\rm ext}$ as Parameter

Figure 8-3 I_{CC} as a Function of V_{Ctrl} , V_{CC} = 3 V, R_{ext} as Parameter

Figure 8-4 I_{CC} as a Function of Temperature, $V_{Ctrl} = V_{CC} = 3 V$, $R_{ext} = open$

8.3 AC Characteristics

AC characteristics are described in two sub-chapters, first for 100 MHz FM Radio applications, then for higher frequencies in a 50 Ω environment.

8.3.1 AC Characteristics in FM Radio Applications

Two BGB707L7ESD FM radio application notes are available on our website **www.infineon.com/BGB707**. Depending on the impedance of the used antenna, please consult AN177 for high-ohmic antennas and AN181 for 50 Ω antennas. In this chapter you find a summary of the electrical performance as described in these application notes in table form.

8.3.1.1 High-Ohmic FM Radio Antenna

 $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 3.0 V, $I_{\rm CC}$ = 3.0 mA, $V_{\rm Ctrl}$ = 3.0 V, f = 100 MHz, $R_{\rm ext}$ = 12 k Ω

Table 8-2	AC Characteristics in the FM Radio Application as Described in AN177

Parameter	Symbol		Values	Unit	Note /	
		Min.	lin. Typ.	Max.		Test Condition
Transducer Gain	$ S_{21} ^2$	_	12	-	dB	-
Input Return Loss	RL _{IN}	_	0.5 ¹⁾	-	dB	-
Output Return Loss	RL _{OUT}	_	16	-	dB	-
Noise Figure ($Z_s = 50 \Omega$)	NF	_	1.0	-	dB	-
Input 1 dB Gain Compression Point ²⁾	IP _{1dB}	_	-5.5	-	dBm	-
Input 3 rd Order Intercept Point ³⁾	IIP ₃	_	-12.5	-	dBm	-

1) LNA presents a high input impedance match over the 76-108 MHz FM radio band.

2) $I_{\rm CC}$ increases as RF input power level approaches $IP_{\rm 1dB}$.

3) IIP_3 value depends on termination of all intermodulation frequency components. Termination used for the measurement is 50 Ω from 0.1 to 6 GHz.

8.3.1.2 50 Ω FM Radio Antenna

 $T_{\rm A}$ = 25°C, $V_{\rm CC}$ = 2.8 V, $I_{\rm CC}$ = 4.2 mA, $V_{\rm Ctrl}$ = 2.8 V, f = 100 MHz, $R_{\rm ext}$ = 4.7 k Ω

Table 8-3	AC Characteristics in the FM Radio Application as Described in AN181
-----------	--

Parameter	Symbol		Value	Unit	Note /	
		Min.	Тур.	Max.		Test Condition
Transducer Gain	$ S_{21} ^2$	13.5	15	16.5	dB	_
Input Return Loss	RL _{IN}	-	7.5	-	dB	_
Output Return Loss	RL _{OUT}	-	14.5	-	dB	_
Noise figure ($Z_s = 50\Omega$)	NF	-	1.35	1.9	dB	_
Input 1 dB Gain Compression Point ^{1) 2)}	IP _{1dB}	-	-10	-	dBm	_
Input 3 rd Order Intercept Point ²⁾³⁾	IIP ₃	-7.5	-6	_	dBm	_

1) I_{CC} increases as RF input power level approaches IP_{1dB} .

2) Verified by random sampling

3) IIP_3 value depends on termination of all intermodulation frequency components. Termination used for the measurement is 50 Ω from 0.1 to 6 GHz.

8.3.2 AC Characteristics in the SDMB Application

A technical report TR122 for LNA applications in the frequency range 2.3 GHz to 2.7 GHz is available on our web page **www.infineon.com/BGB707**. In this chapter you find a summary of the electrical performance for the SDMB application as described in technical report TR122 in table form.

Parameter	Symbol	Symbol Values		S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Frequency Range	Freq	-	2.6	-	GHz	-
Supply Voltage	$V_{\rm cc}$	-	2.8	-	V	-
Bias Current	I _{cc}	4.4	5.6	6.8	mA	-
Transducer Gain	S ₂₁ ²	13	15	17	dB	Power @ port1 = -30 dBm
Transducer Gain (off mode)	$ S_{21} ^2$ off	-	-18	-	dB	-
Noise Figure ($Z_s = 50 \Omega$)	NF	-	1.15	1.5	dB	Including 0.1 dB Board losses
Input Return Loss	RL _{IN}	-	13.2	_	dB	-
Output Return Loss	<i>RL</i> _{OUT}	-	12	-	dB	-
Reverse Isolation	I _{REV}	-	27.8	-	dB	Power @ port2 = -10 dBm
Input P1dB	IP _{1dB}	-	-9.6	-	dBm	-
Output P1dB	OP _{1dB}	-	4.4	-	dBm	-
Input IP3	IIP ₃	-	-1.4	-	dBm	Input power = -30 dBm
Output IP3	OIP ₃	-	13.6	-	dBm	-
On Switching Time	T _{on}	-	1.5	_	μs	Measured with $C_2 = 1 \text{ nF}$
Off Switching Time	T _{off}	-	4.2	_	μs	-
Stability	k	-	>1	_		Stability measured up to 10 GHz

Table 8-4 AC Characteristics in the SDMB Application as Described in TR122, $T_A = 25 \text{ °C}$

Electrical Characteristics

8.3.3 AC Characteristics in Test Fixture

For frequencies from 150 MHz to 10 GHz the measurement setup is a test fixture with Bias-T's in a 50 Ω system according to **Figure 8-5** at $V_{\rm C}$ = 3 V, $T_{\rm A}$ = 25 °C. The collector current $I_{\rm C}$ is controlled by an external base voltage $V_{\rm B}$ applied at $RF_{\rm in}$ pin and not by the integrated biasing's reference voltage $V_{\rm Bias}$. $V_{\rm C}$ controls the collector voltage at $RF_{\rm out}$ pin. This allows direct measurement of the amplifier performance as a function of bias conditions without passive components.

Figure 8-5 Testing Circuit for Frequencies from 150 MHz to 10 GHz

Parameter	Symbol		Values	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Minimum Noise Figure	NF _{min}				dB	$Z_{\rm S} = Z_{\rm Sopt}$
		_	0.4	_		$I_{\rm C} = 2.1 {\rm mA}$
		_	0.4	_		<i>I</i> _C = 3 mA
		_	0.5	_		<i>I</i> _C = 6 mA
		_	0.55	_		<i>I</i> _C = 10 mA
Transducer Gain	$ S_{21} ^2$				dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
		_	17	_		<i>I</i> _C = 2.1 mA
		_	19	_		<i>I</i> _C = 3 mA
		-	24	_		$I_{\rm C}$ = 6 mA
		_	27	_		<i>I</i> _C = 10 mA
Maximum Power Gain	$G_{\sf ms}$				dB	$Z_{\rm L}$ = $Z_{\rm Lopt}$, $Z_{\rm S}$ = $Z_{\rm Sopt}$
		_	31.5	_		<i>I</i> _C = 2.1 mA
		_	33	_		<i>I</i> _C = 3 mA
		_	35	_		<i>I</i> _C = 6 mA
		_	37	_		<i>I</i> _C = 10 mA
Output 1 dB Compression Point ¹⁾	OP _{1dB}				dBm	
		_	3.5	_		$I_{\rm Cq}$ = 2.1 mA, $I_{\rm Ccomp}$ = 11 mA ²⁾
		-	4	_		I_{Cq} = 3 mA, I_{Ccomp} = 11 mA
		_	4.5	_		I_{Cq} = 6 mA, I_{Ccomp} = 11 mA
		_	3	_		I_{Cq} = 10 mA, I_{Ccomp} = 11 mA
Output 3rd Order Intercept Point	OIP ₃				dBm	
		-	2	-		I _C = 2.1 mA
		-	6	-		$I_{\rm C}$ = 3 mA
		-	14.5	-		$I_{\rm C}$ = 6 mA
		-	19.5	_		$I_{\rm C} = 10 {\rm mA}$

Table 8-5 AC Characteristics V_{c} = 3 V, f = 150 MHz

1) OP_{1dB} is the output compression point achieved in a 50 Ω application circuit according to Figure 4-1 using the integrated biasing.

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Minimum Noise Figure	NF _{min}				dB	$Z_{\rm S} = Z_{\rm Sopt}$
		_	0.45	_		$I_{\rm C} = 2.1 {\rm mA}$
		_	0.45	_		<i>I</i> _C = 3 mA
		_	0.5	_		<i>I</i> _C = 6 mA
		_	0.6	_		<i>I</i> _C = 10 mA
Transducer Gain	$ S_{21} ^2$				dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
		_	17	_		<i>I</i> _C = 2.1 mA
		_	19	_		<i>I</i> _C = 3 mA
		-	24	_		$I_{\rm C}$ = 6 mA
		_	27	_		<i>I</i> _C = 10 mA
Maximum Power Gain	$G_{\sf ms}$				dB	$Z_{\rm L}$ = $Z_{\rm Lopt}$, $Z_{\rm S}$ = $Z_{\rm Sopt}$
		_	27	_		<i>I</i> _C = 2.1 mA
		_	28	_		<i>I</i> _C = 3 mA
		_	30.5	_		<i>I</i> _C = 6 mA
		_	32	_		<i>I</i> _C = 10 mA
Output 1 dB Compression Point ¹⁾	OP _{1dB}				dBm	
		_	11.5	_		$I_{\rm Cq}$ = 2.1 mA, $I_{\rm Ccomp}$ = 11 mA ²⁾
		_	12	_		I_{Cq} = 3 mA, I_{Ccomp} = 14 mA
		-	11.5	_		I_{Cq} = 6 mA, I_{Ccomp} = 16 mA
		_	9.5	_		I_{Cq} = 10 mA, I_{Ccomp} = 15 mA
Output 3rd Order Intercept Point	OIP ₃				dBm	
		-	2	-		I _C = 2.1 mA
		-	5.5	-		$I_{\rm C} = 3 \mathrm{mA}$
		_	14	_		$I_{\rm C} = 6 \mathrm{mA}$
		_	19.5	_		$I_{\rm C} = 10 {\rm mA}$

Table 8-6 AC Characteristics $V_{\rm C}$ = 3 V, f = 450 MHz

1) OP_{1dB} is the output compression point achieved in a 50 Ω application circuit according to Figure 4-1 using the integrated biasing.

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Minimum Noise Figure	NF _{min}				dB	$Z_{\rm S}$ = $Z_{\rm Sopt}$
		_	0.55	_		<i>I</i> _C = 2.1 mA
		_	0.55	_		<i>I</i> _C = 3 mA
		_	0.6	_		<i>I</i> _C = 6 mA
		_	0.7	_		<i>I</i> _C = 10 mA
Transducer Gain	S ₂₁ ²				dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
		_	17	_		<i>I</i> _C = 2.1 mA
		_	19	_		<i>I</i> _C = 3 mA
		_	23.5	_		<i>I</i> _C = 6 mA
		_	26	_		<i>I</i> _C = 10 mA
Maximum Power Gain	$G_{\sf ms}$				dB	$Z_{\rm L}$ = $Z_{\rm Lopt}$, $Z_{\rm S}$ = $Z_{\rm Sopt}$
		_	24	_		<i>I</i> _C = 2.1 mA
		_	25	_		<i>I</i> _C = 3 mA
		_	27.5	_		<i>I</i> _C = 6 mA
		_	29	_		<i>I</i> _C = 10 mA
Output 1 dB Compression Point ¹⁾	OP _{1dB}				dBm	
		_	11	_		$I_{\rm Cq}$ = 2.1 mA, $I_{\rm Ccomp}$ = 13 mA ²⁾
		_	11	_		I_{Cq} = 3 mA, I_{Ccomp} = 15 mA
		_	10	_		I_{Cq} = 6 mA, I_{Ccomp} = 14 mA
		_	8.5	_		I_{Cq} = 10 mA, I_{Ccomp} = 14 mA
Output 3rd Order Intercept Point	OIP ₃				dBm	
		_	3.5	_		<i>I</i> _C = 2.1 mA
		_	8	_		$I_{\rm C}$ = 3 mA
		_	17	_		$I_{\rm C}$ = 6 mA
		_	19.5	_		<i>I</i> _C = 10 mA

Table 8-7 AC Characteristics $V_{\rm C}$ = 3 V, f = 900 MHz

1) OP_{1dB} is the output compression point achieved in a 50 Ω application circuit according to Figure 4-1 using the integrated biasing.

Parameter	Symbol		Values	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Minimum Noise Figure	NF _{min}				dB	$Z_{\rm S} = Z_{\rm Sopt}$
		_	0.6	_		$I_{\rm C} = 2.1 {\rm mA}$
		_	0.6	_		I _C = 3 mA
		_	0.6	_		<i>I</i> _C = 6 mA
		_	0.7	_		<i>I</i> _C = 10 mA
Transducer Gain	$ S_{21} ^2$				dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
		_	16	_		<i>I</i> _C = 2.1 mA
		-	18.5	_		<i>I</i> _C = 3 mA
		-	22.5	_		<i>I</i> _C = 6 mA
		_	24.5	_		<i>I</i> _C = 10 mA
Maximum Power Gain	$G_{\sf ms}$				dB	$Z_{\rm L}$ = $Z_{\rm Lopt}$, $Z_{\rm S}$ = $Z_{\rm Sopt}$
		_	21.5	_		<i>I</i> _C = 2.1 mA
		_	23	_		<i>I</i> _C = 3 mA
		_	25.5	_		<i>I</i> _C = 6 mA
		_	27	_		<i>I</i> _C = 10 mA
Output 1 dB Compression Point ¹⁾	OP _{1dB}				dBm	
		_	10.5	_		$I_{\rm Cq}$ = 2.1 mA, $I_{\rm Ccomp}$ = 14 mA ²⁾
		-	10	_		I_{Cq} = 3 mA, I_{Ccomp} = 16 mA
		-	9	_		I_{Cq} = 6 mA, I_{Ccomp} = 15 mA
		_	8	_		$I_{Cq} = 10 \text{ mA}, I_{Ccomp} = 15 \text{ mA}$
Output 3rd Order Intercept Point	OIP ₃				dBm	
		-	3.5	-		<i>I</i> _C = 2.1 mA
		_	8	_		$I_{\rm C} = 3 \mathrm{mA}$
		_	17	_		$I_{\rm C}$ = 6 mA
		_	19.5	_		$I_{\rm C} = 10 {\rm mA}$

Table 8-8 AC Characteristics V_{c} = 3 V, f = 1.5 GHz

1) OP_{1dB} is the output compression point achieved in a 50 Ω application circuit according to Figure 4-1 using the integrated biasing.

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Minimum Noise Figure	NF _{min}				dB	$Z_{\rm S} = Z_{\rm Sopt}$
		_	0.6	_		$I_{\rm C} = 2.1 {\rm mA}$
		_	0.6	_		<i>I</i> _C = 3 mA
		_	0.6	_		<i>I</i> _C = 6 mA
		_	0.7	_		<i>I</i> _C = 10 mA
Transducer Gain	$ S_{21} ^2$				dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
		_	16	_		I _C = 2.1 mA
		_	18	_		<i>I</i> _C = 3 mA
		_	21.5	_		$I_{\rm C}$ = 6 mA
		_	23	_		<i>I</i> _C = 10 mA
Maximum Power Gain	$G_{\sf ms}$				dB	$Z_{\rm L}$ = $Z_{\rm Lopt}$, $Z_{\rm S}$ = $Z_{\rm Sopt}$
		_	21	_		$I_{\rm C} = 2.1 {\rm mA}$
		_	22	_		I _C = 3 mA
		_	24	_		I _C = 6 mA
		_	26	_		<i>I</i> _C = 10 mA
Output 1 dB Compression Point ¹⁾	OP _{1dB}				dBm	
		_	10	_		$I_{\rm Cq}$ = 2.1 mA, $I_{\rm Ccomp}$ = 15 mA ²⁾
		_	10	_		I_{Cq} = 3 mA, I_{Ccomp} = 16 mA
		_	8.5	_		I_{Cq} = 6 mA, I_{Ccomp} = 14 mA
		_	8	_		I_{Cq} = 10 mA, I_{Ccomp} = 14 mA
Output 3rd Order Intercept Point	OIP ₃				dBm	· · ·
		-	3.5	_		I _C = 2.1 mA
		_	7.5	-		$I_{\rm C} = 3 \mathrm{mA}$
		_	17	_		$I_{\rm C} = 6 \mathrm{mA}$
		_	19.5	_		$I_{\rm C} = 10 {\rm mA}$

Table 8-9 AC Characteristics V_{c} = 3 V, f = 1.9 GHz

1) OP_{1dB} is the output compression point achieved in a 50 Ω application circuit according to Figure 4-1 using the integrated biasing.

Electrical Characteristics

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Minimum Noise Figure	NF _{min}				dB	$Z_{\rm S} = Z_{\rm Sopt}$
		_	0.65	_		$I_{\rm C} = 2.1 {\rm mA}$
		_	0.6	_		I _C = 3 mA
		_	0.6	_		I _C = 6 mA
		_	0.7	_		<i>I</i> _C = 10 mA
Transducer Gain	S ₂₁ ²				dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
		_	15.5	_		I _C = 2.1 mA
		_	17	_		I _C = 3 mA
		_	20	_		I _C = 6 mA
		_	21.5	_		<i>I</i> _C = 10 mA
Maximum Power Gain	$G_{\sf ms}$				dB	$Z_{\rm L} = Z_{\rm Lopt}, Z_{\rm S} = Z_{\rm Sopt}$
		_	20	_		<i>I</i> _C = 2.1 mA
		_	21	_		I _C = 3 mA
		_	23	-		I _C = 6 mA
		_	25	-		<i>I</i> _C = 10 mA
Output 1 dB Compression Point ¹⁾	OP _{1dB}				dBm	
		_	10	_		$I_{\rm Cq}$ = 2.1 mA, $I_{\rm Ccomp}$ = 15 mA ²
		_	10	_		I_{Cq} = 3 mA, I_{Ccomp} = 16 mA
		_	9	_		I_{Cq} = 6 mA, I_{Ccomp} = 14 mA
		_	8	_		$I_{Cq} = 10 \text{ mA}, I_{Ccomp} = 14 \text{ mA}$
Output 3rd Order Intercept Point	OIP ₃				dBm	
		-	4.5	-		<i>I</i> _C = 2.1 mA
		_	9	-		$I_{\rm C}$ = 3 mA
		_	17.5	-		$I_{\rm C}$ = 6 mA
		_	19.5	_		$I_{\rm C} = 10 {\rm mA}$

Table 8-10 AC Characteristics V_c = 3 V, f = 2.4 GHz

1) OP_{1dB} is the output compression point achieved in a 50 Ω application circuit according to Figure 4-1 using the integrated biasing.

Parameter	Symbol		Value	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Minimum Noise Figure	NF _{min}				dB	$Z_{\rm S}$ = $Z_{\rm Sopt}$
		_	0.8	_		$I_{\rm C} = 2.1 {\rm mA}$
		_	0.75	_		<i>I</i> _C = 3 mA
		_	0.7	_		<i>I</i> _C = 6 mA
		_	0.75	_		<i>I</i> _C = 10 mA
Transducer Gain	$ S_{21} ^2$				dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
		_	13.5	_		<i>I</i> _C = 2.1 mA
		_	15.5	_		<i>I</i> _C = 3 mA
		_	18	_		<i>I</i> _C = 6 mA
		_	19	_		<i>I</i> _C = 10 mA
Maximum Power Gain	$G_{\sf ms}$				dB	$Z_{\rm L}$ = $Z_{\rm Lopt}$, $Z_{\rm S}$ = $Z_{\rm Sopt}$
		_	18.5	_		<i>I</i> _C = 2.1 mA
		_	20	_		<i>I</i> _C = 3 mA
		_	22	_		<i>I</i> _C = 6 mA
		_	23.5	_		<i>I</i> _C = 10 mA
Output 1 dB Compression Point ¹⁾	OP _{1dB}				dBm	
		_	10	_		$I_{\rm Cq}$ = 2.1 mA, $I_{\rm Ccomp}$ = 16 mA ²⁾
		_	10	_		I_{Cq} = 3 mA, I_{Ccomp} = 16 mA
		_	9	_		I_{Cq} = 6 mA, I_{Ccomp} = 15 mA
		_	8	_		I_{Cq} = 10 mA, I_{Ccomp} = 15 mA
Output 3rd Order Intercept Point	OIP ₃				dBm	
		-	5.5	-		<i>I</i> _C = 2.1 mA
		_	12	_		$I_{\rm C}$ = 3 mA
		_	17.5	_		$I_{\rm C}$ = 6 mA
		_	19	_		$I_{\rm C} = 10 {\rm mA}$

Table 8-11 AC Characteristics V_{c} = 3 V, f = 3.5 GHz

1) OP_{1dB} is the output compression point achieved in a 50 Ω application circuit according to Figure 4-1 using the integrated biasing.

Electrical Characteristics

Parameter	Symbol		Values	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Minimum Noise Figure	NF _{min}				dB	$Z_{\rm S} = Z_{\rm Sopt}$
		_	1.05	_		$I_{\rm C} = 2.1 {\rm mA}$
		_	1	_		I _C = 3 mA
		_	0.9	_		$I_{\rm C}$ = 6 mA
		_	0.95	_		<i>I</i> _C = 10 mA
Transducer Gain	$ S_{21} ^2$				dB	Z _S = Z _L = 50 Ω
		_	11.5	_		$I_{\rm C}$ = 2.1 mA
		_	13	_		$I_{\rm C}$ = 3 mA
		_	15	_		$I_{\rm C}$ = 6 mA
		_	15.5	_		<i>I</i> _C = 10 mA
Maximum Power Gain	$G_{\sf ms}$				dB	$Z_{\rm L}$ = $Z_{\rm Lopt}$, $Z_{\rm S}$ = $Z_{\rm Sopt}$
		_	17.5	_		$I_{\rm C} = 2.1 {\rm mA}$
		_	18.5	_		I _C = 3 mA
		_	20	_		I _C = 6 mA
		_	19	_		<i>I</i> _C = 10 mA
Output 1 dB Compression Point ¹⁾	OP _{1dB}				dBm	
		_	10.5	_		$I_{\rm Cq}$ = 2.1 mA, $I_{\rm Ccomp}$ = 17 mA ²
		_	10	_		I_{Cq} = 3 mA, I_{Ccomp} = 17 mA
		_	9	_		I_{Cq} = 6 mA, I_{Ccomp} = 15 mA
		_	8	_		I_{Cq} = 10 mA, I_{Ccomp} = 15 mA
Output 3rd Order Intercept Point	OIP ₃				dBm	
		_	6.5	_		<i>I</i> _C = 2.1 mA
		_	12	_		$I_{\rm C}$ = 3 mA
		_	22	_		$I_{\rm C}$ = 6 mA
		_	21	_		$I_{\rm C} = 10 {\rm mA}$

Table 8-12 AC Characteristics V_c = 3 V, f = 5.5 GHz

1) OP_{1dB} is the output compression point achieved in a 50 Ω application circuit according to Figure 4-1 using the integrated biasing.

Electrical Characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Minimum Noise Figure	NF _{min}				dB	$Z_{\rm S} = Z_{\rm Sopt}$
		_	2	_		$I_{\rm C} = 2.1 {\rm mA}$
		_	1.8	_		I _C = 3 mA
		-	1.5	_		<i>I</i> _C = 6 mA
		_	1.5	_		<i>I</i> _C = 10 mA
Transducer Gain	S ₂₁ ²				dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
		-	5.5	_		I _C = 2.1 mA
		-	7	_		I _C = 3 mA
		-	9	_		<i>I</i> _C = 6 mA
		-	10	_		<i>I</i> _C = 10 mA
Maximum Power Gain	$G_{\sf ms}$				dB	$Z_{\rm L} = Z_{\rm Lopt}, Z_{\rm S} = Z_{\rm Sopt}$
		_	14.5	_		$I_{\rm C} = 2.1 {\rm mA}$
		_	15	_		I _C = 3 mA
		_	15.5	_		<i>I</i> _C = 6 mA
		_	15.5	_		<i>I</i> _C = 10 mA
Output 1 dB Compression Point ¹⁾	OP _{1dB}				dBm	
		_	6	_		$I_{\rm Cq}$ = 2.1 mA, $I_{\rm Ccomp}$ = 16 mA ²
		_	6	_		I_{Cq} = 3 mA, I_{Ccomp} = 16 mA
		-	4	_		I_{Cq} = 6 mA, I_{Ccomp} = 15 mA
		-	4	_		I_{Cq} = 10 mA, I_{Ccomp} = 15 mA
Output 3rd Order Intercept Point	OIP ₃				dBm	
		-	2.5	_		I _C = 2.1 mA
		-	7	_		$I_{\rm C}$ = 3 mA
		-	19.5	_		<i>I</i> _C = 6 mA
		-	18	_		$I_{\rm C}$ = 10 mA

Table 8-13 AC Characteristics V_{c} = 3 V, f = 10 GHz

1) OP_{1dB} is the output compression point achieved in a 50 Ω application circuit according to Figure 4-1 using the integrated biasing.

Electrical Characteristics

8.3.4 Typical AC Characteristic Curves

The measurement setup is the same as described in Figure 8-5 except for Figure 8-12 where compression is measured in a 50 Ω application circuit according to Figure 4-1 using the integrated biasing, $V_{\rm C}$ = 3 V, $T_{\rm A}$ = 25 °C.

Figure 8-6 S_{11} as a Function of Frequency, I_{c} as Parameter

Figure 8-7 S_{22} as a Function of Frequency, I_{c} as Parameter

Figure 8-8 Transition Frequency as a Function of $I_{\rm C}$, $V_{\rm C}$ as Parameter

Figure 8-9 Optimum Source Impedance for Minimum NF as a Function of Frequency, I_{c} as Parameter

Figure 8-10 Maximum Power Gain as a Function of $I_{\rm C}$, Frequency as Parameter

Figure 8-11 Power Gain as a Function of I_{c} , Frequency as Parameter

Figure 8-12 Power Gain and Total Supply Current as a Function of RF Input Power at 3.5 GHz

Figure 8-13 Output 3rd Order Intercept Point as a Function of I_c at 3.5 GHz, V_c as Parameter

Package Information

9 Package Information

Figure 9-2 Footprint

Figure 9-4 Tape Dimensions

www.infineon.com

Published by Infineon Technologies AG