

Product Technical Specification

41111094 1.5 July 25, 2018

Important Notice

Due to the nature of wireless communications, transmission and reception of data can never be guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used in situations where failure to transmit or receive data could result in damage of any kind to the user or any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or receive such data.

Safety and Hazards

Do not operate the Sierra Wireless modem in areas where cellular modems are not advised without proper device certifications. These areas include environments where cellular radio can interfere such as explosive atmospheres, medical equipment, or any other equipment which may be susceptible to any form of radio interference. The Sierra Wireless modem can transmit signals that could interfere with this equipment. Do not operate the Sierra Wireless modem in any aircraft, whether the aircraft is on the ground or in flight. In aircraft, the Sierra Wireless modem **MUST BE POWERED OFF**. When operating, the Sierra Wireless modem can transmit signals that could interfere with various onboard systems.

Note: Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door is open. Sierra Wireless modems may be used at this time.

The driver or operator of any vehicle should not operate the Sierra Wireless modem while in control of a vehicle. Doing so will detract from the driver or operator's control and operation of that vehicle. In some states and provinces, operating such communications devices while in control of a vehicle is an offence.

Limitations of Liability

This manual is provided "as is". Sierra Wireless makes no warranties of any kind, either expressed or implied, including any implied warranties of merchantability, fitness for a particular purpose, or noninfringement. The recipient of the manual shall endorse all risks arising from its use.

The information in this manual is subject to change without notice and does not represent a commitment on the part of Sierra Wireless. SIERRA WIRELESS AND ITS AFFILIATES SPECIFICALLY DISCLAIM LIABILITY FOR ANY AND ALL DIRECT, INDIRECT, SPECIAL, GENERAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS OR REVENUE OR ANTICIPATED PROFITS OR REVENUE ARISING OUT OF THE USE OR INABILITY TO USE ANY SIERRA WIRELESS PRODUCT, EVEN IF SIERRA WIRELESS AND/OR ITS AFFILIATES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR THEY ARE FORESEEABLE OR FOR CLAIMS BY ANY THIRD PARTY.

Notwithstanding the foregoing, in no event shall Sierra Wireless and/or its affiliates aggregate liability arising under or in connection with the Sierra Wireless product, regardless of the number of events, occurrences, or claims giving rise to liability, be in excess of the price paid by the purchaser for the Sierra Wireless product.

Patents

This product may contain technology developed by or for Sierra Wireless Inc.

This product is manufactured or sold by Sierra Wireless Inc. or its affiliates under one or more patents licensed from MMP Portfolio Licensing.

Copyright

© 2018 Sierra Wireless. All rights reserved.

Trademarks

Sierra Wireless[®], AirPrime[®], AirLink[®], AirVantage[®], WISMO[®], ALEOS[®] and the Sierra Wireless and Open AT logos are registered trademarks of Sierra Wireless, Inc. or one of its subsidiaries.

Watcher® is a registered trademark of NETGEAR, Inc., used under license.

Windows® and Windows Vista® are registered trademarks of Microsoft Corporation.

 $Macintosh^{\$}$ and $Mac~OS~X^{\$}$ are registered trademarks of Apple Inc., registered in the U.S. and other countries.

QUALCOMM® is a registered trademark of QUALCOMM Incorporated. Used under license.

Other trademarks are the property of their respective owners.

Contact Information

Sales information and technical support, including warranty and returns	Web: <u>sierrawireless.com/company/contact-us/</u> Global toll-free number: 1-877-687-7795 6:00 am to 5:00 pm PST
Corporate and product information	Web: <u>sierrawireless.com</u>

Document History

Version	Date	Updates
1.0	November 24, 2017	Creation
1.1	February 01, 2018	Added 3.3 Power Consumption States Updated: • Table 2 General Features • Table 5 Pin Definition • 3.2 Current Consumption • Table 11 Current Consumption Mode • 3.16 Debug Interface • 3.19.3 Rx Sensitivity
1.2	May 04, 2018	Added: • 1.1.1 • Table 9 Maximum Current Consumption Updated: • GNSS to GPS • 1.7 ESD Specifications • 1.8.5 RoHS Directive Compliance • 3.2 Current Consumption • Table 21 Digital I/O Electrical Characteristics • 3.11 Power On Signal (PWR_ON_N) • 3.19 RF Interface • 5 Reliability Specification
1.3	July 05, 2018	Added 1.8.3 ATEX Compliance Updated: Table 1 Supported Bands/Connectivity Table 2 General Features 1.5 Interfaces Table 5 Pin Definition Table 9 Maximum Current Consumption 3.2 Current Consumption 3.3 Power Consumption States 3.11 Power On Signal (PWR_ON_N) 3.12 Reset Signal (RESET_IN_N) Table 40 Typical Conducted RX Sensitivity
1.4	July 10, 2018	Updated Table 10 Low Current Consumption Mode
1.5	July 25, 2018	Added: • 1.8.2 Frequency Drift Correction • 6 Legal Information • HL7800-M Updated: • Table 9 Maximum Current Consumption • Moved Japan Approval to 6.1; updated Figure 16 Sample Japan Certification Indication

->> Contents

1.	INTR	ODUC		10
	1.1.	Com	mon Flexible Form Factor (CF ³)	11
	1.2.	Phys	ical Dimensions	11
	1.3.	Gene	eral Features	11
	1.4.	Archi	tecture	13
	1.5.	Interf	aces	14
	1.6.	Conn	ection Interface	14
	1.7.	ESD	Specifications	15
	1.8.	Envir	onmental and Certifications	15
	1.8	3.1.	Environmental Specifications	15
	1.8	3.2.	Frequency Drift Correction	16
	1.8	3.3.	ATEX Compliance	16
	1.8	3.4.	Regulatory	16
		3.5.	RoHS Directive Compliance	
	1.8	3.6.	Disposing of the Product	17
	1.9.	Refe	rences	17
2.	PAD	DEFI	NITION	
	2.1.	Pin T	ypes	22
	2.2. Pad Configuration (Top View, Through Module)		23	
3.	DETA			
3.	DETA 3.1.	ILED		24
3.		NILED Powe	INTERFACE SPECIFICATIONS	24 24
3.	3.1.	Powe Curre	INTERFACE SPECIFICATIONS	24 24 25
3.	3.1. 3.2. 3.3.	Powe Curre	er Supply er Consumption er Consumption States	24 24 25 26
3.	3.1. 3.2. 3.3. 3.3	Powe Curre Powe	INTERFACE SPECIFICATIONS	24 25 26 26
3.	3.1. 3.2. 3.3. 3.3	Powe Curre Powe 3.1. 3.2.	er Consumption States 3GPP Power Saving Features.	24 25 26 26 29
3.	3.1. 3.2. 3.3. 3.3 3.3	Powe Curre Powe 3.1. 3.2. VGPI	PINTERFACE SPECIFICATIONS	24 24 25 26 26 29 29
3.	3.1. 3.2. 3.3. 3.3 3.3	Powe Curre Powe 3.1. 3.2. VGPI Real	INTERFACE SPECIFICATIONS er Supply ent Consumption er Consumption States 3GPP Power Saving Features Power Modes	24 25 26 26 29 29 29 30
3.	3.1. 3.2. 3.3. 3.3 3.4. 3.5. 3.6.	Powe Curre Powe 3.1. 3.2. VGPI Real	PINTERFACE SPECIFICATIONS er Supply ent Consumption er Consumption States	24 25 26 26 29 29 30 30
3.	3.1. 3.2. 3.3. 3.3 3.4. 3.5. 3.6.	Powe Curre Powe 3.1. 3.2. VGPI Real USIN 5.1.	INTERFACE SPECIFICATIONS er Supply	24 25 26 26 29 29 29 30 31
3.	3.1. 3.2. 3.3. 3.3 3.4. 3.5. 3.6. 3.6	Powe Curre Powe 3.1. 3.2. VGPI Real USIN 5.1. USB	INTERFACE SPECIFICATIONS er Supply	24 25 26 26 29 29 30 30 31 32
3.	3.1. 3.2. 3.3. 3.3 3.4. 3.5. 3.6. 3.7.	Powe Curre Powe 3.1. 3.2. VGPI Real USIN 5.1. USB Elect	INTERFACE SPECIFICATIONS er Supply	24 24 25 26 26 29 29 30 31 32 32 32
3.	3.1. 3.2. 3.3. 3.3 3.4. 3.5. 3.6. 3.7. 3.8.	AILED Powe Curre Powe 3.1. 3.2. VGPI Real USIN 5.1. USB Elect Gene	INTERFACE SPECIFICATIONS er Supply	24 25 26 26 29 29 29 30 30 31 32 32 33
3.	3.1. 3.2. 3.3. 3.3 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10.	AILED Powe Curre Powe 3.1. 3.2. VGPI Real USIN 5.1. USB Elect Gene	INTERFACE SPECIFICATIONS er Supply	24 25 26 26 29 29 30 30 31 32 32 33 33
3.	3.1. 3.2. 3.3. 3.3 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10. 3.1	Powe Curre Powe 3.1. 3.2. VGPI Real USIN 5.1. USB Elect Gene Main	PINTERFACE SPECIFICATIONS	24 25 26 26 29 29 30 30 31 32 32 33 33 33
3.	3.1. 3.2. 3.3. 3.3 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10. 3.10. 3.1	AlLED Powe Curre Powe 3.1. 3.2. VGPI Real USIN 5.1. USB Elect Gene Main (0.1.	INTERFACE SPECIFICATIONS er Supply	24
3.	3.1. 3.2. 3.3. 3.3 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10. 3.10. 3.1	AlLED Powe Curre Powe 3.1. 3.2. VGPI Real USIN 5.1. USB Elect Gene Main 0.1. 0.2. 0.3.	INTERFACE SPECIFICATIONS er Supply	24 25 26 26 29 29 30 30 31 32 32 33 33 35 35

	3.1	1.2.	Managed	37
	3.12.	Rese	et Signal (RESET_IN_N)	38
	3.13.	Analo	og to Digital Converter (ADC)	39
	3.14.	Clock	k Interface	39
	3.15.	PCM		40
	3.16.	Debu	ıg Interface	40
	3.17.	Wake	e Up Signal (WAKE_UP)	40
	3.18.	Fast	Shutdown Signal (FAST_SHUTDOWN_N)	41
	3.19.	RF Ir	nterface	42
	3.1	9.1.	RF Connection	42
	3.1	9.2.	Maximum Output Power	42
		9.3.	Rx Sensitivity	
		9.4.	TX Indicator (TX_ON)	
	3.20.		Interface	
	0.2	20.1. 20.2.	GPS Performance GPS Antenna Indicator (EXT_LNA_GPS_EN)	
4.	MECH	HANI	CAL DRAWINGS	45
5.	RELI	ABILI	TY SPECIFICATION	48
	5.1.	Prece	onditioning Test	48
	5.2.	Perfo	prmance Test	48
	5.3.	Aginę	g Tests	49
	5.4.	Char	acterization Tests	50
6.	LEGA		FORMATION	51
	6.1.	Japa	n Radio and Telecom Approval	51
	6.2.		Statement	
	6.2	2.1.	Radiation Exposure Statement	51
	6.2	2.2.	End Product Labeling	52
				52
	6.2	2.3.	Manual Information to the End User	
	6.2 6.3.		Manual Information to the End User	
	6.3. 6.3	IC St 3.1.	atement Radiation Exposure Statement / Déclaration d'Exposition aux Radiations	52 53
	6.3. 6.3 6.3	IC St 3.1. 3.2.	atement Radiation Exposure Statement / Déclaration d'Exposition aux Radiations End Product Labeling / Plaque Signalétique du Produit Final	52 53 54
	6.3. 6.3 6.3 6.3	IC St 3.1. 3.2. 3.3.	atement Radiation Exposure Statement / Déclaration d'Exposition aux Radiations End Product Labeling / Plaque Signalétique du Produit Final Manual Information to the End User / Manuel d'Information à l'Utilisateur Final.	52 53 54 54
7.	6.3. 6.3 6.3 6.3	IC St 3.1. 3.2. 3.3.	atement Radiation Exposure Statement / Déclaration d'Exposition aux Radiations End Product Labeling / Plaque Signalétique du Produit Final	52 53 54 54

->> List of Figures

Figure 1.	Architecture Overview	.13
Figure 2.	Mechanical Overview (Top View)	.14
Figure 3.	Pad Configuration (Top View through Module)	.23
Figure 4.	PSM Example (Simplified)	.26
Figure 5.	eDRX Example (PTW=4)	.28
Figure 6.	8-wire UART Application Example	.34
Figure 7.	4-wire UART Application Example	. 35
Figure 8.	2-wire UART Application Example	. 35
Figure 9.	Power Up and Power Down Sequence without PWR_ON_N	. 36
Figure 10.	Power Up Sequence with PWR_ON_N Cold Start	. 37
Figure 11.	Power On Sequence with PWR_ON_N	. 37
Figure 12.	TX_ON State during TX Burst	.43
Figure 13.	Mechanical Drawing	.45
Figure 14.	Dimensions Drawing	.46
Figure 15.	Footprint Drawing	.47
Figure 16.	Sample Japan Certification Indication	.51

List of Tables

Table 1.	Supported Bands/Connectivity	.10
Table 2.	General Features	.11
Table 3.	Environmental Specifications	.15
Table 4.	Values for ATEX Compliance	.16
Table 5.	Pin Definition	.18
Table 6.	Pin Type Codes	.22
Table 7.	Power Supply Pin Description	.24
Table 8.	Power Supply Electrical Characteristics	.24
Table 9.	Maximum Current Consumption	.24
Table 10.	Low Current Consumption Mode	.25
Table 11.	Current Consumption Mode	.26
Table 12.	eDRX-Related Commands	.28
Table 13.	Low Power Modes	.29
Table 14.	VGPIO Pin Description	.30
Table 15.	VGPIO Electrical Characteristics	.30
Table 16.	BAT_RTC Electrical Characteristics	.30
Table 17.	USIM1 Pin Description	.31
Table 18.	USIM1 Electrical Characteristics	.31
Table 19.	USB Pin Description	.32
Table 20.	USB Electrical Characteristics	.32
Table 21.	Digital I/O Electrical Characteristics	.32
Table 22.	GPIO Pin Description	.33
Table 23.	UART1 Pin Description	.34
Table 24.	PWR_ON_N Pin Description	.36
Table 25.	PWR_ON_N Electrical Characteristics	.36
Table 26.	PWR_ON_N Not Managed Timing	.36
Table 27.	PWR_ON_N Managed Timing	.38
Table 28.	RESET_IN_N Pin Description	.38
Table 29.	RESET_IN_N Electrical Characteristics	.38
Table 30.	ADC Pin Description	. 39
Table 31.	ADC Electrical Characteristics	. 39
Table 32.	Clock Interface Pin Description	.40
Table 33.	Debug Pin Description	.40
Table 34.	WAKE_UP Pin Description	.40
Table 35.	WAKE_UP Electrical Characteristics	.41
Table 36.	FAST_SHUTDOWN_N Pin Description	.41
Table 37.	FAST_SHUTDOWN_N Electrical Characteristics	.41

Table 38.	RF Main Pin Description42
Table 39.	Maximum Output Power42
Table 40.	Typical Conducted RX Sensitivity
Table 41.	TX_ON Pin Description43
Table 42.	TX_ON Characteristics44
Table 43.	GPS Antenna Specifications
Table 44.	GPS Performance
Table 45.	Preconditioning Test
Table 46.	Performance Test
Table 47.	Aging Tests
Table 48.	Characterization Tests
Table 49.	Ordering Information

>1. Introduction

This document is the Product Technical Specification for the AirPrime HL7800 and HL7800-M Embedded Modules designed for M2M and Internet of Things (IoT) markets. It defines the high-level product features and illustrates the interfaces for these features. This document is intended to cover the hardware aspects of the product, including electrical and mechanical.

The AirPrime HL7800 and HL7800-M modules belongs to the AirPrime HL Series from Essential Connectivity Module family. These are industrial grade Embedded Wireless Modules that provides data connectivity on LTE (as listed in Table 1 Supported Bands/Connectivity).

The AirPrime HL7800 and HL7800-M modules supports a large variety of interfaces such as USB FS, UART, ADC, and GPIOs to provide customers with the highest level of flexibility in implementing highend solutions.

LTE Band	Transmit Band (Tx)		Receive Band (Rx)		Cat-M1 (HL7800 and	Cat-NB1 (HL7800
	Minimum	Maximum	Minimum	Maximum	HL7800-M)	only)
B1	1920 MHz	1980 MHz	2110 MHz	2170 MHz	\checkmark	\checkmark
B2	1850 MHz	1910 MHz	1930 MHz	1990 MHz	✓	✓
B3	1710 MHz	1785 MHz	1805 MHz	1880 MHz	✓	✓
B4	1710 MHz	1755 MHz	2110 MHz	2155 MHz	✓	*
B5	824 MHz	849 MHz	869 MHz	894 MHz	✓	✓
B8	880 MHz	915 MHz	925 MHz	960 MHz	✓	✓
B9	1749.9 MHz	1784.9 MHz	1844.9 MHz	1879.9 MHz	*	*
B10	1710 MHz	1770 MHz	2110 MHz	2170 MHz	*	*
B12	699 MHz	716 MHz	729 MHz	746 MHz	✓	✓
B13	777 MHz	787 MHz	746 MHz	756 MHz	\checkmark	\checkmark
B14	788 MHz	798 MHz	758 MHz	768 MHz	✓	*
B17	704 MHz	716 MHz	734 MHz	746 MHz	*	✓
B18	815 MHz	830 MHz	860 MHz	875 MHz	✓	✓
B19	830 MHz	845 MHz	875 MHz	890 MHz	✓	✓
B20	832 MHz	862 MHz	791 MHz	821 MHz	✓	\checkmark
B25	1850 MHz	1915 MHz	1930 MHz	1995 MHz	~	✓
B26	814 MHz	849 MHz	859 MHz	894 MHz	✓	\checkmark
B27	807 MHz	824 MHz	852 MHz	869 MHz	\checkmark	*
B28	703 MHz	748 MHz	758 MHz	803 MHz	~	✓
B66	1710 MHz	1780 MHz	2110 MHz	2200 MHz	✓	\checkmark

Table 1. Supported Bands/Connectivity

* Will be supported in a future release.

Note:

RF bands supported are configurable through AT command. The software-based radio allows for the ability to support extra bands for worldwide connectivity.

1.1. Common Flexible Form Factor (CF³)

The AirPrime HL7800 and HL7800-M modules belong to the Common Flexible Form Factor (CF³) family of modules. This family consists of a series of WWAN modules that share the same mechanical dimensions (same width and length with varying thicknesses) and footprint. The CF³ form factor provides a unique solution to a series of problems faced commonly in the WWAN module space as it:

- Accommodates multiple radio technologies (LTE advanced) and band groupings.
- Supports bit-pipe (Essential Module Series) and value add (Smart Module Series) solutions.
- Offers electrical and functional compatibility.
- Provides Direct Mount as well as Socketability depending on customer needs.

1.2. Physical Dimensions

AirPrime HL7800 and HL7800-M modules are compact, robust, fully shielded modules with the following dimensions:

- Length: 18.0 mm
- Width: 15.0 mm
- Thickness: 2.4 mm
- Weight: 1.17 g

Note: Dimensions specified above are typical values.

1.3. General Features

The table below summarizes the AirPrime HL7800 and HL7800-M's features.

Feature	Description		
	 Small form factor (86-pad solderable LGA pad) – 15.0mm x 18.0mm x 2.4mm (nominal) 		
Physical	Metal shield can		
	 RF connection pads (RF main and RF GPS) 		
	Baseband signals connection		
Power supply	Single or double supply voltage (VBATT and VBATT_PA) – 3.2V – 4.35V		

Feature	eature Description			
RF	 Cat-M1 Power Class 3 (23dBm) Software based radio allowing support of extra bands for worldwide operation (will be supported in a future release) Cat-NB1 (not supported on the HL7800-M) Power Class 3 (23dBm) Software based radio allowing support of extra bands for worldwide operation (will be supported in a future release) Software based radio allowing support of extra bands for worldwide operation (will be supported in a future release) GPS* 1575.42 MHz Note: The GPS receiver shares the same RF resources as the 4G receiver. The end-device target should allow GPS positioning for asset management applications where infrequent and no real-time position updates are required.			
SIM interface	 1.8V only support (3V SIM is not supported) SIM extraction / hot plug detection SIM/USIM support Conforms with ETSI UICC Specifications. Supports SIM application tool kit with proactive SIM commands AT command interface – 3GPP 27.007 standard, plus proprietary extended 			
Application interface	AT commands CMUX multiplexing over UART USB FS* 			
Protocol stack	 Cat-M1 3GPP Rel. 13 Half-duplex Channel bandwidth 1.4MHz LTE carrier bandwidth 1.4/3/5/10/15/20 MHz Up to 375kbit/s uplink, 300 kbit/s downlink Extended Coverage Mode A PSM (Power Save Mode) I-DRX C-DRX Idle mode mobility Connected mode mobility eDRX (Extended Discontinuous Reception) CiOT optimizations (U-Plane, C-Plan)* Cat-NB1* (not supported on the HL7800-M) 3GPP Rel. 13 Half-duplex Channel bandwidth 180KHz LTE carrier bandwidth 1.4/3/5/10/15/20 MHz Up to 100 kbit/s in downlink Operational mode – Inband, Guard band, Standalone CioT EPS optimizations (Data over NAS) Extended coverage 			
Protocol stack	 Flexible selection Manual system selection across RATs Dynamic system selection across RATs (preferred RAT)* 			

Feature	Description		
SMS	 SMS over SG MO/MT SMS storage to SIM card or ME storage 		
 Multiple cellular packet data profiles Sleep mode for minimum idle power draw Mobile-originated PDP context activation / deactivation Static and Dynamic IP address. The network may assign a fixed I or dynamically assign one using DHCP (Dynamic Host Configura Protocol). PDP context type (IPv4, IPv6, IPv4v6). IP Packet Data Protocol c RFC1144 TCP/IP header compression 			
Environmental	 Operating temperature ranges (industrial grade): Class A: -30°C to +70°C Class B: -40°C to +85°C 		
RTC	Real Time Clock (RTC)		

Will be available in a future release.

1.4. Architecture

*

The figure below presents an overview of the AirPrime HL7800 and HL7800-M's internal architecture and external interfaces.

* Will be available in a future release

Figure 1. Architecture Overview

1.5. Interfaces

The AirPrime HL7800 and HL7800-M modules provide the following interfaces and peripheral connectivity:

- 1x VGPIO (1.8V)
- 1x BAT_RTC backup battery interface (will be available in a future release)
- 1x 1.8V USIM
- 1x USB FS (will be available in a future release)
- 11x GPIOs
- 1x 8-wire UART
- 1x Active Low POWER ON (will be available in a future release)
- 1x Active Low RESET
- 2x ADC (will be available in a future release)
- 2x System clock out (32.768 KHz and 26 MHz) (will be available in a future release)
- 1x PCM (will be available in a future release)
- 1x 4-wire UART for debug interface only
- 1x Wake up signal
- 1x Fast shutdown signal (will be available in a future release)
- 1x Main RF Antenna
- 1x TX indicator
- 1x GPS Antenna (will be available in a future release)

1.6. Connection Interface

AirPrime HL7800 and HL7800-M modules are LGA form factor devices. All electrical and mechanical connections are made through the 86 Land Grid Array (LGA) pads on the bottom side of the PCB.

Figure 2. Mechanical Overview (Top View)

The 86 pads have the following distribution:

- 66 inner signal pads, 1x0.5mm, pitch 0.8mm
- 16 inner ground pads, 1.0x1.0mm, pitch 1.825mm/1.475mm
- 4 outer corner ground pads, 0.85x0.97mm

1.7. ESD Specifications

- IEC-61000-4-2 (test carried out on test vehicle including ESD protection)
 - Contact Voltage: ±2kV, ±4kV, ±6kV (design target)
 - Air Voltage: ±2kV, ±4kV, ±8kV (design target)
- Unless otherwise specified:
 - JESD22-A114 ± 250kV Human Body Model
 - JESD22-C101C ± 250V Charged Device Model

1.8. Environmental and Certifications

1.8.1. Environmental Specifications

The environmental specification for both operating and storage conditions are defined in the table below.

Table 3. Environmental Specifications

Conditions	Range
Operating Class A	-30°C to +70°C
Operating Class B	-40°C to +85°C
Storage	-40°C to +85°C

Class A is defined as the operating temperature ranges that the device:

- Shall exhibit normal function during and after environmental exposure.
- Shall meet the minimum requirements of 3GPP or appropriate wireless standards.

Class B is defined as the operating temperature ranges that the device:

- Shall remain fully functional during and after environmental exposure
- Shall exhibit the ability to establish an SMS or DATA call (emergency call) at all times even when one or more environmental constraint exceeds the specified tolerance.
- Unless otherwise stated, full performance should return to normal after the excessive constraint(s) have been removed.

1.8.2. Frequency Drift Correction

The HL7800 and HL7800-M are environmental sensitive and able to correct temperature and aging effects automatically. Parameters to be considered when addressing the environmental effect on the HL7800 and HL7800-M are as follows:

- Maximum deviation correction: 20 ppm
- Environmental Temperature effect: 0.5 ppm
- Factory reflow effect: 1 ppm + 1 ppm / reflow
- Aging effect: 1 ppm /year of use

For example, if an HL7800 module is mounted on a single side (1 reflow) customer PCB and used for 10 years between -40 and +85°C, the frequency drift will be up to 0.5 + (1 + 1) + (1 * 10) = 12.5 ppm, which is in the limits of the 20 ppm maximum correction.

1.8.3. ATEX Compliance

The following table lists the inductor and capacitor values to be considered for ATEX certification of the system hosting the HL7800 and HL7800-M modules. All supplies in the modules are linear LDO except for one 1.3V DC/DC step-down.

Parameter	Value	Tolerance
Total Inductance	2.21 μH	30%
Total Capacitance	43.64 µF	20 %

1.8.4. Regulatory

The AirPrime HL7800 and HL7800-M modules will be compliant with the following regulations:

- RED
- FCC
- IC
- RCM
- JRF/JPA

1.8.5. RoHS Directive Compliance

AirPrime HL7800 and HL7800-M modules are compliant with RoHS Directive 2011/65/EU, including directive 2015/863 amending annex II, which sets limits for the use of certain restricted hazardous substances. This directive states that electrical and electronic equipment put on the market does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), polybrominated diphenyl ethers (PBDE), Bis (2-ethylhexyl) phthalate (DEHP), Butyl benzyl phthalate (BBP), Dibutyl phthalate (DBP) or Diisobutyl phthalate (DIBP) above threshold limits.

1.8.6. Disposing of the Product

This electronic product is subject to the EU Directive 2012/19/EU for Waste Electrical and Electronic Equipment (WEEE). As such, this product must not be disposed of at a municipal waste collection point. Please refer to local regulations for directions on how to dispose of this product in an environmental friendly manner.

1.9. References

- [1] AirPrime HL78xx Customer Process Guidelines Reference Number: 41112095
- [2] AirPrime HL78xx AT Commands Interface Guide Reference Number: 41111821
- [3] AirPrime HL Series Development Kit User Guide Reference Number: 4114877
- [4] AirPrime HL7800 Low Power Modes Application Note Reference Number: 41112578

2. Pad Definition

AirPrime HL7800 and HL7800-M pins are divided into 2 functional categories.

- **Core functions and associated pins** cover all the mandatory features for M2M connectivity and will be available by default across all CF³ family of modules. These Core functions are always available and always at the same physical pad locations. A customer platform using only these functions and associated pads are guaranteed to be forward and/or backward compatible with the next generation of CF³ modules.
- Extension functions and associated pins bring additional capabilities to the customer. Whenever an Extension function is available on a module, it is always at the same pad location.

Other pins marked as "not connected" or "reserved" should not be used.

Pad #	Signal Name	Function	I/O	Pre and Post Reset State*	Power Supply Domain	Recommendation for Unused Pads	Туре
C1	GPIO1	General purpose input/output	I/O	PU	1.8V	Left Open	Extension
C2	UART1_RI	UART1 Ring indicator	0	PU	1.8V	Connect to test point	Core
C3	UART1_RTS	UART1 Request to send	I	PU	1.8V	Connect to test point	Core
C4	UART1_CTS	UART1 Clear to send	0	PU	1.8V	Connect to test point	Core
C5	UART1_TX	UART1 Transmit data	I	PU	1.8V	Connect to test point	Core
C6	UART1_RX	UART1 Receive data	0	PU	1.8V	Connect to test point	Core
C7	UART1_DTR	UART1 Data terminal ready	I	PU	1.8V	Connect to test point	Core
C8	UART1_DCD	UART1 Data carrier detect	0	PU	1.8V	Connect to test point	Core
C9	UART1_DSR	UART1 Data set ready	0	PU	1.8V	Connect to test point	Core
C10	GPIO2	General purpose input/output	I/O	PD	1.8V	Connect to test point	Core
C11	RESET_IN_N	Input reset signal	I		1.8V	Left Open	Core
C12	USB_D-	USB Data Negative (Full Speed)	I/O		3.3V	Connect to test point	Extension
C13	USB_D+	USB Data Positive (Full Speed)	I/O		3.3V	Connect to test point	Extension

Table 5.Pin Definition

Pad #	Signal Name	Function	I/O	Pre and Post Reset State*	Power Supply Domain	Recommendation for Unused Pads	Туре
C14	NC	Not Connected				Left Open	Not connected
C15	NC	Not Connected				Left Open	Not connected
C16	USB_VBUS	USB VBUS	Ι		5V	Connect to test point	Extension
C17	NC	Not Connected				Left Open	Not connected
C18	NC	Not Connected				Left Open	Not connected
C19	NC	Not Connected				Left Open	Not Connected
C20	NC	Not Connected				Left Open	Not Connected
C21	BAT_RTC	Power supply for RTC backup	Ι			Left Open	Extension
C22	26M_CLKOUT	26M System Clock Output	0	PD	1.8V	Left Open	Extension
C23	32K_CLKOUT	32.768kHz System Clock Output	0	PU	1.8V	Left Open	Extension
C24	ADC1	Analog to digital converter	Ι		1.2V	Left Open	Extension
C25	ADC0	Analog to digital converter	Ι		1.2V	Left Open	Extension
C26	UIM1_VCC	1.8V USIM1 Power supply	0		1.8V	Mandatory connection	Core
C27	UIM1_CLK	1.8V USIM1 Clock	0		1.8V	Mandatory connection	Core
C28	UIM1_DATA	1.8V USIM1 Data	I/O		1.8V	Mandatory connection	Core
C29	UIM1_RESET	1.8V USIM1 Reset	0		1.8V	Mandatory connection	Core
C30	GND	Ground	0V		0V	Mandatory connection	Extension
C31	NC	Not Connected					Not connected
C32	GND	Ground	0V		0V	Mandatory connection	Extension
C33	PCM_OUT	PCM data out	0	PU	1.8V	Left Open	Extension
C34	PCM_IN	PCM data in	Ι	PU	1.8V	Left Open	Extension
C35	PCM_SYNC	PCM sync out	I/O	PU	1.8V	Left Open	Extension
C36	PCM_CLK	PCM clock	I/O	PD	1.8V	Left Open	Extension
C37	GND	Ground	0V		0V	Mandatory connection	Core
C38	RF_GPS	RF_GPS				Left Open	Core
C39	GND	Ground	0V		0V	Mandatory connection	Core
C40	GPIO7	General purpose input/output	I/O	PU	1.8V	Left Open	Core

Pad #	Signal Name	Function	I/O	Pre and Post Reset State*	Power Supply Domain	Recommendation for Unused Pads	Туре
C41	GPIO8	General purpose input/output	I/O	PD	1.8V	Left Open	Core
C42	NC	Not Connected					Not connected
C43	EXT_LNA_GPS_EN	External GPS LNA enable		PU		Left Open	Extension
C44	WAKE_UP	Wake up signal	Ι	PD	1.8V	Mandatory connection	Extension
C45	VGPIO	GPIO voltage output	0		1.8V	Left Open	Core
C46	GPIO6	General purpose input/output	I/O	PD	1.8V	Left Open	Core
C47	NC	Not Connected				Left Open	Not connected
C48	GND	Ground	0V		0V	Mandatory connection	Core
C49	RF_MAIN	RF Input/output				Mandatory connection	Core
C50	GND	Ground	0V		0V	Mandatory connection	Core
C51	GPIO14	General purpose input/output	I/O	PU	1.8V	Left Open	Extension
C52	GPIO10	General purpose input/output	I/O	PU	1.8V	Left Open	Extension
C53	GPIO11	General purpose input/output	I/O	PU	1.8V	Left Open	Extension
C54	GPIO15	General purpose input/output	I/O	PU	1.8V	Left Open	Extension
C55	UART0_RX	Debug Receive data	0	PU	1.8V	Mandatory connection	Extension
C56	UART0_TX	Debug Transmit data	I	PU	1.8V	Mandatory connection	Extension
C57	UART0_CTS	Debug Clear to Send	0	PU	1.8V	Mandatory connection	Extension
C58	UART0_RTS	Debug Request to Send	I	PD	1.8V	Mandatory connection	Extension
C59	PWR_ON_N	Active Low Power On control signal	I		1.8V	Mandatory connection	Core
C60	TX_ON	TX transmission indication	0	PU	1.8V	Left Open	Extension
C61	VBATT_PA	Power supply (refer to section 3.1 Power Supply for more information)	I		3.2V (min) 3.7V (typ) 4.35V (max)	Mandatory connection	Core
C62	VBATT_PA	Power supply (refer to section 3.1 Power Supply for more information)	I		3.2V (min) 3.7V (typ) 4.35V (max)	Mandatory connection	Core

Pad #	Signal Name	Function	I/O	Pre and Post Reset State*	Power Supply Domain	Recommendation for Unused Pads	Туре
C63	VBATT	Power supply (refer to section 3.1 Power Supply for more information)	I		3.2V (min) 3.7V (typ) 4.35V (max)	Mandatory connection	Core
C64	UIM1_DET / GPIO3	USIM1 Detection / General purpose input/output	I/O	PD	1.8V	Left Open	Core
C65	FAST_SHUTDOWN_N	Fast Shutdown signal	I	PU	1.8V	Left Open	Extension
C66	GPIO5	General purpose input/output	I/O	PU	1.8V	Left Open	Extension
CG1 – CG4, G1 – G16	GND	Ground	GND		0V		Core

* This refers to the state before and after RESET_IN_N; state is Undefined during reset. Refer to section 3.12 Reset Signal (RESET_IN_N) for more details.

2.1. Pin Types

 Table 6.
 Pin Type Codes

Туре	Definition
I	Digital Input
0	Digital Output
I/O	Digital Input / Output
L	Active High
Н	Active Low
Т	Tristate
T/PU	Tristate with pull-up enabled
T/PD	Tristate with pull-down enabled
PU	Pull-up enabled
PD	Pull-down enabled
N/A	Not Applicable

2.2. Pad Configuration (Top View, Through Module)

Figure 3. Pad Configuration (Top View through Module)

3. Detailed Interface Specifications

Note:

If not specified, all electrical values are given for VBATT=3.7V and an operating temperature of 25°C.

For standard applications, VBATT and VBATT_PA must be tied externally to the same power supply. For some specific applications, AirPrime HL7800 and HL780-M modules support separate VBATT and VBATT_PA connection if requirements below are fulfilled.

3.1. Power Supply

The AirPrime HL7800 and HL7800-M modules are supplied through the VBATT and VBATT_PA signals.

Refer to the following table for the pin description of the Power Supply interface.

 Table 7.
 Power Supply Pin Description

Pad Number	Signal Name	I/O	Description
C63	VBATT	I	Power supply (base band)
C61, C62	VBATT_PA	I	Power supply (radio frequency)
CG1 – CG4, G1 – G16	GND		Ground

Refer to the following table for the electrical characteristics of the Power Supply interface.

Table 8. Power Supply Electrical Characteristics

Supply	Minimum	Typical	Maximum
VBATT voltage (V)	3.2	3.7	4.35
VBATT_PA voltage (V) Full Specification	3.2	3.7	4.35
VBATT_PA voltage (V) Extended Range	2.8 [*] (TBC)	3.7	4.35

No guarantee of 3GPP performances over extended range.

Table 9. Maximum Current Consumption

Supply	Maximum
VBATT	500mA
VBATT_PA	500mA

Note:

If a single PSU is used, the recommended power supply capability is 500 mA + 500 mA = 1A.

3.2. Current Consumption

The following tables list the current consumption of the AirPrime HL7800 and HL7800-M modules at different conditions.

Note: Typical values are defined for VBATT/VBATT_PA at 3.7V and 25°C, for 50Ω impedance at all RF ports. Maximum values are provided for VSWR2.5:1 (TBC) with worst conditions among supported ranges of voltages and temperature.

Table 10. Low Current Consumption Mode

Parameter	Typical	Unit
Off mode (module switched off & VBATs Connected)	3	μA
PSM Floor in Hibernate mode	3	μA
PSM 1h in Hibernate mode	70	μA
PSM 24h in Hibernate mode	6	μA
DRX 1.28 s in Sleep mode	3.4 1.8*	mA
DRX 2.56 s in Sleep mode	3.0 1.5*	mA
eDRX 20.48 s / PTW 1 in Hibernate mode	200** <100*	μΑ
eDRX 81.92 s / PTW 1 in Hibernate mode	100** <50*	μΑ

* Enhancement will be available in a future firmware version.

** Values are PTW and DRX dependent.

Refer to section 3.3.2 Power Modes for details regarding different low power modes.

The PSM 1h and 24h in Hibernate mode assume the following conditions:

- Cat-M1
- Good channel conditions without UICC / USIM current
- Static scenario, no repetitions
- Cycle includes boot, cell acquisition, network attachment, wait for timer expiry and back to sleep

The PSM Floor in Hibernate mode assumes the following conditions:

- I/Os are not held (VGPIO is off)
- Customer application is not allowed to drive the module's I/Os
- UICC / USIM is off
- The module only wakes up by a high level on the WAKE_UP pin

Parameter	Band	Output Power	Average Current (Typical Values)	Unit
LTE connected mode Cat-M1	1 2 2 4 66	23dBm	220 (TBC)	mA
LIE connected mode Cat-MI	1, 2, 3, 4, 66	0dBm	110 (TBC)	mA
LTE connected mode Cat-M1	5, 8, 12, 13, 14, 18,	23dBm	220 (TBC)	mA
	19, 20, 26, 28	0dBm	110 (TBC)	mA
LTE connected mode Cot ND1	1.0	23dBm	220 (TBC)	mA
LTE connected mode Cat-NB1	1, 3	0dBm	110 (TBC)	mA
LTE connected mode Cat-NB1	E 0 00 00	23dBm	220 (TBC)	mA
LTE CONNECTED MODE CALINDT	5, 8, 20, 28	0dBm	110 (TBC)	mA

Table 11. Current Consumption Mode

3.3. Power Consumption States

3.3.1. 3GPP Power Saving Features

3.3.1.1. Power Saving Mode (PSM)

Power Saving Mode (PSM) is a 3GPP feature that allows the HL7800 and HL7800-M to minimize power consumption by registering on a PSM-supporting LTE network, entering PSM (a very low power 'dormant' state) for a pre-configured duration (via a TAU (Tracking Area Update) timer), and then waking for a short period to transmit or receive data before re-entering PSM. During the dormant period, the module remains unreachable by the network until woken by the TAU timer or WAKE_UP pin.

While the HL7800 or HL7800-M is in PSM:

- Power consumption is significantly reduced with longer dormant periods
- Networking layer signaling overhead is reduced
- Radio resource signaling is reduced

Figure 4. PSM Example (Simplified)

Typical candidates for PSM are systems (such as monitors and sensors) that:

- Require long battery life (low power consumption)
- Tolerate very long latency for mobile-terminated SMS/data
- Do not use mobile-terminated voice
- Send and/or receive data infrequently and periodically (e.g. on a given schedule of once every few hours, days, weeks, etc.)

The following example describes how the module uses PSM (as shown in Figure 4 PSM Example (Simplified)):

- 1. Module registers on an LTE network.
- 2. User enables PSM via +CPSMS, specifying the desired TAU timer and Active timer periods.
- 3. Module submits the PSM request (including desired TAU timer) to the network.
- 4. Network responds and indicates whether PSM is supported and (if it is) indicates the actual TAU timer to use.
- 5. If the network supports PSM:
 - a. Module enters idle mode (waiting for Rx from network).
 - b. When module has remained idle for the Active timer period, module powers off (except for maintaining timer and interrupts) and enters PSM.
 - c. Module remains in PSM for the specified TAU timer period or until the WAKEUP pin wakes it.
 - d. Module powers up, then transmits TAU and exchanges data with network.
 - e. Module enters idle mode and cycle repeats.

Note that:

- The PSM Periodic-TAU timer and Active Time values must be carefully selected to match the intended use case(s) for the module:
 - Periodic TAU PSM Cycle timer (T3412) Note that while the module is dormant (for the duration of this timer, unless woken by the WAKE_UP pin, it will be completely unreachable by the network.
 - Active Time (Idle mode time after transmission (T3324)) Make sure to set the Active timer high enough to provide appropriate delay-tolerance for mobile-terminated/networkoriginated transmissions to be received.
- When using multiple devices, consider scheduling the modules to wake at different times so that the network does not get flooded by all modules waking and transmitting simultaneously.

3.3.1.2. Extended DRX (eDRX)

The HL7800 and HL7800-M support eDRX, which is a "flexible sleep" active mode that allows for longer sleep duration (T_{LeDRX}) and a significant decrease in power consumption compared to regular DRX. The eDRX feature allows the module to not monitor every Paging Occasion (PO), but only the POs that belong to the Paging Transmission Window (PTW) as described in the figure below.

Figure 5. eDRX Example (PTW=4)

The following table describes available methods for configuring eDRX.

 Table 12.
 eDRX-Related Commands

AT Command	Description
AT+CEDRXS	Enable/disable eDRX and configure related settings
AT+CEDRXRDP	Display current eDRX settings

For example:

- Use the **AT+CEDRXS** command to configure the desired T_{i-eDRX} value.
- During the network attachment or TAU process:
 - eDRX request and settings are sent to the network.
 - Network responds and indicates whether eDRX is supported for the connection and may adjust the eDRX parameters.
- If eDRX is supported by the network, the module only listens to paging during paging occurrence and may enter low power mode between paging occurrence.

Note that:

- Sleep duration must be carefully selected to match the intended use case(s) for the module. While the module is asleep, it will be unreachable by the network. The duration should provide appropriate delay-tolerance for mobile-terminated/network-originated transmissions to be received.
- Network-side store and forward is supported Packets will be stored until the module is reachable.

3.3.2. Power Modes

Three low power modes are supported on the AirPrime HL7800 and HL7800-M modules:

- Sleep Mode: 26Mhz system clock is OFF, all memories and I/O states are retained. The module can wake-up via the WAKE_UP signal or UART1_DTR.
- Lite Hibernate mode: RTC, I/O states and a part of the RAM are ON (RAM is only used for 4G protocol state and data). The module can only wake-up via the WAKE_UP signal.
- Hibernate mode: RTC and optionally part of the RAM (depending on the 4G modem state) are ON. The module can only wake-up only via the WAKE_UP signal.

These modes can be configured using the **+KSLEEP** AT command.

Note that:

- When the module exits from Lite Hibernate or Hibernate mode, the host processor will act as after a module reset (all non-persistent configurations are lost).
- Sleep mode is recommended for regular DRX mode.
- Hibernate mode is recommended when the module is configured in PSM or eDRX mode.

The table below summarizes these low power modes.

Power Mode	Possible Modem State	I/O State	Hardware Wake- Up Signal Source	Application Data
Sleep	Stack OFF, DRX, eDRX, PSM, No service	Retained	UART_DTR WAKE-UP	Retained
Lite Hibernate	Stack OFF, eDRX, PSM, No service	Retained	UART_DTR WAKE-UP	Not retained
Hibernate	Stack OFF, eDRX, PSM, No service	Not retained	WAKE-UP	Not retained

 Table 13.
 Low Power Modes

Refer to document [4] AirPrime HL7800 Low Power Modes Application Note for additional details.

3.4. VGPIO

The VGPIO output can be used to:

- Pull-up signals such as I/Os.
- Supply the digital transistors driving LEDs.

The VGPIO output is available when the AirPrime HL7800 or HL7800-M module is switched ON. (This output is not available in low power mode.)

Refer to the following table for the pin description of the VGPIO interface.

Table 14. VGPIO Pin Description

Pad Number	Signal Name	I/O	Description
C45	VGPIO	0	GPIO voltage output

Refer to the following table for the electrical characteristics of the VGPIO interface.

	Table 15.	VGPIO	Electrical	Characteristics
--	-----------	-------	------------	-----------------

Parameter	Minimum	Typical	Maximum	Remarks
Voltage level (V)	1.7	1.8	1.9	Both active mode and sleep mode
Current capability Active Mode (mA)	-	-	50	
Current capability Sleep Mode (mA)	-	-	1	
Rise Time (ms)	-	-	TBD	Start-Up time from 0V

3.5. Real Time Clock (BAT_RTC)

The AirPrime HL7800 and HL7800-M modules provide an input to connect a Real Time Clock power supply.

This pin is used as a back-up power supply for the internal Real Time Clock. The RTC is supported when VBATT is available but a back-up power supply is needed to save date and hour when VBATT is switched off.

This pin is input only and is not capable of charging a backup capacitor.

Table 16. BAT_RTC Electrical Character	eristics
--	----------

Parameter	Minimum	Typical	Maximum	Unit
Input voltage	2.2	-	4.35	V
Input current consumption	-	1 (TBC)	-	μA

3.6. USIM Interface

The AirPrime HL7800 and HL7800-M modules have one physical USIM interface, USIM1, and an optional internal USIM or eUICC.

The USIM1 interface allows control of an only 1.8V USIM and is fully compliant with GSM 11.11 recommendations concerning USIM functions.

The five signals used by this interface UIM1 are as follows:

- UIM1_VCC: Power supply
- UIM1_CLK: Clock
- UIM1_DATA: I/O port
- UIM1_RESET: Reset
- UIM1_DET/GPIO3: Hardware SIM detection

Refer to the following table for the pad description of the USIM1 interface.

Pad Number	Signal Name	Description	Multiplex
C26	UIM1_VCC	1.8V USIM1 Power supply	
C27	UIM1_CLK	1.8V USIM1 Clock	
C28	UIM1_DATA	1.8V USIM1 Data	
C29	UIM1_RESET	1.8V USIM1 Reset	
C64	UIM1_DET	1.8V USIM1 Detection	GPIO3

Table 17.	USIM1 Pi	in Description
-----------	----------	----------------

Refer to the following table for the electrical characteristics of the USIM1 interface.

Table 18. USIM1 Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Remarks
UIM1 Interface Voltage (V) (VCC, CLK, I/O, RESET)	-	1.80	-	The appropriate output voltage is auto detected and selected by software.
UIM1 Detect	-	1.80	-	High active
UIM1_VCC Current (mA)	-	-	50	Max output current in sleep mode = 3 mA
UIM1_VCC Line Regulation (mV/V)	-	-	TBD	At lout_Max
UIM1_VCC Power-up Setting Time (µs) from power down	-	10	-	

3.6.1. UIM1_DET

Note: This interface will be available in a future release.

UIM1_DET is used to detect and notify the application about the insertion and removal of a USIM device in the USIM socket connected to the main USIM interface (UIM1). When a USIM is inserted, the state of UIM1_DET transitions from logic 0 to logic 1. Inversely, when a USIM is removed, the state of UIM1_DET transitions from logic 1 to logic 0.

Enabling or disabling this USIM detect feature can be done using the **AT+KSIMDET** command. For more information about this command, refer to document [2] AirPrime HL78xx AT Commands Interface Guide. (Note that this command is not yet available.)

3.7. USB Interface

Note: This interface will be available in a future release.

The AirPrime HL7800 and HL7800-M modules have one Universal Serial Bus Interface Full Speed. Refer to the following table for the pad description of the USB interface.

Table 19. USB Pin Description

Pad Number	Signal Name	I/O	Function
C12	USB_D-	I/O	USB Data Negative
C13	USB_D+	I/O	USB Data Positive
C16	USB_VBUS	I	USB VBUS

Refer to the following table for the electrical characteristics of the USB interface.

Table 20. USB Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Unit
Input voltage at pins USB_D+ / USB_D-	3.15	3.3	3.45	V
USB_VBUS	4.75	5.0	5.25	V

3.8. Electrical Information for Digital I/O

The table below enumerates the electrical characteristics of the following digital interfaces.

- UART
- PCM
- GPIOs
- RESET
- WAKE_UP
- FAST_SHUTDOWN_N
- EXT_LNA_GPS_EN

Parameter	Description	Minimum	Typical	Maximum	Unit
VIH	Logic High Input Voltage	0, 7 x VGPIO			V
VIL	Logic Low Input Voltage			0, 3 x VGPIO	V
Voh	Logic High Output Voltage	0, 8 x VGPIO			V
V _{OL}	Logic Low Output Voltage			0, 2 x VGPIO	V
lo*	I/O Drive Strength	2		4	mA
Rpu	Internal Pull-Down Resistor		TBD		KΩ

Table 21. Digital I/O Electrical Characteristics

Parameter	Description	Minimum	Typical	Maximum	Unit
R _{PD}	Internal Pull Up Resistor		TBD		KΩ
Input Capacitance	Input Pin Capacitance			TBD	pF

The total current from all I/Os combined, and supplied by VGPIO, should not exceed 50mA.

3.9. General Purpose Input/Output (GPIO)

The AirPrime HL7800 and HL7800-M modules provide 11 GPIOs, 1 of which has a multiplex. The following table describes the pin description of the GPIO interface.

Pad Number	Signal Name	Multiplex	I/O	Power Supply Domain
C1	GPIO1		I/O	1.8V
C10	GPIO2		I/O	1.8V
C40	GPIO7		I/O	1.8V
C41	GPIO8		I/O	1.8V
C46	GPIO6		I/O	1.8V
C51	GPIO14		I/O	1.8V
C52	GPIO10		I/O	1.8V
C53	GPIO11		I/O	1.8V
C54	GPIO15		I/O	1.8V
C64	GPIO3	UIM1_DET	I/O	1.8V
C66	GPIO5		I/O	1.8V

Table 22. GPIO Pin Description

3.10. Main Serial Link (UART1)

The main serial link (UART1) is used for communication between the AirPrime HL7800 or HL7800-M module and a PC or host processor. It consists of a flexible 8-wire serial interface that complies with RS-232 interface. The main serial link (UART1) is an asynchronous serial interface; and is also used to upgrade the firmware locally.

The signals used by UART1 are as follows:

- TX data (UART1_TX)
- RX data (UART1_RX)
- Request To Send (UART1_RTS)
- Clear To Send (UART1_CTS)
- Data Terminal Ready (UART1_DTR)
- Data Set Ready (UART1_DSR)
- Data Carrier Detect (UART1_DCD)
- Ring Indicator (UART1_RI)

Note: Signal names are according to PC view.

Refer to the following table for the pin description of the main serial link (UART1) interface.

Pad Number	Signal Name*	I/O*	Description
C2	UART1_RI	0	Signal incoming calls (data only), SMS, etc.
C3	UART1_RTS	1	Request to send
C4	UART1_CTS	0	The module is ready to receive AT commands
C5	UART1_TX	1	Transmit data
C6	UART1_RX	0	Receive data
C7	UART1_DTR	I (active low)	Prevents the module from entering sleep mode, switches between data mode and command mode, and wakes the module up.
C8	UART1_DCD	0	Signal data connection in progress
C9	UART1_DSR	0	Signal UART interface is ON

Table 23.	UART1 Pin Description	
-----------	-----------------------	--

* According to PC view.

3.10.1. 8-wire Application

AirPrime HL7800	VGPIO UART1_RX UART1_CTS UART1_DSR UART1_DCD UART1_RI UART1_DTR UART1_TX UART1_RTS	TP → TP → TP → TP → TP → TP → TP → TP → TP → TP	Level shifter use R RXD R CTS R DSR R DCD R DCD R DCD R DTR R TXD R TXD R TXD	Customer Application
	UART1_RTS	TP		

Note: R is a 0Ω resistor (default value)

Figure 6. 8-wire UART Application Example

3.10.2. 4-wire Application (TBC)

AirPrime HL7800	VGPIO UART1_RX UART1_CTS UART1_DSR UART1_DCD UART1_RI UART1_DTR UART1_TX	TP TP TP TP TP TP TP TP TP	Level shifter use	Customer Application
		TP TP		

Note: R is a 0Ω resistor (default value)

Figure 7. 4-wire UART Application Example

3.10.3. 2-wire Application (TBC)

Note: R is a 0Ω resistor (default value)

Figure 8. 2-wire UART Application Example

3.11. Power On Signal (PWR_ON_N)

The PWR_ON_N signal is internally pulled-up. Once VBATT is supplied to the module, the internal supply regulator is enabled and so the PWR_ON_N signal is by default at high level.

In case the PWR_ON_N pin is not configured as managed by host (default configuration), the module starts regardless of the PWR_ON_N state. In case the RESET_IN_N signal is maintained low, the module will not start until RESET_IN_N is released.

In case the PWR_ON_N pin is configured as managed by host, a low-level signal must be provided to switch the module ON.

Table 24. PWR_ON_N Pin Description

ignition.

Pad Number	Signal Name	I/O	Description
C59	PWR_ON_N	1	Powers the module ON

Table 25. PWR_ON_N Electrical Characteristics

Parameter		Minimum	Typical	Maximum
Input Voltage-Low (V)				0.35 (TBC)
Note:	As PWR_ON_N is internally pulled up, an op	en collector or ope	n drain transistor i	nust be used for

VGPIO is an output from the module that can be used to check if the module is active.

- When VGPIO = 0V, the module is OFF (or in low power mode)
- When VGPIO = 1.8V, the module is ON (it can be in idle, communication or sleep mode)

3.11.1. Not Managed (Default)

Table 26. PWR_ON_N Not Managed Timing

Parameter	Minimum	Typical	Maximum	Unit
T1: delay between VBATT and RESET_IN_N	0 (TBC)		5 (TBC)	μs
T2: delay between RESET_IN_N and VGPIO		5		ms
T3: delay between VGPIO and UART1_CTS		TBD		ms
T4: delay		2 (TBC)		S
T5: HW RESET delay		20 (TBC)		ms

Note: PWR_ON_N cannot be used to power the module off. To power the module off, use AT command **AT+CPOF** or the RESET_IN_N pin.
3.11.2. Managed

Note: This interface will be available in a future release. All figures and timings are TBC.

3.11.2.1. First Cold Start

The cold start sequence will appear one time after PWR_ON_N configuration via AT command. Refer to section 3.11.2.2 Power Up and Power Down after the First Cold Start for details.

Figure 10. Power Up Sequence with PWR_ON_N Cold Start

3.11.2.2. Power Up and Power Down after the First Cold Start

* After AT+CPOF, the module can be woken up by either the PWR_ON_N or WAKE_UP pin

Figure 11. Power On Sequence with PWR_ON_N

3.11.2.3. Timing

Table 27.	PWR_ON_N Managed Timing
-----------	-------------------------

Parameter	Minimum	Typical	Maximum	Unit
T1: delay between VBATT and RESET_IN_N	0			ms
T2: delay between RESET_IN_N and VGPIO		5		ms
T3: delay between VGPIO and UART1_CTS		TBD		ms
T4: delay		TBD		S
T5: HW RESET delay		20 (TBC)		ms
T6: delay between VBATT and PWR_ON_N		100		ms
T7: delay between VBATT and VGPIO		5		ms
T8: delay between PWR_ON_N and VGPIO		5		ms
T9: PWR_ON_N assertion time	25		1500	ms

3.12. Reset Signal (RESET_IN_N)

To reset the module, a low-level pulse must be sent on the RESET_IN_N pad for 20ms (TBC). This action will immediately restart the module. During the reset, all I/Os will be at 0V if no external signal is driven high (if the host processor drives some I/O high, a voltage leakage will appear on VGPIO and on all GPIOs with a pull-up. It is strongly advised not to drive any I/Os during reset).

As RESET_IN_N is internally pulled up, an open collector or open drain transistor should be used to control this signal.

Refer to the following table for the pad description of the RESET_IN_N interface.

Pad Number	Signal Name	I/O	Description
C11	RESET_IN_N		Reset signal

Table 28. RESET_IN_N Pin Description

Refer to the following table for the electrical characteristics of the RESET_IN_N interface.

Table 29. RESET_IN_N Electrical Characteristics

Parameter	Minimum	Typical	Maximum
Input Voltage-Low (V)		TBD	TBD
Input Voltage-High (V)	TBD	TBD	TBD
Reset assertion time (ms)	TBD	TBD	
Power-up period (ms) from RESET_IN_N falling edge*	TBD	TBD	

* With the PWR_ON_N Signal at low level.

Note: As RESET_IN_N is internally pulled up, an open collector or open drain transistor must be used for ignition.

3.13. Analog to Digital Converter (ADC)

Note: This interface will be available in a future release.

Two Analog to Digital Converter inputs, ADC0 and ADC1, are provided by AirPrime HL7800 and HL7800-M modules. These converters are 12-bit resolution ADCs ranging from 0 to 1.8V.

Typical ADC use is for monitoring external voltage, wherein an application is used to safely power OFF an external supply in case of overvoltage.

Refer to the following table for the pad description of the ADC interface.

Table 30.	ADC Pin	Description
10010 001	/	Docomption

Pad Number	Signal Name	I/O	Description
C24	ADC1		Analog to digital converter
C25	ADC0		Analog to digital converter

Refer to the following table for the electrical characteristics of the ADC interface.

Table 31.	ADC Electrical	Characteristics
-----------	----------------	-----------------

Parameter	Typical	Maximum	Unit	Remarks
ADCx Resolution	12		bits	
Conversion Rate	TBD		MHz	
Input Voltage Range	1.8		V	General purpose input
Update rate per channel	TBD		kHz	
Integral Nonlinearity	± 1.0 (TBC)	± 2.0 (TBC)	LSB	
Differential Nonlinearity	± 0.5 (TBC)	± 0.9 (TBC)	LSB	
Offset Error	1 (TBC)	2 (TBC)	LSB	% FS
Gain Error	1 (TBC)	2 (TBC)	LSB	% FS
Input Resistance	TBD		MΩ	
Input Capacitance during sampling phase	TBD		pF	

3.14. Clock Interface

Note: This interface will be available in a future release.

The AirPrime HL7800 and HL7800-M modules support two digital clock interfaces.

Enabling or disabling the clock out feature can be done using AT commands. For more information about AT commands; refer to document [2] AirPrime HL78xx AT Commands Interface Guide.

Refer to the following table for the pad description of the clock out interfaces.

Table 32.
 Clock Interface Pin Description

Pad Number	Signal Name	I/O	I/O Type	Description
C22	26M_CLKOUT	0	1.8V	26MHz Digital Clock output
C23	32K_CLKOUT	0	1.8V	32.768kHz Digital Clock output

3.15. PCM

Note:

This interface will be available in a future release.

3.16. Debug Interface

The AirPrime HL7800 and HL7800-M modules provide a 4-wire debug port interface.

Pad Number	Signal Name*	I/O*	I/О Туре	Description
C55	UART0_RX	0	1.8V	Debug Receive Data
C56	UART0_TX	I	1.8V	Debug Transmit Data
C57	UART0_CTS	0	1.8V	Debug Clear to Send
C58	UART0_RTS	I	1.8V	Debug Request to Send
* According to PC view.				

Table 33. Debug Pin Description

Note:

It is strongly recommended to provide access through Test Points to this interface (required to enter in recovery mode; for example, for Flash dump).

3.17. Wake Up Signal (WAKE_UP)

The AirPrime HL7800 and HL7800-M modules provide one WAKE_UP signal.

The WAKE_UP pin is used to wake up the system from low power modes (from OFF, Sleep modes, FAST_SHUTDOWN, or after a software power off). This signal should be set to high level (external 1.8V) for at least (TBD) ms until the system is active to wake the module up from these modes.

The system will not be allowed to go into ultra-low or off mode for as long as this signal is kept high.

By default, the software waits for a high state to wake up (100K Ω internal pull-down).

Refer to the following table for the pad description of the WAKE_UP signal.

Table 34. WAKE_UP Pin Description

Pad Number	Signal Name	I/O	I/O Type	Description
C44	WAKE_UP		1.8V	Wakes the module up from low power mode

*

Refer to the following table for the electrical characteristics of the WAKE_UP signal.

І/О Туре	Parameter	Minimum	Typical	Maximum	Unit
Digital	VIL			0.3xVDDIO	V
Digital	Vih	0.7 x VDDIO*			V

VDDIO = VGPIO = 1.8 V.

3.18. Fast Shutdown Signal (FAST_SHUTDOWN_N)

Note: This signal will be available in a future release.

The AirPrime HL7800 and HL7800-M modules provide one Fast Shutdown signal, FAST_SHUTDOWN_N.

Refer to the following table for the pad description.

Table 36. FAST_SHUTDOWN_N Pin Description

Pad Number	Signal Name	I/O	I/О Туре	Description
C65	FAST_SHUTDOWN_N	I	1.8V	Shuts the module down without deregistration from the network

Refer to the following table for the electrical characteristics of the FAST_SHUTDOWN_N signal.

I/O Type	Parameter	Minimum	Typical	Maximum	Unit
Divital	VIL			0.3xVDDIO	V
Digital	VIH	0.7 x VDDIO			V

* VDDIO = VGPIO = 1.8 V.

3.19. RF Interface

The RF interface of the AirPrime HL7800 and HL7800-M modules allow the transmission of RF signals.

Contact Sierra Wireless technical support for assistance in integrating the AirPrime HL7800 or HL7800-M on applications with embedded antennas.

3.19.1. RF Connection

A 50 Ω (with maximum VSWR 1.1:1, and 0.5dB loss) RF track is recommended to be connected to standard RF connectors such as SMA, UFL, etc. for antenna connection.

Refer to the following table for the pad description of the RF interface.

 Table 38.
 RF Main Pin Description

Pad Number	RF Signal	Impedance	VSWR Rx (max)	VSWR Tx (max)
C48	GND			
C49	RF_MAIN	50Ω	2.5:1	2.5:1
C50	GND			

3.19.2. Maximum Output Power

The maximum transmitter output power of the AirPrime HL7800 and HL7800-M for all bands in normal operation conditions (25°C) is specified in the following table.

Table 39. Maximum Output Power

Minimum	Typical	Maximum	Units	Notes
21.5	23	24.5	dBm	Power class 3

3.19.3. Rx Sensitivity

The module's receiver sensitivity is specified in the following table. The test condition used for the following values are as follows:

- Cat-M1
- BW: 5 MHz

 Table 40.
 Typical Conducted RX Sensitivity

LTE Band	Typical Reference Sensitivity Level @ 95% of the Maximum Throughput					
	@+25°C (dBm)	@Class A (dBm)	3GPP Limit (dBm)			
B1	-105 (TBC)	TBD	-102.3			
B2	-106 (TBC)	TBD	-100.3			
B3	-106.5	-102.8	-99.3			

LTE Band	Typical Reference Sensitivity Level @ 95% of the Maximum Throughput					
	@+25°C (dBm)	@Class A (dBm)	3GPP Limit (dBm)			
B4	-105.7	-103.7 (TBC)	-102.3			
B5	-106.5	-104.5	-100.8			
B8	-106.8 (TBC)	TBD	-99.8			
B9	-106	TBD	TBD			
B10	-105 (TBC)	TBD	TBD			
B12	-105.7	-105.1	-99.3			
B13	-106	-104.9	-99.3			
B14	-106	-105	TBD			
B17	-106	-104.8	TBD			
B18	-106.5	-105	-100.3			
B19	-106.3	-105.5	-102.3			
B20	-106	-104	-99.8			
B25	-105.7 (TBC)	TBD	TBD			
B26	-107	-104.8	-100.3			
B27	-106.7	-105	-100.8			
B28	-106.2 (TBC)	TBD	-100.8			
B66	-105.5 (TBC)	TBD	TBD			

3.19.4. TX Indicator (TX_ON)

The AirPrime HL7800 and HL7800-M modules provide a signal, TX_ON, for TX emission indication.

Table 41.	тх	ON	Pin	Description

Pad Number	Signal Name	I/O	I/O Type	Description
C60	TX_ON	0	1.8V	High during TX emission, low when there is no TX

 Table 42.
 TX_ON Characteristics

Parameter	Typical
Tadvance	30 µs
Tdelay	TBD

3.20. GPS Interface

Note: This interface will be available in a future release.

The AirPrime HL7800 and HL7800-M's GPS supports GPS L1 signal (1575.42 \pm 20 MHz) and GLONASS L1 FDMA signals (1597.5 – 1605.8 MHz), with 50 Ω connection on the RF_GPS pad.

Note: The GPS receiver shares the same RF resources as the 4G receiver. The end-device target should allow GPS positioning for asset management applications where infrequent and no real-time position updates are required.

GPS antenna interface specifications are defined in the table below.

Table 43. GPS Antenna Specifications

Characteristics		Value
Frequency (MHz)	GPS L1	1575.42 ± 20
RF Impedance (Ω)		50
VSWR max		2:1

3.20.1. GPS Performance

Refer to the following table for GPS performance details.

Parameters	Conditions	Typical Value
	Cold Start	-146dBm (TBC)
Sensitivity	Hot Start	-152dBm (TBC)
	Tracking	-161dBm (TBC)
TTFF	Cold start, Input power -130dBm	35s (TBC)
	Hot start, Input power -130dBm	2s (TBC)
2D Position Error	Input power -130dBm	2.5m (TBC)

3.20.2. GPS Antenna Indicator (EXT_LNA_GPS_EN)

Note: This signal will be available in a future release.

4. **Mechanical Drawings**

Figure 13. Mechanical Drawing

Figure 14. Dimensions Drawing

Figure 15. Footprint Drawing

5. Reliability Specification

The AirPrime HL7800 and HL7800-M modules will be tested against the Sierra Wireless Industrial Reliability Specification defined below.

5.1. Preconditioning Test

Per JESD22A113, this test the preconditioning of non-hermetic surface mount devices prior to reliability testing.

Table 45. Preconditioning Test

Designation	Condition
Preconditioning Test PCRM	2 reflow cycles with Tmax 245-250°C

5.2. Performance Test

Table 46. Performance Test

Designation	Condition
Performance Test	Standard: N/A
PT3T & PTRT	Special conditions:
	Temperature:
	 Class A: -30°C to +70°C
	 Class B: -40°C to +85°C
	 Rate of temperature change: ± 3°C/min
	Recovery time: 3 hours
	Operating conditions: Powered
	Duration: 14 days

5.3. Aging Tests

Table 47. Aging Tests

Designation	Condition
High Temperature Operating Life test HTOL	Standard: IEC 680068-2-2, Test Bb Special conditions: • Temperature: +85°C • Temperature variation: 1°C/min Operating conditions: Powered ON with a power cycle of 45 minutes ON and 15 minutes Idle Duration: 20 days
Thermal Shock Test TSKT	Standard: IEC 60068-2-14, Test Na Special conditions: • Temperature: -40°C to +85°C • Temperature Variation: less than 30s • Number of cycles: 300 • Dwell Time: 10 minutes Operating conditions: Un-powered Duration: 7 days
Humidity Test HUT	Standard: IEC 60068-2-3, Test Ca Special conditions: • Temperature: +85°C • RH: 85% Operating conditions: Powered on, DUT is powered up for 15 minutes and OFF for 15 minutes Duration: 10 days

5.4. Characterization Tests

Table 48. Characterization Tests

Designation	Condition
Low Temperature and Cold Start Cycles LTCS	Special conditions:
Component Solder Wettability CSW	Standard: JESD22 – B102, Method 1/Condition C, Solderability Test Method Special conditions: • Test method: Surface mount process simulation test (preconditioning 16 h ±30 minutes dry bake) Operating conditions: Un-powered Duration: 1 day
Unprotected Free Fall Test FFT 1	Standard: IEC 60068-2-32, Test Ed Special conditions: • Number of drops: 6 drops per unit (1 drop per direction: ±X, ±Y, ±Z) • Height: 1m Operating conditions: Un-powered Duration: 1 day

->>> 6. Legal Information

6.1. Japan Radio and Telecom Approval

The end device embedding the AirPrime HL7800 or HL7800-M should affix the certification indication on its surface following the recommendations below:

- The diameter of the Japan Approval mark must be 3mm or bigger.
- The size, font and color of the Radio Certification Type number is not regulated but should be easily distinguished.

Figure 16.

Sample Japan Certification Indication

6.2. FCC Statement

- Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.
- This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

6.2.1. Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator and your body.

This device is intended only for OEM integrators under the following conditions:

- 1. The antenna must be installed such that 20 cm is maintained between the antenna and users, and
- 2. The transmitter module may not be co-located with any other transmitter or antenna.

As long as the 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

IMPORTANT NOTE: In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

6.2.2. End Product Labeling

6.2.2.1. For Mobile Device Usage (>20cm / Low Power)

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "Contains FCC ID: **N7NHL78M**". The grantee's FCC ID can be used only when all FCC compliance requirements are met.

6.2.2.2. For Portable Device Usage (<20m from body / SAR Needed)

The product can be kept as far as possible from the user body or set the device to lower output power if such function is available. The final end product must be labeled in a visible area with the following: "Contains FCC ID: **N7NHL78M**". The grantee's FCC ID can be used only when all FCC compliance requirements are met.

6.2.3. Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as show in this manual.

6.3. IC Statement

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions:

- 1. this device may not cause interference, and
- 2. this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- 1. l'appareil ne doit pas produire de brouillage, et
- 2. l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

This device complies with RSS-310 of Industry Canada. Operation is subject to the condition that this device does not cause harmful interference.

Cet appareil est conforme à la norme RSS-310 d'Industrie Canada. L'opération est soumise à la condition que cet appareil ne provoque aucune interférence nuisible.

This device and its antenna(s) must not be co-located or operating in conjunction with any other antenna or transmitter, except tested built-in radios.

Cet appareil et son antenne ne doivent pas être situés ou fonctionner en conjonction avec une autre antenne ou un autre émetteur, exception faites des radios intégrées qui ont été testées.

The County Code Selection feature is disabled for products marketed in the US/ Canada.

La fonction de sélection de l'indicatif du pays est désactivée pour les produits commercialisés aux États-Unis et au Canada.

6.3.1. Radiation Exposure Statement / Déclaration d'Exposition aux Radiations

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator and your body.

Cet équipement est conforme aux limites d'exposition aux rayonnements IC établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre la source de rayonnement et votre corps.

This device is intended only for OEM integrators under the following conditions: (For module device use)

- 1. The antenna must be installed such that 20 cm is maintained between the antenna and users, and
- 2. The transmitter module may not be co-located with any other transmitter or antenna.

As long as the 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

Cet appareil est conçu nt pour les intégrateurs OEM dans les conditions suivantes: (Pour utilisation de dispositif module)

- 1. L'antenne doit être installée de telle sorte qu'une distance de 20 cm est respectée entre l'antenne et les utilisateurs, et
- 2. Le module émetteur peut ne pas être coïmplanté avec un autre émetteur ou antenne.

Tant que les 2 conditions ci-dessus sont remplies, des essais supplémentaires sur l'émetteur ne seront pas nécessaires. Toutefois, l'intégrateur OEM est toujours responsable des essais sur son produit final pour toutes exigences de conformité supplémentaires requis pour ce module installé.

IMPORTANT NOTE: In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the Canada authorization is no longer considered valid and the IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate Canada authorization.

NOTE IMPORTANTE: Dans le cas où ces conditions ne peuvent être satisfaites (par exemple pour certaines configurations d'ordinateur portable ou de certaines co-localisation avec un autre émetteur), l'autorisation du Canada n'est plus considéré comme valide et l'ID IC ne peut pas être utilisé sur le produit final. Dans ces circonstances, l'intégrateur OEM sera chargé de réévaluer le produit final (y compris l'émetteur) et l'obtention d'une autorisation distincte au Canada.

6.3.2. End Product Labeling / Plaque Signalétique du Produit Final

6.3.2.1. For Mobile Device Usage (>20 cm / Low Power)

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "Contains IC: **2417C-HL78M**".

Ce module émetteur est autorisé uniquement pour une utilisation dans un dispositif où l'antenne peut être installée de telle sorte qu'une distance de 20cm peut être maintenue entre l'antenne et les utilisateurs. Le produit final doit être étiqueté dans un endroit visible avec l'inscription suivante: "Contient des IC: 2417C-HL78M".

6.3.2.2. For Portable Device Usage (<20m from body/SAR needed)

The product can be kept as far as possible from the user body or set the device to lower output power if such function is available. The final end product must be labeled in a visible area with the following: "Contains IC: **2417C-HL78M**".

L'appareil peut être conservé aussi loin que possible du corps de l'utilisateur ou que le dispositif est réglé sur la puissance de sortie la plus faible si une telle fonction est disponible. Le produit final doit être étiqueté dans un endroit visible avec l'inscription suivante: "Contient des IC: **2417C-HL78M**".

6.3.3. Manual Information to the End User / Manuel d'Information à l'Utilisateur Final

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as show in this manual.

L'intégrateur OEM doit être conscient de ne pas fournir des informations à l'utilisateur final quant à la façon d'installer ou de supprimer ce module RF dans le manuel de l'utilisateur du produit final qui intègre ce module.

Le manuel de l'utilisateur final doit inclure toutes les informations réglementaires requises et avertissements comme indiqué dans ce manuel.

->> 7. Ordering Information

Table 49.	Ordering	Information
-----------	----------	-------------

Model Name	Description	Part Number
HL7800	HL7800 embedded module	Contact Sierra Wireless for the latest SKU
HL7800-M	HL7800-M embedded module	Contact Sierra Wireless for the latest SKU
DEV-KIT	HL Series Development Kit	TBD

->>> 8. Terms and Abbreviations

Abbreviation	Definition
ADC	Analog to Digital Converter
AGC	Automatic Gain Control
AT	Attention (prefix for modem commands)
CDMA	Code Division Multiple Access
CF3	Common Flexible Form Factor
CLK	Clock
CODEC	Coder Decoder
CPU	Central Processing Unit
DAC	Digital to Analog Converter
DTR	Data Terminal Ready
DRX	Discontinuous Reception
eDRX	Extended DRX
EMC	Electro-Magnetic Compatibility
EMI	Electro-Magnetic Interference
EN	Enable
ESD	Electro-Static Discharges
ETSI	European Telecommunications Standards Institute
FDMA	Frequency-division multiple access
GLONASS	Global Navigation Satellite System
GND	Ground
GNSS	Global Navigation Satellite System
GPIO	General Purpose Input Output
GPRS	General Packet Radio Service
GSM	Global System for Mobile communications
Hi Z	High impedance (Z)
IC	Integrated Circuit
IMEI	International Mobile Equipment Identification
I/O	Input / Output
LED	Light Emitting Diode
LNA	Low Noise Amplifier
MAX	Maximum
MIN	Minimum
N/A	Not Applicable
PA	Power Amplifier
PC	Personal Computer
PCB	Printed Circuit Board
PCL	Power Control Level
PLL	Phase Lock Loop
PSM	Power Save Mode
PSRAM	Pseudo Static RAM
PSU	Power Supply Unit

Abbreviation	Definition
PTW	Paging Time Window
PWM	Pulse Width Modulation
RF	Radio Frequency
RFI	Radio Frequency Interference
RMS	Root Mean Square
RST	Reset
RTC	Real Time Clock
RX	Receive
SCL	Serial Clock
SDA	Serial Data
SIM	Subscriber Identification Module
SMD	Surface Mounted Device/Design
SPI	Serial Peripheral Interface
SW	Software
TBC	To Be Confirmed
TBD	To Be Defined
TP	Test Point
ТХ	Transmit
TYP	Typical
UART	Universal Asynchronous Receiver-Transmitter
UICC	Universal Integrated Circuit Card
USB	Universal Serial Bus
UIM	User Identity Module
VBATT	Main Supply Voltage from Battery or DC adapter
VSWR	Voltage Standing Wave Ratio