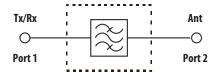

LTE Band 41 Bandpass Filter

Data Sheet

Description


The Avago ACFF-1025 is a highly miniaturized LTE Band 41 (2496 – 2690 MHz) bandpass filter combined with a WLAN/Wi-Fi band reject filter.

The ACFF-1025 is designed to operate in WiMAX transceiver applications which coexist with WLAN, Wi-Fi and/or Bluetooth transmitters.

The ACFF-1025 is designed with Avago Technologies' innovative Film Bulk Acoustic Resonator (FBAR) technology, which makes possible ultra-small, high-Q filters at a fraction of their usual size. The excellent power handling capability of FBAR bulk-mode resonators supports the high output power levels used in mobile communications applications, while adding virtually no distortion.

The ACFF-1025 also utilizes Avago Technologies' advanced Microcap bonded-wafer, chip scale packaging technology. This process allows the filter to be assembled into a molded chip-on-board module with an overall size of 2.5 x 2.5 mm and height of 1.0 mm.

Functional Block Diagram

Features

- 50 Ω Input/Output
- WLAN/Wi-Fi Reject Notch
- Miniature Size
 2.5 x 2.5 mm
 1.0 mm Height
- High Power Rating
 33 dBm Abs Max Power
- Extended Operating Temperature Range
 40 to +85°C
- Environmental RoHS 6 Compliant Halogen free TBBPA Free

Specifications

- Performance, 20 to +85°C
 - LTE Band 41 Insertion Loss
 2496.5 2502 MHz: 4.0 dB Max
 2502 2689.25 MHz: 3.8 dB Max
 - Cell Rx Band Rej: 30 dB Min
 - PCS Rx Band Rej: 20 dB Min
 - WLAN/Wi-Fi/BT Rej: 20 dB Min

Applications

Bandpass filter for cellular base station receivers and indoor small cell applications operating in LTE Band 41.

ACFF-1025 Electrical Specifications $^{[2]}$, $\mathbf{Z_0} {=} \mathbf{50}~\Omega$, $\mathbf{T_C}^{[1]}$ as indicated

			−40°C	−20°C		+25°C			+85°C			
Symbol	Parameter	Units	Typ [3]	Min	Тур [3]	Max	Min	Typ [3]	Max	Min	Typ [3]	Max
	Ant (Tx/Rx) Port to Tx/Rx (Ant) Port											
S21 (S12)	Insertion Loss in Band 41 2496.50 – 2502.00 MHz 2502.00 – 2689.25 MHz	dB	2.1 2.1		2.1 2.3	4.0 3.8		2.2 2.5	3.5 3.5		2.3 2.7	4.0 3.4
S21 (S12)	Insertion Loss Ripple (p-p) in Band 41 (2502.0 – 2689.25 MHz)	dB	0.7		0.8	2.0		0.8	2.0		1.0	2.0
S21 (S12)	Attenuation in Cell Tx Band (824 – 849 MHz)	dB	57	35	57		35	57		35	57	
S21 (S12)	Attenuation in Cell Rx Band (869 – 894 MHz)	dB	54	30	54		30	54		30	53	
S21 (S12)	Attenuation in GPS Band (1574.4 – 1576.4 MHz)	dB	34	30	34		30	34		30	34	
S21 (S12)	Attenuation in PCS Rx Band (1930.5 – 1989.5 MHz)	dB	44	20	44		20	43		20	43	
S21 (S12)	Attenuation in WLAN/Wi-Fi/ Bluetooth Bands 2400 – 2468 MHz 2468 – 2473 MHz	dB	45 45	30 20	45 49		30 20	45 48		30	45 30	
S21 (S12)	Attenuation in Band 41 2nd Harmonic Band (4993 – 5379 MHz)	dB	28	21	28		20	28		20	28	
S21 (S12)	Attenuation in Band 41 3rd Harmonic Band (7489 – 8068 MHz)	dB	12	8	12		8	13		8	13	
S11	Return Loss (SWR) of Ant Port 2496.5 – 2689.25 MHz	dB		8.0		(2.3)	8.0	12 (1.7)	(2.3)	8.0		(2.3)
S22	Return Loss (SWR) of Tx/Rx Port 2496.5 – 2689.25 MHz	dB		8.0		(2.3)	8.0	17 (1.3)	(2.3)	8.0		(2.3)

Notes:

^{1.} T_C is the case temperature and is defined as the temperature of the underside of the filter where it makes contact with the circuit board.

^{2.} Min/Max specifications are guaranteed at the indicated temperature with the input power to the Tx/Rx port equal to or less than +25 dBm over all Tx/Rx frequencies unless otherwise noted.

^{3.} Typical data is the average value of the parameter over the indicated band at the specified temperature. Typical values may vary over time.

Absolute Maximum Ratings [1]

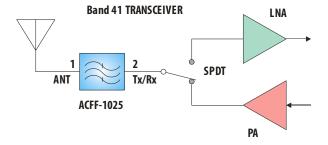
Parameter	Unit	Value
Storage temperature	°C	-65 to +125
Maximum RF Input Power to Tx Port	dBm	+33
Maximum DC Voltage, any Port to Gnd or between ports [4]	V _{DC}	0

Maximum Recommended Operating Conditions [2]

Parameter	Unit	Value
Operating temperature, T _C ^[3] , Tx Power ≤ 29 dBm, CW	°C	-40 to +100
Operating temperature, T_C [3], Tx Power ≤ 30 dBm, CW	°C	-40 to +85

Notes:

- 1. Operation in excess of any one of these conditions may result in permanent damage to the device.
- 2. The device will function over the recommended range without degradation in reliability or permanent change in performance, but is not guaranteed to meet electrical specifications.
- 3. T_C is defined as case temperature, the temperature of the underside of the filter where it makes contact with the circuit board.
- 4. Internal DC resistance of ports is approximately a short circuit.


Applications Information

The Avago ACFF-1025 is an LTE Band 41 (2496 – 2690 MHz) bandpass filter combined with a WLAN/Wi-Fi band reject filter.

The ACFF-1025 is designed to operate in multi-radio system architectures such as illustrated in the simplified diagram in Figure 1. The steep, WLAN/Wi-Fi band-reject characteristic of the ACFF-1025 allows Band 41 transceivers to successfully coexist in close proximity to WLAN, Wi-Fi and/or Bluetooth radios.

Use of Avago's companion Wi-Fi filter in the WLAN transceiver completes the architecture.

Note: The ACFF-1025 is not symmetrical. As shown in Figure 1, Port 2 is connected to the system Antenna and Port 1, which is designed for higher power handling, is connected to the Tx/Rx blocks. If either port of the ACFF-1025 is connected to components having a DC voltage present, blocking capacitors should be used.

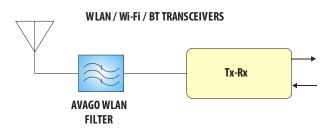


Figure 1. Typical Multi-Radio Application.

ACFF-1025 Typical Performance at Tc = 25°C

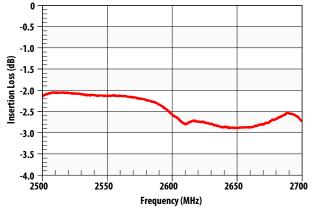


Figure 2. Insertion Loss in Band 41

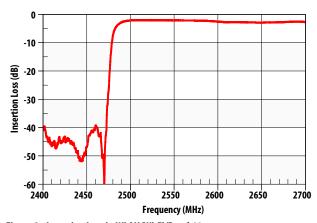


Figure 3. Insertion Loss in WLAN/Wi-Fi/Band 41

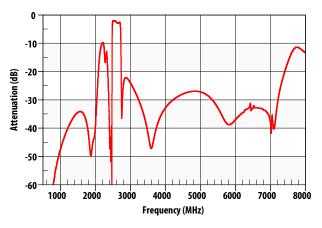


Figure 4. Wideband Insertion Loss

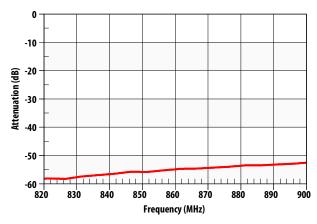


Figure 5. Rejection in Cell Tx-Rx Band

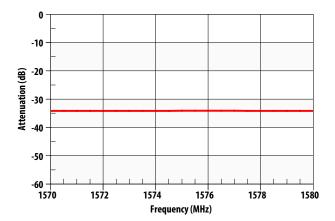


Figure 6. Rejection in GPS Band

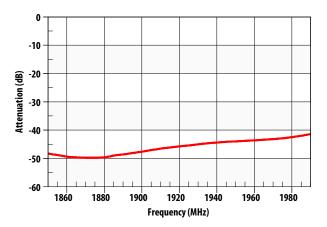


Figure 7. Rejection in PCS Tx-Rx Band

ACFF-1025 Typical Performance at Tc = 25°C

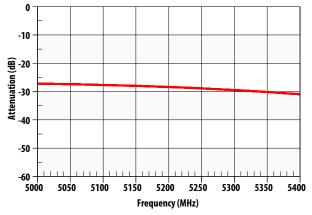


Figure 8. Rejection at Band 41 Second Harmonic

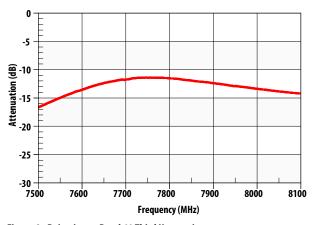


Figure 9. Rejection at Band 41 Third Harmonic

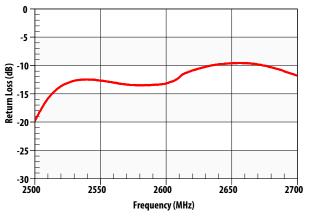


Figure 10. Ant Port Return Loss in Band 41

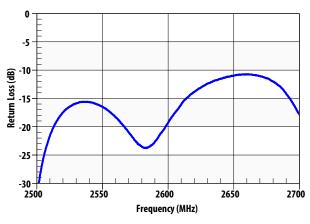


Figure 11. Tx/Rx Port Return Loss in Band 41

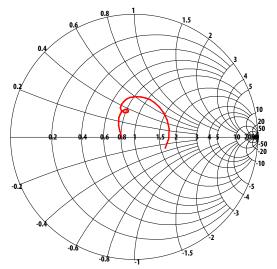


Figure 12. S11 (Ant Port) Impedance in Band 41

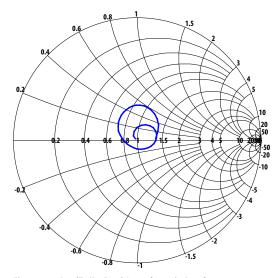
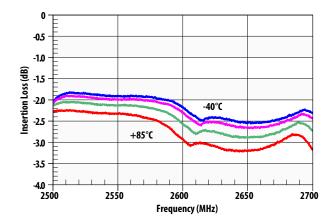



Figure 13. S22 (Tx/Rx Port) Impedance in Band 41

ACFF-1025 Typical Performance over Operating Temperature Range, -40° to +85°C

Blue = -40° , Magenta = -20° , Green = $+25^{\circ}$, Red = $+85^{\circ}$ C

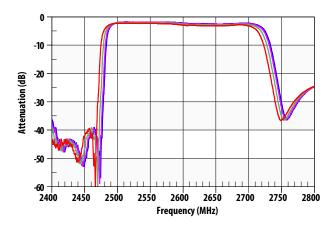


Figure 14. Insertion Loss in Band 41

Figure 15. Insertion Loss in WLAN/Wi-Fi/Band 41

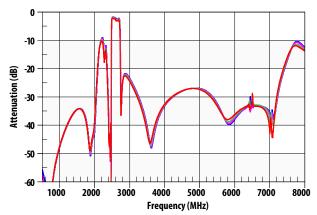


Figure 16. Wideband Insertion Loss

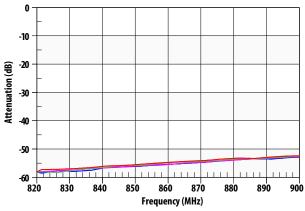


Figure 17. Rejection in Cell Tx-Rx Band

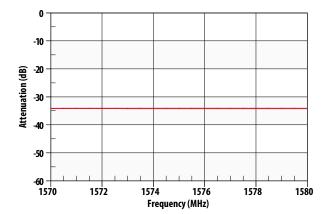


Figure 18. Rejection in GPS Band

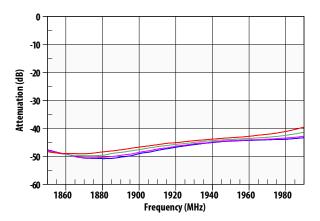
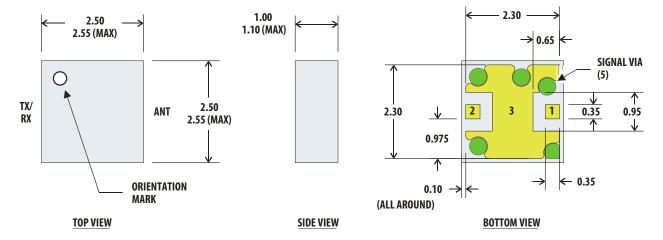



Figure 19. Rejection in PCS Tx-Rx Band

Notes:

- 1. Dimensions in millimeters Tolerance: $X.X \pm 0.1$ mm $X.XX \pm 0.05$ mm
- 2. Dimensions nominal unless otherwise noted
- 3. I/O Pads (2 ea) Size: 0.35 X 0.35 mm

Spacing to ground metal: 0.30 mm

- Signal Vias (5 ea), Ø 0.15; covered with 0.42 Ø solder mask. Shown for reference only. PCB metal under signal via does not need to be voided.
- 5. Contact areas are gold plated

Figure 20. Package Outline Drawing.

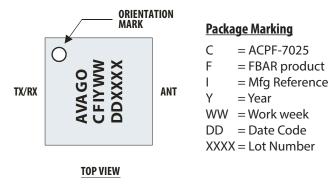


Figure 21. Product Marking and Pin Orientation.

Pin Connections:

- 1 Tx/Rx
- 2 Ant
- 3 Ground

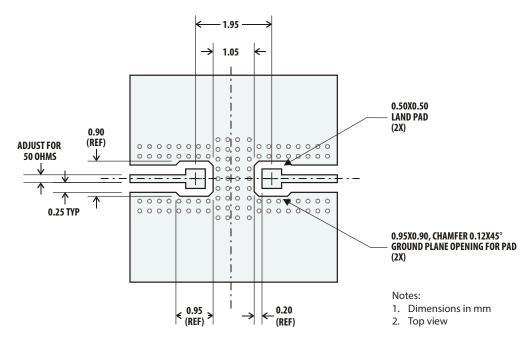


Figure 22. Suggested PCB Land Pattern.

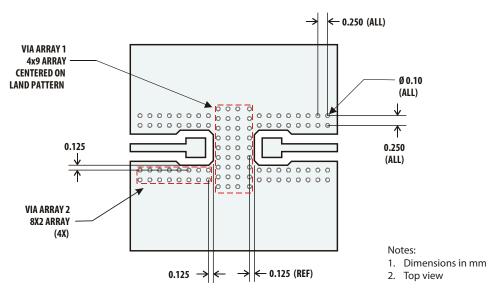
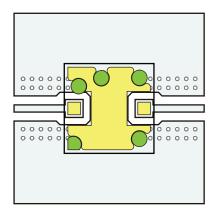


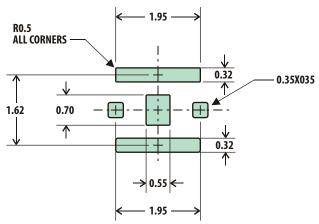
Figure 23. PCB Layout, Via Detail.

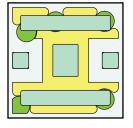

A PCB layout using the principles illustrated in the figure above is recommended to optimize performance of the ACFF-1025.

Transmission line dimensions should be adjusted to maintain a Zo of 50 ohms.

It is important to maximize isolation between the filter Input and Output ports.

High isolation is achieved by: (1) maintaining a continuous ground plane around the I/O connections and filter mounting area, and (2) surrounding the I/O ports with sufficient ground vias to enclose the connections in a "Faraday cage."


Ground vias under the ACFF-1025 mounting area also provide heat sinking for the device to minimize shifting of the pass band over temperature.

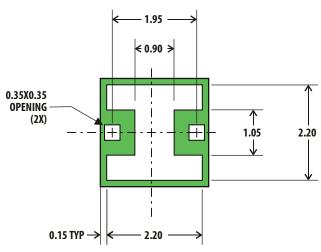


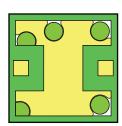
Note:

1. Top view

Figure 24. ACFF-1025 Superposed on PCB Layout.

Notes:


- 1. Dimensions in mm
- 2. Top view
- 3. Chamfer or radius all corners 0.05 mm min


Notes:

- 1. Top view
- 2. I/O pad apertures match device pad 1:1

Figure 26. Solder Stencil Superposed on ACFF-1025.

Figure 25. Recommended Solder Stencil.

Notes:

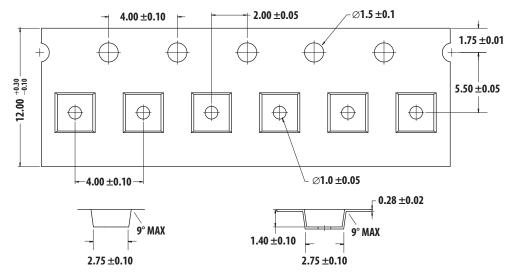

- 1. Dimensions in mm
- 2. Top view

Figure 27. Recommended Solder Mask.

Notes:

- Top view
- 2. Mask apertures match device pads 1:1

Figure 28. Solder Mask Superposed on ACFF-1025.

Note:

1. Dimensions in mm

Figure 29. SMD Tape Drawing.

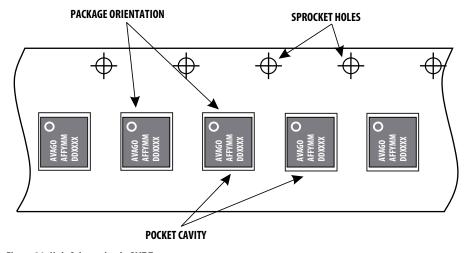
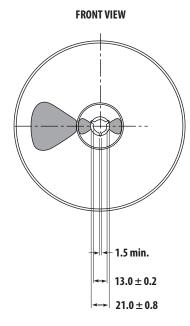



Figure 30. Unit Orientation in SMT Tape.

NOTES:

- 1. Reel shall be labeled with the following information (as a minimum).
 - a. manufacturers name or symbol
 - b. Avago Technologies part number
 - c. purchase order number
 - d. date code
 - e. quantity of units
- 2. A certificate of compliance (c of c) shall be issued and accompany each shipment of product.
- 3. Reel must not be made with or contain ozone depleting materials.
- 4. All dimensions in millimeters (mm)

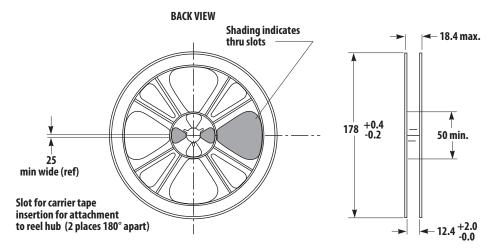


Figure 31. SMT Reel Drawing.

Package Moisture Sensitivity

Feature	Test Method	Performance
Moisture Sensitivity Level (MSL) at 260°C	JESD22-A113D	Level 3

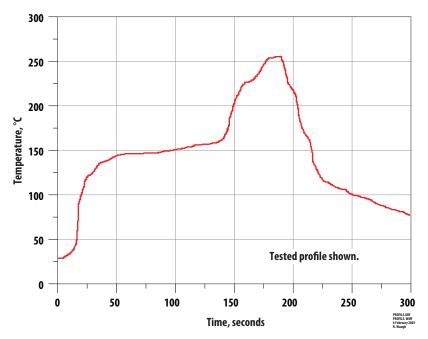


Figure 32. Verified SMT Solder Profile.

Ordering Information

Part Number	No. of Devices	Container
ACFF-1025-BLK	100	Tape Strip or Anti-static Bag
ACFF-1025-TR1	3000	178 mm (7-inch Reel

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

