INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC01 May 1991

HILIPS

TEA6360

5-band stereo equalizer circuit

FEATURES

- Monolithic integrated 5-band stereo equalizer circuit
- Five filters for each channel
- Centre frequency, bandwidth and maximum boost/cut defined by external components
- Choise for variable or constant Q-factor via I²C software
- Defeat mode
- All stages are DC-coupled
- I²C-bus control for all functions
- Two different modul addresses programmable.

GENERAL DESCRIPTION

The 5-band stereo equalizer is an 1^2 C-bus controlled tone processor for application in car radio sets, TV sets and music centres. It offers the possibility of sound control as well as equalization of sound pressure behaviour of different rooms or loudspeakers, especially in cars.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Vp	supply voltage (pin 14)	7	8.5	13.2	V
I _p	supply current	-	24.5	-	mA
V _{1,32}	input voltage range	-	2.1 to		
			V _{P-1}	-	V
Vo	maximum output signal level	-			
	(RMS value, pins 13 and 20)	1.1		-	V
Gv	total signal gain, all filters linear	-0.5	-	0	dB
В	-1 dB frequency response (linear)	0 to 20	-	-	kHz
T _{amb}	operating ambient temperature	-40	_	85	°C

ORDERING INFORMATION

EXTENDED		PACKAGE								
TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE						
TEA6360 ⁽¹⁾	32	shrink DIL	plastic	SOT232						
TEA6360/T ⁽²⁾	32	mini-pack	plastic	SOT287						

Notes

1. SOT232; SOT232-1; 1996 August 08.

2. SOT287; SOT287-1; 1996 August 08.

TEA6360

PINNING

SYMBOL	PIN	DESCRIPTION			
V _{iL}	1	audio frequency input LEFT			
F1LA	2	onnection A for filter 1 LEFT (f = 2.95 kHz)			
n.c.	3	not connected			
F1LB	4	connection B for filter 1 LEFT (f = 2.95 kHz)			
F2LA	5	connection A for filter 2 LEFT (f = 12 kHz)			
F2LB	6	connection B for filter 2 LEFT (f = 12 kHz)			
F3LA	7	connection A for filter 3 LEFT (f = 790 Hz)			
F3LB	8	connection B for filter 3 LEFT (f = 790 Hz)			
F4LA	9	connection A for filter 4 LEFT (f = 205 Hz)			
F4LB	10	connection B for filter 4 LEFT (f = 205 Hz)			
F5LA	11	connection A for filter 5 LEFT (f = 59 Hz)			
F5LB	12	connection B for filter 5 LEFT (f = 59 Hz)			
V _{oL}	13	audio frequency output LEFT			
V _P	14	supply voltage (+8.5 V)			
SDA	15	I ² C-bus data line			
SCL	16	I ² C-bus clock line			
GND2	17	ground 2 (I ² C-bus ground)			
MAD	18	modul address			
GND1	19	ground 1 (analog ground)			
V _{oR}	20	audio frequency output RIGHT			
F5RB	21	connection B for filter 5 RIGHT (f = 59 Hz)			
F5RA	22	connection A for filter 5 RIGHT (f = 59 Hz)			
F4RB	23	connection B for filter 4 RIGHT (f = 205 Hz)			
F4RA	24	connection A for filter 4 RIGHT (f = 205 Hz)			
F3RB	25	connection B for filter 3 RIGHT (f = 790 Hz)			
F3RA	26	connection A for filter 3 RIGHT (f = 790 Hz)			
F2RB	27	connection B for filter 2 RIGHT (f = 12 kHz)			
F2RA	28	onnection A for filter 2 RIGHT (f = 12 kHz)			
F1RB	29	connection B for filter 1 RIGHT (f = 2.95 kHz)			
n.c.	30	not connected			
F1RA	31	connection A for filter 1 RIGHT (f = 2.95 kHz)			
V _{iR}	32	audio frequency input RIGHT			

TEA6360

FUNCTIONAL DESCRIPTION

The TEA6360 is performed with two stereo channels (RIGHT and LEFT), each one consists of five equal filter amplifiers (Fig.1).

The centre frequencies for the different filters as well as the bandwidth and the control ranges for boost and cut depend on the external components. Each filter can have different external components but for one definite pair of filters the centre frequency as well as the control range for boost and cut are the same. That means, they have symmetrical curves for boost and cut.

The control range (maximum value in dB) is divided into five steps and one extra step for the linear position.

At maximum gain of 12 dB the typical step resolution is 2.4 dB. The internal resistor chain of each filter amplifier is optimized for 12 dB maximum gain. Therefore the typical gain factors for 15 dB application are as follows:

step 1	=	2.7	dB
step 2	=	5.5	dB
step 3	=	8.4	dB
step 4	=	11.6	dB
step 5	=	15.0	dB

The control of the different filters is obtained by selecting the appropriate subaddress byte (Table 1).

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134). Ground pins 19, 28 and 43 connected together.

The position of the filter in the left channel and that in the right channel is always the same (stereo).

The position of the boost part and the cut part is independently controllable (Tables 2 and 3).

The quality factor of the filter has its maximum in the maximum position (steps 5), if boost (cut on step 0) or cut (boost on step 0) is used. The quality factor decreases also with the step number (variable quality factor). In this mode the control pattern are according to Table 4.

A different control is necessary to achieve a constant quality factor over the whole control range. For boost with a constant quality factor over the boost range position +5is selected and boost control is then performed using cut. This control technique is applied to the cut range with position -5 selected and the boost is varied (Table 5).

The cut part has to follow the boost part in each filter for economic reasons. So the signal is first amplified and then attenuated. This has to be taken into account for the internal level diagram in case of constant quality factor. This may result in a mode between constant Q and non-constant Q mode; for example for the position +2 it is not necessary to amplify by step +5 and then attenuate by -3 step. The combination of step +4 and step -2 to reach position +2 is a good result (quasi constant quality factor, Table 6).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _P	supply voltage (pin 14)	0	13.2	V
V _n	voltage on all pins, grounds excluded	0	V _P	V
P _{tot}	total power dissipation	0	500	mW
T _{stg}	storage temperature range	-40	150	°C
	storage temperature range	-40	150	°C
T _{amb}	operating ambient temperature range	-40	85	°C
V _{ESD}	electrostatic handling ⁽¹⁾ for all pins		±500	V

Note

1. Equivalent to discharging a 200 pF capacitor through a 0 Ω series resistor.

TEA6360

CHARACTERISTICS

 $V_P = 8.5 \text{ V}$; $f_i = 1 \text{ kHz}$ ($R_S = 600 \Omega$), $R_L = 10 \text{ k}\Omega$, $T_{amb} = 25 \text{ °C}$ and measurements taken in Fig.1, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VP	supply voltage. range (pin 14)		7	8.5	13.2	V
I _P	supply current (pin 14)	V _P = 8.5 V	-	25.5	-	mA
		V _P = 12 V	_	26.0	-	mA
Analog pa	irt					
R _i	input resistor (pins 1 and 32)		1	_	-	MΩ
V _{1,32}	input voltage range at any stage		2.1 to			
			V _P –1	_	-	V
V _{13,20}	output voltage range at any stage		1.0 to			
			V _P –1	-	-	V
Vo	output signal level (RMS value, pins 13	control range 0 to +5,				
	and 20)	variable Q-factor or				
		quasi constant Q-factor	1.1	_	-	V
Ro	output resistor (pins 13 and 20)		-	100	-	Ω
R _L	admissable load resistance at outputs					
	(pins 13 and 20)		2	-	-	kΩ
CL	admissable load capacitance at outputs					
	(pins 13 and 20)		-	-	2.5	nF
Gv	total signal gain (G = V _o / V _i)	all filters linear	-0.5	_	0	dB
В	frequency response	all filters linear, roll off				
		frequency for -1 dB				
	minimum value	(DC-coupled)	0	-	-	Hz
	maximum value		20	-	-	kHz
α _{Cr}	crosstalk attenuation between channels	f = 250 to 10000 Hz				
	all filters linear		60	75	-	dB
	all filters maximum boost		55	-	-	dB
	all filters maximum cut		55	-	-	dB
THD	distortion (pins 13 and 20)	f = 20 to 12500 Hz				
		V _P = 8.5 to 12 V				
	V _{o (rms)} = 1.1 V	all fllters linear	-	0.2	0.5	%
	V _{o (rms)} = 0.1 V	all fllters linear	-	0.05	0.2	%
	$V_{o (rms)} = 1.1 V$	all filters max. boost	-	0.5	1.0	%
	$V_{o (rms)} = 0.1 V$	all filters max. boost	_	0.1	0.3	%
	$V_{o (rms)} = 0.1 V$	all filters maximum cut	_	0.2	0.5	%
	$V_{o (rms)} = 1 V$	all filters max. boost				
		f = 1 kHz	_	_	0.35	%

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _N	weighted output noise voltage	CCIR 468-3, maximum				
	(RMS value)	gain/filter of 12 dB				
	defeat mode		_	8	16	μV
	all filters linear		-	23	46	μV
	all filters maximum boost		_	70	140	μV
	all filters maximum cut		-	23	46	μV
α _{Cr}	crosstalk between bus inputs and signal					
	outputs, 20 log (V _{bus} (p-p)/V _o rms)	all filters linear	-	120	_	dB
RR	ripple rejection at V _{ripple} rms < 200 mV	all filters linear				
	for f = 100 Hz		-	70	_	dB
	for f = 40 to 12500 Hz		-	60	_	dB
Internal fil	ters of analog part					4
Q	Q-factor dependent on maximum gain					
	maximum gain 10 dB		0.1	_	1.2	
	maximum gain 12 dB		0.1	_	1.4	
	maximum gain 15 dB		0.1	_	1.8	
R _{tot}	total resistor of different filter sections		29.6	37.0	44.4	kΩ
ΔR_{tot}	tolerance between any filter section		_	_	± 4	%
Internal co	ontrols of analog part via I ² C-bus	1	1		1	
Step	number of steps for boost or for cut		-	5	_	
	position for linear		_	1	_	
	step resolution	maximum gain 12 dB	_	2.4	_	dB
	step set error		_	0.5	_	dB
ΔV _o	DC offset between any step or					
	neighbouring step or defeat		_	_	±10	mV
I ² C-bus co	ontrol SDA and SCL (pins 15 and 16)	1			4	
V _{IH}	input level HIGH		3	_	VP	V
VIL	input level LOW		0	-	1.5	V
l _l	input current		_	-	±10	μA
V _{ACK}	acknowledge voltage on SDA	I ₁₅ = 3 mA at LOW	_	-	0.4	V
	Idress bit (pin 18)			-	1	
V _{IH}	input level HIGH for address 1000 0110		3	_	Vp	V
V _{IL}	input level LOW for address 1000 0100		0	_	1.5	V
	input current		-	-	±10	μA
Power on	reset: When reset is active the DEF-bit (do	efeat) is set and the I ² C-b	us receivo	er is in res	et positior	ำ.
RESET	start of reset	increasing V _P	_	_	2.5	V
		decreasing V _P	4.2	5.0	5.8	V
	end of reset	increasing V _P	5.2	6.0	6.8	V

TEA6360

I²C-BUS PROTOCOL

I²C-bus format

S	SLAVE ADDRESS		Α	SUBADDRESS	Α	DATA	Р		
S		=	start condit	tion					
SLAVE	EADDRESS	=	1000 0100 when pin 18 is set LOW or 1000 0110 when pin 18 is set HIGH or open-circuit						
А		=	acknowled	ge, generated by the slave	e				
SUBA	DDRESS	=	subadress	byte, see Table 1					
DATA		= data byte, see Table 1							
Р		=	stop condit	tion					

If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

Byte organisation

Table 1 I2C-bus transmission

FUNCTION							тс					DATA E	BYTE			
FUNCTION		SUBADDRESS BYTE				D7	D6	D5	D4	D3	D2	D1	D0			
filter 1/defeat	0	0	0	0	0	0	0	0	DEF	1B2	1B1	1B0	0	1C2	1C1	1C0
filter 2	0	0	0	0	0	0	0	1	0	2B2	2B1	2B0	0	2C2	2C1	2C0
filter 3	0	0	0	0	0	0	1	0	0	3B2	3B1	3B0	0	3C2	3C1	3C0
filter 4	0	0	0	0	0	0	1	1	0	4B2	4B1	4B0	0	4C2	4C1	4C0
filter 5	0	0	0	0	0	1	0	0	0	5B2	5B1	5B0	0	5C2	5C1	5C0

Function of the bits of Table 1:

1B0	to	1B2	boost control for filter 1
1B0	to	1B2	cut control for filter 1
2B0	to	2B2	boost control for filter 2
2B0	to	2B2	cut control for filter 2
3B0	to	3B2	boost control for filter 3
3B0	to	3B2	cut control for filter 3
4B0	to	4B2	boost control for filter 4
4B0	to	4B2	cut control for filter 4
5B0	to	5B2	boost control for filter 5
5B0	to	5B2	cut control for filter 5
DEF			DEF = 0 (defeat bit):
			DEF = 1:

All filters operating.

Linear frequency response, input is directly connected to the output of the output amplifier. The filter settings are stored but the internal amplification is controlled to 0 dB, independent on bits nB2 to nB0.

TEA6360

DATA									
	POSITION	nB2	nB1	nB0					
step 0	(no boost)	0	0	0					
step 1		0	0	1					
step 2		0	1	0					
step 3		0	1	1					
step 4		1	0	0					
step 5	(maximum boost)	1	0	1					
step 5	(maximum boost)	1	1	0					
step 5	(maximum boost)	1	1	1					

DATA								
	POSITION	nB2	nB1	nB0				
step 0	(no cut)	0	0	0				
step 1		0	0	1				
step 2		0	1	0				
step 3		0	1	1				
step 4		1	0	0				
step 5	(maximum cut)	1	0	1				
step 5	(maximum cut)	1	1	0				
step 5	(maximum cut)	1	1	1				

Table 4 Filter control with variable quality factor

	DOCITION	D7	D6	D5	D4	D3	D2	D1	D0	COMMENT				
POSITION		x	nB2	nB1	nB0	х	nC2	nC1	nC0	COMMENT				
+5	(maximum boost)	0	1	0	1	0	0	0	0	(+5)	+	(-0)	=	+5
+4		0	1	0	0	0	0	0	0	(+4)	+	(-0)	=	+4
+3		0	0	1	1	0	0	0	0	(+3)	+	(-0)	=	+3
+2		0	0	1	0	0	0	0	0	(+2)	+	(-0)	=	+2
+1		0	0	0	1	0	0	0	0	(+1)	+	(-0)	=	+1
0	(linear)	0	0	0	0	0	0	0	0	(+0)	+	(-0)	=	0
-1		0	0	0	0	0	0	0	1	(+0)	+	(-1)	=	-1
-2		0	0	0	0	0	0	1	0	(+0)	+	(-2)	=	-2
-3		0	0	0	0	0	0	1	1	(+0)	+	(-3)	=	-3
-4		0	0	0	0	0	1	0	0	(+0)	+	(-4)	=	-4
-5	(maximum cut)	0	0	0	0	0	1	0	1	(+0)	+	(–5)	=	-5

Table 3 Cut control for filter n

D7 D1 D6 D5 D4 D3 D2 D0 POSITION COMMENT Х nB1 Х nC0 nB2 nB0 nC2 nC1 +5 +5 (maximum boost) 0 1 0 1 0 0 0 0 (+5) (-0) + = +4 0 1 0 1 0 0 0 1 (+5)+ (-1) = +4 +3 0 1 1 1 0 0 0 0 (+5) (-2) +3 + = +2 0 0 1 1 0 0 1 1 (+5) (-3) +2 $^{+}$ = +1 0 0 1 0 1 0 1 0 (+5) (-4) +1 + = (linear) 0 0 0 0 0 0 0 0 0 (+0) (-0) 0 + = -1 0 1 0 0 0 1 0 1 (+4) (-5) -1 + = -2 0 1 0 -2 0 1 0 1 1 (-5) (+3) + = -3 0 0 1 0 0 1 0 (-5) -3 1 (+2) $^{+}$ = -4 0 0 0 1 0 1 0 1 (+1) (-5) = -4 + -5 (maximum cut) 0 0 0 0 0 1 0 1 (+0) (-5) -5 + =

 Table 5
 Filter control with constant quality factor

Table 6 Filter control with quasi-constant quality factor

POSITION		D7	D6	D5	D4	D3	D2	D1	D0				т	
		x	nB2	nB1	nB0	Х	nC2	nC1	nC0	COMMENT				
+5	(maximum boost)	0	1	0	1	0	0	0	0	(+5)	+	(-0)	=	+5
+4		0	1	0	1	0	0	0	1	(+5)	+	(-1)	=	+4
+3		0	1	0	1	0	0	1	0	(+5)	+	(-2)	=	+3
+2		0	1	0	0	0	0	1	0	(+4)	+	(-2)	=	+2
+1		0	0	1	1	0	0	1	0	(+3)	+	(–2)	=	+1
0	(linear)	0	0	0	0	0	0	0	0	(+0)	+	(0)	=	0
-1		0	0	1	0	0	0	1	1	(+2)	+	(–3)	=	-1
-2		0	0	1	0	0	1	0	0	(+2)	+	(-4)	=	-2
-3		0	0	1	0	0	1	0	1	(+2)	+	(-5)	=	-3
-4		0	0	0	1	0	1	0	1	(+1)	+	(-5)	=	-4
-5	(maximum cut)	0	0	0	0	0	1	0	1	(+0)	+	(-5)	=	-5

TEA6360

5-band stereo equalizer circuit

PACKAGE OUTLINES

SDIP32: plastic shrink dual in-line package; 32 leads (400 mil)

SOT232-1

SO32: plastic small outline package; 32 leads; body width 7.5 mm SOT287-1 А D X С У = v 🕅 A HE Ζ H H! AAA H H H H H 17 F H 32 Q A2 A₁ (A pin 1 index L_p Н Н H H Н 日16 • (+) w (M) detail X bp е 10 mm 0 5 scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) Α Z⁽¹⁾ D⁽¹⁾ E⁽¹⁾ UNIT A_1 A2 A_3 bp С е H_{E} L Lp Q ۷ w у θ max. 0.3 2.45 0.49 0.27 20.7 7.6 10.65 1.1 1.2 0.95 2.65 0.25 mm 1.27 1.4 0.25 0.25 0.1 1.0 0.1 2.25 0.36 0.18 20.3 7.4 10.00 0.4 0.55 8⁰ 0° 0.037 0.012 0.096 0.02 0.011 0.81 0.30 0.42 0.043 0.047 inches 0.10 0.01 0.050 0.055 0.01 0.01 0.004 0.004 0.086 0.01 0.007 0.80 0.29 0.39 0.016 0.039 0.022 Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. REFERENCES OUTLINE EUROPEAN **ISSUE DATE** VERSION PROJECTION IEC JEDEC EIAJ 92-11-17 \bigcirc SOT287-1 95-01-25

13

TEA6360

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

SDIP

SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

SO

REFLOW SOLDERING

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 $^{\circ}\text{C}.$

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

WAVE SOLDERING

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

TEA6360

DEFINITIONS

Data sheet status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification This data sheet contains final product specifications.					
Limiting values					
more of the limiting values r of the device at these or at	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or nay cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification imiting values for extended periods may affect device reliability.				
Application information					

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.