ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

Product specification

1998 Aug 04

IC24 Data Handbook

74ALVCH16843

FEATURES

- Wide supply voltage range of 1.2V to 3.6V
- Complies with JEDEC standard no. 8-1A.
- CMOS low power consumption
- Direct interface with TTL levels
- Current drive ± 24 mA at 3.0 V
- MULTIBYTETM flow-through standard pin-out architecture
- Low inductance multiple V_{CC} and GND pins for minimum noise and ground bounce
- All data inputs have bus hold
- Output drive capability 50Ω transmission lines @ 85°C

DESCRIPTION

The 74ALVCH16843 has two 9-bit D-type latch featuring separate D-type inputs for each latch and 3-State outputs for bus oriented applications. The two sections of each register are controlled independently by the latch enable (nLE), clear (n $\overline{\text{CLR}}$), preset (nPRE) and output enable (nOE) control gates.

When $n\overline{OE}$ is LOW, the data in the registers appear at the outputs. When nOE is HIGH, the outputs are in the high impedance OFF state. Operation of the nOE input does not affect the state of the flip-flops.

The 74ALVCH16843 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

PIN CONFIGURATION

		1	
1CLR	1	56	1LE
1 0E	2	55	1PRE
1Q ₀	3	54	1D ₀
GND	4	53	GND
1Q ₁	5	52	1D ₁
1Q ₂	6	51	1D ₂
V _{CC}	7	50	V _{CC}
1Q ₃	8	49	1D ₃
1Q4	9	48	1D ₄
1Q ₅	10	47	1D ₅
GND	11	46	GND
1Q ₆	12	45	1D ₆
1Q7	13	44	1D ₇
1Q ₈	14	43	1D ₈
2Q ₀	15	42	2D ₀
2Q ₁	16	41	2D ₁
2Q ₂	17	40	2D ₂
GND	18	39	GND
2Q ₃	19	38	2D ₃
2Q ₄	20	37	2D ₄
2Q ₅	21	36	2D ₅
V _{CC}	22	35	V _{CC}
2Q ₆	23	34	2D ₆
2Q ₇	24	33	2D ₇
GND	25	32	GND
2Q ₈	26	31	2D ₈
2 0E	27	30	2PRE
2 CLR	28	29	2LE
	L	-	
			SH00143

QUICK REFERENCE DATA

GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

SYMBOL	PARAMETER	CONDITIO	NS	TYPICAL	UNIT
t/t	Propagation delay nDn to nQn	$V_{CC} = 2.5V, C_L = 30pF$ $V_{CC} = 3.3V, C_L = 50pF$	2.2 2.1	ns	
t _{PHL} /t _{PLH}	Propagation delay nLE to nQn	$V_{CC} = 2.5V, C_L = 30pF$ $V_{CC} = 3.3V, C_L = 50pF$	2.3 2.0	ns	
Cl	Input capacitance			5.0	pF
СРД	Power dissipation capacitance per buffer	$V_1 = GND$ to V_{CC}^{1}	transparent mode Output enabled Output disabled	17 3	pF
CPD			Clocked mode Output enabled Output disabled	19 9	р

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where: } f_{i} = \text{input frequency in MHz; } C_{L} = \text{output load capacitance in pF;}$ $f_{o} = \text{output frequency in MHz; } V_{CC} = \text{supply voltage in V; } \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) = \text{sum of outputs.}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DRAWING NUMBER
56-Pin Plastic Thin Shrink Small Outline (TSSOP) Type II	–40°C to +85°C	74ALVCH16843 DGG	ACH16843 DGG	SOT364-1

74ALVCH16843

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	1CLR	Clear input (active LOW)
2	1 0E	Output enable input (active LOW)
55	1PRE	Preset input (active LOW)
56	1LE	Latch enable input (active HIGH)
54, 52, 51, 49, 48, 47, 45, 44, 43	1D0 to 1D8	Data inputs
3, 5, 6, 8, 9, 10, 12, 13, 14	1Q0 to 1Q8	Data outputs
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0V)
7, 22, 35, 50	V _{CC}	Positive supply voltage
27	2 0E	Output enable input (active LOW)
28	2CLR	Clear input (active LOW)
29	2LE	Latch enable input (active HIGH)
30	2PRE	Preset input (active LOW)
42, 41, 40, 38, 37, 36, 34, 33, 31	2D0 to 2D8	Data inputs
15, 16, 17, 19, 20, 21, 23, 24, 26	2Q0 to 2Q8	Data outputs

FUNCTION TABLE

			OUTPUT		
nPRE	nCLR	nOE	LE	D _X	Q
L	Х	L	Х	Х	Н
Н	L	L	Х	Х	L
Н	Н	L	Н	L	L
Н	Н	L	Н	Н	Н
Н	Н	L	Н	Х	Q ₀
Х	Х	Н	Н	Х	Z

Η HIGH voltage level =

LOW voltage level =

L X Z = Don't care

High impedance "off" state =

LOGIC SYMBOL

74ALVCH16843

BUS HOLD CIRCUIT

10E 2 Þ EN4 1PRE 56 S2 1CLR R3 $\[\]$ 1LE 56-C1 2<u>0E</u> 27 EN8 2PRE 30 S6 2<u>CLR</u> 28 $\[\]$ R7 2LE 29-C5 1D 1D₀ 54-2, 3, 4 abla3 1Q₀ 1D₁ 52 1Q₁ 5 1D₂ 51-1Q₂ 6 1D3 49 8 1Q3 1D₄ 48-9 1Q₄ 1D₅ 47 10 1Q₅ 1D₆ 45-1Q₆ 12 1D₇ 44 13 1Q₇ 1D₈ 43-14 1Q₈ 2D₀ 42. 5D 6, 7, 8 V 15 2Q₀ 2D₁ 41-16 2Q1 2D₂ 40-17 2Q₂ 2Q3 $2D_3$ 19 38-20 2Q4 2D₄ 37-21 2Q₅ 2D5 36 2Q₆ 23 2D₆ 34 24 2Q7 2D7 33-26 2Q8 2D₈ 31-SH00145

LOGIC SYMBOL (IEEE/IEC)

74ALVCH16843

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER CONDITIONS		MIN	MAX	UNIT
\/	DC supply voltage 2.5V range (for max. speed performance @ 30 pF output load)		2.3	2.7	v
V _{CC}	DC supply voltage 3.3V range (for max. speed performance @ 50 pF output load)		3.0	3.6	
VI	DC Input voltage range		0	V _{CC}	V
V _O	DC output voltage range		0	V _{CC}	V
T _{amb}	Operating free-air temperature range		-40	+85	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 2.3 \text{ to } 3.0 \text{V}$ $V_{CC} = 3.0 \text{ to } 3.6 \text{V}$	0 0	20 10	ns/V

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134)

Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
VI	DC input voltage	For control pins ²	-0.5 to +4.6	v
VI	DC input voltage	For data inputs ²	–0.5 to V _{CC} +0.5	v
I _{OK}	DC output diode current	$V_{O} > V_{CC} \text{ or } V_{O} < 0$	±50	mA
V _O	DC output voltage	Note 2	–0.5 to V _{CC} +0.5	V
Ι _Ο	DC output source or sink current	$V_{O} = 0$ to V_{CC}	±50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-65 to +150	°C
Ртот	Power dissipation per package —plastic medium-shrink (SSOP)For temperature range: -40 to +125 °C above +55°C derate linearly with 11.3 mW/K above +55°C derate linearly with 8 mW/K		850 600	mW

NOTE:

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74ALVCH16843

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

			LIMITS		
PARAMETER	TEST CONDITIONS	Temp :	= -40°C to +8	5°C	
		MIN	TYP ¹	MAX	1
	V _{CC} = 2.3 to 2.7V	1.7	1.2		
HIGH level input voltage	V _{CC} = 2.7 to 3.6V	2.0	1.5		1 ~
	V _{CC} = 2.3 to 2.7V		1.2	0.7	
LOW level input voltage	V _{CC} = 2.7 to 3.6V		1.5	0.8	1 ~
	$V_{CC} = 2.3$ to 3.6V; $V_I = V_{IH}$ or V_{IL} ; $I_O = -100\mu A$	V _{CC} -0.2	V _{CC}		
	$V_{CC} = 2.3V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -6mA$	V _{CC} -0.3	V _{CC} -0.08		1
	$V_{CC} = 2.3V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -12mA$	V _{CC} -0.6	V _{CC} -0.26		1
HIGH level output voltage	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -12mA$	V _{CC} -0.5	V _{CC} -0.14		1 ~
	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -12mA$	V _{CC} -0.6	V _{CC} -0.09		1
	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -24mA$	V _{CC} -1.0	V _{CC} -0.28		1
	$V_{CC} = 2.3$ to 3.6V; $V_I = V_{IH}$ or V_{IL} ; $I_O = 100\mu A$		GND	0.20	V
	V_{CC} = 2.3V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 6mA		0.07	0.40	V
LOW level output voltage	V_{CC} = 2.3V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 12mA		0.15	0.70	\square
	V_{CC} = 2.7V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 12mA		0.14	0.40	1 v
	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 24mA$		0.27	0.55	1
Input leakage current	$V_{CC} = 2.3$ to 3.6V; $V_I = V_{CC}$ or GND		0.1	5	μA
3-State output OFF-state current	$ \begin{array}{l} V_{CC} = 2.3 \text{ to } 3.6 \text{V}; \text{V}_{\text{I}} = \text{V}_{\text{IH}} \text{ or } \text{V}_{\text{IL}}; \\ \text{V}_{\text{O}} = \text{V}_{CC} \text{ or } \text{GND} \end{array} $		0.1	10	μ/
Quiescent supply current	V_{CC} = 2.3 to 3.6V; V_{I} = V_{CC} or GND; I_{O} = 0		0.2	40	μ
Additional quiescent supply current	V_{CC} = 2.3V to 3.6V; V_{I} = V_{CC} – 0.6V; I_{O} = 0		150	750	μA
Bus hold LOW sustaining current	$V_{CC} = 2.3 V; V_{I} = 0.7 V$	45	-		μ/
		75	150		μ.
Bus hold HIGH sustaining current		-45	475		μ/
_			-175		
					μA μA
	HIGH level Input voltage LOW level Input voltage HIGH level output voltage LOW level output voltage LOW level output voltage Input leakage current 3-State output OFF-state current Quiescent supply current Additional quiescent supply current Bus hold LOW sustaining current	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{ c c c c } \hline \mbox{MiN} \\ \hline \mbox{HIGH level Input voltage} & V_{CC} = 2.3 to 2.7 V & 1.7 \\ \hline V_{CC} = 2.7 to 3.6 V & 2.0 \\ \hline \mbox{V}_{CC} = 2.3 to 2.7 V & 2.0 \\ \hline \mbox{V}_{CC} = 2.3 to 2.7 V & 2.0 \\ \hline \mbox{V}_{CC} = 2.3 to 3.6 V; V_I = V_{IH} or V_{IL}; I_O = -100 \mu A & V_{CC} - 0.2 \\ \hline \mbox{V}_{CC} = 2.3 V; I = V_{IH} or V_{IL}; I_O = -100 \mu A & V_{CC} - 0.3 \\ \hline \mbox{V}_{CC} = 2.3 V; V_I = V_{IH} or V_{IL}; I_O = -12mA & V_{CC} - 0.6 \\ \hline \mbox{V}_{CC} = 2.3 V; V_I = V_{IH} or V_{IL}; I_O = -12mA & V_{CC} - 0.6 \\ \hline \mbox{V}_{CC} = 3.0 V; V_I = V_{IH} or V_{IL}; I_O = -12mA & V_{CC} - 0.6 \\ \hline \mbox{V}_{CC} = 3.0 V; V_I = V_{IH} or V_{IL}; I_O = -12mA & V_{CC} - 0.6 \\ \hline \mbox{V}_{CC} = 3.0 V; V_I = V_{IH} or V_{IL}; I_O = -12mA & V_{CC} - 0.6 \\ \hline \mbox{V}_{CC} = 3.0 V; V_I = V_{IH} or V_{IL}; I_O = -12mA & V_{CC} - 0.6 \\ \hline \mbox{V}_{CC} = 3.0 V; V_I = V_{IH} or V_{IL}; I_O = -12mA & V_{CC} - 0.6 \\ \hline \mbox{V}_{CC} = 3.0 V; V_I = V_{IH} or V_{IL}; I_O = -12mA & V_{CC} - 0.6 \\ \hline \mbox{V}_{CC} = 2.3 V; V_I = V_{IH} or V_{IL}; I_O = 100 \mu A & V_{CC} - 1.0 \\ \hline \mbox{V}_{CC} = 2.3 V; V_I = V_{IH} or V_{IL}; I_O = 100 \mu A & V_{CC} - 1.0 \\ \hline \mbox{V}_{CC} = 2.3 V; V_I = V_{IH} or V_{IL}; I_O = 12mA & V_{CC} - 1.0 \\ \hline \mbox{V}_{CC} = 2.3 V; V_I = V_{IH} or V_{IL}; I_O = 12mA & V_{CC} - 1.0 \\ \hline \mbox{V}_{CC} = 2.3 V; V_I = V_{IH} or V_{IL}; I_O = 12mA & V_{CC} - 0.6 \\ \hline \mbox{V}_{CC} = 2.3 V; V_I = V_{IH} or V_{IL}; I_O = 12mA & V_{CC} - 0.6 \\ \hline \mbox{V}_{CC} = 2.3 V; V_I = V_{CC} or GND & 0 & V_{CC} - 0.6 \\ \hline \mbox{V}_{C} = V_{CC} or GND & 0 & V_{CC} - 0.6 \\ \hline \mbox{V}_{C} = 0 & V_{CC} = 2.3 V; 3.6 V; V_I = V_{CC} or GND; I_O = 0 & V_{CC} - 0.6 \\ \hline \mbox{V}_{C} = 0 & V_{CC} = 2.3 V; 0 3.6 V; V_I = V_{CC} - 0.6 \\ \hline \mbox{V}_{C} = 3.0 V; V_I = 0.8 V & 75 & V_{CC} - 3.0 \\ \hline \mbox{V}_{C} = 3.0 V; V_I = 0.8 V & 75 & V_{CC} - 3.0 \\ \hline \mbox{V}_{C} = 3.0 V; V_I = 0.8 V & 75 & V_{CC} - 3.0 \\ \hline \mbox{V}_{C} = 3.0 V; V_I = 2.0 V & -75 & 0 \\ \hline \mbox{V}_{C} = 3.0 V; V_I = 2.0 V & -75 & 0 \\ \hline \mbox{V}_{C} = 3.0 V; V_I = 2.0 &$	$\begin{array}{c c c c c c c } \mbox{PARAMETER} & TEST CONDITIONS & \hline Temp = -40°C to +88 \\ \hline MIN & TYP^1 \\ \hline MIGH level Input voltage & V_{CC} = 2.3 to 2.7V & 1.7 & 1.2 \\ \hline V_{CC} = 2.7 to 3.6V & 2.0 & 1.5 \\ \hline V_{CC} = 2.3 to 2.7V & 1.1 & 1.2 \\ \hline V_{CC} = 2.3 to 2.7V & 1.1 & 1.2 \\ \hline V_{CC} = 2.3 to 3.6V; V_1 = V_{IH} or V_{IL}; I_0 = -100 \mu A & V_{CC} - 0.2 & V_{CC} \\ \hline V_{CC} = 2.3 to 3.6V; V_1 = V_{IH} or V_{IL}; I_0 = -100 \mu A & V_{CC} - 0.2 & V_{CC} \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = -100 \mu A & V_{CC} - 0.3 & V_{CC} - 0.08 \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = -12mA & V_{CC} - 0.6 & V_{CC} - 0.08 \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = -12mA & V_{CC} - 0.6 & V_{CC} - 0.08 \\ \hline V_{CC} = 3.0V; V_1 = V_{IH} or V_{IL}; I_0 = -12mA & V_{CC} - 0.6 & V_{CC} - 0.08 \\ \hline V_{CC} = 3.0V; V_1 = V_{IH} or V_{IL}; I_0 = 100 \mu A & GND \\ \hline V_{CC} = 3.0V; V_1 = V_{IH} or V_{IL}; I_0 = 100 \mu A & GND \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = 100 \mu A & 0.15 \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = 12mA & 0.15 \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = 12mA & 0.15 \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = 12mA & 0.15 \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = 12mA & 0.15 \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = 12mA & 0.15 \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = 12mA & 0.15 \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = 12mA & 0.15 \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = 12mA & 0.15 \\ \hline V_{CC} = 2.3V; V_1 = V_{IH} or V_{IL}; I_0 = 12mA & 0.15 \\ \hline V_{CC} = 2.3V; V_1 = V_{CC} or GND & 0.1 \\ \hline duiescent supply current & V_{CC} = 2.3V; 0.36V; V_1 = V_{CD} or GND; I_0 = 0 & 0.2 \\ Additional quiescent supply current & V_{CC} = 2.3V; 0.36V; V_1 = V_{CC} - 0.6V; I_0 = 0 & 150 \\ \hline Bus hold LOW sustaining current & V_{CC} = 3.6V & V_1 = 0.2V \\ \hline V_{CC} = 3.0V; V_1 = 0.2V & -0.7V & 45 & -1 \\ \hline V_{CC} = 3.0V; V_1 = 0.2V & -0.75 & -175 \\ \hline Bus hold LOW overdrive current & V_{CC} = 3.6V & 0.2 \\ \hline \end{array}$	PARAMETER TEST CONDITIONS Temp = -40°C to +85°C MIN TYP1 MAX HIGH level Input voltage V _{CC} = 2.3 to 2.7V 1.7 1.2 0.7 V _{CC} = 2.7 to 3.6V 2.0 1.5 0.8 LOW level Input voltage V _{CC} = 2.3 to 2.7V 0.0 1.5 0.8 V _{CC} = 2.7 to 3.6V V 1.5 0.8 0.8 V _{CC} = 2.3 to 2.7V V V _{CC} -0.2 V _{CC} 0.7 V _{CC} = 2.3 to 3.6V; V ₁ = V _H or V _{IL} ; I ₀ = -100µA V _{CC} -0.2 V _{CC} 0.8 V _{CC} = 2.3 to; Y ₁ = V _H or V _{IL} ; I ₀ = -12mA V _{CC} -0.6 V _{CC} -0.26 0.0 V _{CC} = 2.3 to; Y ₁ = V _H or V _{IL} ; I ₀ = -12mA V _{CC} -0.6 V _{CC} -0.09 0.007 0.40 V _{CC} = 2.3 to; Y ₁ = V _H or V _{IL} ; I ₀ = -12mA V _{CC} -0.6 V _{CC} -0.28 0.007 0.40 V _{CC} = 2.3 to; Y ₁ = V _H or V _{IL} ; I ₀ = 12mA V _{CC} -0.14 0.007 0.40 0.015 0.70 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01<

NOTES:

1. All typical values are at $T_{amb} = 25^{\circ}C$. 2. Valid for data inputs of bus hold parts.

74ALVCH16843

AC CHARACTERISTICS FOR V_{CC} = 2.3V TO 2.7V RANGE

 $GND = 0V; t_r = t_f \le 2.0ns; C_L = 30pF$

				LIMITS		
SYMBOL	PARAMETER	WAVEFORM	V	UNIT		
			MIN	TYP ¹	MAX	1
	Propagation delay nDn to nQn	1,6	1.0	2.2	4.3	
* / *	Propagation delay nLE to nQn	2, 6	1.0	2.3	4.6	ns
t _{PHL} /t _{PLH}	Propagation delay nPRE to nQn	1,6	1.0	2.5	4.8	115
	Propagation delay nCLR to nQn	1,6	1.0	2.5	4.8]
t _{PZH} /t _{PZL}	3-State output enable time nOE to nQn	5, 6	1.0	2.8	5.8	ns
t _{PHZ} /t _{PLZ}	3-State output disable time nOE to nQn	5, 6	1.1	2.2	4.3	ns
t _{SU}	Set-up time nDn to nLE	3, 6	0.5	-0.1	-	ns
t _h	Hold time nDn to nLE	3, 6	0.9	0.5	-	ns
	nLE pulse width HIGH	2, 6	1.5	0.5	-	1
t _W	nPRE pulse width LOW	4, 6	1.5	0.5	-	ns
	nCLR pulse width LOW	4, 6	1.5	0.5	-	1
t	Recovery time nPRE to nLE	4, 6	0.5	1.1	-	
t _{REM}	Recovery time nCLR to nLE	4, 6	0.5	1.0	-	ns

NOTE:

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

AC CHARACTERISTICS FOR V_{CC} = 3.0V TO 3.6V RANGE AND V_{CC} = 2.7V

 $GND = 0V; t_r = t_f \le 2.5ns; C_L = 50pF$

				LIMITS					
SYMBOL	PARAMETER	WAVEFORM	Vc	c = 3.3 ± 0	.3V	, v	V _{CC} = 2.7\	/	UNIT
			MIN	TYP ^{1, 2}	MAX	MIN	TYP ¹	MAX	1
	Propagation delay nDn to nQn	1,6	1.0	2.1	3.5	1.0	2.3	4.0	
t _{PHL} /t _{PLH}	Propagation delay nLE to nQn	2, 6	1.0	2.0	3.5	1.0	2.1	3.9	ns
'PHL/'PLH	Propagation delay nPRE_to nQn	1,6	1.0	2.2	3.8	1.0	2.6	4.5	115
	Propagation delay	1,6	1.0	2.3	3.9	1.0	2.5	4.3	
t _{PZH} /t _{PZL}	3-State output enable time nOE to nQn	5, 6	1.0	2.5	4.4	1.0	3.0	5.3	ns
t _{PHZ} /t _{PLZ}	3-State output disable time nOE to nQn	5, 6	1.3	2.6	4.0	1.3	2.8	4.4	ns
t _{SU}	Set-up time nDn to nLE	3, 6	0.5	0.0	-	0.5	-0.3	-	ns
t _h	Hold time nDn to nLE	3, 6	0.9	0.5	-	0.9	0.5	-	ns
	nLE pulse width HIGH	2, 6	1.5	0.5	-	1.5	0.5	-	
t _W	nPRE pulse width LOW	4, 6	1.5	0.5	-	1.5	0.6	-	ns
	nCLR pulse width LOW	4, 6	1.5	0.5	-	1.5	0.5	-	1
tanu	Recovery time nPRE to nLE	4, 6	1.0	0.4	-	0.8	-0.2	-	ns
t _{REM}	Recovery time nCLR to nLE	4, 6	0.8	0.2	-	0.6	-0.4	-	115

NOTES:

1. All typical values are measured T_{amb} = 25°C.

2. Typical value is measured at $V_{CC} = 3.3V$

74ALVCH16843

AC WAVEFORMS FOR V_{CC} = 2.3V TO 2.7V AND V_{CC} < 2.3V RANGE

 $\begin{array}{l} V_{M}^{-}=0.5 \ V \\ V_{X}=V_{OL}+0.15 V \\ V_{Y}=V_{OH}-0.15 V \\ V_{OL} \ and \ V_{OH} \ are \ the \ typical \ output \ voltage \ drop \ that \ occur \ with \ the \ output \ load. \\ \end{array}$

AC WAVEFORMS FOR V_{CC} = 3.0V TO 3.6V AND V_{CC} = 2.7V RANGE

 $\begin{array}{l} V_M = 1.5 \ V \\ V_X = V_{OL} + 0.3 V \\ V_Y = V_{OH} - 0.3 V \\ V_{OL} \ \text{and} \ V_{OH} \ \text{are the} \end{array}$

 V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load. $V_{I} = 2.7V$

Waveform 1. Data input (Dn) to output (Qn), clear input (CLR) to output (Qn) and preset input (PRE) to output (Qn) propagation delay

Waveform 2. Latch enable input (LE) pulse width, the latch enable input to output (Qn) propagation delay

Waveform 3. Data set-up and hold times for the Dn input to the LE input

Waveform 4. Clear (CLR) and preset (PRE) pulse width, the clear (CLR) and preset (PRE) to latch (LE) removal time

Waveform 5. 3-State enable and disable times

74ALVCH16843

TEST CIRCUIT

Waveform 6. Load circuitry for switching times

74ALVCH16843

74ALVCH16843

NOTES

74ALVCH16843

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone 800-234-7381

© Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

Document order number:

print code

Date of release: 07-98 9397-750-04562

Let's make things better.

PHILIPS