

NYC0102BLT1G

Description

This NYC0102 SCR thyristor has been designed for lowpower switching applications by implementing a sensitive gate triggered component.

Features

- High dv/dt noise immunity
- Gating Current < 200 μA (micro amp)
- Miniature SOT-23 Package for High Density **PCB**

• RoHS compliant and Halogen Free/BFR free, Lead-Free

Functional Diagram

Pin Out

Additional Information

Accessories

Samples

Thyristors Surface Mount - 200V > NYC0102BLT1G

Maximum Ratings (T₁ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) ($R_{GK} = I_{K'} T_J$ -40 to +110°C, Sine Wave, 50 to 60 Hz)	V _{DRM} & V _{RRM}	200	V
On-State RMS Current (All Conduction Angles; $T_c = 80$ °C)	I _{T (RMS)}	0.25	А
Peak Non-Repetitive Surge Current (1/2 Cycle Sine Wave, 60 Hz, T _A = 25°C)	I _{TSM}	7.0	А
Circuit Fusing Consideration (t = 8.3 ms)	l²t	0.2	A²sec
Forward Peak Gate Power (Pulse Width \leq 1.0 sec, $T_A = 25^{\circ}$ C)	P _{GM}	0.1	W
Forward Average Gate Power (t = 8.3 ms, $T_A = 25$ °C)	P _{GM (AV)}	0.02	W
Forward Peak Gate Current (Pulse Width ≤ 20 s, T _A = 25°C)	I _{FGM}	0.5	А
Reverse Peak Gate Voltage (Pulse Width \leq 1.0 s, $T_A = 25$ °C)	V _{RGM}	8.0	V
Operating Junction Temperature Range @ Rated V_{RRM} and V_{DRM}	T _J	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Thermal Characteristics

Rating	Symbol	Value	Unit
Total Component Dissipation FR-5 Board T _A = 25°C	P _D	225	mW
Thermal Resistance, Junction-to-Ambient	R _{eJA}	380	°C/W

Stresses exceeding Maximum Ratings may damage the component. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect component reliability.

Electrical Characteristics - OFF

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward Blocking Current (Note 3) $(V_{DRM} = 200V, R_{GK} = 1k\Omega)$	T _J = 25°C T _J = 125°C	I _{DRM}	-	-	1.0 100	
Peak Repetitive Reverse Blocking Current (V_{RRM} =200V, R_{GK} = 1 k Ω)	T _J = 25°C T _J = 125°C	I _{RRM}	-	-	1.0 100	μΑ

Electrical Characteristics - ON (TJ = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward On-State Voltage $(I_{TM} = 0.4 \text{ A, tp} < 1 \text{ ms}, T_{C} = 25^{\circ}\text{C})$	V _{TM}	_	-	1.7	V
Gate Trigger Current ($V_D = 12 \text{ V}, R_L = 100 \Omega, T_C = 25^{\circ}\text{C}$)	I _{GT}	_	-	200	μА
Gate Trigger Voltage ($V_D = 12 \text{ V}, R_L = 100 \Omega, T_C = 25^{\circ}\text{C}$)	V _{GT}	_	_	0.8	V
Holding Current ($I_T = 50 \text{ mA}, R_{GK} = 1 \text{ k}\Omega, T_C = 25^{\circ}\text{C}$)	I _H	-	-	6.0	mA
Gate Non-Trigger Voltage $(V_D = V_{DRM'}, R_L = 3.3 \text{ k}\Omega, T_C = 125^{\circ}\text{C})$	V _{GD}	0.1	_	_	V
Latching Current ($I_g = 1.0$ mA, $R_{gK} = 1$ k Ω , $T_c = 25$ °C)	I _L	-	-	7.0	mA
Gate Reverse Voltage $(I_{RG} = 10 \mu A)$	V _{RG}	8.0	_	_	V

Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate-of-Rise of Off State Voltage ($R_{GK} = 1 \text{ K}\Omega, T_C = 125^{\circ}\text{C}$)	dv/dt	200	-	_	V/µs
Critical Rate of Rise of On–State Current ($I_G = 2xI_{GT}$ 60 Hz, $t_r < 100$ ns, $T_J = 125$ °C)	di/dt	-	-	50	A/μs

To V DRM and V RRM for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the components are exceeded.

Voltage/Current Characteristics of SCR

Symbol	Parameter		
V _{DRM}	Peak Repetitive Forward Off State Voltage		
I _{DRM}	Peak Forward Blocking Current		
V _{RRM}	Peak Repetitive Reverse Off State Voltage		
I _{RRM}	Peak Reverse Blocking Current		
V _{TM}	Maximum On State Voltage		
I _H	Holding Current		

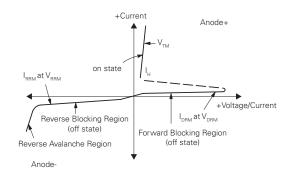


Figure 1. Maximum Average Power vs. Average Current

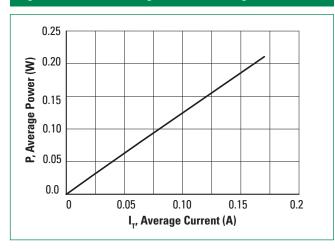


Figure 2. Current Derating

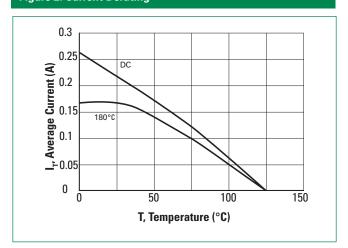


Figure 3. Surge Current I_{TSM} vs. Number of Cycles

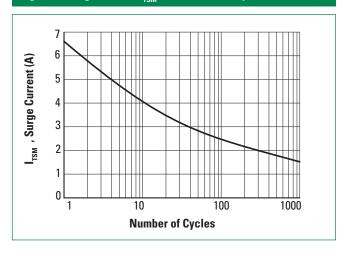


Figure 4. Thermal Response

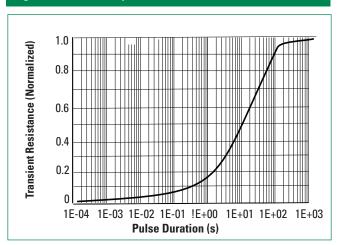


Figure 5. On-State Characteristics

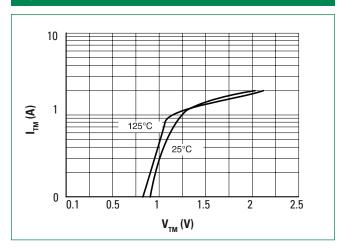


Figure 6. Gate Trigger Current vs. T_J (Normalized to 25 C)

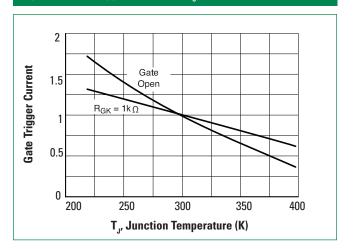


Figure 7. Gate Trigger Current vs. $R_{\rm GK}$

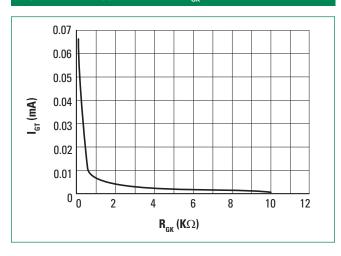


Figure 8. Holding and Latching Current vs.R_{GK}

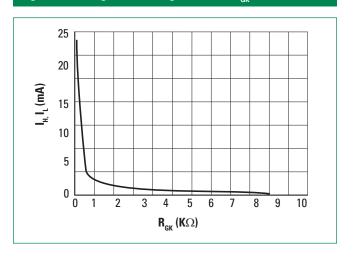


Figure 9. dV/dt vs. R_{GK}

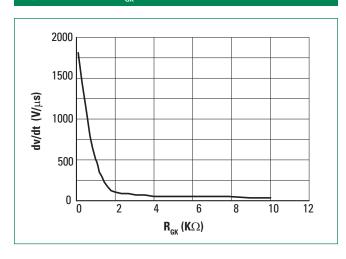
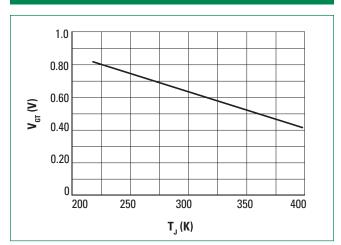
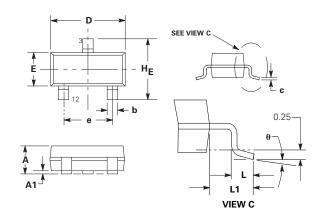
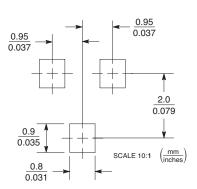
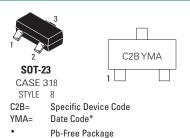




Figure 10. Gate Triggering Voltage vs. T_J


Dimensions


Dim		Inches			Millimeters			
Dim	Min	Nom	Max	Min	Nom	Max		
Α	0.035	0.041	0.046	0.89	1.03	1.17		
A 1	0.004	0.004	0.006	0.01	0.10	0.15		
b	0.012	0.016	0.020	0.30	0.40	0.50		
С	0.003	0.006	0.008	0.08	0.14	0.20		
D	0.110	0.114	0.120	2.80	2.90	3.04		
E	0.047	0.051	0.055	1.20	1.30	1.40		
е		0.075			1.90			
L	0.016	0.019	0.024	0.40	0.49	0.60		
L1	0.018	0.022	0.025	0.46	0.55	0.64		
HE	0.083	0.091	0.104	2.10	2.30	2.64		
Ø	0°		10°	0°		10°		

- 1. Diminishing and tolerancing per ANSIY 14.5M, 1982.
- 2. Controlling Dimension: Inch
- 3. Maximum lead thickness includes lead finish thickness. Minimum lead thickness is the minimum thickness of base material.
- $4.\,\mathrm{Dimensions}\;\mathrm{D}$ and $\mathrm{E}\;\mathrm{do}\;\mathrm{not}\;\mathrm{include}\;\mathrm{mold}\;\mathrm{flash},$ protrusions, or gate burrs.

Soldering Footprint

Part Marking System

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

Pin Assignment			
1	Cathode		
2	Gate		
3	Anode		

Device Package Shipping NYC0102BLT1G SOT-23 (Pb-Free) 3000/Tape & Reel/Box

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics