
The Gameduino 2
Tutorial, Reference

and Cookbook

James Bowman
jamesb@excamera.com

Excamera Labs,
Pescadero CA,

USA

c© 2013, James Bowman
All rights reserved

First edition: December 2013

Bowman, James.
The Gameduino 2 Tutorial, Reference and Cookbook / James Bowman. –

1st Excamera Labs ed.
200 p.
Includes illustrations, bibliographical references and index.
ISBN 978-1492888628
1. Microcontrollers – Programming I. Title

Contents

I Tutorial 9

1. Plug in. Power up. Play something 11

2. Quick start 13
2.1. Hello world . 14
2.2. Circles are large points . 16
2.3. Color and transparency . 18
2.4. Demo: fizz . 20
2.5. Playing notes . 21
2.6. Touch tags . 22
2.7. Game: Simon . 24

3. Bitmaps 29
3.1. Loading a JPEG . 30
3.2. Bitmap size . 31
3.3. Bitmap handles. 34
3.4. Bitmap pixel formats. 36
3.5. Bitmap color. 38
3.6. Converting graphics . 39
3.7. Bitmap cells . 40
3.8. Rotation, zoom and shrink. 42

4. More on graphics 47
4.1. Lines . 48
4.2. Rectangles . 50
4.3. Gradients . 51
4.4. Blending . 52
4.5. Fonts . 54
4.6. Subpixel coordinates. 55

3

4 CONTENTS

4.7. Angles in Furmans . 56
4.8. The context stack . 58

5. Touch 59
5.1. Reading the touch inputs. 59
5.2. Demo: blobs. 60
5.3. Tags. 62
5.4. Sketching . 63
5.5. Widgets and tracking controls . 64

6. Sound 67
6.1. Clicks and pops. 67
6.2. Instrument playback . 68
6.3. Samples . 70
6.4. Continuous playback. 72

7. Accelerometer 75

8. MicroSD card 77

II Reference 79

9. Drawing commands 81
9.1. AlphaFunc . 82
9.2. Begin . 83
9.3. BitmapHandle . 84
9.4. BitmapLayout . 85
9.5. BitmapSize . 86
9.6. BitmapSource . 87
9.7. BlendFunc . 88
9.8. Cell . 89
9.9. ClearColorA . 90
9.10. Clear. 91
9.11. ClearColorRGB. 92
9.12. ClearStencil . 93
9.13. ClearTag . 94
9.14. ColorA . 95
9.15. ColorMask . 96
9.16. ColorRGB . 97
9.17. LineWidth . 98

CONTENTS 5

9.18. PointSize . 99
9.19. RestoreContext . 100
9.20. SaveContext . 101
9.21. ScissorSize . 102
9.22. ScissorXY . 103
9.23. StencilFunc . 104
9.24. StencilMask . 105
9.25. StencilOp . 106
9.26. TagMask . 107
9.27. Tag . 108
9.28. Vertex2f . 109
9.29. Vertex2ii . 110

10.Higher-level commands 111
10.1. cmd append . 111
10.2. cmd bgcolor. 112
10.3. cmd button . 112
10.4. cmd calibrate . 113
10.5. cmd clock . 113
10.6. cmd coldstart . 114
10.7. cmd dial . 114
10.8. cmd fgcolor. 114
10.9. cmd gauge . 115
10.10. cmd getprops . 115
10.11. cmd gradient . 116
10.12. cmd inflate. 116
10.13. cmd keys . 117
10.14. cmd loadidentity . 117
10.15. cmd loadimage . 118
10.16. cmd memcpy . 118
10.17. cmd memset . 118
10.18. cmd memwrite . 119
10.19. cmd regwrite . 119
10.20. cmd number . 119
10.21. cmd progress . 120
10.22. cmd rotate . 120
10.23. cmd scale . 121
10.24. cmd scrollbar . 121
10.25. cmd setfont. 122
10.26. cmd setmatrix . 122

6 CONTENTS

10.27. cmd sketch . 123
10.28. cmd slider . 123
10.29. cmd spinner. 124
10.30. cmd stop . 124
10.31. cmd text . 125
10.32. cmd toggle . 125
10.33. cmd track . 126
10.34. cmd translate . 126

11.Management commands 129
11.1. begin. 129
11.2. finish . 129
11.3. flush. 130
11.4. get accel . 130
11.5. get inputs . 130
11.6. load . 131
11.7. play . 131
11.8. self calibrate . 132
11.9. sample . 132
11.10. swap . 132

12.Math utilities 135
12.1. atan2. 135
12.2. polar. 136
12.3. random . 136
12.4. rcos . 137
12.5. rsin . 137

III Cookbook 139

13.Graphics Elements 141
13.1. Tiled backgrounds. 142
13.2. Drop shadows. 144
13.3. Fade in and out. 145
13.4. Motion blur . 146
13.5. Colors for additive blending. 147
13.6. Efficient rectangles . 148
13.7. 1D bitmaps. 149
13.8. Drawing polygons . 150

CONTENTS 7

13.9. Lines everywhere . 152
13.10. Vignette . 153
13.11. Mirroring sprites . 154
13.12. Silhouettes and edges . 155
13.13. Chunky pixels . 156
13.14. Vector graphics . 157
13.15. Handmade graphics . 158

14.Compositing 159
14.1. Alpha compositing . 160
14.2. Slot gags . 164
14.3. Patterned text . 165
14.4. Alpha operators . 166
14.5. Round-cornered images. 167
14.6. Transparent buttons . 168
14.7. Reflections . 170

15.Saving memory 173
15.1. Two-color images . 174
15.2. The missing L2 format. 176
15.3. Separated mattes . 178
15.4. Half-resolution bitmaps . 179
15.5. 8-bit formats. 180
15.6. DXT1 . 181

16.Games and demos 185
16.1. Kenney. 186
16.2. NightStrike. 191
16.3. Invaders . 194

A. The asset converter 197

Index 198

8 CONTENTS

Part I

Tutorial

9

Chapter 1

Plug in. Power up. Play
something

1. Download the Gameduino 2 library Gameduino2.zip from
http://gameduino.com/code and install it in the Arduino IDE. Instruc-
tions for doing this are at http://arduino.cc/en/Guide/Libraries.

2. Attach Gameduino 2 to the Arduino, making sure that the pins are aligned
properly, and that none are bent.

3. Power up the Arduino. Nothing will appear on the Gameduino 2 screen

11

http://gameduino.com/code
http://arduino.cc/en/Guide/Libraries

12 CHAPTER 1. PLUG IN. POWER UP. PLAY SOMETHING

until a sketch is loaded on the Arduino.

4. Restart the Arduino IDE, and load one of the sketches, for example
File . Sketchbook . libraries . Gameduino2 . 1.Basics . helloworld

5. Compile and download the sketch to the Arduino. Gameduino 2 should
start up and run the sketch.

6. Many of the examples use data files from the microSD card. To run them,
format a microSD card and copy the files from Gameduino2sd.zip (also
at http://gameduino.com/code) onto it.

7. Enjoy!

http://gameduino.com/code

Chapter 2

Quick start

This chapter introduces the basics of Gameduino 2 - from “hello world” to
creating a simple touch-based game.

13

14 CHAPTER 2. QUICK START

2.1 Hello world

include <EEPROM.h>

include <SPI.h>

include <GD2.h>

void setup()

{

GD.begin();

}

void loop()

{

GD.ClearColorRGB(0x103000);

GD.Clear();

GD.cmd_text(240, 136, 31, OPT_CENTER, "Hello world");

GD.swap();

}

The code in loop() clears the screen to a relaxing deep green color, then
writes the text centered on the screen. This code runs continuously, redrawing
the screen 60 times every second. Because the same image is being drawn
every time, the screen does not move.

2.1. HELLO WORLD 15

ClearColorRGB is a drawing command: it sets the color used for screen
clears. Here the color is 0x103000, a dark green. Gameduino 2 uses standard
hex triplets for colors, like HTML.

Clear is another drawing command. It clears the screen to the dark green
color. Drawing must always begin with a clear screen.

cmd text is a higher-level GPU command. It draws a text string in a par-
ticular font on the screen. In this case the text is being drawn in the center of
the screen, at (x, y) coordinates (240, 136). OPT CENTER draws the text so that
its center is at (240, 136). The font number 31 is the largest available built-in
font.

Finally, GD.swap() tells the graphics system that the drawing is finished
and it can be made visible on the screen. There are always two copies of the
screen: one that is visible, and one that is work-in-progress. Calling GD.swap()

exchanges the screens so that the work-in-progress screen becomes visible.
This swapping system (sometimes called double buffering) means that the dis-
play updates smoothly, only updating when the program calls GD.swap().

Gameduino 2’s screen is 480 pixels wide and 272 high. (0, 0) is the top-left
corner of the screen, (479, 271) is the bottom right. The center pixel on the
screen is at (240, 136).

x = 240, y = 136)

x = y = 0 x = 480

y = 272

16 CHAPTER 2. QUICK START

2.2 Circles are large points

What about graphics? Graphics drawing uses two commands: Begin and
Vertex2ii. Begin tells the graphics system what to draw, and Vertex2ii

draws it. So this code draws two single-pixel points, at coordinates (220,100)
and (260,170):

GD.ClearColorRGB(0x103000);

GD.Clear();

GD.cmd_text(240, 136, 31, OPT_CENTER, "Hello world");

GD.Begin(POINTS);

GD.Vertex2ii(220, 100);

GD.Vertex2ii(260, 170);

GD.swap();

The Begin(POINTS) tells the GPU to start drawing points. Then each call
to Vertex2ii draws another point at the specified (x, y) screen coordinates.
Note that if you don’t supply a Begin, then the hardware doesn’t know what
to draw so it ignores the following Vertex2ii calls.

2.2. CIRCLES ARE LARGE POINTS 17

The GD library also has a PointSize call that lets you set the size of points.
Its argument is the radius of the points, in units of 1/16th of a pixel. The
hardware uses these subpixel units to give you fine control over the dimensions
of drawn objects, much finer than the width of a pixel. For situations where
you want to specify a distance in pixels, it is usually clearest to multiply the
distance by 16 in the code.

Adding a call to PointSize before the drawn points gives huge points with
a radius of 30 pixels (and hence a diameter of 60 pixels).

GD.ClearColorRGB(0x103000);

GD.Clear();

GD.cmd_text(240, 136, 31, OPT_CENTER, "Hello world");

GD.PointSize(16 * 30); // means 30 pixels

GD.Begin(POINTS);

GD.Vertex2ii(220, 100);

GD.Vertex2ii(260, 170);

GD.swap();

In fact, the hardware always draws POINTS using mathematical circles, but
when the point size is small the circles happen to look like single pixels.

18 CHAPTER 2. QUICK START

2.3 Color and transparency

Adding calls to ColorRGB before each vertex changes their colors to orange
and teal:

GD.ClearColorRGB(0x103000);

GD.Clear();

GD.cmd_text(240, 136, 31, OPT_CENTER, "Hello world");

GD.PointSize(16 * 30);

GD.Begin(POINTS);

GD.ColorRGB(0xff8000); // orange

GD.Vertex2ii(220, 100);

GD.ColorRGB(0x0080ff); // teal

GD.Vertex2ii(260, 170);

GD.swap();

ClearColorRGB, ColorRGB and PointSize are examples of graphics state,
like variables in the graphics hardware. When changed by program, they will
affect later drawing operations. To keep life simple, all graphics state is set to a
default value at the start of the frame. As you might have already guessed, the
default ColorRGB is white, which is why “Hello world” is white. The default
PointSize is 8, meaning a radius of half a pixel.

You can also set the transparency of drawing, just like color. Transparency
is controlled by an alpha channel, which has a value from 0 to 255. 0 means

2.3. COLOR AND TRANSPARENCY 19

completely transparent. 255 – the default – means completely opaque. Setting
the transparency to 128 with ColorA before the point drawing makes the
points 50% transparent.

GD.ClearColorRGB(0x103000);

GD.Clear();

GD.cmd_text(240, 136, 31, OPT_CENTER, "Hello world");

GD.PointSize(16 * 30);

GD.Begin(POINTS);

GD.ColorA(128); // 50% transparent

GD.ColorRGB(0xff8000); // orange

GD.Vertex2ii(220, 100);

GD.ColorRGB(0x0080ff); // teal

GD.Vertex2ii(260, 170);

GD.swap();

The color commands ColorRGB and ClearColorRGB also accept (R,G,B)
triplet values. So ColorRGB(0x0080ff) can be written ColorRGB(0, 128,

255) instead:

GD.ColorRGB(0, 128, 255); // teal

GD.Vertex2ii(260, 170);

20 CHAPTER 2. QUICK START

2.4 Demo: fizz

void loop()

{

GD.Clear();

GD.Begin(POINTS);

for (int i = 0; i < 100; i++) {

GD.PointSize(GD.random(16 * 50));

GD.ColorRGB(GD.random(256),

GD.random(256),

GD.random(256));

GD.ColorA(GD.random(256));

GD.Vertex2ii(GD.random(480), GD.random(272));

}

GD.swap();

}

Every frame, “fizz” draws 100 points, with random size, color and trans-
parency. Because each frame is 1/60th of a second, the effect is a seething
frenzy of luridly colored disks.

2.5. PLAYING NOTES 21

2.5 Playing notes

Gameduino 2 has several ways of making sound, but the easiest to use is its
built-in sample library. Calling GD.play() with an instrument and a MIDI note
number starts a note playing:

GD.play(PIANO, 60);

delay(1000);

GD.play(ORGAN, 64);

The code continues immediately after GD.play(), so here the delay()

waits for the first note to finish before playing the second note. The list
of available sampled instruments is: HARP, XYLOPHONE, TUBA, GLOCKENSPIEL,
ORGAN, TRUMPET, PIANO, CHIMES, MUSICBOX and BELL. While the samples are
not particularly hi-fi 1 , they are quite handy for quick tests. Each instrument
can play notes in the MIDI range 21-108.

The continuous sounds SQUAREWAVE, SINEWAVE, SAWTOOTH and TRIANGLE

are also available. These are good for matching the sound effects of retro
games. Unlike the synthesized instrument sounds, these sounds continue in-
definitely. In addition to the musical sounds, there is a small selection of
percussive samples. These samples do not use the MIDI note parameter, so it
can be omitted. For example GD.play(NOTCH). The full list is

CLICK

SWITCH

COWBELL

NOTCH

HIHAT

KICKDRUM

POP

CLACK

CHACK

The sound hardware can only play one sound at a time. So starting a sound
playing instantly interrupts any previously playing sound.

To stop sound, call GD.play(SILENCE).

1PIANO is probably the worst, but TUBA comes close second for sounding unlike any musical
instrument, ever.

22 CHAPTER 2. QUICK START

2.6 Touch tags

Every pixel on the screen has a color. It also has an invisible tag value, useful
for detecting touches. Setting the tag value for the colored circles to 100 and
101:

GD.ClearColorRGB(0x103000);

GD.Clear();

GD.cmd_text(240, 136, 31, OPT_CENTER, "Hello world");

GD.PointSize(16 * 30);

GD.Begin(POINTS);

GD.ColorRGB(0xff8000);

GD.Tag(100);

GD.Vertex2ii(220, 100);

GD.ColorRGB(0x0080ff);

GD.Tag(101);

GD.Vertex2ii(260, 170);

GD.swap();

gives the same image as before:

Now, when the system detects a touch on either circle, it reports back its
touch code, in this case either 100 or 101. Here is a loop that senses touches
(get inputs updates all the sensor inputs in GD.inputs) and prints out the
touch value on the serial connection:

2.6. TOUCH TAGS 23

for (;;) {

GD.get_inputs();

Serial.println(GD.inputs.tag);

}

As you press each disk, the code 100 or 101 appears on the serial output.
Touch tags are a useful shortcut. Without them, the code would have to sense
the touch (x, y) coordinates, and then for each disk check whether the (x, y)
was inside its perimeter. Using touch tags, the code uses Tag to assign a
code to each drawn object. Then the hardware performs the pixel testing and
reports the code of the touched object. To do this, the hardware keeps track
of the Tag for each pixel it draws. This is called the “tag buffer” - here is its
contents for this example:

100

101

Whenever the screen is touched the hardware looks up the pixel in the tag
buffer and reports it in GD.inputs.tag.

24 CHAPTER 2. QUICK START

2.7 Game: Simon

As you probably remember, “Simon” is a memory game from 1978. It
plays out a random sequence on its four lights, and if you repeat it correctly,
it extends the sequence by one more note. This repeats until you make a
mistake, and the “game” is over.

The code first defines some primary colors:

define DARK_GREEN 0x007000

define LIGHT_GREEN 0x33ff33

define DARK_RED 0x700000

define LIGHT_RED 0xff3333

define DARK_YELLOW 0x707000

define LIGHT_YELLOW 0xffff33

define DARK_BLUE 0x007070

define LIGHT_BLUE 0x33ffff

and then uses them to draw the game screen. The game screen is four large
points, each working as a button. One is highlighted depending on the pressed
argument. The calls to Tag before each button mean that a touch anywhere
on that button will report the value in GD.inputs.tag.

2.7. GAME: SIMON 25

void drawscreen(int pressed)

{

GD.get_inputs();

GD.Clear();

GD.PointSize(16 * 60); // 60-pixel radius points

GD.Begin(POINTS);

GD.Tag(1);

if (pressed == 1)

GD.ColorRGB(LIGHT_GREEN);

else

GD.ColorRGB(DARK_GREEN);

GD.Vertex2ii(240 - 70, 136 - 70);

GD.Tag(2);

if (pressed == 2)

GD.ColorRGB(LIGHT_RED);

else

GD.ColorRGB(DARK_RED);

GD.Vertex2ii(240 + 70, 136 - 70);

GD.Tag(3);

if (pressed == 3)

GD.ColorRGB(LIGHT_YELLOW);

else

GD.ColorRGB(DARK_YELLOW);

GD.Vertex2ii(240 - 70, 136 + 70);

GD.Tag(4);

if (pressed == 4)

GD.ColorRGB(LIGHT_BLUE);

else

GD.ColorRGB(DARK_BLUE);

GD.Vertex2ii(240 + 70, 136 + 70);

GD.swap();

}

26 CHAPTER 2. QUICK START

The function play() plays a different note according to the pressed button,
while lighting up its circle for half a second, or 30 frames.

void play(int pressed)

{

// G R Y B

// E3 A4 C#4 E4

byte note[] = { 0, 52, 69, 61, 64 };

GD.play(BELL, note[pressed]);

for (int i = 0; i < 30; i++)

drawscreen(pressed);

for (int i = 0; i < 15; i++)

drawscreen(0);

}

get note() is the player input routine. It draws the game screen, and each
time checks GD.inputs.tag to see whether one of the buttons is pressed. As
soon as a button is pressed, it calls play() to play its note, and returns the
button value.

static int get_note()

{

byte pressed = 0;

while (pressed == 0) {

GD.random();

drawscreen(0);

if ((1 <= GD.inputs.tag) && (GD.inputs.tag <= 4))

pressed = GD.inputs.tag;

}

play(pressed);

return pressed;

}

The loop() function handles a complete game cycle. It adds a random
button to the current sequence, plays it, asks the player to repeat it, and if the

2.7. GAME: SIMON 27

player repeats the sequence perfectly, repeats. If the player makes a mistake, it
plays a taunting “lose” sound effect and returns, so the next loop() call starts
a new game.

void loop()

{

int sequence[100];

int length = 0;

while (1) {

delay(500);

sequence[length++] = random_note();

for (int i = 0; i < length; i++)

play(sequence[i]);

for (int i = 0; i < length; i++) {

int pressed = get_note();

if (pressed != sequence[i]) {

for (int i = 69; i > 49; i--) {

GD.play(BELL, i);

delay(50);

}

return;

}

}

}

}

28 CHAPTER 2. QUICK START

Chapter 3

Bitmaps

Gameduino 2’s GPU has hardware support for drawing images, which it calls
“bitmaps.” Gameduino 2 bitmaps can be:

• any size, from 1×1 pixel to 512×512

• layered on top of other bitmaps, dozens deep

• recolored and drawn with transparency

• repeated indefinitely in both x and y (known as tiling)

• rotated, zoomed and shrunk

Bitmaps’ graphic data – the bytes that represent the pixels of the bitmap –
are in the GPU’s main memory. This main memory is 256 KBytes in size.

In some ways, bitmaps are the descendants of the sprites of old video hard-
ware. In some of the code you will see the term sprite – it usually just means
a bitmap that is being moved around.

29

30 CHAPTER 3. BITMAPS

3.1 Loading a JPEG

void setup()

{

GD.begin();

GD.cmd_loadimage(0, 0);

GD.load("healsky3.jpg");

}

void loop()

{

GD.Clear();

GD.Begin(BITMAPS);

GD.Vertex2ii(0, 0);

GD.swap();

}

cmd loadimage tells the GPU to expect a JPEG to follow, and load it into
memory at address 0. load reads the file healsky3.jpg1 from the microSD
card and feeds it directly to the GPU, which loads it into graphics memory as
a bitmap. The Begin call uses BITMAPS, so each call to Vertex2ii draws the
loaded bitmap with its top-left corner at the given (x, y).

1Artwork by J. W. Bjerk (eleazzaar) – www.jwbjerk.com/art

3.2. BITMAP SIZE 31

3.2 Bitmap size

Each call to Vertex2ii draws a bitmap, so this code

GD.Clear();

GD.Begin(BITMAPS);

GD.Vertex2ii(0, 0);

GD.Vertex2ii(100, 100);

GD.Vertex2ii(200, 0);

GD.Vertex2ii(300, 100);

GD.swap();

produces

The original JPEG file was sized 128×128, so each call to Vertex2ii

paints the bitmap into a 128×128 pixel area. But you can adjust the area
painted by the bitmap using BitmapSize. For example

GD.Clear();

GD.Begin(BITMAPS);

GD.BitmapSize(NEAREST, BORDER, BORDER, 64, 64);

GD.Vertex2ii(0, 0);

GD.swap();

32 CHAPTER 3. BITMAPS

changes the bitmap size so that only a 64×64 area is drawn:

Increasing the bitmap size to 480×272 like this

GD.Clear();

GD.Begin(BITMAPS);

GD.BitmapSize(NEAREST, BORDER, BORDER, 480, 272);

GD.Vertex2ii(0, 0);

GD.swap();

does not make the bitmap bigger than the original 128×128

3.2. BITMAP SIZE 33

Why not? Well, the GPU actually is painting 480×272 pixels. But because
the source image is only 128×128, it fills in the area outside the original image
with transparent black pixels. Changing the wrapping arguments from BORDER

to REPEAT tells the GPU to repeat the source image infinitely in both directions.

GD.Clear();

GD.Begin(BITMAPS);

GD.BitmapSize(NEAREST, REPEAT, REPEAT, 480, 272);

GD.Vertex2ii(0, 0);

GD.swap();

34 CHAPTER 3. BITMAPS

3.3 Bitmap handles

void setup()

{

GD.begin();

GD.BitmapHandle(0);

GD.cmd_loadimage(0, 0);

GD.load("sunrise.jpg");

GD.BitmapHandle(1);

GD.cmd_loadimage(-1, 0);

GD.load("healsky3.jpg");

}

void loop()

{

GD.Clear();

GD.Begin(BITMAPS);

GD.Vertex2ii(0, 0, 0); // handle 0: sunrise

GD.Vertex2ii(200, 100, 1); // handle 1: healsky3

GD.swap();

}

3.3. BITMAP HANDLES 35

This code loads two JPEGs into graphics memory – a sunrise image at
address 0, and the healsky3 image. The second load image() gives -1 as the
address argument, which is a special value that tells the JPEG loader to place
the JPEG immediately after the last one in graphics memory. This is handy for
loading a series of JPEGs without having to compute their load addresses.

By setting the bitmap handle before each load, the graphics hardware can
keep track of the two images’ properties – size, format, memory address – and
drawing code can select an image using one of these two handles.

Vertex2ii has a third parameter, used when drawing BITMAPS. The pa-
rameter specifies the bitmap handle to use for drawing. If it is omitted then
handle 0 is used. Drawing 100 bitmaps with a random handle 0 or 1 gives a
random mosaic, animating furiously like Demo: fizz.

GD.Clear();

GD.Begin(BITMAPS);

for (int i = 0; i < 100; i++)

GD.Vertex2ii(GD.random(480), GD.random(272), GD.random(2));

GD.swap();

The hardware has 16 bitmap handles available for user graphics, numbered
0-15. You can re-assign bitmap handles during drawing, so a game can use
more than 16 source graphics. In practice, most games use fewer than 16
graphical elements, so they can assign the handles once in setup().

36 CHAPTER 3. BITMAPS

3.4 Bitmap pixel formats

In an ideal world, all bitmaps would be stored with unlimited color accuracy.
However, because memory – both the GPU’s and the Arduino’s – is finite, the
graphics hardware gives you various ways of balancing color precision against
memory use.

L8
Eight bits per pixel, highest
quality monochrome for-
mat.

L4
Four bits per pixel. Suit-
able for monochrome icons
or fonts.

L1
One bit per pixel. Used for
a minimal retro look. Also
sometimes a useful format
for layering and stencil ef-
fects.

3.4. BITMAP PIXEL FORMATS 37

RGB565
16 bits per pixel: five bits
for red and blue, six bits
for green. Most suitable for
photos and other artwork
without any transparency
channel.

ARGB1555
16 bits per pixel: five bits
for red, green and blue,
and a single bit for alpha.
The single-bit alpha chan-
nel allows simple on/off
transparency.

ARGB4
16 bits per pixel: four
bits each for red, green,
blue and alpha. A good
choice for artwork with
smooth transparent edges,
e.g. color icons and sprites.

RGB332
Two bits for red and blue,
three for green. Sometimes
used for images and icons.

ARGB2
Two bits each for red,
green, blue and alpha. Not
usually suitable for images,
but works well for retro
gaming sprites and low-
color icons.

38 CHAPTER 3. BITMAPS

3.5 Bitmap color

Like other drawn elements, BITMAPS are drawn using the current color.
The original image pixels are multiplied by the color, very much like viewing
the bitmap through colored glass.

GD.Clear();

GD.Begin(BITMAPS);

GD.ColorRGB(0x00ff00); // pure green

GD.Vertex2ii(240 - 130, 136 - 130, 1);

GD.ColorRGB(0xff8080); // pinkish

GD.Vertex2ii(240 , 136 - 130, 1);

GD.ColorRGB(0xffff80); // yellowish

GD.Vertex2ii(240 - 130, 136 , 1);

GD.ColorRGB(0xffffff); // white

GD.Vertex2ii(240 , 136 , 1);

GD.swap();

If the current RGB color is white (0xffffff) then the original bitmap col-
ors are used. If black (0x000000), then all pixels are drawn black.

3.6. CONVERTING GRAPHICS 39

3.6 Converting graphics

Converting graphics for the Gameduino 2 – taking images and formatting their
pixel data for use in bitmaps – can be complex. To help, the Gameduino 2 tools
include an asset converter that reads image files and produces data that can
be used in your sketch.

The output of the asset converter is a single header file, named x assets.h,
where x is the name of your sketch. This file defines a macro LOAD ASSETS()

that loads the image data into the Gameduino 2’s graphics RAM. To use it,
include the header file and then call LOAD ASSETS() immediately after calling
GD.begin():

include "walk_assets.h"

void setup()

{

GD.begin();

LOAD_ASSETS();

After the LOAD ASSETS() finishes, all the bitmaps are loaded into graphics
memory, and all the bitmap handles are set up to use the bitmaps. These
handles are also defined in the header file, so the code can use them as:

GD.Vertex2ii(x, y, WALK_HANDLE);

There are two advantages to using the asset converter, rather than load-
ing images from JPEG files. The first is that JPEGs are always loaded to an
RGB565 bitmap. There is no transparency in JPEGs, so this is the only format
supported. Second, the asset converter compresses2 the graphics losslessly,
whereas JPEG uses lossy compression. For photographic images, the differ-
ence is small. For carefully drawn game art, icons and fonts, the difference
between lossless and lossy compression can be quite noticeable.

2 The compression scheme is zlib INFLATE (http://www.zlib.net/), as used in gzip and Zip.
The GPU supports zlib INFLATE in hardware.

http://www.zlib.net/

40 CHAPTER 3. BITMAPS

3.7 Bitmap cells

These eight 32×32 ARGB1555 bitmap images are an animated walk cycle.
Because all the images are the same size and format, they can share the same
bitmap handle. The drawing commands select which image (or cell) to draw.
For bitmaps drawn with Vertex2ii the fourth parameter selects the cell. So
for example this code draws the eight animation frames across the screen:

GD.Begin(BITMAPS);

GD.Vertex2ii(0, 10, WALK_HANDLE, 0);

GD.Vertex2ii(50, 10, WALK_HANDLE, 1);

GD.Vertex2ii(100, 10, WALK_HANDLE, 2);

GD.Vertex2ii(150, 10, WALK_HANDLE, 3);

GD.Vertex2ii(200, 10, WALK_HANDLE, 4);

GD.Vertex2ii(250, 10, WALK_HANDLE, 5);

GD.Vertex2ii(300, 10, WALK_HANDLE, 6);

GD.Vertex2ii(350, 10, WALK_HANDLE, 7);

Each bitmap handle can contain up to 128 cells, and the cells are arranged
consecutively in graphics memory. Cells are useful for animation. By load-
ing the animation sequence into the cells of a single bitmap handle, you can
animate an object by changing its cell number.

Using the same eight-frame animated sequence, the walk demo animates
256 sprites in a walk cycle crossing the screen. Each sprite has a counter
that controls its x position and its animation frame. The color of the sprites
changes from black (0x000000) at the top of the screen to white (0xffffff)
at the bottom.

3.7. BITMAP CELLS 41

static int a[256];

include "walk_assets.h"

void setup()

{

GD.begin();

LOAD_ASSETS();

for (int i = 0; i < 256; i++)

a[i] = GD.random(512);

}

void loop()

{

GD.ClearColorRGB(0x000050);

GD.Clear();

GD.Begin(BITMAPS);

for (int i = 0; i < 256; i++) {

GD.ColorRGB(i, i, i);

GD.Vertex2ii(a[i], i, WALK_HANDLE, (a[i] >> 2) & 7);

a[i] = (a[i] + 1) & 511;

}

GD.swap();

}

42 CHAPTER 3. BITMAPS

3.8 Rotation, zoom and shrink

GD.ClearColorRGB(0x602010);

GD.Clear();

GD.Begin(BITMAPS);

GD.Vertex2ii(10, 72);

GD.cmd_rotate(DEGREES(22.5));

GD.cmd_setmatrix();

GD.Vertex2ii(176, 72);

GD.cmd_rotate(DEGREES(22.5));

GD.cmd_setmatrix();

GD.Vertex2ii(342, 72);

GD.swap();

Bitmap rotation and zooming is controlled by the bitmap transform matrix.
This matrix is part of the graphics state. It controls the mapping of the bitmap’s
image pixels onto the screen. Fortunately, much of the math of the transform
matrix is handled by the hardware, so we can use higher-level operations like
rotate and scale.

3.8. ROTATION, ZOOM AND SHRINK 43

Here the bitmap is being drawn three times, with 0◦, 22.5◦, and finally
45◦ clockwise rotation, because cmd rotate operations are cumulative. Parts
of the bitmap disappear as it rotates around its top-left corner. This version
shows what is happening more clearly because transparency has been turned
off using a BlendFunc of (SRC ALPHA, ZERO):

Each Vertex2ii draws 128×128 pixels, because that is the size of the bitmap.
However, the source image pixels are determined by the current bitmap trans-
form matrix, and as it changes the source image rotates.

This rotation is centered on the top-left pixel of the bitmap, pixel (0, 0). A
more useful effect is rotation about the image center, which in this case is at
bitmap pixel (64, 64). To do this, the steps are:

1. translate the image so that (64, 64) is moved to (0, 0)

2. rotate the image around (0, 0) using cmd rotate

3. translate the image back, returning pixel (0, 0) to (64, 64)

This function rotate 64 64 performs these three steps:

// Apply a rotation around pixel (64, 64)

static void rotate_64_64(uint16_t a)

{

GD.cmd_translate(F16(64),F16(64));

GD.cmd_rotate(a);

GD.cmd_translate(F16(-64), F16(-64));

}

44 CHAPTER 3. BITMAPS

It uses the cmd translate command to move the bitmap by 64 pixels in
both x and y. cmd translate uses 16.16 fixed-point values for its arguments,
for subpixel precision, so here the F16() macro does the conversion from in-
teger pixel values.

GD.ClearColorRGB(0x602010);

GD.Clear();

GD.BlendFunc(SRC_ALPHA, ZERO);

GD.Begin(BITMAPS);

GD.Vertex2ii(10, 72);

rotate_64_64(DEGREES(22.5));

GD.cmd_setmatrix();

GD.Vertex2ii(176, 72);

rotate_64_64(DEGREES(22.5));

GD.cmd_setmatrix();

GD.Vertex2ii(342, 72);

GD.swap();

3.8. ROTATION, ZOOM AND SHRINK 45

Scaling the image – either increasing the scale to zoom it, or decreasing
the scale to shrink it – uses the cmd scale command. Here a similar function
scale 64 64() applies a scale around pixel (64, 64). The first bitmap has no
scale. The second is scaled by a factor of 2.0, doubling it in size. The third
bitmap is scaled by 0.4, shrinking it.

GD.ClearColorRGB(0x602010);

GD.Clear();

GD.Begin(BITMAPS);

GD.Vertex2ii(10, 72);

scale_64_64(F16(2.0), F16(2.0));

GD.cmd_setmatrix();

GD.Vertex2ii(176, 72);

GD.cmd_loadidentity();

scale_64_64(F16(0.4), F16(0.4));

GD.cmd_setmatrix();

GD.Vertex2ii(342, 72);

GD.swap();

46 CHAPTER 3. BITMAPS

Chapter 4

More on graphics

47

48 CHAPTER 4. MORE ON GRAPHICS

4.1 Lines

To draw lines, use Begin(LINES) or LINE STRIP. LINES connects every pair
of vertices, whereas LINE STRIP joins all the vertices together.

static void zigzag(int x)

{

GD.Vertex2ii(x - 10, 10); GD.Vertex2ii(x + 10, 60);

GD.Vertex2ii(x - 10, 110); GD.Vertex2ii(x + 10, 160);

GD.Vertex2ii(x - 10, 210); GD.Vertex2ii(x + 10, 260);

}

void loop()

{

GD.Clear();

GD.Begin(LINES);

zigzag(140);

GD.Begin(LINE_STRIP);

zigzag(240);

GD.LineWidth(16 * 10);

GD.Begin(LINE_STRIP);

zigzag(340);

GD.swap();

}

4.1. LINES 49

The NightStrike game uses LINES to draw spark showers that “pop” out of
each explosion. Each spark is tracked as an object with a position (x,y), a
velocity (xv,yv), and an age. At the start of the explosion each spark is po-
sitioned at the explosion center, but has a random velocity in (xv,yv). Every
frame the sparks travel along their path, and are drawn by this code:

GD.LineWidth(GD.rsin(size, age[i] << 11));

GD.Vertex2f(x[i], y[i]);

GD.Vertex2f(x[i] + xv[i], y[i] + yv[i]);

This draws a line from the spark’s current (x, y) position to its next position.
The size of the spark (LineWidth) uses a sinusoidal formula, so that it starts
off thin, gets wide, then becomes thin again at the end of its cycle.

This 12-frame detail shows the sparks’ progress. The game runs at 60 fps,
so the spark sequence takes about 1/5th of a second.

50 CHAPTER 4. MORE ON GRAPHICS

4.2 Rectangles

To draw rectangles, use Begin(RECTS) and supply opposite corners of the
rectangle. The order of the two corners does not matter. The rectangles are
drawn with round corners, using the current line width as the corner radius.
The round corners are drawn outside the rectangle, so increasing the corner
radius draws more pixels. This example draws a 420×20 rectangle three times
with increasing corner radius.

GD.Clear();

GD.Begin(RECTS);

GD.Vertex2ii(30, 30);

GD.Vertex2ii(450, 50);

GD.LineWidth(10 * 16); // corner radius 10.0 pixels

GD.Vertex2ii(30, 120);

GD.Vertex2ii(450, 140);

GD.LineWidth(20 * 16); // corner radius 20.0 pixels

GD.Vertex2ii(30, 220);

GD.Vertex2ii(450, 230);

GD.swap();

4.3. GRADIENTS 51

4.3 Gradients

Gradients - smooth color blends across the screen - are a useful graphical
element. You could use a large background image of the gradient, but it’s
more efficient to use cmd gradient.

cmd gradient draws a smooth gradient on the whole screen, given a start-
ing point and color, and an ending point and color. In this example the starting
point is top-left (0, 0) and the starting color is deep blue (0x0060c0). The end-
ing point is bottom-left (0, 271), deep orange (0xc06000).

GD.cmd_gradient(0, 0, 0x0060c0,

0, 271, 0xc06000);

GD.cmd_text(240, 136, 31, OPT_CENTER, "READY PLAYER ONE");

GD.swap();

These two points produce a vertical gradient, but cmd gradient can draw
gradients at any angle. You can get a horizontal or diagonal gradient by ap-
propriate placement of the two control points.

cmd gradient used like this writes every pixel on the screen, so it can be
used in place of Clear. To draw a gradient on part of the screen, you can use
ScissorXY and ScissorSize to limit drawing to a rectangular area. For more
complex shapes, cmd gradient can be used with a stencil test.

52 CHAPTER 4. MORE ON GRAPHICS

4.4 Blending

GD.Begin(POINTS); // draw 50-pixel wide green circles

GD.ColorRGB(20, 91, 71);

GD.PointSize(50 * 16);

for (int x = 100; x <= 380; x += 40)

GD.Vertex2ii(x, 72);

GD.BlendFunc(SRC_ALPHA, ONE); // additive blending

for (int x = 100; x <= 380; x += 40)

GD.Vertex2ii(x, 200);

Usually each drawn pixel replaces the pixel that was on the screen. This
is useful for layering, but sometimes you need a different mixing operation.
BlendFunc controls this operation. The first argument to BlendFunc is the
source blend factor, which controls the incoming color pixels. The second is
the destination blend factor, which similarly controls the pixels that are already
in the color buffer. After the blend factors have modified the colors, the two
results are summed to produce the final pixel color.

4.4. BLENDING 53

incoming
pixel color

source
blend factor

existing
pixel color

destination
blend factor

× ×

+

final pixel
color

The default mode is BlendFunc(SRC ALPHA, ONE MINUS SRC ALPHA), which
means that the incoming pixel color is mixed with the existing screen color in
proportion to the alpha channel value.

Another frequently used mode is BlendFunc(SRC ALPHA, ONE). The ONE

factor for the destination means that the incoming pixel color is added to the
existing pixel color. This is useful for glows and overlays. In the code above
you can see this mode means that every disk drawn is added to the existing
screen contents, so their brightness accumulates.

BlendFunc(SRC ALPHA, ZERO) is the replace operation; it disables trans-
parency. The ZERO factor for the destination means that existing screen pixels
are discarded at the blending stage.

54 CHAPTER 4. MORE ON GRAPHICS

4.5 Fonts

The Gameduino 2’s GPU has sixteen built-in fonts, numbered 16-31. Num-
bers 26-31 are the high-quality anti-aliased fonts. You can also load TrueType
(.ttf) fonts using the asset converter (see Converting graphics on p.39). After
loading it, you can use the new font with any of the drawing commands.

byte font = NIGHTFONT_HANDLE;

GD.cmd_text(240, 40, font, OPT_CENTER, "abcdefghijklm");

GD.cmd_text(240, 100, font, OPT_CENTER, "nopqrstuvwxyz");

GD.cmd_text(240, 160, font, OPT_CENTER, "ABCDEFGHIJKLM");

GD.cmd_text(240, 220, font, OPT_CENTER, "NOPQRSTUVWXYZ");

4.6. SUBPIXEL COORDINATES 55

4.6 Subpixel coordinates

So far all drawing has used Vertex2ii to supply the vertices. Vertex2ii

can only handle (x, y) that are integers in the range 0-511. What if you want
to supply a vertex with a negative coordinate, or a coordinate that isn’t on an
exact pixel? In these cases, you can use Vertex2f, which uses a finer scale
for x and y, and has a much larger range. Vertex2f coordinates are in 16ths
of a pixel. So this call using Vertex2ii:

GD.Vertex2ii(1, 100);

becomes this call using Vertex2f:

GD.Vertex2f(16, 1600);

but it is often clearer to multiply by 16 explicitly in the code, like this:

GD.Vertex2f(16 * 1, 16 * 100);

Vertex2f draws POINTS, LINES and RECTS with much finer precision. Each
of these 16 points is drawn with a y coordinate that increases by 1/16th of a
pixel. As you can see, the graphics system adjusts the shading of the pixels
very slightly as the point moves downwards by 1/16th of a pixel. This extra
precision means that “pixel” effects are much less noticable.

56 CHAPTER 4. MORE ON GRAPHICS

4.7 Angles in Furmans

The GD library refers to angles in several places:

• the cmd rotate command, which rotates bitmaps, takes an angle pa-
rameter

• the cmd dial command draws a dial widget at a particular angle

• the widget tracking system, controlled by cmd track, reports the angle
of rotary widgets

• the rsin, rcos, polar and atan2 math functions all use angles

In each case, the angle is specified in Furmans, not in degrees or radians.
A Furman is an angle measure; there are 65536 Furmans in a circle. So

1 Furman =
1

65536
circle =

360

65536
degrees =

2π

65536
radians

Orientations are represented by clockwise angles, with an angle of 0 mean-
ing straight down:

0x8000

0xa000

0xc000

0xe000

0

0x2000

0x4000

0x6000

As a convenience, the GD library defines a macro DEGREES(), which converts
angles in degrees to Furmans:

#define DEGREES(n) ((65536UL * (n)) / 360)

4.7. ANGLES IN FURMANS 57

The advantage of representing angles as Furmans is that they make angular
arithmetic significantly cheaper. For example, when incrementing angles for a
rotating object, normal 16-bit arithmetic means that the Furman measurement
wraps from 65535 back to zero.

In the NightStrike game the player’s touch controls the angle of the gun
turret. At startup, the game requests the GPU track angles for any touch on
tag number 0x01:

GD.cmd_track(240, 271, 1, 1, 0x01);

After the cmd track command, GD.inputs.track val holds the angle in Fur-
mans from screen position (240, 271) to the touch location. The game copies
this value into the turret’s angle variable.

if ((GD.inputs.track_tag & 0xff) == 1)

turret.angle = GD.inputs.track_val;

When the turret is drawn, the angle variable is used with cmd rotate to
rotate the turret’s bitmap, which is in the “0 Furmans” orientation:

58 CHAPTER 4. MORE ON GRAPHICS

4.8 The context stack

static void blocktext(int x, int y, byte font, const char *s)

{

GD.SaveContext();

GD.ColorRGB(0x000000);

GD.cmd_text(x-1, y-1, font, 0, s);

GD.cmd_text(x+1, y-1, font, 0, s);

GD.cmd_text(x-1, y+1, font, 0, s);

GD.cmd_text(x+1, y+1, font, 0, s);

GD.RestoreContext();

GD.cmd_text(x, y, font, 0, s);

}

The function blocktext, used in NightStrike’s title screen, draws the string
s with a black outline around the text. To do this, it changes the color to black
using ColorRGB, and draws the text four times slightly offset. Now it needs to
draw the text itself, in the original color. But the original color is lost, because
it was changed to black.

The SaveContext preserves all the graphics state – including the color
– in a private storage area. When RestoreContext executes, it copies this
saved state back. Hence the color is restored to the value it had at the original
SaveContext.

Using SaveContext or RestoreContext, functions can change graphics
state, and then restore it afterwards. As far as any caller is concerned, the
function leaves the state untouched. The GPU has enough internal storage to
preserve three extra copies of the graphics state in this way.

Chapter 5

Touch

5.1 Reading the touch inputs

The function get inputs reads all the Gameduino 2’s inputs, including the
touch sensors. After making this call, you can read the touch coordinates from
GD.inputs.x and GD.inputs.y. The best time in the game cycle to sense
inputs is just before starting to draw the screen, so a frequent pattern is:

GD.get_inputs();

GD.Clear();

If there is no touch, then both GD.inputs.x and GD.inputs.y are set to
-32768. The touch (x, y) are screen pixel coordinates, so they range (0 ≤ x ≤
479) and (0 ≤ y ≤ 271). To convert these pixel coordinates into subpixel
coordinates, multiply by 16. For example:

blobs[blob_i].x = GD.inputs.x << 4;

blobs[blob_i].y = GD.inputs.y << 4;

59

60 CHAPTER 5. TOUCH

5.2 Demo: blobs

The “blobs” demo lets you sketch a trail of groovy expanding colored circles
with a finger or stylus. The code keeps track of 128 points, animating each
with radius and alpha to create a pleasing “fade out” effect.

At startup, begin() sets all the blobs’ positions to off screen.

define NBLOBS 128

define OFFSCREEN -16384

struct xy {

int x, y;

} blobs[NBLOBS];

void setup()

{

GD.begin();

for (int i = 0; i < NBLOBS; i++) {

blobs[i].x = OFFSCREEN;

blobs[i].y = OFFSCREEN;

}

}

5.2. DEMO: BLOBS 61

If the screen is being touched, the subpixel coordinates of the touch are
added into the blobs ring. Each blob’s transparency and radius depends on
its age. The “random” color is actually computed using modulo arithmetic.

void loop()

{

static byte blob_i;

GD.get_inputs();

if (GD.inputs.x != -32768) {

blobs[blob_i].x = GD.inputs.x << 4;

blobs[blob_i].y = GD.inputs.y << 4;

} else {

blobs[blob_i].x = OFFSCREEN;

blobs[blob_i].y = OFFSCREEN;

}

blob_i = (blob_i + 1) & (NBLOBS - 1);

GD.ClearColorRGB(0xe0e0e0);

GD.Clear();

GD.Begin(POINTS);

for (int i = 0; i < NBLOBS; i++) {

// Blobs fade away and swell as they age

GD.ColorA(i << 1);

GD.PointSize((1024 + 16) - (i << 3));

// Random color for each blob, keyed from (blob_i + i)

uint8_t j = (blob_i + i) & (NBLOBS - 1);

byte r = j * 17;

byte g = j * 23;

byte b = j * 147;

GD.ColorRGB(r, g, b);

// Draw it!

GD.Vertex2f(blobs[j].x, blobs[j].y);

}

GD.swap();

}

62 CHAPTER 5. TOUCH

5.3 Tags

Tagging is a GPU feature that makes touch detection easier. In many situations
the exact coordinates of the touch are not important – you are only interested
in what has been touched. As you draw each object on the screen, you can
tag its pixels with a byte value. For example, to create a ’OK’ button, you can
tag its pixels with code 44. Then each time the user touches the button, the
number 44 appears in the tag register. Tag values are a single byte, ranging
from 0 to 255. However, the hardware uses a tag value of 255 to indicate “no
touch”, so the usable range of values is 0 to 254.

This example sets the Tag value before drawing each number. Because the
pixels belonging to each number are then “tagged”, GD.inputs.tag is set to
the number being currently touched, and the Arduino can access it and print
it on the serial output.

GD.Clear();

for (int i = 0; i <= 254; i++) {

GD.Tag(i);

GD.cmd_number((i % 16) * 30, (i / 16) * 17, 26, 0, i);

}

GD.swap();

GD.get_inputs();

5.4. SKETCHING 63

5.4 Sketching

Sketching here means taking touch input and plotting pixels. The Game-
duino 2 GPU has built-in sketching so you can ‘paint’ pixels into the bitmap
without any input from the Arduino. The cmd sketch command starts sketch-
ing. When you want sketching to stop, call cmd stop. Note the call to
GD.flush(). This forces any buffered commands to the GPU immediately.

void setup()

{

GD.begin();

GD.cmd_memset(0, 0, 480UL * 272UL); // clear the bitmap

GD.Clear(); // draw the bitmap

GD.BitmapLayout(L8, 480, 272);

GD.BitmapSize(NEAREST, BORDER, BORDER, 480, 272);

GD.Begin(BITMAPS);

GD.Vertex2ii(0, 0);

GD.swap();

GD.cmd_sketch(0, 0, 480, 272, 0, L8); // start sketching

GD.finish(); // flush all commands

}

void loop() { }

64 CHAPTER 5. TOUCH

5.5 Widgets and tracking controls

Gameduino 2 has a rich set of widgets: dials, buttons, gauges, sliders and
scroll bars. To help manage the user interactions with the adjustable widgets,
a feature called tracking controls extends the simple tag system. Using tags,
the program can know when an object is touched. With a tracking control, the
program can also know the relative position of the touch.

The widgets demo draws all widget types, and for the three adjustable
widgets – the dial, slider and toggle – uses tracking controls to manage their
touches. Each adjustable widget is drawn with a unique tag value, here 200,
201 and 202.

200

201

202

5.5. WIDGETS AND TRACKING CONTROLS 65

The program then tells the GPU to track touches on the three regions. First
it draws the dial with tag 200. Then it calls cmd track so that the GPU will
track touches for that particular tag, and compute the position relative to pixel
position (68, 68), the center of the dial:

GD.Tag(TAG_DIAL);

GD.cmd_dial(68, 68, 50, options, value);

GD.cmd_track(68, 68, 1, 1, TAG_DIAL);

Similarly for the linear widgets, the slider and toggle:

GD.Tag(TAG_SLIDER);

GD.cmd_slider(16, 199, 104, 10, options, value, 65535);

GD.cmd_track(16, 199, 104, 10, TAG_SLIDER);

GD.Tag(TAG_TOGGLE);

GD.cmd_toggle(360, 62, 80, 29, options, value,

"that" "\xff" "this");

GD.cmd_track(360, 62, 80, 20, TAG_TOGGLE);

With these set up, the program can detect a relative touch on any widget
by reading GD.inputs.track tag and GD.inputs.track val. The value in
GD.inputs.track val is an unsigned 16-bit number in the range 0-65535.
For the rotary track – the dial – this is the touch angle in Furmans. For the
linear tracks, it is the touch position within the rectangle. 0 means far left and
65535 means far right.

switch (GD.inputs.track_tag & 0xff) {

case TAG_DIAL:

case TAG_SLIDER:

case TAG_TOGGLE:

value = GD.inputs.track_val;

}

66 CHAPTER 5. TOUCH

Chapter 6

Sound

Gameduino 2 has two sound systems. The first – the synthesizer – can gen-
erate a set of fixed sounds and musical notes. The synthesizer is useful for
quickly adding audio to a project, but because the sound set is fixed, is not
very flexible. The second is the sample playback. It plays sampled audio from
main memory in a variety of formats. This system is much more flexible but
you will need to prepare and load samples into RAM.

6.1 Clicks and pops

The synthesizer provides several short “percussive” sounds, mostly for use in
user interfaces. To trigger the sound, call GD.play() with the sound ID. The
full list of available sounds is:

CLICK

SWITCH

COWBELL

NOTCH

HIHAT

KICKDRUM

POP

CLACK

CHACK

67

68 CHAPTER 6. SOUND

6.2 Instrument playback

The synthesizer can also produce musical instrument notes. Again, calling
GD.play() triggers the sound, and the first parameter is an instrument:

HARP

XYLOPHONE

TUBA

GLOCKENSPIEL

ORGAN

TRUMPET

PIANO

CHIMES

MUSICBOX

BELL

In this case GD.play() also accepts an optional second argument that specifies
a MIDI note number in the range 21 to 108. If this argument is omitted then
it plays in C4, MIDI note 60.

The synthesizer can also play a few other miscellaneous sounds. Instru-
ments SQUAREWAVE, SINEWAVE, SAWTOOTH and TRIANGLE generate continuous
simple waves, useful for retro effects. Instruments BEEPING, ALARM, WARBLE
and CAROUSEL generate various alarm tones. And the ASCII codes ’0’ - ’9’, ’*’
and ’#’ generate the corresponding touch-tone DTMF tones.

To detect when a note has finished playing, read the hardware’s PLAY reg-
ister. When it is zero, the note is finished:

GD.play(PIANO, 60);

while (GD.rd(REG_PLAY) != 0)

;

6.2. INSTRUMENT PLAYBACK 69

MIDI note ANSI note freq. (Hz)
21 A0 27.5
22 A#0 29.1
23 B0 30.9
24 C1 32.7
25 C#1 34.6
26 D1 36.7
27 D#1 38.9
28 E1 41.2
29 F1 43.7
30 F#1 46.2
31 G1 49.0
32 G#1 51.9
33 A1 55.0
34 A#1 58.3
35 B1 61.7
36 C2 65.4
37 C#2 69.3
38 D2 73.4
39 D#2 77.8
40 E2 82.4
41 F2 87.3
42 F#2 92.5
43 G2 98.0
44 G#2 103.8
45 A2 110.0
46 A#2 116.5
47 B2 123.5
48 C3 130.8
49 C#3 138.6
50 D3 146.8
51 D#3 155.6
52 E3 164.8
53 F3 174.6
54 F#3 185.0
55 G3 196.0
56 G#3 207.7
57 A3 220.0
58 A#3 233.1
59 B3 246.9
60 C4 261.6
61 C#4 277.2
62 D4 293.7
63 D#4 311.1
64 E4 329.6

MIDI note ANSI note freq. (Hz)
65 F4 349.2
66 F#4 370.0
67 G4 392.0
68 G#4 415.3
69 A4 440.0
70 A#4 466.2
71 B4 493.9
72 C5 523.3
73 C#5 554.4
74 D5 587.3
75 D#5 622.3
76 E5 659.3
77 F5 698.5
78 F#5 740.0
79 G5 784.0
80 G#5 830.6
81 A5 880.0
82 A#5 932.3
83 B5 987.8
84 C6 1046.5
85 C#6 1108.7
86 D6 1174.7
87 D#6 1244.5
88 E6 1318.5
89 F6 1396.9
90 F#6 1480.0
91 G6 1568.0
92 G#6 1661.2
93 A6 1760.0
94 A#6 1864.7
95 B6 1975.5
96 C7 2093.0
97 C#7 2217.5
98 D7 2349.3
99 D#7 2489.0

100 E7 2637.0
101 F7 2793.8
102 F#7 2960.0
103 G7 3136.0
104 G#7 3322.4
105 A7 3520.0
106 A#7 3729.3
107 B7 3951.1
108 C8 4186.0

70 CHAPTER 6. SOUND

6.3 Samples

Gameduino 2’s audio system can also play back samples. The sample playback
system is independent – you can play a sample while playing a fixed sound,
and the hardware will mix the two sounds together, according to their assigned
volumes.

To play back a sample from memory, call GD.sample with the sample’s base
address, length, frequency and format as arguments. So if you have a ULAW
sample at address 0, of length 22050 bytes, with frequency 44100 Hz, you
play it by calling:

GD.sample(0, 22050, 44100, ULAW_SAMPLES);

Three sample formats are supported:

format bit per sample encoding

LINEAR SAMPLES 8 signed 8-bit linear, -128 to 127
ULAW SAMPLES 8 standard 8-bit encoded µ-law
ADPCM SAMPLES 4 standard IMA ADPCM

Gameduino 2’s asset converter tool (see Converting graphics on p.39) con-
verts mono .wav files to any of these formats. The hardware supports playback
rates up to 48 kHz, and at this rate the sound quality of ADPCM samples is
similar to AM radio. Of course this rate uses 24 kBytes/s of memory. To save
memory, use ADPCM with a low sample rate. The noisy demo plays back
voice samples of the digits 0-9, encoded in ADPCM at 8 kHz. The samples are
quite intelligible, and together take about 26 kBytes of graphics memory.

Note that there is a hardware-imposed restriction on the arguments to
GD.sample(). The base address and length must be multiples of 8. How-
ever, the asset converter tool aligns and pads samples automatically, so that
you don’t need to do anything special.

6.3. SAMPLES 71

include <EEPROM.h>

include <SPI.h>

include <GD2.h>

include "noisy_assets.h"

void setup()

{

GD.begin();

LOAD_ASSETS();

}

static void saydigit(byte n)

{

uint32_t base, len;

switch (n) {

case 0: base = DIGIT_0; len = DIGIT_0_LENGTH; break;

case 1: base = DIGIT_1; len = DIGIT_1_LENGTH; break;

case 2: base = DIGIT_2; len = DIGIT_2_LENGTH; break;

case 3: base = DIGIT_3; len = DIGIT_3_LENGTH; break;

case 4: base = DIGIT_4; len = DIGIT_4_LENGTH; break;

case 5: base = DIGIT_5; len = DIGIT_5_LENGTH; break;

case 6: base = DIGIT_6; len = DIGIT_6_LENGTH; break;

case 7: base = DIGIT_7; len = DIGIT_7_LENGTH; break;

case 8: base = DIGIT_8; len = DIGIT_8_LENGTH; break;

case 9: base = DIGIT_9; len = DIGIT_9_LENGTH; break;

}

GD.sample(base, len, 8000, ADPCM_SAMPLES);

}

void loop()

{

saydigit(GD.random(10)); delay(1000);

}

72 CHAPTER 6. SOUND

6.4 Continuous playback

For long samples, keeping the entire sample in graphics memory is usually
not practical. Instead the hardware’s sample playback system can continuously
play back a loop of samples, while the Arduino keeps the loop fed with fresh
samples from SDcard. The Streamer class in the GD2 library conveniently
handles these details. To use it, call its begin() method with the name of a
music file on the microSD card. Streamer defaults to a sample rate of 44.1
kHz, and IMA ADPCM sample encoding. It uses a 4K buffer for the streaming
samples, located at the very top of graphics memory.

Calling Streamer’s feed() method reads samples from the file into the
buffer. Your application should call feed() often enough to prevent the buffer
running out of samples. Here the code calls stream.feed() once per frame.

Streamer can also tell how far the file has progressed. progress() returns
a pair of 16-bit numbers, val and range, which represent progress as a fraction
(val/range). This example passes val and range directly to a cmd slider

widget.
If you have the sox audio utility installed, you can convert .wav samples

to ADPCM IMA format on the command-line like this:

$ sox mesmeriz.wav -c 1 mesmeriz.ima

$ play -r 44100 mesmeriz.ima

6.4. CONTINUOUS PLAYBACK 73

The play plays back the converted file. Because .ima is a headerless for-
mat, play needs to know the sample rate, in this case 44100 Hz.

include <EEPROM.h>

include <SPI.h>

include <GD2.h>

define MUSICFILE "mesmeriz.ima"

static Streamer stream;

void setup()

{

GD.begin();

stream.begin(MUSICFILE);

}

void loop()

{

GD.cmd_gradient(0, 40, 0x282830,

0, 272, 0x606040);

GD.cmd_text(240, 100, 31, OPT_CENTER, MUSICFILE);

uint16_t val, range;

stream.progress(val, range);

GD.cmd_slider(30, 160, 420, 8, 0, val, range);

GD.swap();

GD.finish();

stream.feed();

}

74 CHAPTER 6. SOUND

Chapter 7

Accelerometer

Gameduino 2 has a 3-axis accelerometer sensor connected to the Arduino’s
analog inputs A0, A1 and A2. To read the accelerometer inputs, call get accel

like this:

int x, y, z;

GD.get_accel(x, y, z);

75

76 CHAPTER 7. ACCELEROMETER

get accel() corrects the values so that the force of gravity, 1G, gives a de-
flection in x, y or z of 256. Tilting Gameduino 2 all the way to the left, for
example, gives x = -256, y = 0, z =0. Because the accelerometer is an analog
input, these values are only approximate, and in the tilt demo you can see
that there is a little “noise” in the accelerometer reports.

include <EEPROM.h>

include <SPI.h>

include <GD2.h>

void setup()

{

GD.begin();

}

void loop()

{

GD.get_inputs();

int x, y, z;

GD.get_accel(x, y, z);

GD.Clear();

GD.LineWidth(16 * 3);

int xp = 240 + x;

int yp = 136 + y;

GD.Begin(LINES);

GD.Vertex2f(16 * 240, 16 * 136);

GD.Vertex2f(16 * xp, 16 * yp);

GD.PointSize(16 * 40);

GD.Begin(POINTS);

GD.Vertex2f(16 * xp, 16 * yp);

GD.swap();

}

Chapter 8

MicroSD card

Gameduino 2 includes a standard microSD card slot. It is connected to the
same SPI bus as Gameduino 2’s GPU, and is enabled by Arduino pin 9. There
are several software libraries available for driving microSD cards. The GD
library includes a lightweight library that handles FAT microSD cards, and
integrates with the GD graphics system.

MicroSD files are usually fed directly to the GPU’s command stream. The
GD.load() command does exactly this: it reads a file from the microSD card
and copies its contents to the Gameduino 2 ’s GPU. For example, to load a
JPEG file, executing:

GD.cmd_loadimage(0);

GD.load("kitten.jpg");

The cmd loadimage tells the GPU to expect a JPEG, and then load streams
all the JPEG data into the GPU. As another example, loading 16 Kbytes of raw
data from “mem.raw” from the microSD card can be done with:

GD.cmd_memwrite(0, 16384);

GD.load("mem.raw");

77

78 CHAPTER 8. MICROSD CARD

Again, cmd memwrite tells the GPU to expect the following data, and then
load streams the data in.

The files with suffix .gd2 created by the asset converter (Converting graph-
ics on p.39) are pure command streams, just by executing:

GD.load("frogger.gd2");

all the graphics required by the frogger game are loaded into memory, and
all bitmap handles are set up. When the asset converter generates the header
file frogger assets.h, it includes a line:

#define LOAD_ASSETS() GD.load("frogger.gd2")

So the frogger sketch can just use LOAD ASSETS() in its setup() to set up all
its graphics resources.

Part II

Reference

79

Chapter 9

Drawing commands

81

82 CHAPTER 9. DRAWING COMMANDS

9.1 AlphaFunc

Sets the alpha-test function

void AlphaFunc(byte func,

byte ref);

func comparison function, one of NEVER, LESS, LEQUAL, GREATER,
GEQUAL, EQUAL, NOTEQUAL, or ALWAYS

ref reference value for comparison function

The alpha test function tests each pixel’s alpha value, and only draws the
pixel if the test passes. For example

GD.AlphaText(GEQUAL, 160);

means that only pixels with (A ≥ 160) are drawn. The default state is ALWAYS,
which means that pixels are always drawn.

GD.Begin(BITMAPS);

GD.Vertex2ii(110, 6); // Top left: ALWAYS

GD.AlphaFunc(EQUAL, 255); // Top right: (A == 255)

GD.Vertex2ii(240, 6);

GD.AlphaFunc(LESS, 160); // Bottom left: (A < 160)

GD.Vertex2ii(110, 136);

GD.AlphaFunc(GEQUAL, 160); // Bottom right: (A >= 160)

GD.Vertex2ii(240, 136);

9.2. BEGIN 83

9.2 Begin

Selects the graphics primitive for drawing

void Begin(byte prim);

prim one of BITMAPS, POINTS, LINES, LINE STRIP, EDGE STRIP R,
EDGE STRIP L, EDGE STRIP A, EDGE STRIP B or RECTS

The Begin command sets the current graphics draw primitve. It does not
draw anything - that is done by a later Vertex2f or Vertex2ii command. The
drawing primitive can be:

BITMAPS each vertex draws a bitmap
POINTS each vertex draws an anti-aliased point
LINES each pair of vertices draws an anti-aliased line
RECTS each pair of vertices draws an anti-aliased rectangle
LINE STRIP the vertices define a connected line segment
EDGE STRIP A like LINE STRIP, but draws pixels above the line
EDGE STRIP B like LINE STRIP, but draws pixels below the line
EDGE STRIP L like LINE STRIP, but draws pixels left of the line
EDGE STRIP R like LINE STRIP, but draws pixels right of the line

84 CHAPTER 9. DRAWING COMMANDS

9.3 BitmapHandle

Sets the bitmap handle

void BitmapHandle(byte handle);

handle integer handle number, 0-15

The BitmapHandle command sets the current bitmap handle, used by Vertex2f,
BitmapSource, BitmapLayout and BitmapSize.

The bitmap handle is part of the graphics context; its default value is 0.

9.4. BITMAPLAYOUT 85

9.4 BitmapLayout

Sets the bitmap layout

void BitmapLayout(byte format,

uint16_t linestride,

uint16_t height);

format pixel format of the bitmap, one of: ARGB1555, L1, L4, L8,
RGB332, ARGB2, ARGB4, RGB565, PALETTED, TEXT8X8, TEXTVGA,
BARGRAPH.

linestride the size in bytes of one line of the bitmap in memory

height height of the bitmap in pixels

The BitmapLayout command sets the current bitmap’s layout in memory.
The format controls how memory data is converted into pixels. Each pixel in
memory is 1,4,8 or 16 bits. The color is extracted from these bits as follows,
where “v” is the pixel data.

format bits per alpha red green blue
pixel

L1 1 v0 1.0 1.0 1.0
L4 4 v3..0 1.0 1.0 1.0
L8 8 v7..0 1.0 1.0 1.0

RGB332 8 1.0 v7..5 v4..2 v1..0
RGB565 16 1.0 v15..1 v10..5 v4..0
ARGB2 8 v7..6 v5..4 v3..2 v1..0
ARGB4 16 v15..12 v11..8 v7..4 v3..0

1 and 4 bit pixels are packed in bytes from left to right, so leftmost pixels
in the bitmap occupy the most significant bits in a byte. 16 bit pixels are little-
endian in graphics memory, and must be aligned on even memory boundaries.

PALETTED format uses 8 bits per pixel, each pixel is an index into the 256
entry 32-bit color table loaded at RAM PALETTE.

86 CHAPTER 9. DRAWING COMMANDS

9.5 BitmapSize

Sets the bitmap size and appearance

void BitmapSize(byte filter,

byte wrapx,

byte wrapy,

uint16_t width,

uint16_t height);

filter bitmap pixel filtering, NEAREST or BILINEAR

wrapx x wrapping mode, BORDER or REPEAT

wrapy y wrapping mode, BORDER or REPEAT

width on-screen drawn width, in pixels

height on-screen drawn height, in pixels

The BitmapSize command controls how the current bitmap appears on
screen.

9.6. BITMAPSOURCE 87

9.6 BitmapSource

Sets the bitmap source address

void BitmapSource(uint32_t addr);

addr base address for bitmap 0x00000 - 0x3ffff

The BitmapSource command sets the base address for the bitmap. For
16-bit bitmaps, this address must be even.

88 CHAPTER 9. DRAWING COMMANDS

9.7 BlendFunc

Sets the color blend function

void BlendFunc(byte src,

byte dst);

src source blend factor, one of ZERO, ONE, SRC ALPHA, DST ALPHA,
ONE MINUS SRC ALPHA, ONE MINUS DST ALPHA.

dst destination blend factor, one of ZERO, ONE, SRC ALPHA,
DST ALPHA, ONE MINUS SRC ALPHA, ONE MINUS DST ALPHA.

The BlendFunc command sets the blend function used to combine pixels
with the contents of the frame buffer. Each incoming pixel’s color is multiplied
by the source blend factor, and each frame buffer pixel is multiplied by the
destination blend factor. These two results are added to give the final pixel
color.

GD.Begin(POINTS);

GD.ColorRGB(0xf88017);

GD.PointSize(80 * 16);

GD.BlendFunc(SRC_ALPHA, ONE_MINUS_SRC_ALPHA);

GD.Vertex2ii(150, 76); GD.Vertex2ii(150, 196);

GD.BlendFunc(SRC_ALPHA, ONE);

GD.Vertex2ii(330, 76); GD.Vertex2ii(330, 196);

9.8. CELL 89

9.8 Cell

Sets the bitmap cell

void Cell(byte cell);

cell cell number 0-127

The Cell command sets the current bitmap cell used by the Vertex2f

command.

GD.Begin(BITMAPS);

GD.Vertex2ii(0, 10, WALK_HANDLE, 0);

GD.Vertex2ii(50, 10, WALK_HANDLE, 1);

GD.Vertex2ii(100, 10, WALK_HANDLE, 2);

GD.Vertex2ii(150, 10, WALK_HANDLE, 3);

GD.Vertex2ii(200, 10, WALK_HANDLE, 4);

GD.Vertex2ii(250, 10, WALK_HANDLE, 5);

GD.Vertex2ii(300, 10, WALK_HANDLE, 6);

GD.Vertex2ii(350, 10, WALK_HANDLE, 7);

90 CHAPTER 9. DRAWING COMMANDS

9.9 ClearColorA

Sets the alpha component of the clear color

void ClearColorA(byte alpha);

alpha Clear color alpha component, 0-255

The ClearColorA command sets the clear color A channel value. A subse-
quent Clear writes this value to the frame buffer alpha channel.

9.10. CLEAR 91

9.10 Clear

Clears the screen

void Clear(byte c = 1,

byte s = 1,

byte t = 1);

c if set, clear the color buffer

s if set, clear the stencil buffer

t if set, clear the tag buffer

The Clear command clears the requested frame buffers.

GD.ClearColorRGB(0x0000ff); // Clear color to blue

GD.ClearStencil(0x80); // Clear stencil to 0x80

GD.ClearTag(100); // Clear tag to 100

GD.Clear(1, 1, 1); // Go!

92 CHAPTER 9. DRAWING COMMANDS

9.11 ClearColorRGB

Sets the R,G,B components of the clear color

void ClearColorRGB(byte red,

byte green,

byte blue);

void ClearColorRGB(uint32_t rgb);

red red component 0-255

green green component 0-255

blue blue component 0-255

rgb 24-bit color in RGB order, 0x000000-0xffffff

The ClearColorRGB command sets the clear color R,G and B values. A
subsequent Clear writes this value to the frame buffer R,G and B channels.

GD.ClearColorRGB(0x008080); // teal

GD.Clear();

GD.ScissorSize(100, 200);

GD.ScissorXY(10, 20);

GD.ClearColorRGB(0xf8, 0x80, 0x17); // orange

GD.Clear();

9.12. CLEARSTENCIL 93

9.12 ClearStencil

Sets the stencil clear value

void ClearStencil(byte s);

s stencil buffer clear value 0-255

The ClearStencil command sets the stencil buffer clear value. A subse-
quent Clear writes this value to the stencil buffer.

94 CHAPTER 9. DRAWING COMMANDS

9.13 ClearTag

Sets the tag clear value

void ClearTag(byte s);

s tag value 0-255

The ClearTag command sets the tag buffer clear value. A subsequent
Clear writes this value to the tag buffer.

9.14. COLORA 95

9.14 ColorA

Sets the A component of the current color

void ColorA(byte alpha);

alpha alpha value 0-255

The ColorA command sets the alpha component of the current drawing
color.

GD.Begin(POINTS);

GD.PointSize(12 * 16);

for (int i = 0; i < 255; i += 5) {

GD.ColorA(i);

GD.Vertex2ii(2 * i, 136 + GD.rsin(120, i << 8));

}

96 CHAPTER 9. DRAWING COMMANDS

9.15 ColorMask

Sets the mask controlling color channel writes

void ColorMask(byte r,

byte g,

byte b,

byte a);

r if set, enable writes to the red component

g if set, enable writes to the green component

b if set, enable writes to the blue component

a if set, enable writes to the alpha component

The ColorMask command sets the color mask, which enables color writes
to the frame buffer R,G,B and A components.

GD.Begin(POINTS);

GD.ColorMask(1, 0, 0, 0); // red only

GD.Vertex2ii(240 - 100, 136);

GD.ColorMask(0, 1, 0, 0); // green only

GD.Vertex2ii(240, 136);

GD.ColorMask(0, 0, 1, 0); // blue only

GD.Vertex2ii(240 + 100, 136);

9.16. COLORRGB 97

9.16 ColorRGB

Sets the R,G,B components of the current color

void ColorRGB(byte red,

byte green,

byte blue);

void ColorRGB(uint32_t rgb);

red red component 0-255

green green component 0-255

blue blue component 0-255

rgb 24-bit color in RGB order, 0x000000-0xffffff

The ColorRGB command sets the current color. This color is used by all
drawing operations.

GD.Begin(RECTS);

GD.ColorRGB(255, 128, 30); // orange

GD.Vertex2ii(10, 10); GD.Vertex2ii(470, 130);

GD.ColorRGB(0x4cc417); // apple green

GD.Vertex2ii(10, 140); GD.Vertex2ii(470, 260);

98 CHAPTER 9. DRAWING COMMANDS

9.17 LineWidth

Set the line width

void LineWidth(uint16_t width);

width line width in 1/16th of a pixel

The LineWidth command sets the line width used when drawing LINES

and LINE STRIP. The width is specified in 1/16th of a pixel, so LineWidth(16)

sets the width to 1 pixel. Note that the width is the distance from the center
of the line to its outside edge, rather like the radius of a circle. So the total
width of the line is double the value specified.

The maximum line width is 4095, or 255 15
16 pixels.

GD.Begin(LINES);

for (int i = 0; i < 136; i++) {

GD.ColorRGB(GD.random(255), GD.random(255), GD.random(255));

GD.LineWidth(i);

GD.polar(x, y, i, i * 2500);

GD.Vertex2ii(240 + x, 136 + y);

}

9.18. POINTSIZE 99

9.18 PointSize

Set the point size

void PointSize(uint16_t size);

size point size in 1/16th of a pixel

The PointSize command sets the point size used when drawing POINTS.
The size is specified in 1/16th of a pixel, so LineWidth(16) sets the width to
1 pixel. Note that the size is the distance from the center of the point to its
outside edge, that is, the radius. So the total width of the point is double the
value specified.

The maximum point size is 4095, or 255 15
16 pixels.

GD.Begin(POINTS);

for (int i = 0; i < 136; i++) {

GD.ColorRGB(GD.random(255), GD.random(255), GD.random(255));

GD.PointSize(i);

GD.polar(x, y, i, i * 2500);

GD.Vertex2ii(240 + x, 136 + y);

}

100 CHAPTER 9. DRAWING COMMANDS

9.19 RestoreContext

Restore the drawing context to a previously saved state

void RestoreContext(void);

The collected graphics state is called the graphics context. The SaveContext
command saves a copy of this state, and the RestoreContext command re-
stores this saved copy.

The hardware can preserve up to four graphics contexts in this way. The
graphics context consists of:

state drawing commands
alpha-test function AlphaFunc

bitmap handle BitmapHandle

blend function BlendFunc

bitmap cell Cell

color clear value ClearColorA, ClearColorRGB
stencil clear value ClearStencil

tag clear value ClearTag

color write mask ColorMask

color ColorA, ColorRGB
line width LineWidth

point size PointSize

scissor rectangle ScissorSize, ScissorXY
stencil test function StencilFunc

stencil write mask StencilMask

stencil operation StencilOp

tag write mask TagMask

tag value Tag

9.20. SAVECONTEXT 101

9.20 SaveContext

Save the graphics context

void SaveContext(void);

The collected graphics state is called the graphics context. The SaveContext
command saves a copy of this state, and the RestoreContext command re-
stores this saved copy.

GD.cmd_text(240, 64, 31, OPT_CENTER, "WHITE");

GD.SaveContext();

GD.ColorRGB(0xff0000);

GD.cmd_text(240, 128, 31, OPT_CENTER, "RED");

GD.RestoreContext();

GD.cmd_text(240, 196, 31, OPT_CENTER, "WHITE AGAIN");

102 CHAPTER 9. DRAWING COMMANDS

9.21 ScissorSize

Set the size of the scissor rectangle

void ScissorSize(uint16_t width,

uint16_t height);

width scissor rectangle width, in pixels, 0-512

height scissor rectangle height, in pixels, 0-512

The ScissorSize command sets the dimensions of the scissor rectangle.
The scissor rectangle limits drawing to a rectangular region on the screen.

GD.ScissorSize(400, 100);

GD.ScissorXY(35, 36);

GD.ClearColorRGB(0x008080); GD.Clear();

GD.cmd_text(240, 136, 31, OPT_CENTER, "Scissor Example");

GD.ScissorXY(45, 140);

GD.ClearColorRGB(0xf88017); GD.Clear();

GD.cmd_text(240, 136, 31, OPT_CENTER, "Scissor Example");

9.22. SCISSORXY 103

9.22 ScissorXY

Set the top-left corner of the scissor rectangle

void ScissorXY(uint16_t x,

uint16_t y);

x x coordinate of top-left corner of the scissor rectangle, 0-511

y y coordinate of top-left corner of the scissor rectangle, 0-511

The ScissorXY command sets the top-left corner of the scissor rectangle.
The scissor rectangle limits drawing to a rectangular region on the screen.

104 CHAPTER 9. DRAWING COMMANDS

9.23 StencilFunc

Set the stencil test function

void StencilFunc(byte func,

byte ref,

byte mask);

func set the stencil comparison operation, one of NEVER, LESS,
LEQUAL, GREATER, GEQUAL, EQUAL, NOTEQUAL, or ALWAYS

ref set the stencil reference value used for the comparison, 0-255

mask an 8-bit mask that is anded with both ref and the pixel’s stencil
value before comparison, 0-255

The StencilFunc command controls the stencil testing operation. During
drawing, the stencil test is applied to each pixel, and if the test fails, the pixel
is not drawn. Setting func to ALWAYS means that pixels are always drawn.

9.24. STENCILMASK 105

9.24 StencilMask

Sets the mask controlling stencil writes

void StencilMask(byte mask);

mask Each set bit enables the corresponding bit write to the stencil
buffer

The StencilMask command controls writes to the stencil buffer. Because
the stencil buffer is 8 bits deep, each bit in mask enables writes to the same bit
of the stencil buffer. So a mask of 0x00 disables stencil writes, and a mask of
0xff enables stencil writes.

106 CHAPTER 9. DRAWING COMMANDS

9.25 StencilOp

Set the stencil update operation

void StencilOp(byte sfail,

byte spass);

sfail the operation to be applied to pixels that fail the stencil test.
One of ZERO, KEEP, REPLACE, INCR, DECR or INVERT.

spass the operation to be applied to pixels that pass the stencil test.
One of ZERO, KEEP, REPLACE, INCR, DECR or INVERT.

The StencilOp command controls how drawn pixels modify the stencil
buffer. If the the pixel failed the stencil test, then the operation specified by
sfail is performed. Otherwise the operation spass is performed.

GD.StencilOp(INCR, INCR); // incrementing stencil

GD.PointSize(135 * 16);

GD.Begin(POINTS); // Draw three white circles

GD.Vertex2ii(240 - 100, 136);

GD.Vertex2ii(240, 136);

GD.Vertex2ii(240 + 100, 136);

GD.ColorRGB(0xff0000); // Draw pixels with stencil==2 red

GD.StencilFunc(EQUAL, 2, 255);

GD.Begin(RECTS); // Visit every pixel on the screen

GD.Vertex2ii(0,0); GD.Vertex2ii(480,272);

9.26. TAGMASK 107

9.26 TagMask

Sets the mask controlling tag writes

void TagMask(byte mask);

mask if set, drawn pixels write to the tag buffer

The TagMask command controls writes to the tag buffer. If mask is 1, then
as each pixel is drawn the byte value set by Tag is also written to the tag buffer.
If the mask is 0, then drawing does not affect the tag buffer.

108 CHAPTER 9. DRAWING COMMANDS

9.27 Tag

Set the tag value for drawing

void Tag(byte s);

s tag value, 0-255

The Tag command sets the byte value that is drawn into the tag buffer.

9.28. VERTEX2F 109

9.28 Vertex2f

Draw at a subpixel position

void Vertex2f(int16_t x,

int16_t y);

x x coordinate of vertex in 1/16ths of a pixel. -16384 to 16383.

y y coordinate of vertex in 1/16ths of a pixel. -16384 to 16383.

The Vertex2f command specifies a screen position for drawing. What gets
drawn depends on the current drawing object specified in Begin. Vertex2f

specifies subpixel coordinates, so it has a precision of 1/16th of a pixel. It also
allows a coordinate range much larger than the physical screen - this is useful
for drawing objects that are larger than the screen itself.

When drawing BITMAP Vertex2f uses the bitmap handle and cell currently
set by BitmapHandle and Cell.

110 CHAPTER 9. DRAWING COMMANDS

9.29 Vertex2ii

Draw at a integer pixel position

void Vertex2ii(uint16_t x,

uint16_t y,

byte handle = 0,

byte cell = 0);

x x coordinate of vertex in pixels, 0-511

y y coordinate of vertex in pixels, 0-511

handle bitmap handle, 0-31

cell bitmap cell, 0-127

The Vertex2ii command specifies a screen position for drawing. What
gets drawn depends on the current drawing object specified in Begin. Vertex2ii

When drawing BITMAP Vertex2ii uses the bitmap handle and cell speci-
fied in handle and cell. The graphics state of commands BitmapHandle and
Cell are neither used not altered by this command.

Chapter 10

Higher-level commands

This section describes some of the high-level commands that Gameduino 2’s
GPU supports. Each of these commands runs on the GPU itself, freeing up the
main MCU to run game or application code.

Some of these commands are for creating widgets, useful for UI elements.
Others provide efficient ways to initialize and manage GPU memory, and load
graphic and other resources.

This section only includes the hardware commands most useful for games
and interactive applications. For a complete list, consult the FT800 program-
ming guide.

10.1 cmd append

void cmd_append(uint32_t ptr,

uint32_t num);

111

112 CHAPTER 10. HIGHER-LEVEL COMMANDS

The append command executes num bytes of drawing commands from graphics
memory at ptr. This can be useful for using graphics memory as a cache for
frequently used drawing sequences, much like OpenGL’s display lists.

10.2 cmd bgcolor

void cmd_bgcolor(uint32_t c);

The bgcolor command sets the background color used when drawing wid-
gets. All widgets share a common style; they use the current background color
(cmd bgcolor) for non-interactive elements, and the current foreground color
(cmd fgcolor) for interactive elements. Using a darker color for cmd bgcolor

and a lighter one for cmd fgcolor is probably a good idea.

10.3 cmd button

void cmd_button(int16_t x,

int16_t y,

uint16_t w,

uint16_t h,

byte font,

uint16_t options,

const char *label);

10.4. CMD CALIBRATE 113

The button command draws a button widget at screen
(x, y) with pixel size w × h. label gives the text label.
By default this widget has a 3D look. Setting options

to OPT FLAT gives it a 2D look.

10.4 cmd calibrate

void cmd_calibrate(void);

The calibrate command runs the GPU’s interactive touchscreen calibration
procedure.

10.5 cmd clock

void cmd_clock(int16_t x,

int16_t y,

int16_t r,

uint16_t options,

uint16_t h, // hours 0-23

uint16_t m, // minutes 0-59

uint16_t s, // seconds 0-59

uint16_t ms); // milliseconds 0-999

114 CHAPTER 10. HIGHER-LEVEL COMMANDS

The clock command draws an analog clock at screen
(x, y) with pixel radius r. The displayed time is h, m, s
and ms. By default this widget has a 3D look. Setting
options to OPT FLAT gives it a 2D look.

10.6 cmd coldstart

void cmd_coldstart(void);

The coldstart command resets all widget state to its default value.

10.7 cmd dial

void cmd_dial(int16_t x,

int16_t y,

int16_t r,

uint16_t options,

uint16_t val);

The dial command draws a dial at screen (x, y) with
pixel radius r. val gives the dial’s angular position
in Furmans. By default this widget has a 3D look.
Setting options to OPT FLAT gives it a 2D look.

10.8 cmd fgcolor

void cmd_fgcolor(uint32_t c);

10.9. CMD GAUGE 115

The fgcolor command Sets the foreground color used for drawing widgets.
All widgets share a common style; they use the current background color
(cmd bgcolor) for non-interactive elements, and the current foreground color
(cmd fgcolor) for interactive elements. Using a darker color for cmd bgcolor

and a lighter one for cmd fgcolor is probably a good idea.

10.9 cmd gauge

void cmd_gauge(int16_t x,

int16_t y,

int16_t r,

uint16_t options,

uint16_t major,

uint16_t minor,

uint16_t val,

uint16_t range);

The gauge command draws an analog gauge at screen
(x, y) with pixel radius r. major and minor are the
number of major and minor tick marks on the gauge’s
face. The fraction (val / range) gives the gauge’s
value. By default this widget has a 3D look. Setting
options to OPT FLAT gives it a 2D look.

10.10 cmd getprops

void cmd_getprops(uint32_t &ptr,

uint32_t &w,

uint32_t &h);

116 CHAPTER 10. HIGHER-LEVEL COMMANDS

The getprops command queries the GPU for the properties of the last image
loaded by cmd loadimage. ptr is the image base address, and (w, h) gives its
size in pixels.

10.11 cmd gradient

void cmd_gradient(int16_t x0,

int16_t y0,

uint32_t rgb0,

int16_t x1,

int16_t y1,

uint32_t rgb1);

The gradient command draws a smooth color gradi-
ent, blended from color rgb0 at screen pixel (x0, y0) to
rgb1 at (x1, y1). For an example of cmd gradient(),
see Gradients.

10.12 cmd inflate

void cmd_inflate(uint32_t ptr);

10.13. CMD KEYS 117

The inflate command decompresses data into main graphics memory at ptr.
The compressed data should be supplied after this command. The format of
the compressed data is zlib DEFLATE.

10.13 cmd keys

void cmd_keys(int16_t x,

int16_t y,

int16_t w,

int16_t h,

byte font,

uint16_t options,

const char *keys);

The keys command draws a rows of keys, each labeled
with the characters of chars, at screen (x, y) with pixel
size w × h. By default this widget has a 3D look. Set-
ting options to OPT FLAT gives it a 2D look. Specifying
a character code in options highlights that key.

10.14 cmd loadidentity

void cmd_loadidentity(void);

118 CHAPTER 10. HIGHER-LEVEL COMMANDS

The loadidentity command sets the bitmap transform to the identity matrix.

10.15 cmd loadimage

void cmd_loadimage(uint32_t ptr,

int32_t options);

The loadimage command uncompresses a JPEG image
into graphics memory at address ptr. The image pa-
rameters are loaded into the current bitmap handle.
The default format for the image is RGB565. If options
is OPT MONO then the format is L8. For an example of
cmd loadimage(), see Bitmap handles.

10.16 cmd memcpy

void cmd_memcpy(uint32_t dest,

uint32_t src,

uint32_t num);

The memcpy command copies num bytes from src to dest in graphics memory.

10.17 cmd memset

void cmd_memset(uint32_t ptr,

byte value,

uint32_t num);

10.18. CMD MEMWRITE 119

The memset command sets num bytes starting at ptr to value in graphics mem-
ory.

10.18 cmd memwrite

void cmd_memwrite(uint32_t ptr,

uint32_t num);

The memwrite command copies the following num bytes into graphics memory,
starting at addresss ptr.

10.19 cmd regwrite

void cmd_regwrite(uint32_t ptr,

uint32_t val);

The regwrite command sets the GPU register ptr to val.

10.20 cmd number

void cmd_number(int16_t x,

int16_t y,

byte font,

uint16_t options,

uint32_t val);

120 CHAPTER 10. HIGHER-LEVEL COMMANDS

The number command renders a decimal number val

in font font at screen (x, y). If options is n, then
leading zeroes are added so that n digits are always
drawn. If options is OPT CENTERX the text is cen-
tered horizontally, if OPT CENTERY then vertically, and
if OPT CENTER then both horizontally and vertically.
Adding OPT SIGNED causes val to be treated as signed,
and displayed with a leading minus sign if negative.

10.21 cmd progress

void cmd_progress(int16_t x,

int16_t y,

int16_t w,

int16_t h,

uint16_t options,

uint16_t val,

uint16_t range);

The progress command draws a progress bar at
screen (x, y) with pixel size w × h. The fraction (val /
range) gives the bar’s value. This widget draws itself
horizontally if w > h, otherwise it draws vertically.

10.22 cmd rotate

void cmd_rotate(int32_t a);

10.23. CMD SCALE 121

The rotate command applies a rotation of a Furmans to the current bitmap
transform matrix.

10.23 cmd scale

void cmd_scale(int32_t sx,

int32_t sy);

The scale command scales the current bitmap transform matrix by (sx, sy).
These arguments are expressed as signed 16.16 fixed point values, so 65536
means 1.0. As a convenience, the macro F16() converts from floating-point to
signed 16.16 representation.

10.24 cmd scrollbar

void cmd_scrollbar(int16_t x,

int16_t y,

int16_t w,

int16_t h,

uint16_t options,

uint16_t val,

uint16_t size,

uint16_t range);

122 CHAPTER 10. HIGHER-LEVEL COMMANDS

The scrollbar command draws a scroll bar at screen
(x, y) with pixel size w × h. The fraction (val / range)
gives the bar’s value, and (size / range) gives its size.
This widget draws itself horizontally if w> h, otherwise
it draws vertically.

10.25 cmd setfont

void cmd_setfont(byte font,

uint32_t ptr);

The setfont command defines a RAM font numbered 0-15 using a font block
at ptr. Before calling setfont, the font graphics must be loaded into memory
and the bitmap handle must be set up. The font block is 148 bytes in size, as
follows:

address size value
ptr+ 0 128 width of each font character, in pixels
ptr+ 128 4 font bitmap format, for example L1, L4 or L8
ptr+ 132 4 font line stride, in bytes
ptr+ 136 4 font width, in pixels
ptr+ 140 4 font height, in pixels
ptr+ 144 4 pointer to font graphic data in memory

10.26 cmd setmatrix

void cmd_setmatrix(void);

10.27. CMD SKETCH 123

The setmatrix command applies the current bitmap transform matrix to
the next drawing operation.

10.27 cmd sketch

void cmd_sketch(int16_t x,

int16_t y,

uint16_t w,

uint16_t h,

uint32_t ptr,

uint16_t format);

The sketch command starts a continuous sketching
process that paints touched pixels into a bitmap in
graphics memory. The bitmap’s base addresss is given
in ptr, its size in (w, h) and its position on screen is (x,
y). The format of the bitmap can be either L1 or L8.
The sketching continues until cmd stop is executed. For an example of cmd sketch,
see Sketching on p.63.

10.28 cmd slider

void cmd_slider(int16_t x,

int16_t y,

uint16_t w,

uint16_t h,

uint16_t options,

uint16_t val,

uint16_t range);

124 CHAPTER 10. HIGHER-LEVEL COMMANDS

The slider command draws a control slider at screen
(x, y) with pixel size w × h. The fraction (val / range)
gives the slider’s value. This widget draws itself hor-
izontally if w > h, otherwise it draws vertically. By
default this widget has a 3D look. Setting options to
OPT FLAT gives it a 2D look.

10.29 cmd spinner

void cmd_spinner(int16_t x,

int16_t y,

byte style,

byte scale);

The spinner command starts drawing an animated
“waiting” spinner centered at screen pixel (x, y). style
gives the spinner style; 0 is circular, 1 is linear, 2 is a
clock, and 3 is rotating disks. scale gives the size of
the graphic; 0 is small and 2 is huge.

10.30 cmd stop

void cmd_stop(void);

10.31. CMD TEXT 125

The stop command stops the current animating spinner, or the currently exe-
cuting sketching operation. See cmd spinner and cmd sketch.

10.31 cmd text

void cmd_text(int16_t x,

int16_t y,

byte font,

uint16_t options,

const char s);

The text command draws a text string number s in
font font at screen (x, y). If options is OPT CENTERX

the text is centered horizontally, if OPT CENTERY then
vertically, and if OPT CENTER then both horizontally
and vertically. Adding OPT SIGNED causes val to be
treated as signed, and displayed with a leading minus
sign if negative.
For an example of cmd text(), see Hello world.

10.32 cmd toggle

void cmd_toggle(int16_t x,

int16_t y,

int16_t w,

byte font,

uint16_t options,

uint16_t state,

const char *s);

126 CHAPTER 10. HIGHER-LEVEL COMMANDS

The toggle command draws a toggle control at screen
(x, y) with width w pixels. The position of the toggle
is given by state; 0 means the toggle is in the left
position, 65535 in the right. The label contains a pair
of strings, separated by ASCII character code 0xff.
By default this widget has a 3D look. Setting options to OPT FLAT gives it a
2D look.

10.33 cmd track

void cmd_track(int16_t x,

int16_t y,

uint16_t w,

uint16_t h,

byte tag);

The track command instructs the GPU to track presses that touch a pixel with
tag and report them in GD.inputs.track val. The screen rectangle at (x, y)
with size (w, h) defines the track area. If the track area is 1 × 1 pixels in size,
then the tracking is angular, and GD.inputs.track val reports an angle in
Furmans relative to the tracking center (x, y). Angular tracking is useful for
the cmd dial and cmd clock widgets, and for games with a rotating control
element, e.g. NightStrike.

Otherwise, the tracking is linear along the long axis of the (w, h) rectan-
gle, and the value reported in GD.inputs.track val is the distance along the
rectangle, normalized to the range 0-65535. Linear tracking is useful for the
cmd scrollbar, cmd toggle and cmd slider widgets.

For an example of cmd track, see Widgets and tracking controls.

10.34 cmd translate

void cmd_translate(int32_t tx,

int32_t ty);

10.34. CMD TRANSLATE 127

The translate command applies a translation of (tx, ty) to the bitmap trans-
form matrix. These arguments are expressed as signed 16.16 fixed point
values, so 65536 means 1.0. As a convenience, the macro F16() converts
from floating-point to signed 16.16 representation.

128 CHAPTER 10. HIGHER-LEVEL COMMANDS

Chapter 11

Management commands

11.1 begin

void begin();

Initialise the Gameduino 2 object. This method must be called one at program
startup, before any other GD methods.

11.2 finish

void finish();

Send all pending commands to the GPU, then wait for them to complete. See
finish.

129

130 CHAPTER 11. MANAGEMENT COMMANDS

11.3 flush

void flush();

Sends all pending commands to the GPU. This command only ensures that all
preceding commands are sent to the GPU. It does not wait for the commands
to execute. See flush.

11.4 get accel

void get_accel(int &x, int &y, int &y);

Samples the values from the 3-axis accelerometer. The return values are scaled
so that 1G gives a count of 256. The axes are oriented so that positive x is right,
positive y is down, and positive z is into the screen.

11.5 get inputs

void get_inputs();

Calls finish, then collects all touch and sensor input in GD.inputs. These
inputs are:

11.6. LOAD 131

x touch x pixel coordinate, or -32768 if no touch
y touch y pixel coordinate, or -32768 if no touch

rz touch pressure, or 32767 if no touch
tag touch tag 0-255

tag x touch tag x pixel coordinate
tag y touch tag y pixel coordinate

track tag touched tag for tracking controls
track value value for tracking controls

ptag Software tag result

11.6 load

byte load(const char *filename,

void (*progress)(long, long) = NULL);

Reads the contents of filename from the microSD card and feeds it to the
GPU. If the file is not found then returns nonzero. As the file is loading, calls
progress with the current file position, and the total file size. The function
for progress can use these numbers to display a progress indicator.

11.7 play

void play(uint8_t instrument, uint8_t note = 0);

132 CHAPTER 11. MANAGEMENT COMMANDS

Play a sound. instrument is one of the defined instruments (p. 68). note is a
MIDI note number (p. 69).

11.8 self calibrate

void self_calibrate(void);

Run the built-in touch-screen calibration sequence.

11.9 sample

void sample(uint32_t start,

uint32_t len,

uint16_t freq,

uint16_t format,

int loop = 0);

Starts playback of an audio sample from main GPU memory. start is the
starting address of the sample, len is its length in bytes. freq is the frequency
of the sample in Hertz. format is the audio format, one of LINEAR SAMPLES,
ULAW SAMPLES, or ADPCM SAMPLES. If loop is 1, then the sample repeats indefi-
nitely. To stop sample playback immediately, call sample with a zero len. Note
that start and len must be multiples of 8.

11.10 swap

void swap(void);

11.10. SWAP 133

Swaps the working and displayed images. This command must be called at
the end of frame drawing.

134 CHAPTER 11. MANAGEMENT COMMANDS

Chapter 12

Math utilities

The GD library’s main business is as a thin interface to the Gameduino 2’s
hardware. But it also includes a handful of small, useful functions for games
writing. These functions don’t deal with hardware – but they do some common
things that games often need.

These math functions are all carefully implemented in integer only 8-bit
code, so you can enjoy intense high-speed arcade action on a CPU that really
ought to be running a toaster.

12.1 atan2

uint16_t atan2(int16_t y, int16_t x);

atan2(y, x) =


arctan

(
x
−y

)
x < 0

arctan
(

x
y

)
+ π x ≥ 0

undefined y = 0, x = 0

atan2 returns the angle in Furmans from (0, 0) to the point (x, y). The
range of the result is 0-65535. This function is the inverse of polar.

135

136 CHAPTER 12. MATH UTILITIES

12.2 polar

void polar(int &x, int &y, int16_t r, uint16_t th);

th

r

(x, y)

Returns the (x, y) coordinates of a point that is distance r from the origin,
at angle th. th is in Furmans. This function is the inverse of atan2.

12.3 random

uint16_t random();

uint16_t random(uint16_t n);

Returns a random number. If no argument is given then the number is in the
range 0-65535. With an argument n, returns a random number x such that
(0 ≤ x < n). random() returns low-quality random numbers quickly. This
is useful for graphics and games, where performance is often more important
than true randomness.

An old trick to improve the quality of the random numbers is to call random()
while waiting for user input. This means that when the game starts, the ran-
dom number generator is in a much less predictable state.

12.4. RCOS 137

12.4 rcos

int16_t rcos(int16_t r, uint16_t th);

Returns an integer approximation to the cosine of th (which is in Furmans)
multiplied by r: ⌊

r cos
2πth

65536

⌋
See also rsin, polar.

12.5 rsin

int16_t rsin(int16_t r, uint16_t th);

Returns an integer approximation to the sine of th (which is in Furmans)
multiplied by r: ⌊

r sin
2πth

65536

⌋
See also rcos, polar.

138 CHAPTER 12. MATH UTILITIES

Part III

Cookbook

139

Chapter 13

Graphics Elements

This chapter covers some ways of using Gameduino 2’s graphics features to
create effects for games.

141

142 CHAPTER 13. GRAPHICS ELEMENTS

13.1 Tiled backgrounds

include <EEPROM.h>

include <SPI.h>

include <GD2.h>

include "tiled_assets.h"

void setup()

{

GD.begin();

LOAD_ASSETS();

}

void loop()

{

GD.Clear();

GD.Begin(BITMAPS);

GD.BitmapSize(BILINEAR, REPEAT, REPEAT, 480, 272);

GD.cmd_rotate(3333);

GD.cmd_setmatrix();

GD.Vertex2ii(0, 0);

GD.swap();

}

13.1. TILED BACKGROUNDS 143

The source image is this 256 × 256 seamless texture, created by Patrick Hoesly1.

tiling the image across the entire 480 × 272 screen using BitmapSize gives:

Which is nice but the repetition is clearly visible. Rotating the bitmap using
cmd rotate by an odd angle – 3333 Furmans is about 18◦ – makes the repe-
tition much less obvious.

1 One of the hundreds that he has made available on Flickr, all under a Creative Commons
licence.

144 CHAPTER 13. GRAPHICS ELEMENTS

13.2 Drop shadows

To give text a drop shadow, first draw the text in the shadow color, offset by
a short distance in both x and y. Then draw the text a second time in the
foreground color.

GD.cmd_gradient(0, 0, 0x0060c0,

0, 271, 0xc06000);

GD.ColorRGB(0x000000);

GD.cmd_text(237, 139, 31, OPT_CENTER, "READY PLAYER ONE");

GD.ColorRGB(0xffffff);

GD.cmd_text(240, 136, 31, OPT_CENTER, "READY PLAYER ONE");

GD.swap();

This example uses a 3-pixel offset, which works well with a large font. A
smaller font looks better with a 2- or 1-pixel offset.

A similar technique works for bitmaps:
draw the bitmap in black for the shadow,
then draw the bitmap offset by a few pix-
els. Here the logo’s shadow is lightened by
drawing it with 50% transparency.

13.3. FADE IN AND OUT 145

13.3 Fade in and out

A fade is when the whole screen gradually turns to one color. Fades to
black and white are most common, but of course any color is possible. One
way of creating a fade is to draw an alpha-blended rectangle covering the
whole screen. The value of the alpha controls how much of the original screen
is replaced by the solid rectangle. By animating alpha from 0 to 255 a fade
happens.

Here is NightStrike’s code that fades the title screen to black.

GD.TagMask(0);

GD.ColorA(fade);

GD.ColorRGB(0x000000);

GD.Begin(RECTS);

GD.Vertex2ii(0, 0);

GD.Vertex2ii(480, 272);

Note the TagMask command, which disables writes to the tag buffer. With-
out this command, the full-screen rectangle would overwrite all the tag values
on the screen.

146 CHAPTER 13. GRAPHICS ELEMENTS

13.4 Motion blur

Motion blur is a graphics technique that smooths out the appearance of
moving objects, to give a more realistic motion. The white knight moving in
the chess board above is rendered with motion blur. In freeze-frame the piece
looks smeared, but as part of an animation your eye-brain interprets the blurs
as a fast-moving object.

One way of rendering motion blur on Gameduino 2 is to draw the object
multiple times with transparency. In the “chess” demo the number of passes
is controlled by OVERSAMPLE, which is set to 8. The renderer makes multiple
passes, each time computing a slightly different position for the piece. The
eight stacked transparent pieces give a nicely blurred motion along the move-
ment path.

GD.ColorRGB(0xffffff);

GD.ColorA((255 / OVERSAMPLE) + 50);

for (int j = 0; j < OVERSAMPLE; j++) {

byte linear = 255 * (i * OVERSAMPLE + j) /

(OVERSAMPLE * MOVETIME - 1);

byte scurve = sinus(linear);

int x = x0 + (long)(x1 - x0) * scurve / 255;

int y = y0 + (long)(y1 - y0) * scurve / 255;

GD.Vertex2f(x, y);

}

13.5. COLORS FOR ADDITIVE BLENDING 147

13.5 Colors for additive blending

Both of these images are drawn by the code below. The code draws 1000 8-
pixel radius circles with a BlendFunc set so that each pixel’s colors are added
to the background’s. The difference is the drawing color: the top image uses
a color of pure green (0x00ff00) but the bottom image uses a more subtle
greenish shade (0x60c030).

When the color is pure green, any pixels that get drawn more than once
simply stay green. But using the color 0x60c030 – which contains a lot of
green, some red and a little blue – means that pixels get brighter each time
they are drawn. A pixel that gets drawn 6 times reaches 0xffffff, pure white,
and cannot get any brighter.

GD.Clear();

GD.BlendFunc(SRC_ALPHA, ONE);

GD.PointSize(8 * 16);

GD.Begin(POINTS);

for (int i = 0; i < 1000; i++)

GD.Vertex2ii(20 + GD.random(440), 20 + GD.random(232));

GD.swap();

148 CHAPTER 13. GRAPHICS ELEMENTS

13.6 Efficient rectangles

The code sets up an L8 bitmap that is sized 1×1 pixel. The blend function
(ONE, ZERO) is a straight replace operation: pixels are copied from the bitmap
into the color buffer. For an L8 bitmap, the RGB pixel values are the current
color.

The code sets the bitmap drawn size to 60×30 pixels. This means that
the 60×30 bitmap will be filled with the current color, so the result is a solid
rectangle for each vertex drawn.

Using this method for drawing rectangles differs from using RECTS in a
couple of ways. Firstly, these rectangles are not anti-aliased: in this example
they are exact 60×30 blocks of pixels with no edge smoothing. The second dif-
ference is that here every Vertex2ii draws one rectangle, but when drawing
with RECTS two vertices define each rectangle.

GD.BitmapLayout(L8, 1, 1);

GD.BlendFunc(ONE, ZERO);

GD.BitmapSize(NEAREST, REPEAT, REPEAT, 60, 30);

GD.Begin(BITMAPS);

GD.Vertex2ii(10, 10); // each vertex draws a 60X30 rectangle

GD.Vertex2ii(110, 110);

GD.Vertex2ii(210, 210);

GD.swap();

13.7. 1D BITMAPS 149

13.7 1D bitmaps

GD.BitmapHandle(SPECTRUM_HANDLE);

GD.BitmapSize(NEAREST, REPEAT, REPEAT, 512, 512);

GD.Begin(BITMAPS);

GD.Vertex2ii(0, 0, SPECTRUM_HANDLE);

The code uses this 512×1 “spectrum” image, loaded into graphics memory
as an RGB565 bitmap

The BitmapSize command with REPEAT tiles the bitmap, and since the bitmap
height is one pixel, it repeats on every pixel line. As with any bitmap, the 1D
bitmap can be rotated and scaled. Here is the same bitmap scaled by 0.3 and
rotated by 80◦

150 CHAPTER 13. GRAPHICS ELEMENTS

13.8 Drawing polygons

The GD library has a helper object for drawing polygons. To draw a poly-
gon, first call its begin() method, then supply the vertices of the polygon in
order to the v() method, using subpixel coordinates. Calling draw() draws
the polygon, using the current color.

This example uses only four vertices, but a polygon can have up to 16
vertices, and can be any shape. The vertices do not all need to be on the
screen.

The Poly object uses a sequence of stencil buffer operations to compute
the outline of the polygon. It then draws the interior using the current color
and alpha, much like POINTS or LINES do.

GD.Clear();

GD.ColorRGB(0xf3d417);

Poly po;

po.begin();

po.v(16 * 154, 16 * 262);

po.v(16 * 256, 16 * 182);

po.v(16 * 312, 16 * 262);

po.v(16 * 240, 16 * 10);

po.draw();

GD.swap();

13.8. DRAWING POLYGONS 151

Unlike POINTS or LINES, the polygon’s edges are not smoothed – you can
see jagged pixels along the boundary. One remedy is to outline the polygon
with a line. Here a broad black outline is drawn using Poly’s handy outline()
method, which draws the perimeter vertices with LINE STRIP

GD.ColorRGB(0x000000);

GD.LineWidth(3 * 16);

po.outline();

Using a similar technique, the cobra example first draws all the panels of
the spacecraft using Poly, then draws the glowing blue edges.

152 CHAPTER 13. GRAPHICS ELEMENTS

13.9 Lines everywhere

Because of their round end-caps, wide lines can be used as convenient graphic
elements. The background for the text in the sprites demo is a 28 pixel wide
line, drawn in black with about 50% alpha transparency.

GD.ColorRGB(0x000000);

GD.ColorA(140);

GD.LineWidth(28 * 16);

GD.Begin(LINES);

GD.Vertex2ii(240 - 110, 136, 0, 0);

GD.Vertex2ii(240 + 110, 136, 0, 0);

NightStrike draws the power meter at the top of the screen using three
horizontal wide lines. First a 10 pixel wide transparent black line makes a
background bar for the power meter. Two lines draw the power display. The
first is 10 pixels wide in pale orange, the second is 4 pixels wide in bright
orange. Together they give a pleasing glow effect.

13.10. VIGNETTE 153

13.10 Vignette

In photography, vignetting is a darkening towards the edges of an image.
The image on the right has a vignette applied as an extra layer. The vignette
image itself is a 480×272 L8 radial gradient, becoming more opaque towards
the edge:

Drawing this bitmap in white will produce a milky transparency towards
the edges of the screen. But drawing this bitmap in black darkens the screen
towards the edges. The amount of darkening can be controlled either by
changing the original bitmap, or by making the bitmap less opaque with ColorA.

GD.ColorA(0x90);

GD.ColorRGB(0x000000);

GD.Vertex2ii(0, 0, VIGNETTE_HANDLE, 0);

Because the vignette bitmap does not contain any fine detail, it can be
reduced in resolution without affecting image quality. A 240×136 vignette
bitmap is almost indistinguishable from the 480×272 version, and uses one
fourth of the memory.

154 CHAPTER 13. GRAPHICS ELEMENTS

13.11 Mirroring sprites

Mirroring a sprite – flipping it so that it faces in the opposite direction –
is very useful in 2D games. The Gameduino 2’s GPU can perform complex
bitmap transforms, so a simple flip is no problem at all. You can think of a
left-right flip as a scale by -1 in the x axis, which is done by cmd scale. The
two cmd translate calls adjust the bitmap’s position so that the flip happens
across the halfway point of the sprite. In this case, the sprite is 32 pixels wide,
so the halfway point is at x = 16:

GD.Begin(BITMAPS);

GD.Vertex2ii(0, 10, WALK_HANDLE, 0);

GD.cmd_translate(F16(16), F16(0));

GD.cmd_scale(F16(-1), F16(1));

GD.cmd_translate(F16(-16), F16(0));

GD.cmd_setmatrix();

GD.Vertex2ii(30, 10, WALK_HANDLE, 0);

GD.swap();

13.12. SILHOUETTES AND EDGES 155

13.12 Silhouettes and edges

The Gameduino 2’s hardware primitives only draw solid circles and lines.
To draw an edge around a circle – like the dark slightly transparent edges
above – draw the circle twice. The first circle is drawn in the edge color and the
second, slightly smaller, circle is drawn the with the center color. For clusters
of objects, the drawing order affects the final image. Here the outlines are all
drawn first, which gives a common outline to the whole cluster of circles.

This button graphic is drawn with two wide lines. The first line is white,
and four pixels wider than the blue inner line. Edges like this can be drawn
with POINTS, LINES and RECTS.

156 CHAPTER 13. GRAPHICS ELEMENTS

13.13 Chunky pixels

For the Zardoz project by artist and designer Nick Criscuolo, we wanted a
more chunky, 8-bit look from the Gameduino 2’s graphics. So all graphics are
drawn at double-size. At the start of every frame, the game does

GD.cmd_scale(F16(2), F16(2));

GD.cmd_setmatrix();

to double up the size of every bitmap it draws. The result is that every pixel in
the bitmap becomes 2×2 pixels on the screen. This makes the effective screen
resolution a suitably retro 240×136.

13.14. VECTOR GRAPHICS 157

13.14 Vector graphics

Vector graphics games from the 70s, 80s and 90s used special-purpose
hardware to draw bright, colored lines onto a CRT display. As a graphics
technology, the main benefit was a lack of pixels: everything was drawn with
smooth, bright lines and points. Gameduino 2 has excellent smooth line and
point support, so can easily emulate the vector style of graphics.

However a straight line-drawing game looks a little too ‘clean’. The original
displays produced a nice glowing look to the lines, which the code below
mimics using two passes. The function drawgame() draws the whole of the
screen, using LINES. The first pass draws the background glow for all the
lines, so it calls drawgame() with wide, dim lines. The second pass draws
exactly the same screen, but with bright, thin lines. This two-pass drawing
gives an appropriate subtle glow to all the lines.

GD.Clear(); // Clear to black

GD.ColorA(0x30); // Draw background glows

GD.LineWidth(48);

drawgame();

GD.ColorA(0xff); // Draw foreground vectors

GD.LineWidth(10);

GD.BlendFunc(SRC_ALPHA, ONE); // additive blending

drawgame();

158 CHAPTER 13. GRAPHICS ELEMENTS

13.15 Handmade graphics

Early humans didn’t have the sophisticated tools we enjoy today. They
had to draw graphics on paper, then turn them into data by hand. You can
still make graphics the same way today. cmd memwrite writes the 8-byte
pattern into memory starting at address zero. The 1-bit graphic data is coded
in picture[] – The “0b” prefix means binary. Then it sets up the bitmap
parameters, again by hand, for an 8×8 L1 bitmap, repeating in x and y.

GD.cmd_memwrite(0, 8);

static const PROGMEM prog_uchar picture[] = {

0b01110111,

0b11100010,

0b11000001,

0b10100011,

0b01110111,

0b00111010,

0b00011100,

0b00101110,

};

GD.copy(picture, 8);

GD.BitmapSource(0);

GD.BitmapSize(NEAREST, REPEAT, REPEAT, 480, 272);

GD.BitmapLayout(L1, 1, 8);

GD.Clear();

GD.Begin(BITMAPS);

GD.Vertex2ii(0, 0);

Chapter 14

Compositing

This chapter covers some more sophisticated graphics techniques that push
the GPU hardware a little further. They all use compositing – controlling the
color pipeline using the alpha channel.

159

160 CHAPTER 14. COMPOSITING

14.1 Alpha compositing

This stylish clock graphic is drawn using a white circle, a smaller black
circle, then a cmd clock widget to draw the hands.

GD.Begin(POINTS);

GD.PointSize(16 * 120); // White outer circle

GD.Vertex2ii(136, 136);

GD.ColorRGB(0x000000);

GD.PointSize(16 * 110); // Black inner circle

GD.Vertex2ii(136, 136);

GD.ColorRGB(0xffffff);

GD.cmd_clock(136, 136, 130,

OPT_NOTICKS | OPT_NOBACK, 8, 41, 39, 0);

But adding a JPEG background image gives an unfortunate result

14.1. ALPHA COMPOSITING 161

The huge black disk spoils the look. It would be much better to make the
central area transparent. Here is one way of doing that, using the alpha buffer.

Every pixel on the screen has an alpha value 0-255 that is usually updated
at the same time as the color buffer. Normally this alpha buffer is not impor-
tant, because it is not visible and its contents do not affect the final image. But
ColorMask can enable and disable writes to the color and alpha buffers. This
technique “paints” the graphic into the alpha buffer, then draws every pixel on
the screen using a blend mode of BlendFunc(DST ALPHA, ONE), which draws
the pixels where the alpha buffer is non-zero.

After drawing the tree background image, the first step is to use ColorMask

to disable color buffer updates, and set the BlendFunc to a value that writes
incoming alpha directly into the alpha buffer, by specifying a source blend fac-
tor of ONE:

GD.ColorMask(0,0,0,1);

GD.BlendFunc(ONE, ONE_MINUS_SRC_ALPHA);

Now draw the outer circle just as before

GD.Begin(POINTS);

GD.PointSize(16 * 120); // outer circle

GD.Vertex2ii(136, 136);

Nothing appears on the screen yet, because the drawing is only affecting
the alpha buffer, which is – so far – invisible. Drawing the inner circle requires
a blend mode that clears any drawn pixels to zero, so the source blend factor
is ZERO:

GD.BlendFunc(ZERO, ONE_MINUS_SRC_ALPHA);

GD.PointSize(16 * 110); // inner circle

GD.Vertex2ii(136, 136);

162 CHAPTER 14. COMPOSITING

Finally the clock widget itself is drawn, again using a source blend factor
of ONE:

GD.BlendFunc(ONE, ONE_MINUS_SRC_ALPHA);

GD.cmd_clock(136, 136, 130,

OPT_NOTICKS | OPT_NOBACK, 8, 41, 39, 0);

After these operations, nothing has been drawn on the visible screen yet
– because the ColorMask disabled writes to R,G and B. But the alpha buffer
now contains this image:

The final step is to make the alpha buffer visible. The code does this by
drawing a gray rectangle over the entire screen. Of course, this would simply
result in a gray screen, but the source blend factor is set to DST ALPHA, so the
transparency values come from the alpha buffer.

GD.ColorMask(1,1,1,0);

GD.BlendFunc(DST_ALPHA, ONE);

GD.ColorRGB(0x808080);

GD.Begin(RECTS); // Visit every pixel on the screen

GD.Vertex2ii(0,0);

GD.Vertex2ii(480,272);

14.1. ALPHA COMPOSITING 163

The complete code is

GD.Clear(); // now alpha is all zeroes

GD.ColorMask(1,1,1,0); // draw tree, but leave alpha zero

GD.Begin(BITMAPS);

GD.Vertex2ii(0, 0);

GD.ColorMask(0,0,0,1);

GD.BlendFunc(ONE, ONE_MINUS_SRC_ALPHA);

GD.Begin(POINTS);

GD.PointSize(16 * 120); // outer circle

GD.Vertex2ii(136, 136);

GD.BlendFunc(ZERO, ONE_MINUS_SRC_ALPHA);

GD.PointSize(16 * 110); // inner circle

GD.Vertex2ii(136, 136);

GD.BlendFunc(ONE, ONE_MINUS_SRC_ALPHA);

GD.cmd_clock(136, 136, 130,

OPT_NOTICKS | OPT_NOBACK, 8, 41, 39, 0);

GD.ColorMask(1,1,1,0);

GD.BlendFunc(DST_ALPHA, ONE);

GD.ColorRGB(0x808080);

GD.Begin(RECTS); // Visit every pixel on the screen

GD.Vertex2ii(0,0);

GD.Vertex2ii(480,272);

164 CHAPTER 14. COMPOSITING

14.2 Slot gags

Slot gags are a very old animation technique for masking two elements
together1. In this example of a slot gag, drawing the Gameduino logo bitmap
sets the alpha buffer to 255 in the logo’s pixels, and 0 elsewhere. Then by
drawing a wide diagonal line with BlendFunc set to (DST ALPHA, ONE) the
line is masked with the alpha buffer, so only draws pixels where the alpha
buffer is 255. The result is an animated glint effect.

GD.Vertex2ii(240 - GAMEDUINO_WIDTH / 2,

136 - GAMEDUINO_HEIGHT / 2,

GAMEDUINO_HANDLE);

static int x = 0;

GD.LineWidth(20 * 16);

GD.BlendFunc(DST_ALPHA, ONE);

GD.Begin(LINES);

GD.Vertex2ii(x, 0);

GD.Vertex2ii(x + 100, 272);

x = (x + 20) % 480;

1 See “Digital Compositing for Film and Video” by Steve Wright.

14.3. PATTERNED TEXT 165

14.3 Patterned text

Patterned text uses a similar technique to slot gags. First the text is drawn
into the alpha buffer only. Then a full-screen repeating 8×8 bitmap pattern is
drawn using the alpha buffer to control the amount of opacity.

GD.BitmapHandle(STRIPE_HANDLE);

GD.BitmapSize(NEAREST, REPEAT, REPEAT, 480, 272);

GD.ClearColorRGB(0x103000);

GD.Clear();

GD.ColorMask(0, 0, 0, 1); // write A only

GD.BlendFunc(ONE, ONE);

GD.cmd_text(240, 136, 31, OPT_CENTER,

"STRIPES ARE IN, BABY!");

GD.ColorMask(1, 1, 1, 0); // write R,G,B only

GD.BlendFunc(DST_ALPHA, ONE_MINUS_DST_ALPHA);

GD.Begin(BITMAPS);

GD.Vertex2ii(0, 0, STRIPE_HANDLE);

166 CHAPTER 14. COMPOSITING

14.4 Alpha operators

You can make alpha-compositing code easier to read by using a more expres-
sive name for the blend modes. Here PAINT ALPHA() means “draw something
into the alpha buffer”. CLEAR ALPHA() means “erase something from alpha
buffer”.

define PAINT_ALPHA() GD.BlendFunc(ONE, ONE_MINUS_SRC_ALPHA)

define CLEAR_ALPHA() GD.BlendFunc(ZERO, ONE_MINUS_SRC_ALPHA)

GD.ClearColorA(0x80);

GD.Clear();

PAINT_ALPHA();

draw_left_circle();

CLEAR_ALPHA();

draw_right_circle();

14.5. ROUND-CORNERED IMAGES 167

14.5 Round-cornered images

On the left is a 128×128 bitmap drawn using a single Vertex2ii call. On
the right is the same bitmap drawn using beautiful anti-aliased round corners.
The technique is to draw a round-cornered rectangle into the alpha buffer,
then use this rectangle to control the bitmap transparency, using BlendFunc.

The corner radius r controls how round the corners are, in pixels. A value
of 1 is no rounding, higher values give a more rounded look.

GD.Begin(BITMAPS);

GD.Vertex2ii(52, 50); // left bitmap

GD.ColorMask(0, 0, 0, 1); // only draw A

GD.Clear();

int r = 20; // corner radius

GD.LineWidth(16 * r);

GD.Begin(RECTS);

GD.Vertex2ii(300 + r, 50 + r); // top-left

GD.Vertex2ii(300 + 127 - r, 50 + 127 - r); // bottom-right

GD.ColorMask(1, 1, 1, 0); // draw bitmap

GD.BlendFunc(DST_ALPHA, ONE_MINUS_DST_ALPHA);

GD.Begin(BITMAPS);

GD.Vertex2ii(300, 50);

168 CHAPTER 14. COMPOSITING

14.6 Transparent buttons

The code first draws a full-screen background image, then the buttons are each
drawn into the alpha buffer by the function button(). Finally, the last six lines
make the alpha buffer visible.

GD.cmd_loadimage(0, 0);

GD.load("tree.jpg");

GD.Clear();

GD.ColorMask(1, 1, 1, 0);

GD.Begin(BITMAPS);

GD.Vertex2ii(0, 0);

GD.ColorMask(0, 0, 0, 1);

int x0 = 160, x1 = 240, x2 = 320;

int y0 = 56, y1 = 136, y2 = 216;

button(x0, y0, 1); button(x1, y0, 2); button(x2, y0, 3);

button(x0, y1, 4); button(x1, y1, 5); button(x2, y1, 6);

button(x0, y2, 7); button(x1, y2, 8); button(x2, y2, 9);

GD.ColorMask(1, 1, 1, 1);

GD.ColorRGB(0xffffff);

GD.BlendFunc(DST_ALPHA, ONE_MINUS_DST_ALPHA);

GD.Begin(RECTS);

GD.Vertex2ii(0, 0); GD.Vertex2ii(480, 272);

14.6. TRANSPARENT BUTTONS 169

The button() function first paints a white rectangle, then a slightly smaller
one with partial transparency. Lastly it draws the label using cmd number with
OPT CENTER to center the text.

static void button(int x, int y, byte label)

{

int sz = 18; // button size in pixels

GD.Tag(label);

PAINT_ALPHA();

GD.Begin(RECTS);

GD.LineWidth(16 * 20);

GD.Vertex2ii(x - sz, y - sz);

GD.Vertex2ii(x + sz, y + sz);

CLEAR_ALPHA();

GD.ColorA(200);

GD.ColorA(200);

GD.LineWidth(16 * 15);

GD.Vertex2ii(x - sz, y - sz);

GD.Vertex2ii(x + sz, y + sz);

GD.ColorA(0xff);

PAINT_ALPHA();

GD.cmd_number(x, y, 31, OPT_CENTER, label);

}

170 CHAPTER 14. COMPOSITING

14.7 Reflections

After drawing the top bitmap, the code draws a 1D vertical 128×1 gradient
bitmap into the alpha buffer, repeated horizontally so it covers the screen:

The code then sets a bitmap transform that flips the logo in the Y axis,
using a method similar to the one in Mirroring sprites on p.154. It then draws
the logo’s alpha channel into the alpha buffer, masked with the existing al-
pha contents. Masking uses macro MASK ALPHA(), which multiplies the logo’s
alpha channel with the existing alpha buffer values:

× =

14.7. REFLECTIONS 171

The final step is to draw the mirrored logo using the alpha buffer to control
transparency.

define MASK_ALPHA() GD.BlendFunc(ZERO, SRC_ALPHA)

void loop()

{

int x = 240 - GAMEDUINO_WIDTH / 2;

GD.BitmapHandle(GRADIENT_HANDLE);

GD.BitmapSize(NEAREST, REPEAT, BORDER, 480, 272);

GD.Clear();

GD.ColorMask(1, 1, 1, 0); // don’t touch A yet

GD.cmd_gradient(0, 40, 0x505060,

0, 272, 0xc0c080);

GD.Begin(BITMAPS); // top bitmap

GD.Vertex2ii(x, 80, GAMEDUINO_HANDLE);

GD.ColorMask(0, 0, 0, 1);

GD.BlendFunc(ONE, ZERO);

GD.Vertex2ii(0, 180, GRADIENT_HANDLE);

// invert the image

GD.cmd_translate(0, F16(GAMEDUINO_HEIGHT / 2));

GD.cmd_scale(F16(1), F16(-1));

GD.cmd_translate(0, -F16(GAMEDUINO_HEIGHT / 2));

GD.cmd_setmatrix();

MASK_ALPHA(); // mask with gradient

GD.Vertex2ii(x, 190, GAMEDUINO_HANDLE);

GD.ColorMask(1, 1, 1, 0); // draw the reflection

GD.BlendFunc(DST_ALPHA, ONE_MINUS_DST_ALPHA);

GD.Vertex2ii(x, 190, GAMEDUINO_HANDLE);

GD.swap();

}

172 CHAPTER 14. COMPOSITING

Chapter 15

Saving memory

173

174 CHAPTER 15. SAVING MEMORY

15.1 Two-color images

include <EEPROM.h>

include <SPI.h>

include <GD2.h>

include "mono_assets.h"

void setup()

{

GD.begin();

LOAD_ASSETS();

}

void loop()

{

GD.ClearColorRGB(0x375e03);

GD.Clear();

GD.Begin(BITMAPS);

GD.ColorRGB(0x68b203);

GD.BitmapSize(NEAREST, REPEAT, REPEAT, 480, 272);

GD.Vertex2ii(0, 0);

GD.swap();

}

15.1. TWO-COLOR IMAGES 175

The source image is this seamless texture, created by Patrick Hoesly

It would be fine to encode this image in RGB565 format. But because it
only uses two colors – and shades in-between – with some manipulation it
can be loaded as an L4 bitmap, saving 75% of the graphics memory. (See
BitmapLayout for a list of available pixel formats and their memory usage.)

The first step is to load the original image into a graphics program and
measure the two colors, in this case dark green is 0x375e03 and light green is
0x68b203. Then convert the image to monochrome and stretch the contrast
so that it ranges from pure black to pure white

The code first clears the screen to the dark green color, then draws the L4

bitmap in light green color. The result is looks very like the original, but uses
much less graphics memory. This 128 × 128 bitmap L4 bitmap uses 8 Kbytes.

As a bonus, you can recolor the bitmap at runtime by adjusting the fore-
ground and background colors, strictly guided by the rules of good taste, of
course.

176 CHAPTER 15. SAVING MEMORY

15.2 The missing L2 format

Gameduino 2’s GPU supports three monochrome formats: L1, L4 and L8.
The is no L2 format, but by drawing in two passes the format can be simulated.
The trick is to split the original 2-bit image into two 1-bit L1 bitmaps, one for
the high bit and one for the low bit:

The ABE graphic is loaded into bitmap handle ABE HANDLE in cells 0 and
1. Cell 0 contains bit 0, and cell 1 contains bit 1. The code draws the image
in three passes. The first two passes draw the two bits of the bitmap into the
alpha buffer. The third pass makes the alpha buffer visible.

15.2. THE MISSING L2 FORMAT 177

The drawing code first disables color buffer writes using ColorMask. Then
it draws the high bit with alpha 0xaa, and the low bit with 0x55. This gives
the following values in the alpha buffer for the four 2-bit pixel codes:

high bit low bit alpha
0 0 0x00

0 1 0x55

1 0 0xaa

1 1 0xff

GD.ClearColorRGB(0x00324d);

GD.Clear();

GD.ColorMask(0, 0, 0, 1);

GD.Begin(BITMAPS);

GD.BlendFunc(ONE, ONE);

GD.ColorA(0xaa); // draw bit 1 into A

GD.Vertex2ii(240 - ABE_WIDTH / 2, 0, ABE_HANDLE, 1);

GD.ColorA(0x55); // draw bit 0 into A

GD.Vertex2ii(240 - ABE_WIDTH / 2, 0, ABE_HANDLE, 0);

// Now draw the same pixels, controlled by DST_ALPHA

GD.ColorMask(1, 1, 1, 1);

GD.ColorRGB(0xfce4a8);

GD.BlendFunc(DST_ALPHA, ONE_MINUS_DST_ALPHA);

GD.Vertex2ii(240 - ABE_WIDTH / 2, 0, ABE_HANDLE, 1);

GD.swap();

The final Vertex2ii draws the same pixels as the two earlier Vertex2ii

commands. But because the BlendFunc is (DST ALPHA, ONE MINUS DST ALPHA)

the bitmap pixels are ignored – instead only the contents of the alpha buffer
pixels affect the pixel color.

178 CHAPTER 15. SAVING MEMORY

15.3 Separated mattes

The base graphic in NightStrike is monochrome with an alpha channel.
There is no direct support in the hardware for a monochrome-with-alpha for-
mat, but it can be emulated by splitting the bitmap into a matte – the original
alpha channel – and a foreground bitmap.

Both images are loaded as L4 bitmaps. The matte bitmap is drawn first,
with ColorRGB set to black. This clears every pixel covered by the matte.
Then the foreground bitmap is drawn as usual.

15.4. HALF-RESOLUTION BITMAPS 179

15.4 Half-resolution bitmaps

For NightStrike, the helicopter animation is two frames, 100 pixels wide in
format RGBA4.

There is another four frame animation, used when the stricken helicopter
is crashing to the ground. Because this animation is seen only briefly, when
the sprite is moving fast, a loss of detail is not too noticable. This version is
half the resolution, less than 50 pixels wide, but is scaled by cmd scale so that
it appears 100 pixels wide on the screen. Halving the resolution of a bitmap
reduces its memory usage by 75%.

180 CHAPTER 15. SAVING MEMORY

15.5 8-bit formats

For most images, the 16-bit per pixels formats – RGB565, ARGB1555 and
ARGB4 – are appropriate. But sometimes the 8-bit per pixel formats can be
used instead with little noticable loss in quality.

The playing cards above are encoded in RGB332 format, so only use one
byte per pixel. The explosion animation below uses ARGB2 format. The
playing cards use bold colors, so the reduced color range of RGB332 is not very
noticable. The explosion animates very fast – the whole sequence below takes
1/4th of a second – and this rapid motion conceals the reduced color range.

15.6. DXT1 181

15.6 DXT1

DXT is a texture compression system – it squeezes a bigger image into
less graphics memory. The image on the left is the artist’s original render-
ing of the NightStrike welcome screen. On the right is a screenshot from the
DXT1-compressed version on the running Gameduino 2 . As you can see, the
differences are quite small. But because it uses DXT1, the image on the right
uses one fourth of the graphics memory of the image on the left.

Roughly, DXT1 works by splitting the image into 4×4 pixel tiles. Each tile
is given two colors, call them C0 and C1. Then each pixel in the tile is specified
only as a mixture of C0 and C1. DXT1 uses RGB565 format for the colors C0

and C1, and for each pixel it uses a two bit code:

code final color

00 C0

01 0.666× C0 + 0.333× C1

10 0.333× C0 + 0.666× C1

11 C1

so the storage for each 4×4 tile, in bits, is:

C0 16
C1 16

pixels 16 × 2 = 32

Each tile uses 64 bits, and there are sixteen pixels in each tile, so the per
pixel storage is only 4 bits. If the bitmap were encoded in plain RGB565 it
would need 16 bits per pixel, so the graphics memory saving is 75%!

Gameduino 2 ’s graphics hardware does not directly support DXT1, but by
using multiple drawing passes and multiple bitmaps, it can simulate the DXT1
format.

182 CHAPTER 15. SAVING MEMORY

Taking the NightStrike welcome screen as an example, the source image is
480×272 pixels. Hence the width in 4×4 tiles is 120×68. So the C0 and C1

images are both encoded in RGB565 at a resolution of 120×68:

C0 =

C1 =

15.6. DXT1 183

Because the hardware does not directly support 2-bit bitmaps, the two bit
layer is split into two 1-bit images, using the same technique as The missing L2

format on p.176.

b0 = b1 =

NightStrike’s DXT1 background drawing function first builds the 2-bit image
in the alpha buffer. It then writes the C0 and C1 bitmaps (zoomed 4× using
cmd scale) into the color buffer, with the blend values from the alpha buffer.

void draw_dxt1(byte color_handle, byte bit_handle)

{

GD.Begin(BITMAPS);

GD.BlendFunc(ONE, ZERO);

GD.ColorA(0x55);

GD.Vertex2ii(0, 0, bit_handle, 0);

GD.BlendFunc(ONE, ONE);

GD.ColorA(0xaa);

GD.Vertex2ii(0, 0, bit_handle, 1);

GD.ColorMask(1,1,1,0);

GD.cmd_scale(F16(4), F16(4));

GD.cmd_setmatrix();

GD.BlendFunc(DST_ALPHA, ZERO);

GD.Vertex2ii(0, 0, color_handle, 1);

GD.BlendFunc(ONE_MINUS_DST_ALPHA, ONE);

GD.Vertex2ii(0, 0, color_handle, 0);

GD.RestoreContext();

}

184 CHAPTER 15. SAVING MEMORY

Chapter 16

Games and demos

185

186 CHAPTER 16. GAMES AND DEMOS

16.1 Kenney

The kenney demo uses public domain artwork1 by artist Kenney.nl 2 . It
draws six scrolling layers, and runs smoothly at 60Hz. Most layers are drawn
using bitmaps, all encoded with format ARGB4. The first layer is a vertical
gradient, with carefully chosen sky-blue colors.

GD.cmd_gradient(0, 0, 0xa0a4f7,

0, 272, 0xd0f4f7);

1http://opengameart.org/content/platformer-art-deluxe
2http://www.kenney.nl/

http://opengameart.org/content/platformer-art-deluxe
http://www.kenney.nl/

16.1. KENNEY 187

The next layer uses a single sprite loaded in CLOUD HANDLE drawn in the ran-
dom positions in state.clouds[]. The clouds all move downwards at slightly
different rates, and slower-moving clouds are more transparent. As clouds
reach the bottom of the screen, they wrap around to the top. The clouds’ posi-
tions are subpixel coordinates, in 1/16th of a pixel. This extra precision means
that as the clouds move, they don’t “snap” between integer pixel coordinates.

GD.Begin(BITMAPS);

GD.BlendFunc(ONE, ONE_MINUS_SRC_ALPHA);

GD.BitmapHandle(CLOUD_HANDLE);

GD.Cell(0);

for (int i = 0; i < 20; i++) {

byte lum = 128 + 5 * i;

GD.ColorA(lum);

GD.ColorRGB(lum, lum, lum);

GD.Vertex2f(state.clouds[i].x, state.clouds[i].y);

state.clouds[i].y += (4 + (i >> 3));

if (state.clouds[i].y > (16 * 272))

state.clouds[i].y -= 16 * (272 + CLOUD_HEIGHT);

}

188 CHAPTER 16. GAMES AND DEMOS

The next layer is the tile map. The tile map
was created using the “tiled” editor (http://www.
mapeditor.org/), and imported using the asset con-
verter into character array layer1 map. The 20 tiles
are each 32×32 bitmaps, encoded as ARGB4 in handle
TILES HANDLE. Tile code zero is the blank cell, and the
code checks for this and only draws tiles with non-zero
codes.

GD.Begin(BITMAPS);

GD.BitmapHandle(TILES_HANDLE);

const PROGMEM prog_uchar *src = layer1_map + (y >> 5) * 15;

byte yo = y & 31;

for (byte j = 0; j < 10; j++)

for (byte i = 0; i < 15; i++) {

byte t = pgm_read_byte_near(src++);

if (t != 0) {

GD.Cell(t - 1);

GD.Vertex2f(16 * 32 * i, 16 * ((32 * j) - yo));

}

}

http://www.mapeditor.org/
http://www.mapeditor.org/

16.1. KENNEY 189

The foreground characters are ARGB4 bitmaps, rotated at random and fol-
lowing gentle sinusoidal paths. Their coordinates are in state.p.

The trails of colored “bubbles” following each character are transparent POINTs,
handled in the code by three state.trail objects.

GD.BitmapHandle(PLAYER1_HANDLE);

GD.Begin(BITMAPS);

for (int i = 0; i < 3; i++) {

rotate_player(a + i * 0x7000);

GD.Cell(i);

GD.Vertex2f(state.p[i].x - (16 * PLAYER1_SIZE / 2),

state.p[i].y - (16 * PLAYER1_SIZE / 2));

}

190 CHAPTER 16. GAMES AND DEMOS

The “sunburst” graphic is drawn between the sky and cloud layers. It uses
a series of stencil operations to create the ray objects. The function burst()

draws a complete sunburst, and sunrise() draws both the orange and yellow
burst()s, and animates their bouncing expansion.

The final layer is the shower of hearts falling down the screen. These are
handled like the “cloud” layer. Array state.hearts[] tracks their position,
and they move downwards, wrapping around from bottom to top.

16.2. NIGHTSTRIKE 191

16.2 NightStrike

The NightStrike game uses public domain artwork 3 by artist MindChamber.
It uses the touch screen to track dozens of independent objects, and plays
smoothly at 60Hz. The game uses some special techniques to fit its graphics
into the available 256 KBytes of memory.

The game has five levels, and each level is a separate asset file, containing
all the background and foreground graphics for the level, as well as sound
effects. The backgrounds for each level are 480×272 images, encoded using
DXT1-like compression (see DXT1 on p.181) so they only use 65 Kbytes of
video memory.

3http://opengameart.org/content/nightstrike-png-assets

http://opengameart.org/content/nightstrike-png-assets

192 CHAPTER 16. GAMES AND DEMOS

The sprites in the game have smooth transparency, so most are encoded in
ARGB4 format.

The explosions in the game animate quickly and have bright colors, so can
use ARGB2 format to save memory (see 8-bit formats on p.180).

The player’s “defensor” is monochrome, so it is drawn using two L4 bitmaps
(see Separated mattes on p.178).

16.2. NIGHTSTRIKE 193

As well as using animated bitmaps for explosions, the game draws explod-
ing sparks using wide lines (see Lines on p.48). Because they use LINES, the
sparks require no graphics memory

In game text uses a small 12×19 pixel font, converted from an original True-
Type font. This font’s bitmaps are in L4 format, to preserve its smooth edges.

The game code uses a class for each kind of visble object in the game. These
class are: Fires, Explosions, Sparks, SoldierObject, MissileObject,
Rewards, BaseObject, and HeliObject. Each object has a draw() method to
draw the object on the screen, and an update() method to animate, move and
compute any collisions. Object collision testing uses a simple overlapping box
scheme.

NightStrike uses 20 Kbytes of the Arduino’s 32 Kbytes of flash, and the
game loop runs in about 7ms on a standard 16MHz Arduino.

194 CHAPTER 16. GAMES AND DEMOS

16.3 Invaders

Invaders is a port of the original Gameduino game 4. But to make it more
authentic, it includes the original arcade cabinet artwork. The original ‘70s
arcade cabinet only had a monochrome CRT screen, but to jazz it up the de-
signers used a cunning mirror arrangement to project a suitable space picture
behind the graphics. If you look closely you can see that the pixels are slightly
transparent because of this. Their other trick was to put a colored overlay on
the CRT screen with a green band at the bottom and a red one at the top. In
the original game you can see the missiles and bombs change color as they
pass through the colored zones.

Gameduino 2 invaders loads the background image as a 248×272 JPEG.
Because it only uses 6K it fits easily in the Arduino’s flash memory. Encoding
the full-brightness image then drawing a darker version in the game helps to
conceal some of the JPEG compression artefacts in the sky gradient.

The game’s pixel action is drawn into the alpha buffer. To make it visible,
the 28×32 overlay bitmap is drawn zoomed 8X so that its size is 248×256,
with BlendFunc (DST ALPHA, ONE MINUS DST ALPHA). This paints the game’s
pixels, using the color from the overlay.

4 http://artlum.com/gameduino/gameduino.html

http://artlum.com/gameduino/gameduino.html

16.3. INVADERS 195

196 CHAPTER 16. GAMES AND DEMOS

Appendix A

The asset converter

The latest Gameduino 2 asset converter is available at
http://gameduino.com/code

Detailed documentation is available online.

197

http://gameduino.com/code

Index

alpha, 18, 166
buffer, 161
masking, 170

alpha buffer, 161
AlphaFunc(), 82
angles

finding, 135
in Furmans, 56
rotary tracking, 65

animation, 180
ARGB1555 bitmap format, 37
ARGB2 bitmap format, 37
ARGB4 bitmap format, 37
asset converter, 39
atan2(), 56, 135

Begin(), 16, 30, 83
begin(), 129
BELL, 21
binary, 158
bitmap format

ARGB1555, 37
ARGB2, 37
ARGB4, 37
L1, 36
L4, 36
L8, 36
RGB332, 37
RGB565, 37

bitmap transform matrix, 42
BitmapHandle(), 84

BitmapLayout(), 85, 175
bitmaps

1D, 149
animating, 40
formats, 36
half-resolution, 179
mattes, 178
mirroring, 154
rotating, 42
tiling, 33, 142, 149
zooming, 42

BitmapSize(), 31, 86, 143, 149
BitmapSource(), 87
BlendFunc(), 43, 52, 88, 147, 161,

164, 167, 177, 194
blending, 52, 147

cards, 180
Cell(), 89
cell, 40
CHACK, 21
chess, 146
CHIMES, 21
circles, 16
CLACK, 21
Clear(), 15, 51, 91
ClearColorA(), 90
ClearColorRGB(), 14, 18, 19, 92
ClearStencil(), 93
ClearTag(), 94
CLICK, 21

198

INDEX 199

cmd append(), 111
cmd bgcolor(), 112
cmd button(), 112
cmd calibrate(), 113
cmd clock(), 113, 160
cmd coldstart(), 114
cmd dial(), 56, 114
cmd fgcolor(), 114
cmd gauge(), 115
cmd getprops(), 115
cmd gradient(), 51, 116
cmd inflate(), 116
cmd keys(), 117
cmd loadidentity(), 117
cmd loadimage(), 30, 77, 118
cmd memcpy(), 118
cmd memset(), 118
cmd memwrite(), 78, 119, 158
cmd number(), 119, 169
cmd progress(), 120
cmd regwrite(), 119
cmd rotate(), 43, 56, 57, 120, 143
cmd scale(), 45, 121, 154, 156, 179,

183
cmd scrollbar(), 121
cmd setfont(), 122
cmd setmatrix(), 122
cmd sketch(), 63, 123
cmd slider(), 72, 123
cmd spinner(), 124
cmd stop(), 63, 124
cmd text(), 15, 125
cmd toggle(), 125
cmd track(), 56, 57, 65, 126
cmd translate(), 44, 126, 154
ColorA(), 19, 95
ColorMask(), 96, 161, 162, 177
ColorRGB(), 18, 19, 58, 97, 178
compositing, 159
context, 58

coordinates, screen, 15
corner radius, 50
corners, round, 167
COWBELL, 21
CRT, emulating, 157

demos
blobs, 60
chess, 146
cobra, 151
fizz, 20
hello world, 14
walk, 40
widgets, 64

destination blend factor, 52
diameter, 17
double buffering, 15
drawing, 144

clock, 160
glint, 164
gradients, 51
lines, 48
patterned text, 165
points, 16
polygons, 150
rectangles, 50, 148
reflections, 170
silhouettes, 155
text, 14
vectors, 157

DXT1, 181

edges, 151, 155
emulating

CRT, 157
low resolution displays, 156

explosion, 49, 180

fade, 145
finish(), 129
flush(), 130

200 INDEX

frenzy, seething, 20
FT800, 111
Furmans, 56

get accel(), 130
get inputs(), 130
getaccel(), 75
glint effect, 164
GLOCKENSPIEL, 21
glow effect, 152, 157
gradient, 51
graphics state, 18

handmade, 158
HARP, 21
HIHAT, 21
HTML color triplet, 15

instruments, 21, 68

jpeg, 30, 118

KICKDRUM, 21

L1 bitmap format, 36
L2 bitmap format, emulating, 176
L4 bitmap format, 36
L8 bitmap format, 36
LINES, 48, 157
lines, 48, 152
LineWidth(), 49, 98
load(), 131
logo, 144, 164

masking, 164
masking, alpha, 170
matte, 170, 178
memory, 111
MIDI notes, 21, 69
motion blur, 146
MUSICBOX, 21

NightStrike, 49, 57, 58, 145, 152, 178,
179, 191

NOTCH, 21

ORGAN, 21

photography, 153
PIANO, 21
play(), 131
playing cards, 180
POINTS, 16
points, 16
PointSize(), 17, 18, 99
polar(), 56, 136
POP, 21

radius, corner, 50
random(), 136
rcos(), 56, 137
rectangles, drawing, 50
RECTS, 167
RECTS, 50
reflections, 170
replace, 53
RestoreContext(), 58, 100
retro, 156
RGB332 bitmap format, 37
RGB565 bitmap format, 37
rotation, 42
round corners, 167
rsin(), 56, 137

sample(), 132
sample playback, 67
samples, 70
SaveContext(), 58, 101
ScissorSize(), 51, 102
ScissorXY(), 51, 103
screen coordinates, 15
screen pixel coordinates, 59
self calibrate(), 132

INDEX 201

shadows, 144
SILENCE, 21
silhouettes, 155
sinusoidal, 49
sketching, 63
Slot gags, 164
source blend factor, 52, 161
sparks, 49
sprites, 29, 40, 154
StencilFunc(), 104
StencilMask(), 105
StencilOp(), 106
subpixel, 17
swap(), 132
SWITCH, 21
synthesizer, 67

Tag(), 23, 24, 62, 108
TagMask(), 107, 145
text, drawing, 14
text, patterned, 165
tiling, 29
tracking controls, 57, 64
transparency, alpha, 18
TRUMPET, 21
TUBA, 21

user interface, 64, 111

vector displays, 157
Vertex2f(), 55, 109
Vertex2ii(), 16, 30, 31, 35, 40, 43,

55, 110, 148, 167, 177
vignetting, 153

wave instruments, 21
weave, 158
widgets, 64

XYLOPHONE, 21

Zardoz, 156
zoom, 42

	I Tutorial
	Plug in. Power up. Play something
	Quick start
	Hello world
	Circles are large points
	Color and transparency
	Demo: fizz
	Playing notes
	Touch tags
	Game: Simon

	Bitmaps
	Loading a JPEG
	Bitmap size
	Bitmap handles
	Bitmap pixel formats
	Bitmap color
	Converting graphics
	Bitmap cells
	Rotation, zoom and shrink

	More on graphics
	Lines
	Rectangles
	Gradients
	Blending
	Fonts
	Subpixel coordinates
	Angles in Furmans
	The context stack

	Touch
	Reading the touch inputs
	Demo: blobs
	Tags
	Sketching
	Widgets and tracking controls

	Sound
	Clicks and pops
	Instrument playback
	Samples
	Continuous playback

	Accelerometer
	MicroSD card

	II Reference
	Drawing commands
	AlphaFunc
	Begin
	BitmapHandle
	BitmapLayout
	BitmapSize
	BitmapSource
	BlendFunc
	Cell
	ClearColorA
	Clear
	ClearColorRGB
	ClearStencil
	ClearTag
	ColorA
	ColorMask
	ColorRGB
	LineWidth
	PointSize
	RestoreContext
	SaveContext
	ScissorSize
	ScissorXY
	StencilFunc
	StencilMask
	StencilOp
	TagMask
	Tag
	Vertex2f
	Vertex2ii

	Higher-level commands
	cmd_append
	cmd_bgcolor
	cmd_button
	cmd_calibrate
	cmd_clock
	cmd_coldstart
	cmd_dial
	cmd_fgcolor
	cmd_gauge
	cmd_getprops
	cmd_gradient
	cmd_inflate
	cmd_keys
	cmd_loadidentity
	cmd_loadimage
	cmd_memcpy
	cmd_memset
	cmd_memwrite
	cmd_regwrite
	cmd_number
	cmd_progress
	cmd_rotate
	cmd_scale
	cmd_scrollbar
	cmd_setfont
	cmd_setmatrix
	cmd_sketch
	cmd_slider
	cmd_spinner
	cmd_stop
	cmd_text
	cmd_toggle
	cmd_track
	cmd_translate

	Management commands
	begin
	finish
	flush
	get_accel
	get_inputs
	load
	play
	self_calibrate
	sample
	swap

	Math utilities
	atan2
	polar
	random
	rcos
	rsin

	III Cookbook
	Graphics Elements
	Tiled backgrounds
	Drop shadows
	Fade in and out
	Motion blur
	Colors for additive blending
	Efficient rectangles
	1D bitmaps
	Drawing polygons
	Lines everywhere
	Vignette
	Mirroring sprites
	Silhouettes and edges
	Chunky pixels
	Vector graphics
	Handmade graphics

	Compositing
	Alpha compositing
	Slot gags
	Patterned text
	Alpha operators
	Round-cornered images
	Transparent buttons
	Reflections

	Saving memory
	Two-color images
	The missing L2 format
	Separated mattes
	Half-resolution bitmaps
	8-bit formats
	DXT1

	Games and demos
	Kenney
	NightStrike
	Invaders

	The asset converter
	Index

