
APDS-9301 Sensor Hookup Guide




APDS-9301 Hookup Guide SparkFun Wish List

Introduction
The APDS-9301 is an I C compatible luminosity sensor which returns
readings in lux. It is non-instantaneous, requiring some integration time to
take a measurement. SparkFun provides a library making use of the part
very simple.

Required Materials

Please check the wish list below for items required to follow this tutorial.

SparkFun Ambient Light Sensor Breakout - APDS-9301
SEN-14350

SparkFun FTDI Basic Breakout - 3.3V
DEV-09873

This is the newest revision of our [FTDI Basic](http://www.sparkfun.co…

SparkFun USB Mini-B Cable - 6 Foot
CAB-11301

This is a USB 2.0 type A to Mini-B 5-pin cable. You know, the mini-B…

Female Header Pack

2

SparkFun Ambient Light Sensor Breakout -
APDS-9301
 SEN-14350

Page 1 of 10

PRT-11269
This pack of female headers includes two 6-pin headers and two 8-pi…

Arduino Pro 328 - 3.3V/8MHz
DEV-10914

It's blue! It's skinny! It's the Arduino Pro! SparkFun's minimal design a…Breadboard - Mini Modular (Red)
PRT-12044

This red Mini Breadboard is a great way to prototype your small proje…

Jumper Wires - Connected 6" (M/F, 20 pack)
PRT-12794

These are 6" long jumper wires terminated as male to female. Use th…

Break Away Male Headers - Right Angle
PRT-00553

A row of right angle male headers - break to fit. 40 pins that can be cu…

Tools

No special tools are required to follow this tutorial. You will need a soldering
iron, solder, and general soldering accessories.

Suggested Reading

We suggest reviewing the tutorials below to ensure that you’re up-to-date
with all of the skills necessary to follow this hookup guide.

Soldering Iron - 30W (US,
110V)
 TOL-09507

Solder Lead Free - 15-gram
Tube
 TOL-09163

How to Solder: Through-
Hole Soldering
This tutorial covers everything you
need to know about through-hole
soldering.

Installing an Arduino Library
How do I install a custom Arduino
library? It's easy!

Logic Levels I2C

Page 2 of 10

Hardware Overview
The APDS-9301 breakout board is fairly simple, with only a few ancillary
passive components in addition to the ADPS-9301 sensor IC itself.

APDS-9301 sensor - This is the sensor IC. Its operating voltage only
extends up to 3.6V, so to use it with a 5V Arduino or Arduino clone, you’ll
need some kind of voltage translation!

I C pullup resistors - The board includes pullup resistor so you don’t need
to add them externally.

INT pin - The APDS-9301 can be programmed to generate an interrupt
under certain conditions. This pin will be asserted low (i.e., pulled to
ground) when those conditions are met. Note that this is an open collector
pin, so you’ll need to enable the pullup resistor on the processor for it to
work.

Learn the difference between 3.3V
and 5V devices and logic levels.

An introduction to I2C, one of the
main embedded communications
protocols in use today.

2

Page 3 of 10

SparkFun standard I C header - Most boards which can be
communicated to via I C use this pinout, making it easy to stack them or
connect them in a daisy chain.

Address Select Jumpers - On the back of the board, the only item of
interest is the address select jumper. By default, this jumper is open,
resulting in an I C address of 0x39. If the HIGH side of the jumper is closed,
the address will be 0x29. If the LOW side of the jumper is closed, the
address will be 0x49. If a big old blob of solder closes both sides of the
jumper, it will still work, and the address will be 0x49.

Library Overview
Here’s a list of the most critical functions supported by the library.

2

2

2

Page 4 of 10

• begin(address) - enables the IC, sets the gain and integration times
to minimum (i.e., lowest sensitivity), and disables the interrupt.

• setGain(gainLevel) - there are two possible parameters to pass to
this function: APDS9301::LOW_GAIN and APDS9301::HIGH_GAIN . High
gain is 16x more sensitive than low gain.

• gain getGain() - returns one of the two values specified in
setGain() above. This function actually reads the gain from the

sensor and returns the true value currently being used.

• setIntegrationTime(integrationTime) - there are three possible
parameters to pass to this function: APDS9301::INT_TIME_13_7_MS ,
APDS9301::INT_TIME_101_MS , and APDS9301::INT_TIME_402_MS .

Sensitivity to light increases with integration time, and the rate at
which new data is generated by the sensor is also determined by
integration time. By default, the integration time is set to the lowest
value (13.7ms).

• intTime getIntegrationTime() - returns one of the three values
specfied in setIntegrationTime() above. This function actually
reads the gain from the sensor and returns the true value currently
being used.

• enableInterrupt(intMode) - pass either APDS9301::INT_ON or
APDS9301::INT_OFF to this function to enable or disable the interrupt

functionality. By default, the interrupt is disabled. If enabled, the
following three functions will determine the circumstances under
which an interrupt will be issued and the INT pin will be set high.

• setCyclesForInterrupt(cycles) - sets number of ADC cycles
values must be in interrupt range for an interrupt to occur. Pass 0 to
interrupt on every ADC cycle (ADC cycle time is defined by
integration time as discussed above). Pass 1 to interrupt if the
reading is ever above the high threshold or below the low threshold
(see next two functions for information regarding threshold settings).
Pass 2 through 15 to require that many cycles above or below the
respective threshold before issuing an interrupt.

• setLowThreshold(threshold) - pass an unsigned int to this
function between 0 and 65535 . Readings on CH0 of the sensor
(which detects both visible and IR light) below this threshold for the
time set by the setCyclesForInterrupt() will trigger an interrupt on
the INT pin. To disable the low threshold, simply write 0 to this
function.

• unsigned int getLowThreshold() - returns the current low threshold
setting, read from the sensor directly.

• setHighThreshold(threshold) - pass an unsigned int to this
function between 0 and 65535 . Readings on CH0 of the sensor
(which detects both visible and IR light) above this threshold for the
time set by the setCyclesForInterrupt() will trigger an interrupt on
the INT pin. To disable the high threshold, simply write 65535 to this
function.

• unsigned int getHighThreshold() - returns the current low
threshold setting, read from the sensor directly.

• float readLuxLevel() - returns a floating point number
representing the current light level in lux. Note that due to inherent
inaccuracy in the sensor, this value is only accurate to within 35%
-40% of the actual absolute lux value.

Page 5 of 10

Example

Hardware Hookup

We use a hookup as pictured below for our example project. However, this
basic Arduino code should work for any number of different Arduino
compatible boards. In this case, we show it on an Arduino Pro 3.3V, to
allow the setup to work without any level translation between the Arduino
and the APDS-9301.

Note that this setup requires some soldering. New to soldering? Check out
our through hole soldering guide!

Notes on Operation

The APDS-9301 has two internal light sensing elements: CH0, which
responds to infrared and visible light, and CH1, which responds to only
visible light. By combining these two channels, the sensor is able to
compensate for local infrared light and provide a more accurate estimate of
the current lux value.

The calculation of lux reading from CHO and CH1 sensor output readings is
not straightforward. The function is piecewise, with different coefficients
depending on the ratio CH1/CH0. This function is automatically
implemented in the readLuxLevel() library function, but can be found in
the datasheet if you’re curious.

The APDS-9301 sensor works by multiplying the light input signal by a gain
(either 1x or 16x) and then using an integrating ADC to measure the light
input over some integration time. As such, the integration time imposes an
inherent limit on the maximum reading of the ADC. For the 13.7ms
integration time, this limit is 5047. For the 101ms integration time, this limit
is 37177. For the full 402ms integration time, the maximum is actually
defined by the size of the output variable, an 16-bit unsigned integer, at
65535. This fact should be taken into account when selecting a value for
the interrupt high and low threshold values. For instance, if the integration
time is 13.7ms and a high threshold of 6000 is set, that threshold will never
be reached.

Example Code

Page 6 of 10

Note: This example assumes you are using the latest version of the
Arduino IDE on your desktop. If this is your first time using Arduino,
please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our
installation guide.

Make sure to install the APDS-9301 Arduino library before using the
example code. The library can be found in the APDS-9301 GitHub
repository:

SPARKFUN APDS-9301 GITHUB REPOSITORY

Below is a simple example code for Arduino that uses the APDS-9301
library. First, the example code sets the gain and integration time. Then
enables and sets thresholds for the interrupt. Finally, the code reads the
current lux level and prints it to the serial port. It also prints a message
when the light level exceeds a certain threshold. It should get you up and
running in no time!

Page 7 of 10

#include "Wire.h"
#include <Sparkfun_APDS9301_Library.h>

APDS9301 apds;

#define INT_PIN 2 // We'll connect the INT pin from our senso
r to the

// INT0 interrupt pin on the Arduino.
bool lightIntHappened = false; // flag set in the interrupt t
o let the

// mainline code know that an interrupt occ
urred.

void setup()
{
 SerialUSB.begin(115200);
 Wire.begin();

// APDS9301 sensor setup.
 apds.begin(0x39); // We're assuming you haven't changed th
e I2C

// address from the default by solderin
g the

// jumper on the back of the board.
 apds.setGain(APDS9301::LOW_GAIN); // Set the gain to low. St
rictly

// speaking, this isn't necessary, as th
e gain

// defaults to low.
 apds.setIntegrationTime(APDS9301::INT_TIME_13_7_MS); // Set
the

// integration time to the shortest inte
rval.

// Again, not strictly necessary, as thi
s is

// the default.
 apds.setLowThreshold(0); // Sets the low threshold to 0, eff
ectively

// disabling the low side interrupt.
 apds.setHighThreshold(50); // Sets the high threshold to 50
0. This

// is an arbitrary number I pulled out o
f thin

// air for purposes of the example. Whe
n the CH0

// reading exceeds this level, an interr
upt will

// be issued on the INT pin.
 apds.setCyclesForInterrupt(1); // A single reading in the th
reshold

// range will cause an interrupt to trig
ger.
 apds.enableInterrupt(APDS9301::INT_ON); // Enable the interr
upt.
 apds.clearIntFlag();

// Interrupt setup
pinMode(INT_PIN, INPUT_PULLUP); // This pin must be a pullu

p or have
// a pullup resistor on it as the interr

upt is a
// negative going open­collector type ou

tput.
attachInterrupt(digitalPinToInterrupt(2), lightInt, FALLIN

Page 8 of 10

G);
}

void loop()
{
static unsigned long outLoopTimer = 0;

 apds.clearIntFlag();

// This is a once­per­second timer that calculates and print
s off
// the current lux reading.
if (millis() ­ outLoopTimer >= 1000)

 {
 outLoopTimer = millis();

 SerialUSB.print("Luminous flux: ");
 SerialUSB.println(apds.readLuxLevel(),6);

if (lightIntHappened)
 {
 SerialUSB.println("Interrupt");
 lightIntHappened = false;
 }
 }
}

void lightInt()
{
 lightIntHappened = true;
}

After uploading code, try opening the Arduino serial monitor at 115200
baud and observe the sensor’s output.

As you can see, once per second, the sketch will print the luminous flux and
whether or not the level selected for an interrupt has been exceeded.

Resources and Going Further
Now that you’ve successfully got your APDS-9301 sensor up and running,
it’s time to incorporate it into your own project!

For more information on the APDS-9301 sensor, check out the resources
below:

• Wikipedia: Lux - To help you better understand what it is you’re
measuring, exactly.

• APDS-9301 Breakout Schematic (PDF)
• APDS-9301 Breakout Eagle Files (ZIP)
• APDS-9301 Datasheet (AV02-2315EN0.PDF) - If you want to move

beyond the limits of the library and explore the base features of the
chip itself.

• APDS-9301 Sensor GitHub Repository - Eagle files and example
code for the APDS-9301 Sensor.

Need some inspiration for your next project? Check out some of these
related tutorials:

Page 9 of 10

Soil moisture-sensing by
hacking a solar light
How to take a solar powered
pathway light from a hardware store
and make it into a crude soil
moisture sensor.

TEMT6000 Ambient Light
Sensor Hookup Guide
Bring the ability to detect light levels
to any project with the SparkFun
TEMT6000 Ambient Light Sensor
Breakout.

SCiO Pocket Molecular
Scanner Teardown
A teardown of the SCiO, a pocket
molecular scanner.

LED PomPom Headbands
Follow this tutorial to make your own
light up PomPom headband! Try the
beginner version if you are new to
electronics or the advanced version
if you have some more experience!

Page 10 of 10

9/18/2017https://learn.sparkfun.com/tutorials/apds-9301-sensor-hookup-guide?_ga=2.227480665.53...

