EV-VNHD7012AY ### VNHD7012AY Evaluation board **Data brief** #### **Features** | Parameter | Symbol | Value | Unit | |------------------------------|-------------------|---------|------| | Max transient supply voltage | V _{CC} | 38 | V | | Operating voltage range | V _{CC} | 4 to 28 | V | | Typ.on-state resistance | RON per channel | 12 | mΩ | | Current limitation (typ) | I _{LIMH} | 38 | А | | Stand-by current (max) | I _{STBY} | 10 | μΑ | - Simple single IC application board dedicated for VNHD7012AY - Provides electrical connectivity and thermal heat-sinking for easy prototyping ### **Description** EV-VNHD7012AY provides you an easy way to connect ST VIPower M0-7 HBridge drivers into your existing prototype circuitry. This evaluation board comes preassembled with VNHD7012AY H-Bridge. On board minimum set of electrical components (as for device datasheet recommendation) is enabling the user to directly connect the load, the power supply and the microcontroller without any additional effort in external component design and connection. VNHD7012AY is a full bridge motor driver intended for a wide range of automotive applications. The device incorporates a full protected dual high-side driver and the drivers and protections for the two external power MOSFETs in low-side configuration. The device is designed using STMicroelectronics well known and proven proprietary VIPower® technology that allows to efficiently integrate on the same die a true PowerMOSFET with an intelligent signal/ protection circuitry. The device is housed in a PowerSSO-36 exposed pad package to optimize the dissipation performances. The input signals INA and INB can directly interface the microcontroller to select the motor direction and the brake conditions. Two selection pins (SEL0 and SEL1) are available to address to the microcontroller the information available on the MultiSense. The MultiSense pin allows to monitor the motor current, provides a voltage proportional to the battery value and the information on the temperature of the chip. The integrated protections are: load current limitation, overload active power limitation (with latch-off), overtemperature shutdown (with latch-off) and cross current protection. The PWM, up to 20 KHz, allows to control the speed of the motor in all possible conditions. Table 1. Device summary | Order code | Reference | |---------------|-----------------------------------| | EV-VNHD7012AY | EV-VNHD7012AY Evaluation
Board | Contents EV-VNHD7012AY ## **Contents** | 1 | Design recommendation | 5 | |---|-----------------------|----| | 2 | Board connections | 8 | | 3 | Thermal data | 10 | | 4 | Revision history | 11 | EV-VNHD7012AY List of tables ## List of tables | Table 1. | Device summary | • | |----------|-----------------------------|---| | Table 2. | Pin connection and function | ξ | | Table 3. | BOM | Ó | | | EV-VNHD7012AY thermal data | | | Table 5. | PCB specification | (| | | Document revision history | | List of figures EV-VNHD7012AY # **List of figures** 4/12 | Figure 1. | VNHD7012AY evaluation board schematic | 5 | |-----------|---|---| | Figure 2. | VNHD7012AY evaluation board top layout | 6 | | Figure 3. | VNHD7012AY evaluation board bottom layout | 7 | ## 1 Design recommendation This evaluation board provides mounting and some heat sinking capability for prototype development. Figure 1. VNHD7012AY evaluation board schematic DB3625 Rev 3 5/12 Figure 2. VNHD7012AY evaluation board top layout 5/ Figure 3. VNHD7012AY evaluation board bottom layout DB3625 Rev 3 7/12 Board connections EV-VNHD7012AY ## 2 Board connections Table 2. Pin connection and function | Connector | Board lead number | Device pin function | |-----------|---------------------|---------------------| | J2 | 1, 2, 5, 12, 14, 15 | GND | | J2 | 3 | SENSE_EN | | J2 | 4 | SEL0 | | J2 | 6 | MULTI-SENSE | | J2 | 13 | PWM | | J1 | 1, 2, 8, 14, 15 | GND | | J1 | 7 | INA | | J1 | 9 | INB | | J3 | 1, 2 | OUTA | | J4 | 2 | VBAT | | J4 | 1 | GND | | J5 | 1, 2 | OUTB | | TP1 | 1 | GATE_LSA | | TP2 | 1 | СР | | TP3 | 1 | SEL1 | | TP4 | 1 | GATE_LSB | EV-VNHD7012AY Board connections Table 3. BOM | Component | Value | |-------------------------|------------------| | C1 | 100 nF nc | | C2, C3 | 100 μF 50V nc | | C4, C5, C10 | 10 nF | | C6 | 10nF nc | | C7 | 33nF | | C8 | 470 μF 50V | | C9, C11 | 100 nF | | L1, L2, L3 | INDUCTOR-SHORTED | | M1 | STL76DN4LF7AG | | Q1 | STL120N4F6AG | | R1, R15 | 0R | | R2, R3 | 4.7 ΚΩ | | R4 | OR nc | | R5, R6, R7, R8, R9, R10 | 1 ΚΩ | | R11 | 1.5 ΚΩ | | R12, R13 | 10 ΚΩ | | R14 | 1 KΩ nc | Thermal data EV-VNHD7012AY ## 3 Thermal data Table 4. EV-VNHD7012AY thermal data | Symbol | Parameter | Max | Unit | |----------------------|---|-----|------| | R _{thj-amb} | Thermal resistance junction-
ambient HSD (MAX) | 28 | °C/W | Table 5. PCB specification | Symbol | Parameter | Max | Unit | |-------------------------|-----------|------------|------| | Board dimensions | - | 45x65 | mm | | Number of Cu layer | - | 4 | μm | | Layer Cu thickness | - | 35 | mm | | Board finish thickness | - | 1.6 +/-10% | - | | Board Material | - | FR4 | - | | Thermal vias separation | - | 1.1 mm | mm | | Thermal vias diameter | - | 0.5 mm | mm | EV-VNHD7012AY Revision history # 4 Revision history **Table 6. Document revision history** | Date | Revision | Changes | |-------------|----------|--| | 22-May-2018 | 1 | Initial release. | | 18-Oct-2018 | 2 | Updated Figure 2: VNHD7012AY evaluation board top layout and Figure 3: VNHD7012AY evaluation board bottom layout. Minor text changes. | | 13-Nov-2019 | 3 | Updated Figure 1: VNHD7012AY evaluation board schematic and Table 2: Pin connection and function | #### **IMPORTANT NOTICE - PLEASE READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2019 STMicroelectronics - All rights reserved 12/12 DB3625 Rev 3