

3.3V Fast CMOS Buffer/Clock Driver

Features

- → 3.3V version of PI49FCT805/806
- → Extremely low output skew: 0.5ns
- ➔ Monitor output pin
- → Clock busing with 3-state control
- → TTL input and CMOS output compatible
- → Industrial operation at -40°C to 85°C
- → Extremely low static power (1mW, typ.)
- → Hysteresis on all inputs
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/
- → Packaging (Pb-free & Green available):
 - 20-pin 150-mil wide QSOP (Q)
 - 20-pin 209-mil wide SSOP (H)

PI49FCT3805 Block Diagram

Description

Diodes' PI49FCT3805 is a 3.3V non-inverting clock driver and the PI49FCT3806 is a 3.3V inverting clock driver designed with two independent groups of buffers. These buffers have 3-state Output Enable inputs (active LOW) with a 1-in, 5-out configuration per group. Each clock driver consist of two banks of drivers, driving five outputs each from a standard TTL compatible CMOS input.

PI49FCT3806 Block Diagram

Notes:

^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

^{2.} See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Description

Pin Name	Description			
$\overline{OE}_A, \overline{OE}_B$	3-State Output Enable Inputs (Active LOW)			
IN _A , IN _B	lock Inputs			
_O A _N , _O B _N	Clock Outputs			
MON	Monitor Output			
GND	Ground			
V _{CC}	Power			

PI49FCT3805 Truth Table⁽¹⁾

Inpu	ıts	Outputs		
$\overline{\text{OE}}_{\text{A}}, \overline{\text{OE}}_{\text{B}}$	IN _A , IN _B	$_{0}A_{N}$, $_{0}B_{N}$	MON	
L	L	L	L	
L	Н	Н	Н	
Н	L	Z	L	
Н	Н	Z	Н	

Note:

1. H = High Voltage Level, L = Low Voltage Level Z = High Impedance

PI49FCT3806 Truth Table⁽¹⁾

Inp	outs	Outputs		
$\overline{OE}_A, \overline{OE}_B$	IN _A , IN _B	\overline{OA}_N , \overline{OB}_N	MON	
L	L	Н	Н	
L	Н	L	L	
Н	L	Z	Н	
Н	Н	Z	L	

Note:

1. H = High Voltage Level, L = Low Voltage Level, Z = High Impedance

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied40°C to +85°C
Supply Voltage to Ground Potential (Inputs & Vcc Only)0.5V to +7.0V
Supply Voltage to Ground Potential (Outputs & I/O Only) .–0.5V to +7.0V
DC Input Voltage0.5V to +7.0V
DC Output Current 120 mA
Power Dissipation0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Symbol	Parameter	Test Condition ⁽¹⁾	Test Condition ⁽¹⁾		Тур.	Max.	Units	
V _{OH}	Output High Voltage $V_{CC} = 3.0V$, $V_{IN} = V_{IL}$ or V_{IH}	$V_{CC} = Min.,$ $V_{IN} = V_{IH}$ or V_{IL}	$I_{OH} = -0.1 mA$ $I_{OH} = -8 mA$	V _{CC} -0.2 2.4 (3)	- 3.0			
V _{OL}	Output Low Voltage $V_{CC} = 3.0V$, $V_{IN} = V_{IL}$ or V_{IH}	$V_{CC} = Min.,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 0.1mA$ $I_{OL} = 16mA$ $I_{OL} = 24mA$		- 0.2 0.3	0.2 0.4 0.5	0.4	
V _{IH}	Input High Voltage	Guaranteed Logic HIGH level Input Pins		2.0		5.5		
V _{IL}	Input Low Voltage	Guaranteed Logic LOW level	Input Pins	-0.5		0.8		
I _{IH}	Input High Current	V _{CC} = Max	V _{IN} = V _{CC} (Input Pins)	-1		1		
I _{IL}	Input Low Current	V _{CC} = Max	V _{IN} = GND (Input & I/O Pins)	-1		1	μΑ	
I _{OZH}	High Impedance Output Current	V _{CC} = Max., All outputs Disabled				1	μπ	
I _{OZL}	High Impedance Output Current	V _{CC} = Max., All outputs Disabled	$V_{OUT} = V_{CC}$ $V_{OUT} = GND$	-1		1		
V _{IK}	Clamp Diode Voltage	$V_{\rm CC}$ = Min., $I_{\rm IN}$ = -18m	V _{CC} = Min., I _{IN} = -18mA		-0.7	-1.2	V	
I _{ODH}	Output HIGH Current	$\label{eq:Vout} \begin{split} V_{OUT} &= 3.3 V, V_{IN} = \!\! V_{IL} \text{ or } V_{IH}, \\ V_{OUT} &= 1.5 V^{(4)} \end{split}$		-35	-86	-110		
I _{ODL}	Output LOW Current	$V_{OUT} = 3.3V, V_{IN} = V_{IL} \text{ or } V_{IH},$ $V_{OUT} = 1.5V^{(4)}$		50	168	200	mA	
I _{OS}	Short Circuit ⁽⁵⁾ Current	$V_{CC} = Max., V_{OUT} = GI$	$V_{CC} = Max., V_{OUT} = GND^{(5)}$		-135	-240	1	
V _H	Input Hysteresis				150		mV	

DC Electrical Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 3.3V \pm 0.3V$)

Note:

^{1.} For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical values are at $V_{CC} = 3.3V$, +25°C ambient and maximum loading.

^{3.} $V_{OH} = V_{CC} - 0.6V$ at rated current.

^{4.} This parameter is determined by device characterization but is not production tested.

^{5.} Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ ⁽²⁾	Max.	Units
I _{CC}	Quiescent Power Supply Current	V _{CC} = Max.	$V_{IN} = GND \text{ or } V_{CC}$	_		30	
ΔI_{CC}	Supply Current per Inputs @ TTL HIGH	$V_{CC} = Max.$	$V_{IN} = V_{CC} - 0.6V^{(3)}$	_	11	300	μΑ
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	$V_{CC} = Max.,$ Outputs Open $\overline{OE}A \text{ or } \overline{OE}B = GND$ Per Output Toggling 50% Duty Cycle	$V_{IN} = V_{CC}$ $V_{IN} = GND$	_	0.1	0.16	mA/ MHz
		V _{CC} = Max., Outputs Open FO = 10 MHz	$V_{IN} = V_{CC}$ $V_{IN} = GND$	_	3.3	9.0 ⁽⁵⁾	
T.	Total Power Supply	50% Duty Cycle \overline{OE}_A or \overline{OE}_B = GND Mon. Outputs Toggling	$V_{\rm IN} = V_{\rm CC} - 0.6V$ $V_{\rm IN} = \rm{GND}$		3.3	10.0 ⁽⁵⁾	A
IC	$f_{O} = 2.5 \text{ MHz}$ 50% Duty Cycl $\overline{\text{OE}}$ A or $\overline{\text{OE}}$ B =	Outputs Open	$V_{IN} = V_{CC}$ $V_{IN} = GND$		1.8	6.0 ⁽⁵⁾	mA
		50% Duty Cycle $\overline{OE}_A \text{ or } \overline{OE}_B = \text{GND}$ Eleven Outputs Toggling	$V_{IN} = V_{CC} - 0.6V$ $V_{IN} = GND$		1.8	7.0 ⁽⁵⁾	

Power Supply Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 3.3V \pm 0.3V$)

Note:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

2. Typical values are at $V_{CC} = 3.3V$, +25°C ambient.

3. Per TTL driven input ($V_{IN} = V_{CC} - 0.6V$); all other inputs at V_{CC} or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

- 5. Values for these conditions are examples of the Ic formula. These limits are guaranteed but not tested.
- 6. $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$
- $I_{C} = I_{CC} + \Delta I_{CC} D H N T + I_{CCD} (f_{O} N_{O})$
- I_{CC} = Quiescent Current

 ΔI_{CC} = Power Supply Current for a TTL High Input (V_{IN} = V_{CC} – 0.6V)

D_H = Duty Cycle for TTL Inputs High

N_T = Number of TTL Inputs at D_H

 I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

f_O = Output Frequency

 N_O = Number of Outputs at f_O

All currents are in milliamps and all frequencies are in megahertz.

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур	Max.	Units
C _{IN}	Input Capacitance	$V_{IN} = 0V$	3.0	6.0	чЪ
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	6.0	8.0	pF

Note:

1. This parameter is determined by device characterization but is not production tested.

Switching Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 3.3V \pm 0.3V$)

				05 06)5A)6A		05B 06B)5C)6C	
		Test		om.		om.		om.		om.	Units
Parameter	Description	Conditions ⁽¹⁾	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PLH} t _{PLH}	Propagation Delay IN_A to OA_N , IN_B to OB_N		1.5	6.5	1.5	5.8	1.5	5.0	1.5	4.5	
t _{PZH} t _{PZL}	$\frac{Output Enable Time}{OE_A \text{ to OA}_N, OE_B \text{ to OB}_N}$		1.5	8.0	1.5	8.0	1.5	6.5	1.5	6.2	
t _{PHL} t _{PLZ}	Output Disable Time \overline{OE}_A to OA_N , \overline{OE}_B to OB_N		1.5	7.0	1.5	7.0	1.5	6.0	1.5	5.0	
t _{SK(o)} ⁽³⁾	Skew between two outputs of same package (same transition)	$C_{\rm L} = 50 \rm{pF}$ $R_{\rm L} = 500 \Omega$		0.7		0.7		0.5		0.5	ns
t _{SK(P)} ⁽³⁾	Skew between opposite transitions (_{tPHL} - t _{PLH}) of the same output			1.0		0.7		0.5		0.5	
$t_{SK(t)}^{(3)}$	Skew between two out- puts of different package at same temperature (Same transition)			1.5		1.2		1.0		0.8	

Note:

1. See test circuit and waveforms

2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. Skew measured at worst cast temperature (max. temp).

Tests Circuits for All Outputs

Except for F_{IN} >100 MHz

Switch Position

Test	Switch
Disable LOW	
Enable LOW	6V
Disable HIGH	CNID
Enable HIGH	GND
All Other Inputs	Open

Definitions:

 C_L = Load capacitance: includes jig and probe capacitance. R_T = Termination resistance: should be equal to ZOUT of the Pulse Generator.

Switching Waveforms

Part Marking

PI49FCT3805 Q Package

B on the Part# = Speed Code B: Fab 2 Port Code W: Die Rev YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

H Package

C on the Part# = Speed Code B: Fab 2 Port Code W: Die Rev YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Part Marking

PI49FCT3806

Top mark not available at this time. To obtain advance information regarding the top mark, please contact your local sales representative.

C on the Part# = Speed Code B: Fab 2 Port Code W: Die Rev YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

B: Fab 2 Port Code W: Die Rev YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical: 20-SSOP (H20)

13-0214

Packaging Mechanical: 20-QSOP (Q)

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

PI49FCT3805 Ordering Information

Ordering Code	Package Code	Speed Grade	Package Description
PI49FCT3805BQEX	Q	В	20-pin, 150-mil (QSOP)
PI49FCT3805CHEX	Н	С	20-pin, 209-mil (SSOP)
PI49FCT3805CQEX	Q	С	20-pin, 150-mil (QSOP)
PI49FCT3805QEX	Q	Blank	20-pin, 150-mil (QSOP)

PI49FCT3806 Ordering Information

Ordering Code	Package Code	Speed Grade	Package Description
PI49FCT3806BQEX	Q	В	20-pin, 150-mil (QSOP)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the

failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2020, Diodes Incorporated

www.diodes.com