Approval Sheet for # Power Wirewound Resistor Flame-Proof & Safety Type ## **PNS Series** ±5% ### **YAGEO CORPORATION** Headquarters: 3F, No.233-1, Pao Chiao Rd., Xindian, Taipei, Taiwan, R.O.C. Tel: 886-2-6629-9999 Fax: 886-2-6628-8885 URL: www.yageo.com | Description | Issue Date | Drawn | Approved | |---------------------------------------|--|--|---| | issue new spec | May 29 2012 | Fena Ye | Ken Hsu | | | | | | | Revised the power rating code and the | Jul. 29, 2015 | Feng Ye | Flora Shen | | thermal resistance | Jul 31 2015 | Fong Vo | Flora Shen | | Revised the marking method. | Jul. 31, 2013 | reng re | Flora Shen | Description issue new spec. Revised the power rating code and the thermal resistance Revised the marking method. | issue new spec. May 29, 2012 Revised the power rating code and the thermal resistance Jul. 29, 2015 | issue new spec. May 29, 2012 Feng Ye Revised the power rating code and the thermal resistance May 29, 2015 Feng Ye | | Description | Power Wirewound Resistors, Flame-Proof & Safety Type | | | | |-------------|--|------|----|--| | Series | PNS | Rev. | 02 | | #### 1. PRODUCT: Resistors of series PNS are wound on ceramic carriers, all-welded contacts. Coated, the resistors comply with all requirements for precision and high ratings. FLAME-PROOF & SAFETY TYPE Body colour: Grey #### 2. PART NUMBER: Part number of the precision power wirewound resistor is identified by the name, power, tolerance, packing, temperature coefficient, special type and resistance value. Example: | PNS | 100 | J | Т | - | 52- | 10R | | |--------|--------|-----------|-------|---------------|---------|------------|--| | (1) | (2) | (3) | (4) | (5) | (6) | (7) | | | Series | Power | | | Temperature | Special | Resistance | | | Name | Rating | Tolerance | Style | Coefficient | Type | Value | | | | | | | of Resistance | | | | (1) Style: PNS SERIES (2) Power Rating: 100=1W \ 180=1.8W \ 230=2.3W \ 270=2.7W \ 360=3.6W \ 450=4.5W (3) Tolerance: J=±5% (4) Packaging Type: T=Tape on Box Packing (5) Temperature Coefficient : "-"=Base on spec. (6) Special Type : 52-=52.4mm 73-=73mm 52G= 52.4mm packing withψ d=0.65±0.05mm 52Z= 52.4mm packing with spacing 10mm for PNS230 (Normal spacing is 5mm) (7) Resistance Value : E24 Series Example: 1R \ 10R \ 100R \ #### 3. **MARKING:** #### **ELECTRICAL CHARACTERISTICS** TABLE I | STYLE | PNS100 | PNS180 | PNS230 | PNS270 | PNS360 | PNS450 | |----------------------------|--------------------------|---------|---------|--------|--------|--------| | Power Rating at 70 °C | 1W | 1.8W | 2.3W | 2.7W | 3.6W | 4.5W | | Max. Cont. Work. Voltage | $\sqrt{P_{70} \times R}$ | | | | | | | Thermal resistance (°C/W) | 280 | 155 | 127 | 103 | 77 | 62 | | Resistance Range | 1R~100R | 1R~240R | 1R~330R | | | | | Tolerances | ±5% | | | | | | | Temperature Coefficient | $120 \pm 50 pp$ | m/°C | | | | | | Insulation Voltage (1min.) | Max. 500V | | | | | | | Operating Temp. Range | - 55 °C to + | 350 ℃ | | | | | ^{*} Below or over this resistance on request. #### 5. DERATING CURVE #### 6. SAFETY CHARACTERISTIC The special construction of resistance values >10R results in an immediate interruption (<1s, 230ms typical),when mains voltage ($220V/240V_{RMS}$) is applied. No flames, no explosion. After fusing, the resistance value is >100KOhm. For other voltages test suitability in the application! * Resistance values < 10R are flame retardant. The interruption mechanism is not clearly defined and has to be tested in the final application! #### 7. DIMENSIONS | OTVI E | DIMENSIONS (unit: mm) | | | | | |--------|-----------------------|-----|----------|--|--| | STYLE | Lmax. ψ D* max. | | ψ d ±0.1 | | | | PNS100 | 9.0 | 3.0 | 0.65 | | | | PNS180 | 9.7 | 4.0 | 0.80 | | | | PNS230 | 14.5 | 4.5 | 0.65 | | | | PNS270 | 12.6 | 6.0 | 0.80 | | | | PNS360 | 17.0 | 6.0 | 0.80 | | | | PNS450 | 18.0 | 8.5 | 0.80 | | | ^{*}R<10R Dmax. +1 #### 8. ENVIRONMENTAL CHARACTERISTICS #### (1) Voltage Proof The resistor shall be clamped in the trough of a 90° metal V Block. Apply the insulation voltage specified in the "Table I " between the terminals connected together with the block for about 60 seconds. The resistor shall be able to withstand without breakdown or flashover. #### (2) Temperature Coefficient Test Test of resistors above room temperature $100^{\circ}\text{C} \pm 2^{\circ}\text{C}$ (Testing Temperature 115°C to 130°C) at the constant temperature silicon plate for over 5 minutes. Then measure the resistance value. The Temperature Coefficient is calculated by the following equation and its value should be within the range of requested. Resistor Temperature Coefficient = $$\frac{R - R_0}{R_0} \times \frac{1}{t - t_0} \times 10^6$$ **R** = Resistance value under the testing temperature R_0 = Resistance value at the room temperature t = The testing temperature t_o = Room temperature #### (3) Solderability Immerse the specimen into the solder pot at 235 \pm 5 °C for 3 \pm 0.5 seconds. At least 95% solder coverage on the termination. #### (4) Solvent Resistance of Marking The specimen into the appropriate solvent of IPA condition of ultrasonic machine for 5± 0.5 minutes. The specimen is no deterioration of coatings and color code #### (5) Robustness of Terminations Direct Load – Resistors shall be held by one terminal and the load shall be gradually applied in the direction of the longitudinal axis of the resistor unit the applied load reached the requirement. The load shall be held for 10 seconds. The load of weight shall be \geq 40N #### (6) Damp Heat Steady State Place the specimen in a test chamber at 40 ± 2 °C and $90 \sim 95$ % relative humidity. Apply the 0.1 times rated voltage to the specimen at the 1.5 hours on and 0.5 hour off cycle. The total length of test is 56 days. The change of the resistance value shall be within ± 5.0 % #### (7) Endurance at 70 °C Placed in the constant temperature chamber of 70 ± 3 °C the resistor shall be connected to the lead wire at the point of 25mm. Length with each terminal, the resistors shall be arranged not much effected mutually by the temperature of the resistors and the excessive ventilation shall not be performed, for 90 minutes on and 30 minutes off under this condition the rated D.C. voltage is applied continuously for 1000+48/-0 hours then left at no-load for 1hour, measured at this time the resistance value \circ The change of the resistance value shall be within $\pm 5.0\%$ There shall be no remarkable change in the appearance and the color code shall be legible after the test.. #### (8) Resistance to Soldering Heat The terminal lead shall be dipped into the solder pot at 260 \pm 3 °C for 10 \pm 1.0 seconds up to 2.5 \sim 3.5 mm. The change of the resistance value shall be within $\pm 0.5\%$ #### 9. PACKAGING | STYLE | Packaging | Pieces | Packcode | С | S | |--------|-----------|--------|----------|----|----| | PNS100 | taped | 1000 | Т | 65 | 5 | | PNS180 | taped | 1000 | Т | 65 | 5 | | PNS230 | taped | 1000 | Т | 85 | 10 | | PNS270 | taped | 1000 | Т | 85 | 10 | | PNS360 | taped | 1000 | Т | 85 | 10 | | PNS450 | taped | 500 | Т | 85 | 10 | #### 10. Plant Address A. China Dongguan Plant 7-1, Gaoli Road, Gaoli Industrial Zone Tangxia Zhen, Dongguan, Guangdong, China (廣東省東莞市塘廈鎭高麗工業區高麗路 7-1 號) Tel. 86-769-8772 0275 Fax. 86-769-8772 0275 #4333 B. China Mudu Plant No.158, Fengjiang Road, Mudu New District, Suzhou, Kiangsu, China (江蘇省蘇州木瀆新區楓江路 158 號) Tel. 86-512-6651 8889 Fax. 86-512-6651 9889 Page-7