

Adafruit Mini GPS PA1010D Module

Created by Kattni Rembor

https://learn.adafruit.com/adafruit-mini-gps-pa1010d-module

Last updated on 2022-12-01 03:46:49 PM EST

©Adafruit Industries Page 1 of 30

3

6

11

13

14

20

20

23

29

Table of Contents

Overview

Pinouts

• GPS Module

• Power Pins

• I2C Data Pins

• Other Pins

• UART Serial Data Pins

• LEDs

• Optional Coin Cell

Arduino I2C Usage

• Wiring

• Installation

• Echo Test Demo

Arduino UART Usage

• Wiring

• Installation

• Echo Test Demo

• Hardware UART

CircuitPython & Python Setup

• CircuitPython Microcontroller Wiring

• I2C Interface

• UART Interface

• Python Computer Wiring

• I2C Interface

• UART Interface

• USB-to-Serial Cable Interface

• Hardware UART Interface

• CircuitPython Installation of GPS Library

• Python Installation of GPS Library

Python Docs

CircuitPython & Python I2C Usage

• CircuitPython Microcontroller Usage

• Linux, Computer or Raspberry Pi Usage

• Echotest Example

CircuitPython & Python UART Usage

• Example Parsing Code

• GPS Example Code Explained

Downloads

• Files:

• Schematic

• Fab Print

©Adafruit Industries Page 2 of 30

Overview

This miniature GPS breakout is only 1" x 1" (~ 25mm x 25mm) but houses a complete

GPS/GNSS solution with both I2C and UART interfaces. There's even an antenna on

top so it's plug and play!

Support for GPS, GLONASS, GALILEO, QZSS

-165 dBm sensitivity, up to 10 Hz updates

Up to 210 PRN channels with 99 search channels and 33 simultaneous tracking

channels

5V friendly design and only 30mA current draw

Breadboard-able, with 4 mounting holes

UART and I2C interfaces, pick whichever you like most!

RTC battery-compatible

PPS output on fix ±20ns jitter

Internal patch antenna

Low-power and standby mode with WAKE pin

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 3 of 30

The breakout is built around the MTK3333 chipset, a reliable, high-quality GPS

module that can handle up to 33 simultaneous tracking channels, has an excellent

high-sensitivity receiver (-165 dBm tracking!), and a built in antenna. It can do up to 10

location updates a second for high speed, high sensitivity logging or tracking. Power

usage is incredibly low, only 30 mA during navigation.

Best of all, we added all the extra goodies you could ever want: a ultra-low dropout

3.3V regulator so you can power it with 3.3-5VDC in, 5V level safe inputs on UART

and I2C, a footprint for optional CR1220 coin cell to keep the RTC running and allow

warm starts, a green power LED and a tiny red PPS LED. The LED blinks at about 1Hz

when a fix is found and is off when no fix.

©Adafruit Industries Page 4 of 30

Unlike our Ultimate GPS modules, this module does not have the ability to connect an

external antenna, it's designed to be as small as possible for compact projects.

As with all Adafruit breakouts, we've done the work to make this GPS module super

easy to use. We've put it on a breakout board with the required support circuitry and

connectors to make it easy to work with, and is now a trend we've added SparkFun

Qwiic () compatible STEMMA QT () JST SH connectors that allow you to get going with

out needing to solder. Just use a STEMMA QT adapter cable (), plug it into your

favorite micro or Blinka supported SBC and you're ready to rock!

Comes with one fully assembled and tested module, a piece of header you can solder

to it for bread-boarding, and a CR1220 coin cell holder. A CR1220 coin cell is not

included, but we have them in the shop if you'd like to use the GPS's RTC (http://

adafru.it/380)

©Adafruit Industries Page 5 of 30

https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/product/4209
https://www.adafruit.com/products/380
https://www.adafruit.com/products/380

Pinouts

This GPS module can be used with I2C or UART. Let's take a look!

©Adafruit Industries Page 6 of 30

GPS Module

The PA1010D GPS module with built-in

antenna is located in the center of the

board. It has all kinds of features!

Support for GPS, GLONASS, GALILEO,

QZSS

-165 dBm sensitivity, up to 10 Hz updates

Up to 210 PRN channels with 99 search

channels and 33 simultaneous tracking

channels

UART and I2C interfaces, pick whichever

you like most!

PPS output on fix ±20ns jitter

Internal patch antenna

Low-power and standby mode with WAKE

pin

Note: Due to the sensitivity of the built in

antenna, the PA1010D Mini GPS module

may need a more unobstructed view of the

sky than other GPS modules. If you are

having trouble getting a fix, try moving the

module to a clear spot with the antenna

pointing up at the sky.

©Adafruit Industries Page 7 of 30

https://learn.adafruit.com//assets/84177
https://learn.adafruit.com//assets/84177

Power Pins

VIN - power input, connect to 3-5VDC. It's

important to connect to a clean and quiet

power supply. GPS's are very sensitive, so

you want a nice and quiet power supply.

Don't connect to a switching supply if you

can avoid it, an LDO will be less noisy! This

module only draws 30mA current during

navigation

GND - power and signal ground. Connect

to your power supply and microcontroller

ground.

Optional:

3Vo - is the output from the onboard 3.3V

regulator. If you have a need for a clean

3.3V output, you can use this! It can

provide at least 100mA output.

I2C Data Pins

SCL - this is the I2C clock pin, connect to

your microcontroller or computer's I2C

clock line.

SDA - this is the I2C data pin, connect to

your microcontroller or computer's I2C

data line.

These pins have 10K pullups to Vin. They

are level shifted so you can use 3 or 5V

logic

©Adafruit Industries Page 8 of 30

https://learn.adafruit.com//assets/84624
https://learn.adafruit.com//assets/84624
https://learn.adafruit.com//assets/84174
https://learn.adafruit.com//assets/84174

On both sides in the middle are the

Sparkfun Qwiic () compatible STEMMA

QT () JST SH connectors, for using with

I2C. Use with any of the STEMMA QT

cables available in the Adafruit shop to

connect this breakout to your project

without needing to solder!

Other Pins

RST - When pulled to ground, this will put

the chip in the module into reset. Handy

when you want to start with a completely

clean setup.

PPS is a "pulse per second" output. Most

of the time it is at logic low (ground) and

then it pulses high (3.3V) once a second,

for 50-100ms, so it should be easy for a

microcontroller to sync up to it

WAKE - This pin works with low power and

standby modes. Check the datasheet for

more information!

©Adafruit Industries Page 9 of 30

https://learn.adafruit.com//assets/84171
https://learn.adafruit.com//assets/84171
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com//assets/84181
https://learn.adafruit.com//assets/84181
https://learn.adafruit.com//assets/84176
https://learn.adafruit.com//assets/84176

UART Serial Data Pins

TXO - the pin that transmits data from the

GPS module to your microcontroller or

computer. It is 3.3V logic level. Data comes

out at 9600 baud 8N1 by default

RXI - the pin that you can use to send data

to the GPS. This pin is level shifted so you

can use 3-5V logic. By default it expects

9600 baud data by default.

LEDs

There are two LEDs on the board.

ON - Green power LED. Lit when the board

is powered

PPS - Red PPS LED, blinks at about 1Hz

when a fix is found and is off when no fix.

Optional Coin Cell

The back has a footprint for an optional

coin cell battery. The board ships with a

CR1220 coin cell holder that can be

soldered onto the back. CR1220 battery

not included.

©Adafruit Industries Page 10 of 30

https://learn.adafruit.com//assets/84175
https://learn.adafruit.com//assets/84175
https://learn.adafruit.com//assets/84178
https://learn.adafruit.com//assets/84178
https://learn.adafruit.com//assets/84180
https://learn.adafruit.com//assets/84180

Arduino I2C Usage

Wiring

If you have a STEMMA QT breakout cable (), then you can wire like this:

RED to 3.3

BLACK to GND

BLUE to SDA

YELLOW to SCL

If you want to solder pins to the header connectors and use a breadboard, then wire

like this:

VIN to 3.3

GND to GND

SDA to SDA

SCL to SCL

Installation

The Adafruit GPS Library includes support for the Mini GPS PA1010D module. You can

install it from the Arduino IDE via the Library Manager:

©Adafruit Industries Page 11 of 30

https://www.adafruit.com/product/4209
https://learn.adafruit.com//assets/90322
https://learn.adafruit.com//assets/90322
https://learn.adafruit.com//assets/90323
https://learn.adafruit.com//assets/90323

Click the Manage Libraries... menu item, search for Adafruit GPS, and select the Adafr

uit GPS Library:

Echo Test Demo

We can test basic functionality using one of the examples from the library. This won't

do any parsing. It simply dumps the raw data sentences as received from the GPS

module.

Open up File -> Examples -> Adafruit GPS Library -> GPS_I2C_EchoTest and upload to

your Arduino board with the GPS module connected.

Once the sketch is uploaded, open up the Serial Monitor (Tools -> Serial Monitor) at

115200 baud. You should see something like this:

If you see this, then you are successfully talking to the GPS module. Once it obtains a

lock on the GPS satellites, which can takes several minutes, there will be more

©Adafruit Industries Page 12 of 30

information in the sentences. To see that information in a more user friendly format,

try running the GPS_I2C_Parsing example from the library.

Arduino UART Usage

Wiring

Note that the breakout has pins on two sides. Be sure to use the side with the UART

pins. They are labeled TXO and RXI. We'll demonstrate using SoftwareSerial on the

Metro 328. Here's the wiring:

3.3 to VIN

GND to GND

8 to TXO

7 to RXI

Installation

See the Arduino I2C Usage section for details about installing the Adafruit GPS

Library. The same library is used for UART.

Echo Test Demo

We can test basic functionality using one of the examples from the library. This won't

do any parsing. It simply dumps the raw data sentences as received from the GPS

module.

Open up File -> Examples -> Adafruit GPS Library -> GPS_SoftwareSerial_EchoTest

and upload to your Arduino board with the GPS module connected.

Once the sketch is uploaded, open up the Serial Monitor (Tools -> Serial Monitor) at

115200 baud. You should see something like this:

©Adafruit Industries Page 13 of 30

https://learn.adafruit.com//assets/90332
https://learn.adafruit.com//assets/90332

If you see this, then you are successfully talking to the GPS module. Once it obtains a

lock on the GPS satellites, which can takes several minutes, there will be more

information in the sentences. To see that information in a more user friendly format,

try running the GPS_SoftwareSerial_Parsing example from the library.

Hardware UART

The above example demonstrated UART usage via SoftwareSerial. If you have a

board with an available hardware UART, you can use that also. Simply connect to the

TX/RX pins for the hardware UART for your particular board and then see the

examples in the Adafruit GPS Library with HardwareSerial in the name.

CircuitPython & Python Setup

It's easy to use the Adafruit Mini GPS PA1010D breakout with Python or CircuitPython

and the Adafruit CircuitPython GPS () module. This library allows you to write Python

code that reads the date, time, location and more from the breakout.

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

CircuitPython Microcontroller Wiring

The Adafruit Mini GPS PA1010D can be wired up in multiple ways. We recommend I2C

as it is the simplest. There are two ways you can connect the GPS to a microcontroller

using I2C.

©Adafruit Industries Page 14 of 30

https://github.com/adafruit/Adafruit_CircuitPython_GPS
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

I2C Interface

Here is an example of the module connected to a Feather M0 Express for I2C using

the STEMMA connector and a STEMMA cable:

Feather 3V to STEMMA red wire (VIN)

Feather GND to STEMMA black wire (GND)

Feather SDA to STEMMA blue wire (SDA)

Feather SCL to STEMMA yellow wire (SCL)

Here is an example of the module connected to a Feather M0 Express for I2C using

jumper wires:

Feather 3V to module VIN

Feather GND to module GND

Feather SCL to module SCL

Feather SDA to module SDA

UART Interface

Here is an example of the module connected to a Feather M0 Express using UART:

©Adafruit Industries Page 15 of 30

https://learn.adafruit.com//assets/84511
https://learn.adafruit.com//assets/84511
https://learn.adafruit.com//assets/84512
https://learn.adafruit.com//assets/84512

Feather 3V to module VIN

Feather GND to module GND

Feather TX to module RXI

Feather RX to module TXO

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

I2C Interface

Here's the Raspberry Pi wired with I2C using the STEMMA connector and a STEMMA

cable:

Pi 3V to STEMMA red wire (VIN)

Pi GND to STEMMA black wire (GND)

Pi SDA to STEMMA blue wire (SDA)

Pi SCL to STEMMA yellow wire (SCL)

Here's the Raspberry Pi wired with I2C using jumper wires:

©Adafruit Industries Page 16 of 30

https://learn.adafruit.com//assets/84513
https://learn.adafruit.com//assets/84513
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/84615
https://learn.adafruit.com//assets/84615

Pi 3V to module VIN

Pi GND to module GND

Pi SCL to module SCL

Pi SDA to module SDA

UART Interface

For UART, you have two options: An external USB-to-serial converter or the built-in

UART on the Pi's TX/RX pins.

USB-to-Serial Cable Interface

Here's an example of wiring up the USB-to-TTL serial converter (), and the FTDI serial

TTL-232 USB cable () (also available in USB-C ()):

©Adafruit Industries Page 17 of 30

https://learn.adafruit.com//assets/84616
https://learn.adafruit.com//assets/84616
https://www.adafruit.com/product/954
https://www.adafruit.com/product/70
https://www.adafruit.com/product/70
https://www.adafruit.com/product/4331

For USB to TTL serial cable:

USB 3V (red wire) to module VIN

USB GND (black wire) to module GND

USB TX (green wire) to module RXI

USB RX (white wire) to module TXO

For FTDI serial TTL cable - the FTDI cable

pinout matches the pinout on the UART

side of the PA1010D Mini GPS Module.

Connect the cable so that the wires align

as follows:

FTDI black wire to module GND

FTDI brown wire to module PPS

FTDI red wire to module VIN

FTDI orange wire to module RXI

FTDI yellow wire to module TXO

FTDI green wire to module WAKE

Hardware UART Interface

Here's an example using the Pi's built-in UART:

Pi 3V to module VIN

Pi GND to module GND

Pi TX to module RXI

Pi RX to module TXO

For single board computers other than the Raspberry Pi, the serial port may be

tied to the console or not be available to the user. Please see the board

documentation to see how the serial port may be used.

©Adafruit Industries Page 18 of 30

https://learn.adafruit.com//assets/84618
https://learn.adafruit.com//assets/84618
https://learn.adafruit.com//assets/84620
https://learn.adafruit.com//assets/84620
https://learn.adafruit.com//assets/84617
https://learn.adafruit.com//assets/84617

If you want to use the built-in UART, you'll need to disable the serial console and

enable the serial port hardware in raspi-config. See the UART/Serial section of the

CircuitPython on Raspberry Pi guide () for detailed instructions on how to do this.

CircuitPython Installation of GPS Library

Next you'll need to install the Adafruit CircuitPython GPS () library on your

CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware. Carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). For example, the Welcome to CircuitPython guide has a great page on how to

install the library bundle ().

To install the libraries, you'll need to copy the following files from the bundle to the lib

folder on your CIRCUITPY drive:

adafruit_gps.mpy

adafruit_bus_device

Before continuing make sure your board's lib folder has the adafruit_gps.mpy and ada

fruit_bus_device files and folders copied over.

Python Installation of GPS Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C and UART on your platform and

verifying you are running Python 3. Since each platform is a little different, and Linux

changes often, please visit the CircuitPython on Linux guide to get your computer

ready ()!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-gps

•

•

•

©Adafruit Industries Page 19 of 30

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/uart-serial
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/uart-serial
https://github.com/adafruit/Adafruit_CircuitPython_GPS
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

Python Docs

Python Docs ()

CircuitPython & Python I2C Usage

To demonstrate the usage of the GPS module in CircuitPython using I2C, let's look at

a complete program example, the gps_echotest.py file from the module's examples.

To use this example with I2C, you need to change four separate lines of code found

towards the beginning of the initialisation section of the example.

First, comment out the following lines by adding a # to the beginning of each line:

uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)

gps = adafruit_gps.GPS(uart, debug=False)

Then, uncomment the following lines by removing the # from the beginning of each

line:

#i2c = busio.I2C(board.SCL, board.SDA)

#gps = adafruit_gps.GPS_GtopI2C(i2c, debug=False) # Use I2C interface

Once these changes are made, you are ready to continue.

CircuitPython Microcontroller Usage

With a CircuitPython microcontroller, save the gps_echotest.py file as code.py on your

CIRCUITPY drive. Then connect to the serial console to see the output.

Linux, Computer or Raspberry Pi Usage

From the command line, run the following command:

To use this example with I2C, you must make some changes to the code.

©Adafruit Industries Page 20 of 30

https://circuitpython.readthedocs.io/projects/gps/en/latest/

python3 gps_echotest.py

Echotest Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

Simple GPS module demonstration.

Will print NMEA sentences received from the GPS, great for testing connection

Uses the GPS to send some commands, then reads directly from the GPS

import time

import board

import busio

import adafruit_gps

Create a serial connection for the GPS connection using default speed and

a slightly higher timeout (GPS modules typically update once a second).

These are the defaults you should use for the GPS FeatherWing.

For other boards set RX = GPS module TX, and TX = GPS module RX pins.

uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)

for a computer, use the pyserial library for uart access

import serial

uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)

If using I2C, we'll create an I2C interface to talk to using default pins

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a

microcontroller

Create a GPS module instance.

gps = adafruit_gps.GPS(uart) # Use UART/pyserial

gps = adafruit_gps.GPS_GtopI2C(i2c) # Use I2C interface

Initialize the GPS module by changing what data it sends and at what rate.

These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and

PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust

the GPS module behavior:

https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf

Turn on the basic GGA and RMC info (what you typically want)

gps.send_command(b"PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")

Turn on just minimum info (RMC only, location):

gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')

Turn off everything:

gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')

Tuen on everything (not all of it is parsed!)

gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0')

Set update rate to once a second (1hz) which is what you typically want.

gps.send_command(b"PMTK220,1000")

Or decrease to once every two seconds by doubling the millisecond value.

Be sure to also increase your UART timeout above!

gps.send_command(b'PMTK220,2000')

You can also speed up the rate, but don't go too fast or else you can lose

data during parsing. This would be twice a second (2hz, 500ms delay):

gps.send_command(b'PMTK220,500')

Main loop runs forever printing data as it comes in

timestamp = time.monotonic()

while True:

 data = gps.read(32) # read up to 32 bytes

 # print(data) # this is a bytearray type

©Adafruit Industries Page 21 of 30

 if data is not None:

 # convert bytearray to string

 data_string = "".join([chr(b) for b in data])

 print(data_string, end="")

 if time.monotonic() - timestamp > 5:

 # every 5 seconds...

 gps.send_command(b"PMTK605") # request firmware version

 timestamp = time.monotonic()

Connect to the serial console. You should see something like the following output.

This is the raw GPS "NMEA sentence" output from the module. There are a few

different kinds of NMEA sentences, the most common ones people use are the $GPR

MC (Global Positioning RecommendedMinimum Coordinates or something like that)

and the $GPGGA sentences. These two provide the time, date, latitude, longitude,

altitude, estimated land speed, and fix type. Fix type indicates whether the GPS has

locked onto the satellite data and received enough data to determine the location (2D

fix) or location+altitude (3D fix).

For more details about NMEA sentences and what data they contain, check out this

site ()

If you look at the data in the above window, you can see that there are a lot of

commas, with no data in between them. That's because this module is on my desk,

indoors, and does not have a 'fix'. To get a fix, we need to put the module outside.

Note: Due to the antenna being built in, the PA1010D Mini GPS module may need a

more unobstructed view of the sky than other GPS modules with eternal antennae. If

you are having trouble getting a fix, try moving the module to a more ideal location.

GPS modules will always send data EVEN IF THEY DO NOT HAVE A FIX! In order

to get 'valid' (not-blank) data you must have the GPS module directly outside,

with the square GPS module pointing up with a clear sky view. In ideal

conditions, the module can get a fix in under 45 seconds. however depending on

your location, satellite configuration, solar flares, tall buildings nearby, RF noise,

©Adafruit Industries Page 22 of 30

http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/

For an explanation of the rest of the setup in this example, see the GPS Example

Code Explained section of the CircuitPython & Python UART Usage page ().

Following setup is the main loop.

while True:

 data = gps.read(32) # read up to 32 bytes

 # print(data) # this is a bytearray type

 if data is not None:

 # convert bytearray to string

 data_string = ''.join([chr(b) for b in data])

 print(data_string, end="")

 if time.monotonic() - timestamp > 5:

 # every 5 seconds...

 gps.send_command(b'PMTK605') # request firmware version

 timestamp = time.monotonic()

First we read up to 32 bytes directly from the GPS and save it to data as a bytearray.

Next, we check to see that data has been read by verifying that it is not equal to

None - this avoids the code failing when no data is returned. Then we convert the

bytearray into a string and print it out.

Lastly, every 5 seconds, we request the firmware version.

Once you've used the Echotest to verify that your Mini GPS module is connected and

working, you can switch to the Simpletest example to get a more readable version of

the data. To use the gps_simpletest.py example with I2C, you must make the same

changes shown above that you made to the Echotest example. Comment out the UAR

T setup lines and uncomment the I2C setup lines. Once the changes are made, you

can follow along with the code explanation found in the CircuitPython & Python UART

Usage: Example Parsing Code section ().

CircuitPython & Python UART Usage

To demonstrate the usage of the GPS module in CircuitPython using UART, let's look

at a complete program example, the gps_simpletest.py file from the module's

examples.

etc it may take up to half an hour (or more) to get a fix! This does not mean your

GPS module is broken, the GPS module will always work as fast as it can to get a

fix.

©Adafruit Industries Page 23 of 30

https://learn.adafruit.com/adafruit-ultimate-gps/circuitpython-python-uart-usage#gps-example-code-explained-9-20
https://learn.adafruit.com/adafruit-ultimate-gps/circuitpython-python-uart-usage#gps-example-code-explained-9-20
https://learn.adafruit.com/adafruit-ultimate-gps/circuitpython-python-uart-usage#example-parsing-code-9-6
https://learn.adafruit.com/adafruit-ultimate-gps/circuitpython-python-uart-usage#example-parsing-code-9-6

CircuitPython Microcontroller

With a CircuitPython microcontroller, save this file as code.py on your board, then

open the serial console to see its output.

Linux/Computer/Raspberry Pi with Python

On the Raspberry Pi, comment out the uart = busio(...) line, and uncomment

the import serial and uart = serial.Serial(...) lines, changing /dev/

ttyUSB0 to the appropriate serial port. Now you can run the program with the

following command:

python3 gps_simpletest.py

Example Parsing Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

Simple GPS module demonstration.

Will wait for a fix and print a message every second with the current location

and other details.

import time

import board

import busio

import adafruit_gps

Create a serial connection for the GPS connection using default speed and

a slightly higher timeout (GPS modules typically update once a second).

These are the defaults you should use for the GPS FeatherWing.

For other boards set RX = GPS module TX, and TX = GPS module RX pins.

uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)

for a computer, use the pyserial library for uart access

import serial

uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)

If using I2C, we'll create an I2C interface to talk to using default pins

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a

microcontroller

Create a GPS module instance.

gps = adafruit_gps.GPS(uart, debug=False) # Use UART/pyserial

gps = adafruit_gps.GPS_GtopI2C(i2c, debug=False) # Use I2C interface

Initialize the GPS module by changing what data it sends and at what rate.

These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and

If you're running gps_simpletest.py on the Raspberry Pi (or any computer), you'll

have to make some changes.

©Adafruit Industries Page 24 of 30

PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust

the GPS module behavior:

https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf

Turn on the basic GGA and RMC info (what you typically want)

gps.send_command(b"PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")

Turn on just minimum info (RMC only, location):

gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')

Turn off everything:

gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')

Turn on everything (not all of it is parsed!)

gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0')

Set update rate to once a second (1hz) which is what you typically want.

gps.send_command(b"PMTK220,1000")

Or decrease to once every two seconds by doubling the millisecond value.

Be sure to also increase your UART timeout above!

gps.send_command(b'PMTK220,2000')

You can also speed up the rate, but don't go too fast or else you can lose

data during parsing. This would be twice a second (2hz, 500ms delay):

gps.send_command(b'PMTK220,500')

Main loop runs forever printing the location, etc. every second.

last_print = time.monotonic()

while True:

 # Make sure to call gps.update() every loop iteration and at least twice

 # as fast as data comes from the GPS unit (usually every second).

 # This returns a bool that's true if it parsed new data (you can ignore it

 # though if you don't care and instead look at the has_fix property).

 gps.update()

 # Every second print out current location details if there's a fix.

 current = time.monotonic()

 if current - last_print >= 1.0:

 last_print = current

 if not gps.has_fix:

 # Try again if we don't have a fix yet.

 print("Waiting for fix...")

 continue

 # We have a fix! (gps.has_fix is true)

 # Print out details about the fix like location, date, etc.

 print("=" * 40) # Print a separator line.

 print(

 "Fix timestamp: {}/{}/{} {:02}:{:02}:{:02}".format(

 gps.timestamp_utc.tm_mon, # Grab parts of the time from the

 gps.timestamp_utc.tm_mday, # struct_time object that holds

 gps.timestamp_utc.tm_year, # the fix time. Note you might

 gps.timestamp_utc.tm_hour, # not get all data like year, day,

 gps.timestamp_utc.tm_min, # month!

 gps.timestamp_utc.tm_sec,

)

)

 print("Latitude: {0:.6f} degrees".format(gps.latitude))

 print("Longitude: {0:.6f} degrees".format(gps.longitude))

 print(

 "Precise Latitude: {:2.}{:2.4f} degrees".format(

 gps.latitude_degrees, gps.latitude_minutes

)

)

 print(

 "Precise Longitude: {:2.}{:2.4f} degrees".format(

 gps.longitude_degrees, gps.longitude_minutes

)

)

 print("Fix quality: {}".format(gps.fix_quality))

 # Some attributes beyond latitude, longitude and timestamp are optional

 # and might not be present. Check if they're None before trying to use!

 if gps.satellites is not None:

 print("# satellites: {}".format(gps.satellites))

 if gps.altitude_m is not None:

©Adafruit Industries Page 25 of 30

 print("Altitude: {} meters".format(gps.altitude_m))

 if gps.speed_knots is not None:

 print("Speed: {} knots".format(gps.speed_knots))

 if gps.track_angle_deg is not None:

 print("Track angle: {} degrees".format(gps.track_angle_deg))

 if gps.horizontal_dilution is not None:

 print("Horizontal dilution: {}".format(gps.horizontal_dilution))

 if gps.height_geoid is not None:

 print("Height geoid: {} meters".format(gps.height_geoid))

When the code runs it will print a message every second, either an update that it's still

waiting for a GPS fix:

Note: Due to the antenna being built in, the PA1010D Mini GPS module may need a

more unobstructed view of the sky than other GPS modules with eternal antennae.

With any GPS module, if you are having trouble getting a fix, try moving it to a more

ideal location.

Once a fix has been established, it will print details about the current location and

other GPS data:

Let's look at the code in a bit more detail to understand how it works. First the

example needs to import a few modules like the built-in busio and board modules

that access serial ports and other hardware:

import board

import busio

import time

©Adafruit Industries Page 26 of 30

Next the GPS module is imported:

import adafruit_gps

Now a serial UART () is created and connected to the serial port pins the GPS module

will use, this is the low level transport layer to communicate with the GPS module:

Define RX and TX pins for the board's serial port connected to the GPS.

These are the defaults you should use for the GPS FeatherWing.

For other boards set RX = GPS module TX, and TX = GPS module RX pins.

RX = board.RX

TX = board.TX

Create a serial connection for the GPS connection using default speed and

a slightly higher timeout (GPS modules typically update once a second).

uart = busio.UART(TX, RX, baudrate=9600, timeout=3000)

for a computer, use the pyserial library for uart access

#import serial

#uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=3000)

Once a UART object is available with a connected GPS module you can create an

instance of the GPS parsing class. You need to pass this class the UART instance and

it will internally read new data from the GPS module connected to it:

gps = adafruit_gps.GPS(uart)

GPS Example Code Explained

Before reading GPS data the example configures the module by sending some custo

m NMEA GPS commands () that adjust the amount and rate of data. Read the

comments to see some options for adjust the rate and amount of data, but typically

you want the defaults of core location info at a rate of once a second:

Initialize the GPS module by changing what data it sends and at what rate.

These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and

PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust

the GPS module behavior:

https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf

Turn on the basic GGA and RMC info (what you typically want)

gps.send_command(b'PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')

Turn on just minimum info (RMC only, location):

#gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')

Turn off everything:

#gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')

Tuen on everything (not all of it is parsed!)

#gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0')

Set update rate to once a second (1hz) which is what you typically want.

gps.send_command(b'PMTK220,1000')

©Adafruit Industries Page 27 of 30

http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/UART.html
https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf
https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf

Or decrease to once every two seconds by doubling the millisecond value.

Be sure to also increase your UART timeout above!

#gps.send_command(b'PMTK220,2000')

You can also speed up the rate, but don't go too fast or else you can lose

data during parsing. This would be twice a second (2hz, 500ms delay):

#gps.send_command(b'PMTK220,500')

If you want you can send other custom commands to the GPS module with the send_

command function shown above. You don't need to worry about adding a NMEA

checksum to your command either, the function will do this automatically (or not, set

add_checksum=False as a parameter and it will skip the checksum addition).

Now we can jump into a main loop that continually updates data from the GPS module

and prints out status. The most important part of this loop is calling the GPS update

function:

 # Make sure to call gps.update() every loop iteration and at least twice

 # as fast as data comes from the GPS unit (usually every second).

 # This returns a bool that's true if it parsed new data (you can ignore it

 # though if you don't care and instead look at the has_fix property).

 gps.update()

Like the comments mention, you must call update every loop iteration and ideally

multiple times a second. Each time you call update , it allows the GPS library code to

read new data from the GPS module and update its state. Since the GPS module is

always sending data you have to be careful to constantly read data or else you might

start to lose data as buffers are filled.

You can check the has_fix property to see if the module has a GPS location fix, and

if so there are a host of attributes to read like latitude and longitude (available

in degrees):

 if not gps.has_fix:

 # Try again if we don't have a fix yet.

 print('Waiting for fix...')

 continue

 # We have a fix! (gps.has_fix is true)

 # Print out details about the fix like location, date, etc.

 print('=' * 40) # Print a separator line.

 print('Fix timestamp: {}/{}/{} {:02}:{:02}:{:02}'.format(

 gps.timestamp_utc.tm_mon, # Grab parts of the time from the

 gps.timestamp_utc.tm_mday, # struct_time object that holds

 gps.timestamp_utc.tm_year, # the fix time. Note you might

 gps.timestamp_utc.tm_hour, # not get all data like year, day,

 gps.timestamp_utc.tm_min, # month!

 gps.timestamp_utc.tm_sec))

 print('Latitude: {} degrees'.format(gps.latitude))

 print('Longitude: {} degrees'.format(gps.longitude))

 print('Fix quality: {}'.format(gps.fix_quality))

 # Some attributes beyond latitude, longitude and timestamp are optional

 # and might not be present. Check if they're None before trying to use!

 if gps.satellites is not None:

 print('# satellites: {}'.format(gps.satellites))

 if gps.altitude_m is not None:

©Adafruit Industries Page 28 of 30

 print('Altitude: {} meters'.format(gps.altitude_m))

 if gps.track_angle_deg is not None:

 print('Speed: {} knots'.format(gps.speed_knots))

 if gps.track_angle_deg is not None:

 print('Track angle: {} degrees'.format(gps.track_angle_deg))

 if gps.horizontal_dilution is not None:

 print('Horizontal dilution: {}'.format(gps.horizontal_dilution))

 if gps.height_geoid is not None:

Notice some of the attributes like altitude_m are checked to be None before

reading. This is a smart check to put in your code, because those attributes are

sometimes not sent by a GPS module. If an attribute isn't sent by the module it will be

given a None /null value and attempting to print or read it in Python will fail. The core

attributes of latitude , longitude , and timestamp are usually always available (if

you're using the example as-is) but they might not be if you turn off those outputs with

a custom NMEA command!

That's all there is to reading GPS location with CircuitPython code!

Downloads

Files:

PA1010D Datasheet ()

EagleCAD PCB files on GitHub ()

Fritzing object in the Adafruit Fritzing Library ()

Schematic

•

•

•

©Adafruit Industries Page 29 of 30

https://cdn-learn.adafruit.com/assets/assets/000/084/295/original/CD_PA1010D_Datasheet_v.03.pdf?1573833002
https://github.com/adafruit/Adafruit-PA1010D-Mini-GPS-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20PA1010D%20Mini%20GPS%20Module.fzpz

Fab Print

©Adafruit Industries Page 30 of 30

	Adafruit Mini GPS PA1010D Module
	Table of Contents
	Overview
	Pinouts
	Arduino I2C Usage
	Arduino UART Usage
	CircuitPython & Python Setup
	Python Docs
	CircuitPython & Python I2C Usage
	CircuitPython & Python UART Usage
	Downloads

	Overview
	Pinouts
	GPS Module
	Power Pins
	I2C Data Pins
	Other Pins
	UART Serial Data Pins
	LEDs
	Optional Coin Cell
	Arduino I2C Usage
	Wiring
	Installation
	Echo Test Demo

	Arduino UART Usage
	Wiring
	Installation
	Echo Test Demo
	Hardware UART

	CircuitPython & Python Setup
	CircuitPython Microcontroller Wiring
	I2C Interface
	UART Interface

	Python Computer Wiring
	I2C Interface
	UART Interface
	USB-to-Serial Cable Interface
	Hardware UART Interface

	CircuitPython Installation of GPS Library
	Python Installation of GPS Library
	Python Docs
	CircuitPython & Python I2C Usage
	CircuitPython Microcontroller Usage
	Linux, Computer or Raspberry Pi Usage

	Echotest Example
	CircuitPython & Python UART Usage
	CircuitPython Microcontroller
	Linux/Computer/Raspberry Pi with Python

	Example Parsing Code
	GPS Example Code Explained
	Downloads
	Files:

	Schematic
	Fab Print

