

T31ZX Smart Video Application Processor

DATA SHEET

Important Notice

This document and its content are believed to be correct at time of writing. Integrated Silicon Solution Inc. ("ISSI") reserves the right to make changes to this document, its content or any ISSI products, at its discretion, any time without notice. The text and graphics are for the purpose of illustration and reference only. Please confirm that you have the most current documentation.

No part of this document shall be deemed to be part of any contract or warranty unless specifically incorporated by reference into such contract or warranty. This document, its content and any products including without limitation any ISSI products or any product you create using the information contained herein ("Products"), are provided "AS IS" without warranties of any kind, express or implied, including but not limited to, any implied warranties of merchantability, satisfactory quality, fitness for a particular purpose or non-infringement. ISSI makes no warranties regarding any standard compliance or as to the accuracy, completeness or reliability of this document, its content, or Products, or that the operation of any Products will be uninterrupted or error-free. No advice or information, whether oral or written, obtained by you using this document may be relied upon, or shall create any warranty. Any use of this document and the information contained herein or obtained through the use of this document, or any Product, is done at your sole risk and responsibility. Unless otherwise agreed, ISSI shall not be liable for any damage or loss arising as a result of or in connection with the use of this document, its content or any Product, including without limitation, consequential, punitive, indirect or direct damages.

This document, its content and any Products contain proprietary and confidential material of ISSI, its affiliates or licensors, and may also be covered under a separate non-disclosure agreement between ISSI and you. Do not copy, use or disclose this document, its content or any Products unless and to the extent you have been given specific written authorization from ISSI. Any unauthorized reproduction, use or disclosure of this document, its content, or any part thereof, or any Product will result in economic loss and is strictly prohibited.

Any references in this document to third party products or material are provided for convenience only, and do not in any manner serve as an endorsement of that third party products or material, and ISSI has no liability therefor. The information contained herein is merely descriptive in nature, and does not constitute or imply a promise or intention, to make any offer for the sale or license of any Products, or otherwise to enter into any other business and/or any legal relationship.

All company and brand products and service names are trademarks or registered trademarks of their respective holders. The use of any third party trademarks or company names does not imply an endorsement by those third parties, or any commercial relationship between ISSI and such third parties.

Copyright © 2011 Integrated Silicon Solution Inc. All rights reserved.

History

Version	Date	Author	Description
Rev 1.0			Initial
Rev 1.1	2022-03-14	eleven	Modify diagram RISC-V frequency and add Table3-5
Rev 1.2	2022-04-13	eleven	Modify cpu frequency from 1.5G to 1.4G and modify the memory capacity of block diagram
Rev 1.2	2022-04-15	eleven	Modify resolution to 2592x2048
Rev 1.3	2022-05-19	eleven	Modify 3.4.1 Power-On Sequence
Rev 1.4	2022-06-09	eleven	Modify 3.4.1 Power-On Sequence

Table of Contents

Table of Contents	. 3
List of Figures	. 5
List of Tables	. 5
Introduction	.6
1 Overview	7
1.1 Block Diagram	. 7
1.2 Features	7
1.2.1 CPU	. 7
1.2.2 Video Processor Unit	7
1.2.3 Image Signal Processor	. 8
1.2.4 Smart LCD Controller	. 8
1.2.5 Video input	8
1.2.6 Audio System	. 9
1.2.7 Memory Interface	9
1.2.8 System Functions	.9
1.2.9 Peripherals	11
1.2.10 Bootrom	15
1.3 Characteristic	15
2 Packaging and Pinout Information	16
2.1 Overview	16
2.2 Solder Process	16
2.3 Moisture Sensitivity Level	16
2.4 T31ZX Package	17
2.5 Pin Description	18
2.5.1 Static Memory/DVP/I2Cx/UARTx/PWM/MSC1	18
2.5.2 SFC	20
2.5.3 MSC0/GMAC/PWMx/UARTx/I2C1/SSI1/SSI_SLV/JTAG/SLCD/DMIC/I2S	21
2.5.4 System Control	24
2.5.5 Digital IO/core power/ground	24
2.5.6 DDR power/ground	24
2.5.7 Analog - USB	25
2.5.8 Analog - MIPI and DVP	25

2.5.9 Analog - SARADC	A Divis 26
2.5.10 Analog - CODEC	
2.5.11 Analog - EFUSE	
2.5.12 Analog - CLOCK/PLL	
3 Electrical Specifications	28
3.1 Absolute Maximum Ratings	28
3.2 Recommended operating conditions	29
3.3 Audio codec	30
3.3.1 Microphone input	30
3.3.2 ALC	31
3.3.3 Headphone output	31
3.3.4 Microphone bias	32
3.4 Power On, Reset and BOOT	32
3.4.1 Power-On Sequence	32
3.4.2 Reset procedure	35
3.4.3 BOOT	36

List of Figures

Figure 1-1	T31ZX Diagram	7
Figure 2-1	T31ZX package outline drawing	7
Figure 2-2	T31ZX pin to ball assignment	3
Figure3-1	Power-On Sequence Diagram	5
Figure3-2	Boot sequence diagram of T31ZX	7

List of Tables

Table2- 1 Static Memory/DVP/I2Cx/UARTx/PWM/MSC1 Pins(13)18Table2- 2 SFC Pins(4)20Table2- 3 MSC0/GMAC/PWMx/UARTx/I2C1/SSI1/SSI_SLV//JTAG/SLCD/DMIC/I2S Pins (30)21Table2- 4 System Control Pins(1)24Table2- 5 IO/Core power supplies Pins (10)24Table2- 6 DDR power/ground supplies Pins (5)24Table2- 7 USB 2.0 OTG (4)25Table2- 8 MIPI CSI and DVP(8)25Table2- 9 CODEC Pins (4)26Table2- 10 EFUSE Pins (1)26Table2- 11 CLOCK/PLL Pins (4)26Table3- 1 Absolute Maximum Ratings28Table3- 2 Recommended operating conditions for power supplies29Table3- 3 Recommended operating conditions for vDDIO0/VDDI01/VDDIO2 supplied pins29Table3- 5 Thermal Resistance parameter30Table3- 6 Power-On Sequence Parameters33		
Table2- 3 MSC0/GMAC/PWMx/UARTx/I2C1/SSI1/SSI_SLV//JTAG/SLCD/DMIC/I2S Pins (30)21Table2- 4 System Control Pins(1)24Table2- 5 IO/Core power supplies Pins (10)24Table2- 6 DDR power/ground supplies Pins (5)24Table2- 7 USB 2.0 OTG (4)25Table2- 8 MIPI CSI and DVP(8)25Table2- 9 CODEC Pins (4)26Table2- 10 EFUSE Pins (1)26Table2- 11 CLOCK/PLL Pins (4)26Table3- 1 Absolute Maximum Ratings28Table3- 2 Recommended operating conditions for power supplies29Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4 Recommended operating conditions for others29Table3- 5 Thermal Resistance parameter30	Table2- 1 Static Memory/DVP/I2Cx/UARTx/PWM/MSC1 Pins(13)	18
Table2- 4 System Control Pins(1)24Table2- 5 IO/Core power supplies Pins (10)24Table2- 6 DDR power/ground supplies Pins (5)24Table2- 7 USB 2.0 OTG (4)25Table2- 8 MIPI CSI and DVP(8)25Table2- 9 CODEC Pins (4)26Table2- 10 EFUSE Pins (1)26Table2- 11 CLOCK/PLL Pins (4)26Table3- 1 Absolute Maximum Ratings28Table3- 2 Recommended operating conditions for power supplies29Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4 Recommended operating conditions for others29Table3- 5 Thermal Resistance parameter30	Table2- 2 SFC Pins(4)	20
Table2- 5 IO/Core power supplies Pins (10)24Table2- 6 DDR power/ground supplies Pins (5)24Table2- 7 USB 2.0 OTG (4)25Table2- 8 MIPI CSI and DVP(8)25Table2- 9 CODEC Pins (4)26Table2- 10 EFUSE Pins (1)26Table2- 11 CLOCK/PLL Pins (4)26Table3- 1 Absolute Maximum Ratings28Table3- 2 Recommended operating conditions for power supplies29Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4 Recommended operating conditions for others29Table3- 5 Thermal Resistance parameter30	Table2- 3 MSC0/GMAC/PWMx/UARTx/I2C1/SSI1/SSI_SLV//JTAG/SLCD/DMIC/I2S Pins (30)	
Table2- 6 DDR power/ground supplies Pins (5)24Table2- 7 USB 2.0 OTG (4)25Table2- 8 MIPI CSI and DVP(8)25Table2- 9 CODEC Pins (4)26Table2- 10 EFUSE Pins (1)26Table2- 11 CLOCK/PLL Pins (4)26Table3- 1 Absolute Maximum Ratings28Table3- 2 Recommended operating conditions for power supplies29Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4 Recommended operating conditions for others29Table3- 5 Thermal Resistance parameter30	Table2- 4 System Control Pins(1)	
Table2- 7 USB 2.0 OTG (4)25Table2- 8 MIPI CSI and DVP(8)25Table2- 9 CODEC Pins (4)26Table2- 10 EFUSE Pins (1)26Table2- 11 CLOCK/PLL Pins (4)26Table3- 1 Absolute Maximum Ratings28Table3- 2 Recommended operating conditions for power supplies29Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4 Recommended operating conditions for others29Table3- 5 Thermal Resistance parameter30	Table2- 5 IO/Core power supplies Pins (10)	
Table2- 8 MIPI CSI and DVP(8)25Table2- 9 CODEC Pins (4)26Table2- 10 EFUSE Pins (1)26Table2- 11 CLOCK/PLL Pins (4)26Table3- 1 Absolute Maximum Ratings28Table3- 2 Recommended operating conditions for power supplies29Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4 Recommended operating conditions for others29Table3- 5 Thermal Resistance parameter30	Table2- 6 DDR power/ground supplies Pins (5)	
Table2- 9 CODEC Pins (4)26Table2- 10 EFUSE Pins (1)26Table2- 11 CLOCK/PLL Pins (4)26Table3- 1 Absolute Maximum Ratings28Table3- 2 Recommended operating conditions for power supplies29Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4 Recommended operating conditions for others29Table3- 5 Thermal Resistance parameter30	Table2- 7 USB 2.0 OTG (4)	
Table2- 10 EFUSE Pins (1)26Table2- 11 CLOCK/PLL Pins (4)26Table3- 1 Absolute Maximum Ratings28Table3- 2 Recommended operating conditions for power supplies29Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4 Recommended operating conditions for others29Table3- 5 Thermal Resistance parameter30	Table2- 8 MIPI CSI and DVP(8)	25
Table2- 11 CLOCK/PLL Pins (4)26Table3- 1 Absolute Maximum Ratings28Table3- 2 Recommended operating conditions for power supplies29Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4 Recommended operating conditions for others29Table3- 5 Thermal Resistance parameter30	Table2- 9 CODEC Pins (4)	
Table3- 1Absolute Maximum Ratings28Table3- 2Recommended operating conditions for power supplies29Table3- 3Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4Recommended operating conditions for others29Table3- 5Thermal Resistance parameter30		
Table3- 2 Recommended operating conditions for power supplies29Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4 Recommended operating conditions for others29Table3- 5 Thermal Resistance parameter30	Table2-11 CLOCK/PLL Pins (4)	26
Table3- 2 Recommended operating conditions for power supplies29Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4 Recommended operating conditions for others29Table3- 5 Thermal Resistance parameter30		
Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins29Table3- 4 Recommended operating conditions for others29Table3- 5 Thermal Resistance parameter30	Table3-1 Absolute Maximum Ratings	
Table3- 4 Recommended operating conditions for others 29 Table3- 5 Thermal Resistance parameter 30	Table3- 2 Recommended operating conditions for power supplies	
Table3- 5 Thermal Resistance parameter 30	Table3- 3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins	
Table3- 5 Thermal Resistance parameter 30	Table3- 4 Recommended operating conditions for others	29

Right Click on above list so it turns grey > Update Field > Update entire table to add new tables

(see page 7 for further instructions on how to automate populating list)

Introduction

T31ZX is a smart video application processor targeting for video devices like mobile camera, security survey, video talking, video analysis and so on. This SoC introduces a kind of innovative architecture to fulfill both high performance computing and high quality image and video encoding requirements addressed by video devices. T31ZX provides high-speed CPU computing power, excellent image signal process, fluent 2592x2048 resolution video recording.

The CPU (Central Processing Unit) core, equipped with 32kB instruction and 32kB data L1 cache, and 128kB L2 cache, operating at 1.4GHz, and full feature MMU function performs OS related tasks. At the heart of the CPU core is XBurst[®] processor engine. XBurst[®] is an industry leading microprocessor core which delivers superior high performance and best-in-class low power consumption. A hardware floating-point unit which compatible with IEEE754 is also included.

The VPU (Video Processing Unit) core is a video encoder engine designed to process video streams using the HEVC(ISO/IEC 23008-2 High Efficiency Video Coding) and AVC(ISO/IEC 14496-10 Advanced Video Coding) standards. It also supports still picture encoding using the JPEG standard(ITU T.81). Together with the on chip video accelerating engine and post image processing unit, T31ZX delivers high video performance. The maximum resolution of 2592x2048 in the format of AVC are supported in encoding. up to 40Mbit/s, 2592x2048@25fps.

The ISP (Image signal processor) core supports excellent image process with the image from raw sensors. It supports DVP,BT and MIPI interface. With the functions, such as 3A, 2D and 3D denoise, WDR/HDR, lens shading, it can supply maximum resolution 2592x2048 resolution image for view or encoding to store or transfer.

For more quickly and easily to use T31ZX, 1G bit DDR2 is integrated on chip.

On-chip modules such as audio CODEC, multi-channel SAR-ADC controller and camera interface offer designers a economical suite of peripherals for video application. WLAN, Bluetooth and expansion options are supported through high-speed SPI and MMC/SD/SDIO host controllers. Other peripherals such as USB OTG, MAC, UART and SPI as well as general system resources provide enough computing and connectivity capability for many applications.

1 Overview

1.1 Block Diagram

Figure 1-1 T31ZX Diagram

1.2 Features

1.2.1 CPU

- XBurst[®]-1 core
 - XBurst[®] FPU instruction set supporting both single and double floating point format which are IEEE754 compatible
 - XBurst[®] 9-stage pipeline micro-architecture, the operating frequency is 1.4GHz
- MMU
 - 32-entry joint-TLB
 - 8 entry instruction TLB
 - 8 entry data TLB
- L1 Cache
 - 32kB instruction cache
 - 32kB data cache
- Hardware debug support
- 16kB tight coupled memory
- L2 Cache
 - 128kB unify cache

1.2.2 Video Processor Unit

• Support DVT HEVC/AVC/JPEG Encoder

- Support HEVC up to 20Mbit/s and AVC up to 40Mbit/s, maximum frame rate is 2592x2048@25fps
- maximum size up to 2592x2048 resolution

1.2.3 Image Signal Processor

- Dynamic/Static Defect Pixel Correction
- Green Equalization
- Black Level Correction
- Lens Shading Correction
- 3A(Auto Exposure/Auto White Balance/Auto Focus)
- Support Statistical Information Output(3A)
- Adaptive Dynamic Range Compression
- Demosaic
- Sharpen
- Bayer Denoise
- 2D/3D Denosie
- Color Noise Suppression
- Lens Distortion Correction
- 2D Color Correction
- 3D Color Correction
- Gamma Correction
- Defog, WDR
- 3 Independent Image Scaler and Output
- Crop, Mirror and Flip
- Support Maximum Resolution:2592x2048

1.2.4 Smart LCD Controller

- Basic Features
 - Display size up to 800x600@60Hz,24BPP
 - Smart LCD interface 6800(type A) and 8080(type B)
- Colors Supports
 - Support up to 16,777,216 (16M) colors
- Panel Supports
 - transmit 565 by two cycle via SLCD 8bit data interface
 - transmit 888 by three cycle via SLCD 8bit data interface
 - Supports different size of display panel
 - Supports internal DMA operation and direct write register operation

1.2.5 Video input

- Support 8/10/12 bit RGB Bayer input
- Support DVP, BT1120(serial mode)/BT656/BT601 and MIPI CSI(2 lane, up to 1.5Gbps)

- Support maximum: 2592x2048@25fps
- Support single-sensor input

1.2.6 Audio System

- Integrated Audio codec
 - 24 bits DAC with 93dB SNR
 - 24 bits ADC with 92dB SNR
 - Support signal-ended and differential microphone input and line input
 - Automatic Level Control (ALC) for smooth audio recording
 - Pure logic process: no need for mixed signal layers and less mask cost
 - Programmable input and output analog gains
 - Digital interpolation and decimation filter integrated
 - Sampling rate 8K/12K/16K/24K/32/44.1K/48K/96K
- Low power DMIC Controller
 - 16bit data interface and 20bit precision internal controller
 - SNR:90dB,THD:-90dB@FS -20dB
 - Linear high pass filter include. Attenuation:-2.9dB@100Hz,22dB@27Hz,-36dB@10Hz
 - Low power voice trigger when waiting to start talking
 - 1/2/3/4 channel digital MIC support
 - Support voice data pre-fetch when trigger enable and the data interface disable, but do not increase the power dissipation
 - Sample frequency supported:8k,16k
- I2S Interface
 - Support standard interface protocol

1.2.7 Memory Interface

- Integrated 1G bit DDR2 on chip
- Static memory interface
 - Support 6 external chip selection CS6~1#. Each bank can be configured separately
 - The size and base address of static memory banks are programmable
 - Direct interface to 8-bit bus width external memory interface devices or external static memory to each bank. Read/Write strobe setup time and hold time periods can be programmed and inserted in an access cycle to enable connection to low-speed memory
 - Wait insertion by WAIT pin
 - Automatic wait cycle insertion to prevent data bus collisions in case of consecutive memory accesses to different banks, or a read access followed by a write access to the same bank

1.2.8 System Functions

- Clock generation and power management
 - On-chip 12/24/48MHZ oscillator circuit

- One three-chip phase-locked loops (PLL) with programmable multiplier
- CCLK, HHCLK, H2CLK, PCLK, H0CLK, DDR_CLK, VPU_CLK frequency can be changed separately for software by setting registers
- SSI clock supports 50M clock
- MSC clock supports 100M clock
- Functional-unit clock gating
- Shut down power supply for P0, ISP, VPU, IPU
- Timer and counter unit with PWM output and/or input edge counter
 - Provide eight separate channels, six of them have input signal transition edge counter
 - 16-bit A counter and 16-bit B counter with auto-reload function every channel
 - Support interrupt generation when the A counter underflow
 - Three clock sources: RTCLK (real time clock), EXCLK (external clock input), PCLK (APB Bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected
 - Every channel has PWM output
- OS timer controller
 - 64-bit counter and 32-bit compare register
 - Support interrupt generation when the counter matches the compare register
 - Two clock sources: RTCLK (real time clock), HCLK (system bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected
- Interrupt controller
 - Total 64 interrupt sources
 - Each interrupt source can be independently enabled
 - Priority mechanism to indicate highest priority interrupt
 - All the registers are accessed by CPU
 - Unmasked interrupts can wake up the chip in sleep mode
 - Another set of source, mask and pending registers to serve for PDMA
- Watchdog timer
 - Generates WDT reset
 - A 16-bit Data register and a 16-bit counter
 - Counter clock uses the input clock selected by software
- PCLK, EXTAL and RTCCLK can be used as the clock for counter
- The division ratio of the clock can be set to 1, 4, 16, 64, 256 and 1024 by software
- Direct memory access controllers
 - Support up to 32 independent DMA channels
 - Descriptor or No-Descriptor Transfer mode compatible with previous JZ SoC
 - Transfer data units: 1-byte, 2-byte, 4-byte, 16-byte, 32-byte, 64-byte, 128-byte
 - Transfer number of data unit: $1 \sim 2^{24} 1$
 - Independent source and destination port width: 8-bit, 16-bit, 32-bit
 - Fixed three priorities of channel groups: 0~3, highest; 4~11: mid; 12~31: lowest
 - An extra INTC IRQ can be bound to one programmable DMA channel
- SAR A/D Controller
 - 1 Channels
 - Resolution: 10-bit

- Integral nonlinearity: ±1 LSB
- Differential nonlinearity: ±0.5 LSB
- Resolution/speed: up to 2MSPS
- Max Frequency: 24MHz
- Low power dissipation: 1.5mW(worst)
- Support multi-touch detect
- Support write control command by software
- Single-end and Differential Conversion Mode
- Support external touch screen controller
- Pin Description
- OTP Slave Interface
 - Total 1024 bits. Lower 192bits are read only, other higher bits are read-able and write-able

1.2.9 Peripherals

- General-Purpose I/O ports
 - Each port can be configured as an input, an output or an alternate function port
 - Each port can be configured as an interrupt source of low/high level or rising/falling edge triggering. Every interrupt source can be masked independently
 - Each port has an internal pull-up or pull-down resistor connected. The pull-up/down resistor can be disabled
 - GPIO output 3 interrupts, each interrupt corresponds to the group, to INTC
- SMB Controller
 - Two-wire SMB serial interface consists of a serial data line (SDA) and a serial clock (SCL)
 - Two speeds
 - Standard mode (100 Kb/s)
 - Fast mode (400 Kb/s)
 - Device clock is identical with pclk
 - Programmable SCL generator
 - Master or slave SMB operation
 - 7-bit addressing/10-bit addressing
 - 16-level transmit and receive FIFOs
 - Interrupt operation
 - The number of devices that you can connect to the same SMB-bus is limited only by the maximum bus capacitance of 400pF
 - APB interface
 - 2 independent SMB channels (SMB0, SMB1)
 - One High Speed Synchronous serial interfaces (SFC)
 - 3 protocols support: National's Microwire, TI's SSP, and Motorola's SPI
 - transmit-only or receive-only operation
 - MSB first for command and data transfer, and LSB first for address transfer
 - 64 entries x 32 bits wide data FIFO
 - one device select

- Configurable sampling point for reception
- Configurable timing parameters: t_{SLCH}, t_{CHSH} and t_{SHSL}
- Configurable flash address wide are supported
- transfer formats: Standard SPI only
- two data transfer mode: slave mode and DMA mode
- Configurable 6 phases for software flow
- Normal Speed Synchronous serial interfaces (SSI1)
 - 3 protocols support: National's Microwire, TI's SSP, and Motorola's SPI
 - Full-duplex or transmit-only or receive-only operation
 - Programmable transfer order: MSB first or LSB first
 - 128 entries deep x 32 bits wide transmit and receive data FIFOs
 - Configurable normal transfer mode or Interval transfer mode
 - Programmable clock phase and polarity for Motorola's SSI format
 - Back-to-back character transmission/reception mode
 - Loop back mode for testing
- Three UARTs (UART0, UART1, UART2)
 - Full-duplex operation
 - 5-, 6-, 7- or 8-bit characters with optional no parity or even or odd parity and with 1, 1½, or 2 stop bits
 - 64x8 bit transmit FIFO and 64x11bit receive FIFO
 - Independently controlled transmit, receive (data ready or timeout), line status interrupts
 - Internal diagnostic capability Loopback control and break, parity, overrun and framingerror is provided
 - Separate DMA requests for transmit and receive data services in FIFO mode
 - Supports modem flow control by software or hardware
 - Slow infrared asynchronous interface that conforms to IrDA specification
- Two MMC/SD/SDIO controllers (MSC0, MSC1)
 - Fully compatible with the MMC System Specification version 4.2
 - Support SD Specification 3.0
 - Support SD I/O Specification 1.0 with 1 command channel and 4 data channels
 - Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1)
 - Maximum data rate is 50MBps
 - Support MMC data width 1bit ,4bit and 8bit
 - Built-in programmable frequency divider for MMC/SD bus
 - Built-in Special Descriptor DMA
 - Maskable hardware interrupt for SDIO interrupt, internal status and FIFO status
 - 128 x 32 built-in data FIFO
 - Multi-SD function support including multiple I/O and combined I/O and memory
 - IRQ supported enable card to interrupt MMC/SD controller
 - Single or multi block access to the card including erase operation
 - Stream access to the MMC card
 - Supports SDIO read wait, interrupt detection during 1-bit or 4-bit access
 - Supports CE-ATA digital protocol commands

- Support Command Completion Signal and interrupt to CPU
- Command Completion Signal disable feature
- The maximum block length is 4096bytes
- USB 2.0 OTG interface
 - Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the On-The-Go supplement to the USB 2.0 specification
 - Operates either as the function controller of a high- /full-speed USB peripheral or as the host/peripheral in point-to-point or multi-point communications with other USB functions
 - Supports Session Request Protocol (SRP) and Host Negotiation Protocol (HNP)
 - UTMI+ Level 3 Transceiver Interface
 - Soft connect/disconnect
 - 16 Endpoints
 - Dedicate FIFO
 - Supports control, interrupt, ISO and bulk transfer
- Ethernet Media Access controller and interface
 - 10, 100Mbps data transfer rates with the following PHY interfaces:
 - RMII interface to communicate with an external Fast Ethernet PHY
 - Full-duplex operation:
 - IEEE 802.3x flow control automatic transmission of zero-quanta Pause frame on flow control input de-assertion
 - forwarding of received Pause frames to the user application
 - Half-duplex operation:
 - CSMA/CD Protocol support
 - Frame bursting and frame extension in 100 Mbps half-duplex operation
 - Preamble and start of frame data (SFD) insertion in Transmit path
 - Preamble and SFD deletion in the Receive path
 - Automatic CRC and pad generation controllable on a per-frame basis
 - Automatic Pad and CRC Stripping options for receive frames
 - Flexible address filtering modes, such as:
 - Up to 31 additional 48-bit perfect (DA) address filters with masks for each byte
 - 64-bit Hash filter for multicast and unicast (DA) addresses
 - Option to pass all multicast addressed frames
 - Promiscuous mode to pass all frames without any filtering for network monitoring
 - Pass all incoming packets (as per filter) with a status report
 - Support Standard or Jumbo Ethernet frames with up to 2 KB of size
 - IEEE 802.1Q VLAN tag detection for reception frames
 - MDIO master interface for PHY device configuration and management
 - CRC replacement, Source Address field insertion or replacement, and VLAN insertion, replacement, and deletion in transmitted frames with per-frame control
 - Programmable watchdog timeout limit in the receive path
 - Detect remote wake-up frames and AMD magic packets

- Digital True Random Number Generator (DTRNG)
 - Pure digital logic circuits
 - True random number
 - Interrupt mode and no interrupt mode
- Two MMC/SD/SDIO controllers (MSC0, MSC1)
 - Fully compatible with the MMC System Specification version 4.2
 - Support SD Specification 3.0
 - Support SD I/O Specification 1.0 with 1 command channel and 4 data channels
 - Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1)
 - Maximum data rate is 50MBps
 - Support MMC data width 1bit ,4bit and 8bit
 - Built-in programmable frequency divider for MMC/SD bus
 - Built-in Special Descriptor DMA
 - Maskable hardware interrupt for SDIO interrupt, internal status and FIFO status
 - 128 x 32 built-in data FIFO
 - Multi-SD function support including multiple I/O and combined I/O and memory
 - IRQ supported enable card to interrupt MMC/SD controller
 - Single or multi block access to the card including erase operation
 - Stream access to the MMC card
 - Supports SDIO read wait, interrupt detection during 1-bit or 4-bit access
 - Supports CE-ATA digital protocol commands
 - Support Command Completion Signal and interrupt to CPU
 - Command Completion Signal disable feature
 - The maximum block length is 4096bytes
- USB 2.0 OTG interface
 - Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the On-The-Go supplement to the USB 2.0 specification
 - Operates either as the function controller of a high- /full-speed USB peripheral or as the host/peripheral in point-to-point or multi-point communications with other USB functions
 - Supports Session Request Protocol (SRP) and Host Negotiation Protocol (HNP)
 - UTMI+ Level 3 Transceiver Interface
 - Soft connect/disconnect
 - 16 Endpoints
 - Dedicate FIFO
 - Supports control, interrupt, ISO and bulk transfer
- Ethernet Media Access controller and interface
 - 10, 100Mbps data transfer rates with the following PHY interfaces:
 - RMII interface to communicate with an external Fast Ethernet PHY
 - Full-duplex operation:
 - IEEE 802.3x flow control automatic transmission of zero-quanta Pause frame on flow control input de-assertion

- forwarding of received Pause frames to the user application
- Half-duplex operation:
- CSMA/CD Protocol support
- Frame bursting and frame extension in 100 Mbps half-duplex operation
- Preamble and start of frame data (SFD) insertion in Transmit path
- Preamble and SFD deletion in the Receive path
- Automatic CRC and pad generation controllable on a per-frame basis
- Automatic Pad and CRC Stripping options for receive frames
- Flexible address filtering modes, such as:
 - Up to 31 additional 48-bit perfect (DA) address filters with masks for each byte
 - 64-bit Hash filter for multicast and unicast (DA) addresses
 - Option to pass all multicast addressed frames
 - Promiscuous mode to pass all frames without any filtering for network monitoring
 - Pass all incoming packets (as per filter) with a status report
- Support Standard or Jumbo Ethernet frames with up to 2 KB of size
- IEEE 802.1Q VLAN tag detection for reception frames
- MDIO master interface for PHY device configuration and management
- CRC replacement, Source Address field insertion or replacement, and VLAN insertion, replacement, and deletion in transmitted frames with per-frame control
- Programmable watchdog timeout limit in the receive path
- Detect remote wake-up frames and AMD magic packets
- Digital True Random Number Generator (DTRNG)
 - Pure digital logic circuits
 - True random number
 - Interrupt mode and no interrupt mode

1.2.10 Bootrom

16kB Boot ROM memory

1.3 Characteristic

Item	Characteristic
Process Technology	22nm CMOS low power
Power supply voltage	General purpose I/O: 1.5~3.6V
	DDR I/O: 1.5V(DDR2)
	EFUSE programming: 1.8V ± 10%
	Analog power supply 1: 1.8V ± 10%
	Analog power supply 2: 3.3V ± 10%
	Core: 0.8V ± 0.1V
Package	QFN 88
Operating frequency	1.4GHz

2 Packaging and Pinout Information

2.1 Overview

T31ZX processor is offered in QFN88, show in Figure 2-1. The T31ZX pin to ball assignment is show in Figure 2-2. The detailed pin description is listed in Table 2-1 ~ Table 2-14.

2.2 Solder Process

T31ZX package is lead-free. It's reflow profile follows the IPC/JEDEC lead-free reflow profile as contained in <u>J-STD-020C</u>.

2.3 Moisture Sensitivity Level

T31ZX package moisture sensitivity is level 3.

2.4 T31ZX Package

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS		A	8	0.85	0.9
STAND OFF		A1	0	0.02	0.05
MOLD THICKNESS		A2		0.65	
L/F THICKNESS		A3		0.203 REF	5.2
LEAD WIDTH		ь	0.13	0.18	0.23
BODY SIZE	х	D		9 BSC	
BODT SIZE	Y	E	9 BSC		
LEAD PITCH		e	0.35 BSC		
EP SIZE	х	D2	5.6	5.7	5.8
EP SIZE	Y	E2	5.6	5.7	5.8
LEAD LENGTH		E .	0.3	0.4	0.5
LEAD TIP TO EXPOS	ED PAD EDGE	к		1.25 REF	
PACKAGE EDGE TOL	ERANCE	aaa		0.1	
MOLD FLATNESS		ccc	0.1		
COPLANARITY		eee	0.08		
LEAD OFFSET		bbb	0.07		
EXPOSED PAD OFFS	ET	fff		0.1	

NOTES IEFER TO JEDEC MO-220: 2.COPLWARHTY APPLIES TO LEADS, CORNER LEADS AND DIE ATTACH PAD; 3.DAN TO USE THE LEVEL INVIRONMENT-RELATED SUBSTANCES; 4.FINISH:Cu/EP ·Sn8~20a

2.5 Pin Description

2.5.1 Static Memory/DVP/I2Cx/UARTx/PWM/MSC1

Table2- 1Static Memory/DVP/I2Cx/UARTx/PWM/MSC1 Pins(13)

QFN Pin Location	Pin Function Names	IO Cell Char.	Pin Function Description	IO Power
11	SA02 PA18	2mA	SA2: Static memory address bus bit 2 PA18: GPIO group A bit 18	VDDIO0
12	SD7 SMB0_SCK PA13	2mA PU-rst	SD7: Static memory data bus bit 7 SMB0_SCK: I2C 0 serial clock PA13: GPIO group A bit 13	VDDIO0

QFN Pin Location	Pin Function Names	IO Cell Char.	Pin Function Description	IO Power
13	SD6 SMB0_SDA PA12	2mA PU-rst	SD6: Static memory data bus bit 6 SMB0_SDA: I2C 0 serial data PA12: GPIO group A bit 12	VDDIOO
14	RD DVP_VSYNC SMB1_SCK MSC1_CMD PA17	2mA PU-rst	RD: Static memory read signal DVP_VSYNC: DVP vertical sync SMB1_SCK: I2C 1 serial clock MSC1_CMD: MSC (MMC/SD) 1 command PA17: GPIO group A bit 17	VDDIO0
15	CS2 DVP_HSYNC SMB1_SDA MSC1_CLK PA16	2mA PU-rst	CS2: Static memory chip 2 select DVP_HSYNC: DVP horizontal sync SMB1_SDA: I2C 1 serial data MSC1_CLK: MSC (MMC/SD) 1 clock output PA16: GPIO group A bit 16	VDDIO0
16	SA1 DVP_MCLK PA15	2mA SR- rst*	SA1: Static memory address bus bit 1 DVP_MCLK: DVP main clock output PA15: GPIO group A bit 15	VDDIOO
17	SAO DVP_PCLK PWM0 PA14	2mA	SAO: Static memory address bus bit 0 DVP_PCLK: camera sensor pixel clock input PWMO: PWM channel 0 output PA14: GPIO group A bit 14	VDDIO0
18	SD5 DVP_D11 UART2_RXD MSC1_D3 PA11	2mA PU- rst*	SD5: Static memory data bus bit 5 DVP_D11:DVP data in bit 11 UART2_RXD: UART2 data receive MSC1_D3: MSC (MMC/SD) 1 data bit 3 PA11: GPIO group A bit 11	VDDIO0
19	SD4 DVP_D10 UART2_TXD MSC1_D2 PA10	2mA	SD4: Static memory data bus bit 4 DVP_D10:DVP data in bit 10 UART2_TXD: UART2 data transmit MSC1_D2: MSC (MMC/SD) 1 data bit 2 PA10: GPIO group A bit 10	VDDIO0
20	SD3 DVP_D9 UART2_RTS MSC1_D1 PA09	2mA	SD3: Static memory data bus bit 3 DVP_D9:DVP data in bit 9 UART2_RTS: UART2 request-to-send handshaking MSC1_D1: MSC (MMC/SD) 1 data bit 1 PA09: GPIO group A bit 09	VDDIO0

A Division of </u>

QFN Pin Location	Pin Function Names	IO Cell Char.	Pin Function Description	
21	SD2 DVP_D8 UART2_CTS MSC1_D0 PA08	2mA	SD2: Static memory data bus bit 2 DVP_D8:DVP data in bit 8 UART2_CTS: UART2 clear-to-send handshaking MSC1_D0: MSC (MMC/SD) 1 data bit 0 PA08: GPIO group A bit 08	VDDIOO
22	SD1 DVP_D7 UART1_RXD PA07	2mA	SD1: Static memory data bus bit 1 DVP_D7:DVP data in bit 7 UART1_RXD: UART 1 receive data PA07: GPIO group A bit 07	VDDIO0
23	SD0 DVP_D6 UART1_TXD PA06	2mA	SD0: Static memory data bus bit 0 DVP_D6:DVP data in bit 6 UART1_TXD: UART1 data transmit PA06: GPIO group A bit 06	VDDIO0

2.5.2 SFC

Table2- 2SFC Pins(4)

QFN Pin Location	Pin Function Names	IO Cell Char.	Pin Function Description	IO Power
45	SFC_CE0 PA28	8mA PU-rst	SFC_CE0: high speed ssi chip 0 select PA28: GPIO group A bit 28	VDDIO1
46	SFC_DR PA24	8mA PU-rst	SFC_DR: high speed ssi receive data PA24: GPIO group A bit 24	VDDIO1
47	SFC_DT PA23	8mA PU-rst SMT-rst	SFC_DT: high speed ssi transmit data PA23: GPIO group A bit 23	VDDIO1
48	SFC_CLK PA27	8mA PU-rst	SFC_CLK: high speed ssi clock PA27: GPIO group A bit 27	VDDIO1
60*	SFC_CE1 PA26	8mA PU-rst	SFC_CE1: high speed ssi chip 1 select PA26: GPIO group A bit 26	VDDIO1
61*	SFC_GPC PA25	8mA PU-rst	SFC_GPC: high speed ssi general-purpose control PA25: GPIO group A bit 25	VDDIO1

NOTES:

Pin 60 and 61 share IO with PB15 and PB16, If need configure as this function, please fixed the another IO to GPIO input model.

2.5.3 MSC0/GMAC/PWMx/UARTx/I2C1/SSI1/SSI_SLV/JTAG/SLCD/DMIC/I2S

Table2- 3 MSC0/GMAC/PWMx/UARTx/I2C1/SSI1/SSI_SLV//JTAG/SLCD/DMIC/I2S Pins (30)

QFN Pin Location	Pin Function Names	IO Cell Char.	Pin Function Description	IO Powei
1	PWM0 SSI1_DT PB17	2mA PD-rst	PWM0: PWM channel 0 output SSI1_DT: normal speed ssi 1 transmit data PB17: GPIO group B bit 17.	VDDIO1
2	PWM1 SSI1_DR PB18	2mA PD-rst	PWM1: PWM channel 1 output SSI1_DR: normal speed ssi 1 receive data PB18: GPIO group B bit 18.	VDDIO1
49	MSCO_D1 SSI_SLV_DR PB01	2mA	MSC0_D1: MSC (MMC/SD) 0 data bit 1 SSI_SLV_DR: ssi slave receive data PB01: GPIO group B bit 01	VDDIO1
50	MSCO_DO SSI_SLV_DT PB00	2mA	MSC0_D0: MSC (MMC/SD) 0 data bit 0 SSI_SLV_DT: ssi slave transmit data PB00: GPIO group B bit 00	VDDIO1
51	MSCO_CLK SSI_SLV_CLK PB04	2mA	MSC0_CLK: MSC (MMC/SD) 0 clock output SSI_SLV_CLK: ssi slave clock PB04: GPIO group B bit 04	VDDIO1
52	MSCO_CMD SSI_SLV_CE0 PB05	2mA PU-rst	MSC0_CMD: MSC (MMC/SD) 0 command SSI_SLV_CE0: ssi slave chip 0 select PB05: GPIO group B bit 05	VDDIO1
53	MSC0_D3 PB03	2mA	MSC0_D3: MSC (MMC/SD) 0 data bit 3 PB03: GPIO group B bit 03	VDDIO1
54	MSC0_D2 PB02	2mA	MSC0_D2: MSC (MMC/SD) 0 data bit 2 PB02: GPIO group B bit 02	VDDIO1
57	GMAC_MDIO MSC1_D1 SLCD_D5 PB11	2mA PU-rst	GMAC_MDIO: gmac MDIO which is clocked by MDC MSC1_D1: MSC (MMC/SD) 1 data bit 1 SLCD_D5: smart lcd data output bit 5 PB11: GPIO group B bit 11.	VDDIO1
58	GMAC_MDCK MSC1_D0 I2S_SDTO SLCD_D4 PB10	2mA PD-rst	GMAC_MDCK: gmac manage data clock MSC1_D0: MSC (MMC/SD) 1 data bit 0 I2S_SDTO: I2S serial data output signal SLCD_D4: smart lcd data output bit 4 PB10: GPIO group B bit 10.	VDDIO1
59	GMAC_RXDV MSC1_CMD I2S_SDTI SLCD_D3	2mA	GMAC_RXDV: gmac receive data valid MSC1_CMD: MSC (MMC/SD) 1 command I2S_SDTI:I2S serial data input signal SLCD_D3: smart lcd data output bit 3	VDDIO1

QFN Pin Location	Pin Function Names	IO Cell Char.	Pin Function Description	IO Power
	РВ09		PB09: GPIO group B bit 09.	
60*	GMAC_RXD0 I2S_DAC_LRCK SLCD_WR PB15	2mA	GMAC_RXD0: gmac receive data bit 0 I2S_DAC_LRCK: I2S DAC left/right clock SLCD_WR: smart lcd write data control PB15: GPIO group B bit 15.	VDDIO1
61*	GMAC_RXD1 SLCD_TE PB16	2mA PU-rst	GMAC_RXD1: gmac receive data bit 1 SLCD_TE: smart lcd crack control PB16: GPIO group B bit 16.	VDDIO1
62	GMAC_TXCLK SLCD_D0 PB06	2mA	GMAC_TXCLK: gmac transmitting clock SLCD_D0: smart lcd data output bit 0 PB06: GPIO group B bit 06	VDDIO1
63	GMAC_PHY_CLK SLCD_D1 PB07	2mA	GMAC_PHY_CLK: gmac phy clock SLCD_D1: smart lcd data output bit 1 PB07: GPIO group B bit 07	VDDIO1
64	GMAC_TXD0 MSC1_D2 I2S_ADC_LRCK SLCD_D6 PB13	2mA	GMAC_TXD0: gmac transmit data bit 0 MSC1_D2: MSC (MMC/SD) 1 data bit 2 I2S_ADC_LRCK: I2S ADC left/right clock SLCD_D6: smart lcd data output bit 6 PB13: GPIO group B bit 13.	VDDIO1
65	GMAC_TXD1 MSC1_D3 I2S_DAC_MCLK SLCD_D7 PB14	2mA PU-rst	GMAC_TXD1: gmac transmit data bit 1 MSC1_D3: MSC (MMC/SD) 1 data bit 3 I2S_DAC_MCLK: I2S DAC system clock SLCD_D7: smart lcd data output bit 7 PB14: GPIO group B bit 14.	VDDIO1
66	GMAC_TXEN MSC1_CLK I2S_ADC_MCLK SLCD_D2 PB08	2mA	GMAC_TXEN: gmac transmitting enable MSC1_CLK: MSC (MMC/SD) 1 clock output I2S_ADC_MCLK: I2S system clock SLCD_D2: smart lcd data output bit 2 PB08: GPIO group B bit 08	VDDIO1
67	(BOOT_SEL0) PC00	2mA PU-rst	It is taken as BOOT select bit 0 by Boot ROM code PC00: GPIO group C bit 00	VDDIO1
68	UARTO_RTS I2S_DAC_BCLK SLCD_DC PB21	2mA	UARTO_RTS: UART 0 request-to-send handshaking I2S_DAC_BCLK: I2S DAC bit clock SLCD_DC: smart lcd cmd/data identify PB21: GPIO group B bit 21	VDDIO1
69	UARTO_CTS I2S_ADC_BCLK	2mA	UART0_CTS: UART 0 clear-to-send handshaking I2S_ADC_BCLK: I2S ADC bit clock	VDDIO1

QFN Pin Location	Pin Function Names	IO Cell Char.	Pin Function Description	IO Power
	SLCD_CS PB20		SLCD_CS: smart lcd chip select PB20: GPIO group B bit 20	
70	UARTO_TXD TDO SLCD_RDY PB22	2mA	UARTO_TXD: UART 0 data transmit TDO: JTAG data output SLCD_RDY: smart lcd work status PB22: GPIO group B bit 22	VDDIO1
71	UARTO_RXD TDI PB19	2mA PU-rst	UARTO_RXD: UART 0 data receive TDI: JTAG data input PB19: GPIO group B bit 19	VDDIO1
73	UART1_RXD TMS PB24	2mA PU-rst	UART1_RXD: UART 1 receive data TMS: JTAG mode select PB24: GPIO group B bit 24	VDDIO1
74	UART1_TXD TCK PB23	2mA	UART1_TXD: UART 1 transmit data TCK: JTAG clock input PB23: GPIO group B bit 23	VDDIO1
80	GPIO_PB31	2mA PD-rst	PB31: GPIO group B bit 31	VDDIO1
81	SSI1_CE0 DMIC_DAT1 PB30	2mA PU-rst	SSI1_CE0: normal speed ssi 1 chip 0 select DMIC_DAT1: digital microphone data bit 1 PB30: GPIO group B bit 30	VDDIO1
82	SSI1_CLK DMIC_DAT0 PB29	2mA PU-rst	SSI1_CLK: normal speed ssi 1 clock DMIC_DATO: digital microphone data bit 0 PB29: GPIO group B bit 29	VDDIO1
85	PWM3 SSI1_DR DMIC_CLK PB28	2mA PD-rst	PWM3: PWM channel 3 output SSI1_DR: normal speed ssi 1 data receive DMIC_CLK: digital microphone clock output PB28: GPIO group B bit 28	VDDIO1
86	PWM2 DRV_VBUS SSI1_DT PB27	2mA PD-rst	PWM2: PWM channel 2 output DRV_VBUS:USB-5V control signal SSI1_DT: normal speed ssi 1 transmit data PB27: GPIO group B bit 27	VDDIO1
87	SMB1_SCK SSI1_CLK PB26	2mA PU-rst	SMB1_SCK: I2C 1 serial clock SSI1_CLK: normal speed ssi 1 clock PB26: GPIO group B bit 26	VDDIO1
88	SMB1_SDA SSI1_CE0_ PB25	2mA PU-rst	SMB1_SDA: I2C 1 serial data SSI1_CEO: normal speed ssi 1 chip 0 select PB25: GPIO group B bit 25	VDDIO1

NOTES:

Pin 60 and 61 share IO with PA25 and PA26, If need configure as this function, please fixed the another IO to GPIO input model.

2.5.4 System Control

QFN Pin Location	Pin Function Names	IO Cell Char.	Pin Function Description	IO Power		
7	PPRST_	2mA SMT	PPRST_: RTC power on reset and RESET-KEY reset input	VDDIO0		

Table2- 4System Control Pins(1)

2.5.5 Digital IO/core power/ground

Table2- 5IO/Core power supplies Pins (10)

QFN Pin Location	Pin Names	Pin Function Description
9	VDDIO0	VDDIO0: IO digital power for DVP power domain, 1.8V
56,84	VDDIO1	VDDIO1: IO digital power for normal function Pad power domain, 1.8V/3.3V
40	VDDIO2	VDDIO2: IO digital power for normal function Pad power domain, 1.8V/3.3V
10,39,55, 72,83	VDD	VDD: CORE digital power, 0.8V
Epad	VSS	VSS: IO digital ground for none DRAM and CORE digital ground, 0V

2.5.6 DDR power/ground

Table2- 6DDR power/ground supplies Pins (5)

QFN Pin Location	Pin Names	Pin Function Description	
77	VREF	VREF: DDR reference voltage, (VREF = VDDMEM/2)	
76	VDDMEM	VDDMEM: DDR IO supply(1.5V for DDR2)	
75	DDRVDD	DDRVDD: DDR PHY 1.5V supply	
78	DDR_PLLVCCD	DDR_PLLVCCD: DDR PLL power supply for digital	
79	DDR_PLLVCCA	DDR_PLLVCCA: DDR PLL power supply for analog	

2.5.7 Analog - USB

QFN Pin Location	Pin Names	Pin Function Description	IO Power
36	USBOPP	USB0PP: USB data-positive	USB_AVD33
35	USBOPN	USBOPN: USB data-negative	USB_AVD33
37	USB_AVD33	USB_AVD33: This is the analog supply that is used to support 3.3V signaling. This supply has both integrated IO pads and associated ESD. The expectation is that this supply is unique to the USB PHY. The PHY provides two pins for this power supply, but they can often be bonded out to a single package pin if the parasitic are low enough to support the current draw.	-
38	USB_AVD18	USB_AVD18: This is the analog supply that is used to support 1.8V signaling. This supply has both integrated IO pads.	-

Table2- 7USB 2.0 OTG (4)

2.5.8 Analog - MIPI and DVP

Table2-8MIPI CSI and DVP(8)

QFN Pin Location	Pin Names	Pin Function Description	IO Power
24	DATAN0 DVP_D5	DATANO: In MIPI model is data lane 0 serial signal DVP_D5: In TTL model is DVP input data bit 5	MIPI_AVD18
25	DATAP0 DVP_D4	DATAPO: In MIPI model is data lane 0 serial signal DVP_D4: In TTL model is DVP input data bit 4	MIPI_AVD18
26	CLKN DVP_D3	CLKN: In MIPI model is clock lane serial signal DVP_D3: In TTL model is DVP input data bit 3	MIPI_AVD18
27	CLKP DVP_D2	CLKP: In MIPI model is clock lane serial signal DVP_D2: In TTL model is DVP input data bit 2	MIPI_AVD18
28	DATAN1 DVP_D1	DATAN1: In MIPI model is data lane 1 serial signal DVP_D1:In TTL model is DVP input data bit 1	MIPI_AVD18
29	DATAP1 DVP_D0	DATAP1: In MIPI model is data lane 1 serial signal DVP_D0: In TTL model is DVP input data bit 0	MIPI_AVD18
30	MIPI_AVD08	MIPI_AVD08: PHY analog power, 0.8V	-
31	MIPI_AVD18	MIPI_AVD18: PHY analog power, 1.8V	-

NOTES:

1. DVP_Dx signals can input form this Pad when configure the MIPI PHY to TTL model

2.5.9 Analog - SARADC

Table 2-1 SARADC Pins (3)

QFN Pin Location	Pin Names	Pin Function Description	IO Power
32	ADC_AUX0	ADC_AUX0: SARADC channel 0 input	ADC_AVDD
33	ADC_VREF	SADC_VREF: Voltage reference input, 0.5* ADC_AVDD ~ 0.99* ADC_AVDD	-
34	ADC_AVDD	ADC_AVDD: SARADC analog power, 1.8 V	-

2.5.10 Analog - CODEC

Table2-9CODEC Pins (4)

QFN Pin Location	Pin Names	Pin Function Description	IO Power
41	MICP	MICP: differential microphone input	CODEC_AVDD
42	VCM	VCM: Reference voltage output	CODEC_AVDD
44	HPOUT	HPOUT: headphone output	CODEC_AVDD
43	CODEC_AVDD	CODEC_AVDD:1.8V analog supply	-

2.5.11 Analog - EFUSE

Table2- 10EFUSE Pins (1)

QFN Pin Location	Pin Names	Pin Function Description
8	EFUSE_AVD	EFUSE_AVD: EFUSE programming power, 0V/1.8V

2.5.12 Analog - CLOCK/PLL

Table2- 11 CLOCK/PLL Pins (4)

QFN Pin Location	Pin Names	IO Cell Char.	Pin Function Description	IO Power
5	EXCLK_XI	2~30 MHz Oscillator,	EXCLK_XI: external oscillator clock input or external 24MHz clock input	VDDIO_OSC
4	EXCLK_XO	OSC on/off	EXCLK_XO: external oscillator clock output	VDDIO_OSC
3	VDDIO_OSC	-	VDDIO_OSC: Oscillator power supply, 1.8V	-

MICROSYSTEMS

QFN Pin Location	Pin Names	IO Cell Char.	Pin Function Description	IO Power
6	PLL_VDDHV	-	PLL_VDDHV:PLL analog supply power 1.8V	-

NOTES:

- 1 All GPIO are programmable with multi-voltage (1.8V, 3.3V) general purpose, bi-directional I/O buffer with a selectable LVCMOS input or LVCMOS Schmitt trigger input and programmable pull-up / pull-down. In the full-drive mode, this buffer can operate in excess of 100MHz frequency with 15pF external load and 125 MHz with 10pF load, but actual frequency is load and system dependent. A maximum of 200 MHz can be achieved under small capacitive loads.
- 2 The meaning of phases in IO cell characteristics are:
 - 8/16mA out: The IO cell's output driving strength is about 8/16mA.
 - PU: The IO cell contains a pull-up resistor and fixed pull up.
 - PD: The IO cell contains a pull-down resistor and fixed pull down.
 - PU-rst: The IO cell during reset and after the pull up function is enabled.
 - PD-rst: The IO cell during reset and after the pull down function is enabled.
 - SMT: The IO cell is Schmitt trigger input and fixed.
 - SMT-rst: The IO cell during reset and after the Schmitt trigger input function is enabled.
 - SR-rst: The IO cell during reset and after the slew-rate function select fast mode.

3 Electrical Specifications

3.1 Absolute Maximum Ratings

The absolute maximum ratings for the processors are listed in Table 3-1. Do not exceed these parameters or the part may be damaged permanently. Operation at absolute maximum ratings is not guaranteed.

Parameter	Min	Max	Unit
Storage Temperature	-65	150	°C
Operation Temperature	-40	125	°C
VDDMEM power supplies voltage	-0.1	1.98	V
DDRVDD power supplies voltage	-0.1	1.98	V
DDR_PLLVCCA power supplies voltage	-0.1	1.98	V
DDR_PLLVCCD power supplies voltage	-0.1	0.88	V
VDDIO0 power supplies voltage	-0.5	1.98	V
VDDIO1 power supplies voltage	-0.5	3.63	V
VDDIO2 power supplies voltage	-0.5	3.63	V
VDD power supplies voltage	-0.1	0.88	V
PLL_VDDHV power supplies voltage	-0.1	1.98	V
EFUSE_AVD power supplies voltage	-0.1	1.98	V
USB_AVD33 power supplies voltage	-0.1	3.63	V
USB_AVD18 power supplies voltage	-0.1	1.98	V
ADC_AVDD power supplies voltage	-0.1	1.98	V
CODEC_AVDD power supplies voltage	-0.1	1.98	V
Maximum ESD stress voltage, Human Body Model; Any pin to any supply pin, either polarity, or Any pin to all non-supply pins	-	2000	V

Table3-1 Absolute Maximum Ratings

				A Division of
Parameter	Min	Max	Unit	
together, either polarity. Three stresses maximum.]

3.2 Recommended operating conditions

Symbol Description Min Typical Max Unit VDDMEM VDDMEM voltage for SSTL18 (DDR2) 1.62 1.8 1.98 V V DDRVDD DDR KGD power supplies voltage 1.62 1.8 1.98 DDR_PLLVCCA DDR PLL power supplies voltage 1.62 1.8 1.98 V V DDR PLLVCCD DDR PLL power supplies voltage 0.72 0.8 0.88 VDDI00 GPIO power domain 0 supplies voltage 1.62 1.8 1.98 ٧ VDDIO1 GPIO power domain 1 supplies voltage 1.5 3.3 3.63 V GPIO power domain 2 supplies voltage 3.3 V VDDIO2 1.5 3.63 VDD VDD core supplies voltage 0.72 0.8 0.88 V APLL, MPLL and VPLL analog voltage 1.98 ٧ PLL VDDHV 1.62 1.8 EFUSE program supplies voltage 1.98 V EFUSE_AVD 1.62 1.8 USB AVD33 USB PHY VCCA3P3 analog voltage 3.0 3.3 3.6 V USB AVD18 USB PHY VCC18 analog voltage 1.62 1.8 1.98 V ADC_AVDD SAR-ADC analog voltage 1.62 1.8 1.98 ٧ CODEC_AVDD CODEC analog voltage 1.62 1.8 1.98 V MIPI_AVD08 **MIPI** analog voltage 0.72 0.8 0.98 V MIPI AVD18 **MIPI** analog voltage 1.62 1.8 1.98 V

Table3- 2Recommended operating conditions for power supplies

Table3- 3Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins

Symbol	Parameter	Min	Typical	Max	Unit
V _{IH18}	Input high voltage for 1.8V I/O application	*0.65	-	+0.3	V
V _{IL18}	Input low voltage for 1.8V I/O application	-0.3	-	*0.35	V
V _{IH25}	Input high voltage for 2.5V I/O application	1.7	-	+0.3	V
V _{IL25}	Input low voltage for 2.5V I/O application	-0.3	-	0.7	V
V _{IH33}	Input high voltage for 3.3V I/O application	2	-	+0.3	V
V _{IL33}	Input low voltage for 3.3V I/O application	-0.3	-	0.8	V

Table3- 4 Recommended operating conditions for others

Symbol	Description	Min	Typical	Max	Unit
T _A	Ambient temperature	-20	25	+85	°C

Lumissil Microsystems - www.lumissil.com CONFIDENTIAL - 29

Symbol	Description	Min	Typical	Max	Unit
TJ	Junction temperature	-40	25	+125	°C

Table3- 5Thermal Resistance parameter

Ambient Temperature	25°C			
Thermal Resistance	θ ja (°C/w)	θ jb (°C/w)	θ jc (°C/w)	
JEDEC 2S2P	37.5	16.8	4.2	

3.3 Audio codec

3.3.1 Microphone input

There are two inputs channels named left ADC channel and right ADC channel. In the each channel, there are one inputs which are configured as differential input by the microphone PGA(MICL).

The signal of microphone output should be input to AUDIO CODEC through DC-blocking capacitor, as shown in following figure. The capacitance and input resistance form a high pass filter. For example, when the gain of the MIC module is 20dB, the input resistance is $45K\Omega$ and 0.1uF DC-blocking capacitor is used, the lower cut-off frequency is:

$$f = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 45 \times 10^3 \times 0.1 \times 10^{-6}} = 35.4 Hz$$

The capacitance of the DC-blocking capacitor should be determined by the minimum input impedance and application requirements.

If the output of microphone is single-ended, the AUDIO ADC input should be connected as following figure.

Microphone PGA has four gains to amplify the input signal, that is, 0dB, 20dB, 30dB and 40dB.

3.3.2 ALC

Automatic Level Control (ALC) function is included to adjust the signal level, which is input into ADC. ALC will measure the signal magnitude and compare it to defined threshold. Then it will adjust the ALC controlled PAG (ALC_L and ALC_R) gain according to the comparison result.

The programmable gain range of ALC controlled PAG is from -18dB to +28.5dB. The tuning step is 1.5dB.

3.3.3 Headphone output

Audio codec DAC output can drive 16Ω or 32Ω headphone load through DC-blocking capacitor.

In the configuration using DC-blocking capacitor, shown in following figure, the headphone ground is connected to the real ground. The capacitance and the load resistance determine the lower cut-off frequency. For instance, if 16Ω headphone and 100 uF DC-blocking capacitor are used, the lower cut-off frequency is

$$f = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 16 \times 100 \times 10^{-6}} = 99.5 Hz$$

The DC-blocking capacitor can be increased to lower the cut-off frequency for better bass response.

The headphone driver chooses DAC output as input. It has a gain rang from -39dB to +6dB with a tuning step of 1.5dB.

3.3.4 Microphone bias

Microphone bias output is used to bias external microphones. The bias voltage can varies from 0.8*CODEC_AVDD to 0.975* CODEC_AVDD with a step of 0.025* CODEC_AVDD.

3.4 Power On, Reset and BOOT

3.4.1 Power-On Sequence

The external voltage regulator and other power-on devices must provide the T31ZX processor with a specific sequence of power and resets to ensure proper operation. Figure 3-1 shows this sequence and Table 3-6 gives the timing parameters. Following are the name of the power.

- VDD08: all 0.8V power supplies, VDD, DDR_PLLVCCD, MIPI_AVD08, USB_AVD08, PLL_VDD, USB_AVD08
- VMEM: VDDMEM,DDRVDD
- VDD18: VDDI00,DDR_PLLVCCA,PLL_VDDHV, USB_AVD18, MIPI_AVD18, ADC_AVDD, CODEC_AVDD
- VDD33: VDDIO1, VDDIO2, USB_AVD33

Symbol	Parameter	Min	Тур	Max	Unit
T1	VDD08 rise time ^[1]	-	-	400	us
T2	VMEM rise time	-	-	400	us
Т3	VDDIO18 rise time	-	-	400	us
Т4	VDDIO33 rise time	-	-	400	us
Т5	Delay between VDD08 arriving 50% to VMEM arriving 50%	T1*0.5	-	-	us
Т6	Delay between VMEM arriving 50% to VDDIO18 arriving 50%	0	-	-	us
Т7	Delay between VDDIO18 arriving 50% to VDDIO33 arriving 50%	Т3	-	-	us
Т8	Delay between VDDIO18 arriving 50% to POR_OUT arriving 50%	-	240	-	us
Т9	Delay between POR_OUT arriving 50% to chip inner reset arriving 50%		10		ms
T10	PPRST_kept time ^[2]		100		us

Table3- 6 Power-On Sequence Parameters

NOTES:

- [1]: The power rise time is defined as 10% to 90%.
- [2]: The PPRST_ must be kept at least 100us. After PPRST_ is deasserted, the corresponding chip reset will be extended at least 40ms.
- In addition, when the CPU is used in a low-power solution, it is recommended that each power supply use a high-efficiency DCDC power supply, and the conversion efficiency should be above 90%.

PPRST_ reset mode

POR reset mode

Figure3- 1 Power-On Sequence Diagram

3.4.2 Reset procedure

There are 4 reset sources: 1. PPRST_ pin reset; 2. POR hardware reset; 3.WDT timeout reset; 4. Hibernating reset when exiting hibernating mode. After reset, program start from boot.

• PPRST_ pin reset.

This reset is triggered when PPRST_ pin is put to logic 0. It happens in power on RTC power and RESET-KEY pressed to reset the chip from unknown dead state. The reset end time is about 1M EXCLK cycles after rising edge of PPRST_.

• POR(Power-On-Reset) hardware reset.

The chip POR circuit provides reliable reset function for general applications. Powered by 1.8V analog supply and monitors 0.8V digital and 1.8V analog supply. It generates reset signal to digital logic. Set low if analog supply or digital supply is below the threshold voltage(typical 1.35V threshold for 1.8V supply and 0.6V threshold for 0.8V supply), and will be set high if both of analog supply and digital supply exceed the threshold voltage.

• WDT reset.

This reset happens in case of WDT timeout. The reset keeps for about a few RTCLK cycles.

• Hibernating reset.

This reset happens in case of wakeup the main power from power down. The reset keeps for about 1ms ~ 125ms programable, plus 1M EXCLK cycles, start after WKUP_ signal is recognized.

After reset, all GPIO shared pins are put to GPIO input function and most of their internal pull-up/down resistor are set to on, see "2.5Pin Description" for details. The oscillators are on. The USB 2.0 OTG PHY, the audio CODEC DAC/ADC, the SAR-ADCs is put in suspend mode.

3.4.3 BOOT

The boot sequence of the T31X is controlled by boot_sel0. The configuration is shown as follow:

boot_sel0	Boot method
0	MMC/SD boot @ MSC0 (MMC/SD use GPIO Port B. MSC1 use GPIO Port C)
1	SFC boot @ CS4 (SPI boot)

Table3- 7 Boot Configuration of T31X

Note:

1. When SFC boot start failure, the program in bootrom will go into MSC0 boot, If it is boot from MMC/SD card at MSC0, its function pins MSC0_D0, MSC0_CLK, MSC0_CMD are initialized, the boot program loads the maximum 100KB code from MMC/SD card to cache and jump to it. Only one data bus which is MSC1_D0 is used.

2. When MSCO boot start failure, the program in bootrom will go into MSC1 boot, If it is boot from MMC/SD card at MSC1, its function pins MSC1_D0, MSC1_CLK, MSC1_CMD are initialized, the boot program loads the maximum 100KB code from MMC/SD card to cache and jump to it. Only one data bus which is MSC1_D0 is used. If MSC1 boot start failure, jump to USB boot.

Figure3- 2 Boot sequence diagram of T31ZX

As shown in boot sequence Block Diagram, After reset, the boot program on the internal boot ROM executes as follows:

- 1 Disable all interrupts and read boot_sel[0] to determine the boot method.
- 2 There 26KB backup reading failed, the 26KB backup at 128th, 256 th , ..., and finally 1024th page will be tried in consecutive order.
- 3 If it is boot from MMC/SD card at MSCO, its function pins MSCO_DO, MSCO_CLK, MSCO_CMD are initialized, the boot program loads the maximum 100KB code from MMC/SD card to cache and jump to it. Only one data bus which is MSCO_DO is used.
- 4 If it is boot from USB, a block of code will be received through USB cable connected with host PC and be stored in cache. Then branch to this area in cache.

5 If it is boot from SPI nor/nand at SFC, its function pins SFC_CLK,SFC_CE, SFC_DR,SFC_DT, SFC_WP,SFC_HOLD are initialized, the boot program loads the maximum 100KB code from SPI NAND/NOR flash to cache and jump to it.