
CY4672

 PROC™ LP Reference Design Kit Guide

Doc. # 001-69289 Rev.*A

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

http://www.cypress.com

http://www.cypress.com

2 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Copyrights

Copyrights

© Cypress Semiconductor Corporation, 2011-2012. The information contained herein is subject to change without notice.
Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a
Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted
nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an
express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components
in life-support systems, where a malfunction or failure may reasonably be expected to result in significant injury to the user.
The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such
use, and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress), and is protected
by, and subject to worldwide patent protection (United States and foreign), United States copyright laws, and international
treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify,
create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating
custom software and/or firmware in support of licensee product to be used only in conjunction with a Cypress integrated
circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of
this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials
described herein. Cypress does not assume any liability arising out of the application, or use of any product or circuit
described herein. Cypress does not authorize its products for use as critical components in life-support systems, where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product
in a life-support systems application implies that the manufacturer assumes all risk of such use, and in doing so indemnifies
Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

PRoC™, PSoC Designer™, and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of
Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective
corporations.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Data Sheets. Cypress believes that its
family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used.
There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our
knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can
guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly
evolving. We at Cypress are committed to continuously improving the code protection features of our products.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 3

Contents

1. Introduction 5

1.1 Kit Contents ...5
1.2 PSoC Designer ..5
1.3 PSoC Programmer ..5
1.4 Additional Learning Resources..6

1.4.1 Reference Documents ...6
1.5 Document History ..6
1.6 Documentation Conventions ...6

2. Getting Started 7
2.1 Kit Installation ..7
2.2 PSoC Designer ..11
2.3 PSoC Programmer ..12
2.4 Installation of Battery Level and Link Quality Application ..13
2.5 Install Hardware...13

3. Kit Operation 15
3.1 Introduction ..15
3.2 Bridge ..15
3.3 Mouse ..16
3.4 Keyboard ...18

4. Hardware 21

4.1 Bridge ..21
4.1.1 Functional Description..22
4.1.2 Power Supply System ..26

4.2 Mouse ..26
4.2.1 Functional Description..27
4.2.2 Power Supply System ..32

4.3 Keyboard ...33
4.3.1 Functional Description..34
4.3.2 Power Supply System ..40

5. Code Examples 41

5.1 Project 1- PRoC_LP_RDK_Bridge ..41
5.1.1 Project Description ...41
5.1.2 Device Configurations ..42
5.1.3 Model ...44
5.1.4 Verify Output ..57

5.2 Project 2 - PRoC_LP_RDK_Mouse ...58
5.2.1 Project Description ...58
5.2.2 Device Configurations ..58

4 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Contents

5.2.3 Model ...61
5.2.4 Verify Output ..69

5.3 Project 3 - PRoC_LP_RDK_Keyboard ..70
5.3.1 Project Description...70
5.3.2 Device Configurations..71
5.3.3 Model ...73
5.3.4 Verify Output ..85

A. Appendix 87

A.1 Schematic..87
A.2 Board Layout ...90
A.3 WirelessUSB Two-Way HID Protocol Overview..94

A.3.1 Radio Channel Management ...94
A.3.2 Pseudo-Noise Codes...94
A.3.3 Chip Error Correction...94
A.3.4 Automatic Acknowledgment...94
A.3.5 Network ID ...95
A.3.6 Manufacturing ID ...95
A.3.7 Channel Selection Algorithm..95
A.3.8 Protocol Modes..96
A.3.9 Packet Structures ..102
A.3.10 Bind and Reconnect Timing...105
A.3.11 Signature Byte ...107
A.3.12 Encryption..107

A.4 Manufacturing Test Support, MTK...109
A.4.1 Introduction ..109
A.4.2 MTK Block Diagram...109
A.4.3 MTK Serial Protocol ...110
A.4.4 MTK RF Protocol ...111
A.4.5 MTK DUT Source Code Porting...111
A.4.6 Accessing MTK in the DUT..111

A.5 Regulatory Testing Results ...112
A.5.1 Introduction ..112

A.6 Power Considerations ...112
A.6.1 RDK Keyboard...112
A.6.2 RDK Mouse ...113

A.7 Software Guide..115
A.7.1 Introduction ..115
A.7.2 Software Code Modules...115

A.8 Bill of Materials (BOM)...121
A.8.1 Bridge ..121
A.8.2 Mouse ..122
A.8.3 Keyboard ...123

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 5

1. Introduction

Thank you for your interest in the CY4672 PRoC™ LP Reference Design Kit (RDK). This kit provides
an implementation of a low-power, 2.4 GHz bidirectional wireless keyboard, mouse, and USB bridge
based on the PRoC LP single-chip MCU 2.4 GHz transceiver. Schematics, source code, firmware,
and RF gerber files are provided to guide PC human interface device (HID) designers with their
applications.

Chapter 2 describes the installation and configuration of the CY4672 PRoC LP RDK. Chapter 3
describes the kit operation. Chapter 4 describes the hardware operation. Chapter 5 describes the
code examples provided along with the kit. The Appendix section provides the schematics, bill of
materials (BOM), and protocols for the kit.

1.1 Kit Contents

The CY4672 PRoC LP Reference Design Kit includes:

■ PRoC LP-based mouse with ADNS-3040 optical sensor

■ WirelessUSB LS 101 multimedia keyboard

■ Small form factor bridge

■ Four batteries

■ Kit CD/DVD with firmware source and documentation

Visit http://www.cypress.com/shop for more information. Inspect the contents of the kit. If any parts
are missing, contact your nearest Cypress sales office for further assistance.

1.2 PSoC Designer

PSoC Designer is the integrated design environment (IDE) that you can use to customize your PSoC
application. The latest version of PSoC Designer has many new features, bug fixes, and support for
new PSoC devices.

For more information about PSoC Designer, see the PSoC Designer IDE Guide located at:
<Installed_directory>\Cypress\PSoC Designer\<version>\Documentation

1.3 PSoC Programmer

PSoC Programmer 3.14 offers a simple GUI that connects to hardware and enables to program and
configure PSoC devices.

http://www.cypress.com/shop

6 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Introduction

1.4 Additional Learning Resources

Visit http://www.cypress.com for additional learning resources in the form of data sheets, technical
reference manual, and application notes.

1.4.1 Reference Documents

■ CYRF6936 - WirelessUSB™ LP 2.4 GHz Radio SoC
http://www.cypress.com/?rID=14284

■ CY7C601xx, CY7C602xx - enCoRe™ II Low-Voltage Microcontroller
http://www.cypress.com/?rID=13556

■ CY7C63310, CY7C638xx - enCoRe™ II Low Speed USB Peripheral Controller
http://www.cypress.com/?rID=14212

■ CY7C603xx - enCoRe™ III Low Voltage
http://www.cypress.com/?rID=13558

■ ADNS-3040 - Ultra Low-Power Optical Mouse Sensor
http://www.avagotech.com/docs/AV02-0150EN

■ MiniProg
http://www.cypress.com/?rID=37459

■ PSoC Designer Training
 http://www.cypress.com/?rID=37459

1.5 Document History

1.6 Documentation Conventions

Revision
PDF Creation

Date
Origin of
Change

Description of Change

** 05/06/2011 CSAI Initial version of kit guide

*A 03/13/2012 ELIN Kit guide updated with OOB review comments.

Table 1-1. Document Conventions for Guides

Convention Usage

Courier New
Displays file locations, user entered text, and source code:
C:\ ...cd\icc\

Italics
Displays file names and reference documentation:
Read about the sourcefile.hex file in the PSoC Designer User Guide.

[Bracketed, Bold]
Displays keyboard commands in procedures:
[Enter] or [Ctrl] [C]

File > Open
Represents menu paths:
File > Open > New Project

Bold
Displays commands, menu paths, and icon names in procedures:
Click the File icon and then click Open.

Times New Roman
Displays an equation:
2 + 2 = 4

Text in gray boxes Describes cautions or unique functionality of the product.

http://www.cypress.com
http://www.cypress.com/?rID=13556
http://www.cypress.com/?rID=14212
http://www.avagotech.com/docs/AV02-0150EN
http://www.cypress.com/?rID=13558
http://www.cypress.com/?rID=37459
http://www.cypress.com/?rID=37459
http://www.cypress.com/?rID=14284

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 7

2. Getting Started

This chapter describes the installation of the CY4672 PRoC LP Reference Design Kit.

2.1 Kit Installation

To install the kit software, follow these steps:

1. Insert the kit CD into the CD drive of your PC. The CD is designed to auto-run and the kit installer
startup screen appears.

You can also download the latest kit installer ISO file from http://www.cypress.com/go/CY4672.
Create an installer CD or extract the ISO using WinRar and install the executables.

2. Click Install CY4672 PRoC LP RDK to start the installation, as shown in Figure 2-1.

Figure 2-1. Kit Installer Startup Screen

Note If auto-run does not execute, double-click on the cyautorun.exe file in the root directory of
the CD, as shown in Figure 2-2.

http://www.cypress.com/go/CY4672

8 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Getting Started

Figure 2-2. Root Directory of CD

3. The InstallShield Wizard screen appears. The default location for setup is shown on the
InstallShield Wizard screen. You can change the location for setup using Change, as shown in
Figure 2-3.

4. Click Next to launch the kit installer.

Figure 2-3. InstallShield Wizard

5. On the Product Installation Overview screen, select the installation type that best suits your
requirement. The drop-down menu has three options - Typical, Complete, and Custom, as
shown in Figure 2-4.

6. Click Next to start the installation.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 9

Getting Started

Figure 2-4. Installation Type Options

7. When the installation begins, all packages are listed on the Installation page. A green check mark
appears adjacent to every package that is downloaded and installed, as shown in Figure 2-5.

8. Wait until all the packages are downloaded and installed successfully.

Figure 2-5. Installation Page

9. Click Finish to complete the installation.

10 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Getting Started

Figure 2-6. Installation Completion Page

Note: After software installation, verify your installation and setup.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 11

Getting Started

2.2 PSoC Designer
10.Click Start > All Programs > Cypress > PSoC Designer <version> > PSoC Designer <ver-

sion>.

11.Click File > New Project to create a project. Click File > Open Project/Workspace to work with
an existing project.

Figure 2-7. PSoC Designer Interconnect View

12.To experiment with the code examples, go to Code Examples on page 41.

Note For more details on PSoC Designer, see the PSoC Designer IDE Guide at:
<Install_directory>\Cypress\PSoC Designer\<version>\Documentation.

12 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Getting Started

2.3 PSoC Programmer
1. Click Start > All Programs > Cypress > PSoC Programmer <version> > PSoC Programmer

<version>.

2. Select the MiniProg from Port Selection, as shown in Figure 2-8.

Figure 2-8. PSoC Programmer Window

3. Click the File Load button in the PSoC Programmer menu bar; navigate and select the appropri-
ate hex file.

4. Use the Program button to load the hex file on to the chip.

5. When programming is successful, the Programming Succeeded message is displayed on the
Actions pane.

6. Close PSoC Programmer.

Note For more details on PSoC Programmer, see the user guide at:
C:\Program Files\Cypress\Programmer\<version>\Documents.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 13

Getting Started

2.4 Installation of Battery Level and Link Quality Application

The instructions to install the battery level and link quality applications are as follows.

1. Copy WirelessUSB.exe, located from <Installed_Directory>\Cypress\CY4672 PRoC LP
RDK\<Ver>\Software\Binaries to the desired directory (C:\Cypress\WirelesUSB).

2. Click Start > Run and manually execute the WirelessUSB.exe application with the setup option.
(C:\Cypress\WirelesUSB\WirelessUSB.exe -setup) or double-click WirelessUSB.exe.

3. The application should run and register to auto-run at startup.

To uninstall battery level and link quality application:

1. Click Start > Run and manually execute the WirelessUSB.exe application with the remove
option.
(C:\Cypress\WirelessUSB\WirelessUSB.exe -remove)

2. The application will unload and no longer auto-run at startup.

3. Delete WirelessUSB.exe.

Figure 2-9. WirelessUSB

2.5 Install Hardware

No hardware installation is required for this kit.

14 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Getting Started

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 15

3. Kit Operation

3.1 Introduction

The CY4672 PRoC LP RDK includes the following components:

■ PRoC LP Bridge/Dongle - A single-chip USB bridge based on the CYRF69213 PRoC LP for
bridges. Supports Microsoft Windows Vista HotStart (Direct Application Launch) via two dedi-
cated I/Os.

■ PRoC LP Mouse - The RDK mouse is a three-button optical mouse with a scroll wheel. It is
based on the CYRF69103 PRoC LP for peripherals and the Avago 3040 optical sensor.

■ WirelessUSB LP Keyboard - The RDK keyboard is a 101-key keyboard with multimedia keys
(such as internet and mail) and power keys. It features AES 128-bit encryption and bidirectional
communication for toggling CAPS LOCK and NUM LOCK LEDs. It is based on the CYRF6936
WirelessUSB LP radio SoC and CY7C60123 Wireless enCoRe II MCU.

3.2 Bridge

The CY4672 RDK uses PRoC LP CYRF69213 for the bridge. The PRoC LP RDK Bridge has the
capability of being programmed through the USB connector using a Cypress USB adapter board,
CY3655-PLG.

Figure 3-1. Cypress USB Programming Adapter

1. Connect LP RDK Bridge to the USB adapter board.

2. Connect the MiniProg to the ISSP header on the USB adapter, as shown in Figure 3-2.

3. Connect the MiniProg to the PC through USB A to Mini B cable.

4. On the USB adapter, place two jumpers between pins 1 and 3 and pins 2 and 4.

5. To program the hex file onto the Bridge using the MiniProg, open PSoC Programmer and select
the MiniProg from the Port Selection window.

6. Click Program. While programming is in progress, the target power LED on the MiniProg turns
on.

16 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Kit Operation

Figure 3-2. Programming the Bridge

7. When Programming Succeeded appears in the Actions pane, detach the MiniProg.

8. Connect the Bridge dongle through the USB port to the PC, wait for the bridge to enumerate.
When the dongle is first plugged in, the red LED turns ON. It turns OFF when the USB enumera-
tion process completes. Note If the bind button is pushed when the dongle is first plugged in, the
firmware enters MTK test mode and blinks the LED. The LED blinks continuously until the dongle
is removed from the computer.

9. Start using the Bridge, after it is enumerated.

10.To bind the bridge with the mouse or keyboard, press the bind button on the bridge; the bridge
goes into Bind Mode. In Bind Mode, the bridge uses the Bind ID to communicate with the mouse
or keyboard to bind to the system.

The red LED blinks ON/OFF when the dongle is in Bind Mode. The ON and OFF time is approxi-
mately 320 ms, which is the rate at which the dongle changes channels during the bind process.

The red LED also blinks ON/OFF when the PC is suspended. The blinking rate is approximately 1
second, which is the frequency of the wake up interrupts.

The green LED turns ON when the dongle receives data from mouse or keyboard. It remains on for
250 ms after the last received data packet.

The green LED turns ON and remains ON if a key is pressed and held (due to the keyboard's send-
ing Keep Alive packets).

The green LED turns ON and remains ON during Ping Mode (in normal operation, Ping Mode is a
very short period. You may not notice this period).

The red and green LEDs blink alternately when in Manufacturing Test mode.

3.3 Mouse

The CY4672 RDK uses a low cost PRoC LP for the RDK mouse. The RDK mouse is enclosed in a
skin that is designed for the Avago ADNS-3040 Ultra Low-Power mouse sensor. The mouse features
three buttons with one button combined with the scroll wheel function. There is a connect button on
the bottom of the mouse enabling you to perform an explicit bind with the bridge.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 17

Kit Operation

Figure 3-3. Bind Button, ON-OFF Switch, and Battery Compartment

J10 is a programming header. Either the ICE-Cube or the MiniProg may be used to program the
mouse microcontroller using this ISSP header.

Connect your computer to the ISSP header J10 on the mouse using the MiniProg and a USB cable
(A to Mini B). Programming can be done using PSoC Programmer.

1. To program the hex file onto the mouse using the MiniProg, open PSoC Programmer and select
the MiniProg from the Port Selection window.

2. Click Program. While Programming is in progress, the Target Power LED on the MiniProg is ON.

Figure 3-4. Programming Mouse

3. When the Programming Succeeded message appears in the Actions pane, detach the MiniProg.

4. Place a 2-pin jumper installed from a 2-pin jumper installed from J11 to J10.1 to enable the radio
to power the processor. Jumper removal is required when programming U2 to disconnect the
radio from the MiniProg 5 V source. The mouse is powered using two AA batteries.

5. To start using the mouse, place the batteries in the battery terminal, switch ON the mouse, and
bind it with the bridge.

6. To bind the mouse with the bridge, press the bind button on the bridge; the bridge goes into Bind
Mode. In Bind Mode, the red LED blinks ON/OFF. The bridge uses the Bind ID to communicate
with the mouse to bind to the system and then press the bind button on the mouse.

18 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Kit Operation

When the mouse is bound with the Bridge dongle, the mouse works smoothly with the system. The
green LED turns ON when the dongle receives data from mouse. It remains ON for 250 ms after the
last received data packet.

3.4 Keyboard

The CY4672 Reference Design Kit uses an enCoRe™ II LV controller and CYRF6936 LP Radio for
the RDK keyboard.

Figure 3-5. Keyboard Plastic

Figure 3-6. Exploded Keyboard

Figure 3-6 shows the keyboard with the top removed. The radio/enCoRe II LV board (PDC-9265) is
shown in the upper right hand corner.

Keyboard PCB

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 19

Kit Operation

Figure 3-7. Keyboard Battery Compartment and Bind Button

Figure 3-7 shows the integrated battery compartment and bind button located on the bottom side of
the keyboard. The battery compartment cover is also shown.

The CY4672 keyboard can be programmed using a MiniProg or ICE-Cube. Connect your computer
to the keyboard's ISSP connector (J2) using the MiniProg and a USB cable (A to Mini B). Program-
ming can be done using PSoC Programmer.

1. To program the hex file onto the keyboard using the MiniProg, open PSoC Programmer and
select the MiniProg from the Port Selection window.

2. Click Program. While Programming is in progress, the Target Power LED on the MiniProg is ON.

Figure 3-8. Programming Keyboard

3. When the Programming Succeeded message appears in the Actions pane, detach the MiniProg.

4. A 2-pin jumper installed from J3.1 to J2.1 enables the radio to power the processor. Jumper
removal is required when programming U2 to disconnect the radio from the MiniProg 5 V source.

5. The keyboard is powered using two AA batteries. To start using the keyboard, place the batteries
in battery compartment and bind it with the bridge.

Bind Button

Battery Compartment

20 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Kit Operation

6. To bind the keyboard with the bridge, press the bind button on the bridge, the bridge goes into
Bind Mode. In Bind Mode, the red LED blinks ON/OFF. The bridge uses the Bind ID to communi-
cate with the keyboard to bind to the system and then press the bind button on the keyboard.

When the keyboard is bound with the Bridge dongle, the keyboard works smoothly with the system.
The green LED turns ON when the dongle receives data from the keyboard. It remains ON for 250
ms after the last received data packet.

The green LED turns ON and remains ON if a key is pressed and held (due to the keyboard's send-
ing Keep Alive packets).

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 21

4. Hardware

4.1 Bridge

The CY4672 Reference Design Kit uses PRoC LP CYRF69213 for the bridge. This bridge may be
plugged into the USB port on a PC to provide the wireless USB bridge functionality. The architecture
is designed to be modular for extendibility and maintainability. It can also be easily ported from one
hardware platform to another assuming the use of an equivalent microprocessor. Porting to another
microprocessor requires more work to account for the USB hardware support and other hardware
specific changes.

Design efforts are made to reduce the 'on time' of the microprocessor and radio to conserve battery
life of attached devices. This includes protocol optimizations along with using sleep features of the
PRoC LP.

The bridge connects the remote RoC LP HIDs to a low-speed USB host. This firmware supports two-
way communication with bridge and HID devices configured as transceivers. Packets similar to stan-
dard USB HID packets are encapsulated inside wireless PRoC LP packets, which also contain a
packet header and CRC to help the bridge correctly process the USB HID data packets. Valid pack-
ets are then sent via USB to the USB host.

Figure 4-1. Bridge Block Diagram

Chip
CYRF69213

Bind Button

USB A
Connector

12 MHz
Oscillator

LEDs

Antenna

22 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Hardware

4.1.1 Functional Description

The following figure shows the different functional blocks on the CY4672 Bridge dongle.

Figure 4-2. Bridge Board Functional Blocks

4.1.1.1 CYRF69213 Chip

PRoC LP devices have integrated radio and microcontroller functions in the same package to pro-
vide a dual role single-chip solution. Communication between the microcontroller and the radio is via
the SPI interface between both functions.

The CYRF69213 is a radio system-on-chip device, providing a complete RF system solution with a
single device and a few discrete components. The CYRF69213 is designed to implement low-cost
wireless systems operating in the worldwide 2.4 GHz Industrial, Scientific, and Medical (ISM) fre-
quency band (2.400 GHz to 2.4835 GHz).

The microcontroller function is based on the powerful CYRF69213 microcontroller. It is an 8-bit flash
programmable microcontroller with integrated low-speed USB interface. CYRF69213 is a single
device, two functions, an 8-bit flash based USB peripheral MCU function and 2.4 GHz radio trans-
ceiver function in a single device optimized for HID applications.

The CYRF69213 PRoC LP low-speed is targeted for the following applications:

USB bridge for HID

■ Wireless mice

■ Wireless keyboards

■ Remote controls

■ Gaming applications

USB bridge for general purpose applications

■ Consumer electronics

■ Industrial applications

■ White goods

■ Home automation

■ Personal health

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 23

Hardware

Figure 4-3. Schematic View of CYRF69213 Chip

Table 4-1. Pin Details of CYRF69213 Chip

Pin Name Description

1 P0.4 Individually configured GPIO

2 Xtal_in 12 MHz crystal. External clock in

3 VCC Connected to pin 24 via 0.047 µF capacitor

4 P0.3 Individually configured GPIO

5 P0.1 Individually configured GPIO

6 Vbat Connected to pin 24 via 0.047 µFshunt capacitor

7 VCC Connected to pin 24 via 0.047 µF capacitor

8 P2.1 GPIO. Port 2 Bit 1

9 Vbat Connected to pin 24 via 0.047 µFshunt capacitor

10 RFBIAS RF pin reference voltage

11 RFP Differential RF signal to and from antenna

12 GND Ground

13 RFN Differential RF signal to and from antenna

14 NC Connect to GND

24 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Hardware

4.1.1.2 USB A Connector

The USB connector communicates between the PC and the bridge. It also supplies an input voltage
of 5 V to power up the bridge.

15 P2.0 GPIO. Port 2 Bit 0

16 VCC Connected to pin 24 via 0.047 µF capacitor

17 NC Connect to GND

18 NC Connect to GND

19 RESV Reserved. Must be connected to GND

20 NC Connect to GND

21 D+ Low Speed USB I/O

22 D- Low Speed USB I/O

23 VDD_micro 4.0–5.5 for 12 MHz CPU and 4.75–5.5 for 24 MHz CPU

24 P1.2 / VREG Must be configured as 3.3 V output. It must have a 1 µF to 2 µF output capacitor

25 P1.3 / nSS Slave select SPI pin

26 P1.4 / SCK Serial Clock pin from MCU function to radio function

27 IRQ Interrupt output, configure high/low or GPIO

28 P1.5 / MOSI Master Out Slave In

29 MISO Master In Slave Out, from radio function. Can be configured as GPIO

30 XOUT Buffered CLK, PACTL_n or GPIO

31 PACTL Control for external PA or GPIO

32 P1.6 GPIO. Port 1 Bit 6

33 VIO I/O interface voltage. Connected to pin 24 via 0.047 µF

34 Reset
Radio Reset. Connected to VDD via 0.47 µF capacitor or to microcontroller GPIO
pin. Must have a RESET = HIGH event the very first time power is applied to the
radio otherwise the state of the radio function control registers is unknown

35 P1.7 GPIO. Port 1 Bit 7

36 VDD_1.8 Regulated logic bypass. Connected via 0.47 µF to GND

37 L/D Connect to GND

38 P0.7 GPIO. Port 0 Bit 7

39 Vbat Connected to pin 24 via 0.047 µFshunt capacitor

40 VREG Connected to pin 24

41 E-pad Must be connected to GND

42 Corner Tabs Do not connect corner tabs

Table 4-1. Pin Details of CYRF69213 Chip

Pin Name Description

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 25

Hardware

Figure 4-4. Schematic View of USB A Connector

4.1.1.3 Bind Button

This button is used to bind the mouse and keyboard with the bridge. When the bind button on the
bridge is pressed, the bridge goes into Bind Mode. In Bind Mode, the bridge uses the Bind ID to
communicate with the mouse/keyboard to bind to the system.

Figure 4-5. Schematic View of Bind Button

4.1.1.4 LEDs

The CY4672 Bridge board has dual LEDs to indicate different status.

LED2 (red):

■ When the dongle is first plugged in, the red LED turns ON. It turns OFF when the USB enumera-
tion process completes. Note If the bind button is pushed when the dongle is first plugged in, the
firmware enters MTK test mode and the LED blinks. The LED blinks continuously until the dongle
is removed from the computer.

■ The red LED blinks ON/OFF when the dongle is in Bind Mode. The ON and OFF time is approxi-
mately 320 ms, which is the rate at which the dongle changes channels during the bind process.

■ The red LED also blinks ON/OFF when the PC is suspended. The blinking rate is approximately
1 second, which is the frequency of the wake up interrupts.

LED1 (green):

■ The green LED turns ON when the dongle receives data from mouse or keyboard. It remains ON
for 250 ms after the last received data packet.

■ The green LED turns ON and remains ON if a key is pressed and held (due to the keyboard's
sending Keep Alive packets).

■ The green LED turns ON and remains ON during Ping Mode (in normal operation, Ping Mode is a
very short period. You may not notice this period).

The red and green LEDs blink alternately when in Manufacturing Test mode.

26 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Hardware

Figure 4-6. Schematic View of LEDs

4.1.2 Power Supply System

The CY4672 Bridge board is supplied power from the USB A connector on the board.

Figure 4-7. Power Supply System Structure for the Bridge

Figure 4-8. Schematic View of Power Supply System Structure for Bridge

4.2 Mouse

The CY4672 Reference Design Kit uses a low-cost PRoC LP for the RDK mouse. The architecture is
designed to be modular for extendibility and maintainability. It can also be easily ported from one
hardware platform to another assuming the use of an equivalent microprocessor. Porting to another
microprocessor family requires more work to account for hardware specific changes.

Design efforts are made to reduce the 'on' time of the microprocessor and radio to conserve battery
life. This includes protocol optimizations along with using sleep features of the PRoC LP and optical
sensor.

The mouse design uses the SS12 schottky diode (D1) and CDH53100LC inductor (L3) for its boost
circuitry. With these high efficiency components, preliminary characterization data shows a range of
approximately 74% to 87% efficiency for the 1.8 V to 2.7 V VBAT voltage range at different tempera-
tures (–10 °C to 80 °C). The mouse is a higher power consumption device compared to the key-

USB

VBUS (5 V)

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 27

Hardware

board. Extending the battery life is one of the crucial design considerations in the mouse design. The
trade off for a higher efficiency boost circuitry is the component costs and the board size (these com-
ponents are slightly bigger in size compared to the ones used in the keyboard design). These com-
ponents do not provide enough current capacity at the low end of the VBAT voltage range to handle
the worst case optical sensor load and the PMU output voltage may droop under these conditions.
The recommendation is to use an external DC/DC boost circuit for the optical system only.

Figure 4-9. Mouse Block Diagram

4.2.1 Functional Description

The mouse board includes the CYRF69103 chip, ISSP header, optical sensor, encoder, three but-
tons, scroll wheel, 12-MHz oscillator, and an antenna. The following figure shows the different func-
tional blocks on the CY4672 mouse board.

Figure 4-10. Functional Blocks of Mouse

Chip
CYRF69103

Optical Sensor

Buttons

Scroll Wheel

Antenna

ISSP header

28 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Hardware

4.2.1.1 CYRF69103 Chip

The CYRF69103 is a radio system-on-chip device, providing a complete RF system solution with a
single device and a few discrete components. The CYRF69103 is designed to implement low-cost
wireless systems operating in the worldwide 2.4 GHz Industrial, Scientific, and Medical (ISM) fre-
quency band (2.400 GHz to 2.4835 GHz).

The MCU function is an 8-bit flash-programmable microcontroller. The instruction set is optimized
specifically for HID and a variety of other embedded applications. PRoC LP devices are integrated
radio and microcontroller functions in the same package to provide a dual-role single-chip solution.
Communication between the microcontroller and the radio is through the radio's SPI interface.

The SoC contains a 2.4 GHz 1 Mbps GFSK radio transceiver, packet data buffering, packet framer,
DSSS baseband controller, Received Signal Strength Indication (RSSI), and SPI interface for data
transfer and device configuration.

The CYRF69103 PRoC LP is targeted for the following applications:

Wireless HID devices:

■ Mice

■ Remote controls

■ Presenter tools

■ Barcode scanners

■ POS terminal

General purpose wireless applications:

■ Industrial applications

■ Home automation

■ White goods

■ Consumer electronics

■ Toys

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 29

Hardware

Figure 4-11. Schematic View of CYRF69103 Chip

Table 4-2. Pin Details of CYRF69103 Chip

Pin Name Description

1 P0.4 Individually configured GPIO

2 XTAL 12 MHz crystal

3 VCC 2.4 V to 3.6 V supply. Connected to pin 40 (0.047 µF bypass)

4 P0.3 Individually configured GPIO

5 P0.1 Individually configured GPIO

6 Vbat1 Connect to 1.8 V to 3.6 V power supply, through 47 ohm series/1 µF shunt C

7 VCC 2.4 V to 3.6 V supply. Connected to pin 40 (0.047 µF bypass)

8 P2.1 GPIO. Port 2 Bit 1

9 Vbat2 Connected to1.8 V to 3.6 V main power supply, through 0.047 µF bypass C

10 RFbias RF pin voltage reference

11 RFp Differential RF to or from antenna

12 GND GND

13 RFn Differential RF to or from antenna

14 NC No Connection

30 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Hardware

4.2.1.2 Optical Sensor

The ADNS-3040 is an ultra low-power optical navigation sensor. It has a new, low-power architec-
ture and automatic power management modes, making it ideal for battery- and power-sensitive
applications such as cordless input devices.

The ADNS-3040 is capable of high-speed motion detection - up to 20 ips and 8G. In addition, it has
an on-chip oscillator and LED driver to minimize external components.

15 P2.0 GPIO

16 VCC 2.4 V to 3.6 V supply. Connected to pin 40 (0.047 µF bypass)

17 NC No Connection

18 NC No Connection

19 RESV Reserved. Must connect to GND

20 NC No Connection

21 P1.0 GPIO

22 P1.1 GPIO

23 VDD_micro MCU supply connected to pin 40, max CPU 12 MHz

24 P1.2 GPIO

25 P1.3/nSS Slave select

26 P1.4/SCK SPI clock

27 IRQ Radio Function Interrupt output, configure High, Low, or as Radio GPIO

28 P1.5 / MOSI MOSI pin from microcontroller function to radio function

29 MISO
3-wire SPI mode configured as Radio GPIO. In 4-wire SPI mode sends data
to MCU function

30 XOUT Buffered CLK, PACTL_n or Radio GPIO

31 PACTL Control for external PA or Radio GPIO

32 P1.6 GPIO

33 VIO 1.8 V to 3.6 V to main power supply rail for Radio I/O

34 RST
Radio Reset. Connected to pin 40 with 0.47 µF. Must have a RST=HIGH
event the very first time power is applied to the radio otherwise the state of
the radio control registers is unknown

35 P1.7 GPIO

36 VDD1.8 Regulated logic bypass. Connected to 0.47 µF to GND

37 L/D
Inductor/Diode connection for Boost. When Internal PMU is not being used
connect L/D to GND

38 P0.7 GPIO

39 Vbat0 Connected to1.8 V to 3.6 V main power supply, through 0.047 µF bypass C

40 VREG Boost regulator output voltage feedback

41 E-pad Must be connected to ground

42 Corner Tabs Do not connect corner tabs

Table 4-2. Pin Details of CYRF69103 Chip

Pin Name Description

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 31

Hardware

Figure 4-12. Schematic View of Optical Sensor

Table 4-3. Pin Details of ADNS-3040 Chip

Pin Name Description

1 NCS Chip select (active low input)

2 MISO Serial data output (Master In/Slave Out)

3 SCLK Serial clock input

4 MOSI Serial data input (Master Out/Slave In)

5 MOTION Motion Detect (active low output)

6 XY_LED LED control

7 LED_GND Ground for LED current

8 NC No Connection

9 AGND Analog Ground

10 SHTDWN Shutdown (active high input)

11 AVDD Analog Supply Voltage

12 GND Ground

13 GND Ground

14 AGND Analog Ground

15 VDD Supply Voltage

16 GND Ground

17 NC No Connection

18 NC No Connection

19 AGND Analog Ground

20 NC No Connection

32 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Hardware

4.2.1.3 ISSP Header

In-system serial programmer (ISSP) is used to program the device. Programming can be done using
the MiniProg device.

Figure 4-13. Schematic View of ISSP Header

4.2.1.4 Bind Button

This button is used to bind the mouse with the bridge. When the bind button on the bridge is
pressed, the bridge goes into Bind Mode. In Bind Mode, the bridge uses the Bind ID to communicate
with the mouse to bind to the system.

Figure 4-14. Schematic View of Bind Button

4.2.1.5 Wheel and Buttons

There are three buttons S2, S3, and S4 for left, middle, and right button operations of the mouse.
The wheel with the encoder is used for scroll operation.

Figure 4-15. Schematic View of Buttons and Wheel

4.2.2 Power Supply System

The CY4672 mouse board has power sources from the battery supply terminal and ISSP on the
board.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 33

Hardware

Figure 4-16. Mouse Board Power Supply System Structure

Figure 4-17. Schematic View of Power Supply System Structure for Mouse Board

4.3 Keyboard

The CY4672 Reference Design Kit uses an enCoRe II LV controller for the RDK keyboard. The
architecture is designed to be modular for extendibility and maintainability. It can also be easily
ported from one hardware platform to another assuming the use of an enCoRe II LV microprocessor.
While porting to another microprocessor requires more work, the hardware design is done to mini-
mize use of advanced enCoRe II LV features to expedite this effort.

Design efforts are made to reduce the ON time of the microprocessor and radio to conserve battery
life. This includes protocol optimizations along with using sleep features of the radio and enCoRe II
LV microprocessor.

The keyboard design uses the BAT400D-7-F Schottky diode (D1) and CDH53100LC inductor (L3)
for its boost circuitry. These low-cost components are used to reduce the overall system cost at the
expense of lower boost efficiency. Preliminary characterization data shows a range of 68% to 81%
efficiency for the 1.8 V to 2.7 V VBAT voltage range at different temperatures (–10 °C to 80 °C).
Higher efficiency components such as the ones in the mouse design may be used at the expense of
component costs and board size (these low cost components are smaller in size compared to the
ones used in the mouse design.)

Battery

VBAT

ISSP

VCC

34 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Hardware

Figure 4-18. Keyboard Block Diagram

4.3.1 Functional Description

The following figure shows the different functional blocks on the CY4672 keyboard.

Figure 4-19. Functional Blocks of Keyboard PCB

4.3.1.1 CYRF6936 Chip

The CYRF6936 WirelessUSB LP radio is a second generation member of the Cypress WirelessUSB
Radio System-On-Chip (SoC) family. The CYRF6936 is interoperable with the first generation
CYWUSB69xx devices. The CYRF6936 IC adds a range of enhanced features, including increased
operating voltage range, reduced supply current in all operating modes, higher data rate options,
reduced crystal start up, synthesizer settling, and link turnaround times.

The CYRF6936 chip operates with a 2.4 GHz Direct Sequence Spread Spectrum (DSSS) radio
transceiver and operates in the unlicensed worldwide Industrial, Scientific, and Medical (ISM) band
(2.400 GHz to 2.483 GHz). The operating current is 21 mA (transmit at –5 dBm). The transmit power
is up to +4 dBm and a receive sensitivity of up to –97 dBm.

The CYRF6936 chip is targeted towards the following applications:

■ Wireless keyboards and mice

■ Wireless gamepads

■ Remote controls

■ Toys

■ VOIP and wireless headsets

Chip
CY7C60123

Chip CYRF6936
Radio

Battery Power
Supply

Bind Button

Keyboard
Interface ISSP Header

Antenna

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 35

Hardware

■ White goods

■ Consumer electronics

■ Home automation

■ Automatic meter readers

■ Personal health and entertainment

Figure 4-20. Schematic View of CYRF6936 Chip

Table 4-4. Pin Details of CYRF6936 Chip

Pin Name Description

1 XTAL 12 MHZ crystal

2 NC Connect to GND

3 VCC VCC = 2.4 V to 3.6 V. Typically connected to VREG

4 NC Connect to GND

5 NC Connect to GND

6 VBAT(0-2) VBAT = 1.8 V to 3.6 V. Main supply

7 VCC VCC = 2.4 V to 3.6 V. Typically connected to VREG

8 VBAT(0-2) VBAT = 1.8 V to 3.6 V. Main supply

9 NC Connect to GND

10 RFBIAS RF I/O 1.8 V reference voltage

11 RFP Differential RF signal to and from antenna

12 GND Ground

36 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Hardware

4.3.1.2 CY7C60123 Chip

enCoRe II low-voltage (enCoRe II LV) consists of an internal crystalless oscillator with support for
optional external clock or external crystal or resonator with configurable I/O for real world interface
without external components. It has an enhanced 8-bit microcontroller with Harvard architecture and
a M8C CPU speed up to 12 MHz or sourced by an external crystal, resonator, or clock signal.

13 RFN Differential RF signal to and from antenna

14 NC Connect to GND

15 NC Connect to GND

16 VCC VCC = 2.4 V to 3.6 V. Typically connected to VREG

17 NC Connect to GND

18 NC Connect to GND

19 RESV Must be connected to GND

20 NC Connect to GND

21 NC Connect to GND

22 NC Connect to GND

23 NC Connect to GND

24 SS SPI enable, active LOW assertion. Enables and frames transfers

25 SCK SPI clock

26 IRQ Interrupt output (configurable active HIGH or LOW), or GPIO

27 MOSI SPI data input pin (Master Out Slave In), or SDAT

28 MISO
SPI data output pin (Master In Slave Out), or GPIO (in SPI 3-pin
mode). Tri-states when SPI 3PIN = 0 and SS is deasserted

29 XOUT
Buffered 0.75, 1.5, 3, 6, or 12 MHz clock, PACTL, or GPIO.Tri-states
in sleep mode (configure as GPIO drive LOW)

30 PACTL Control signal for external PA, T/R switch, or GPIO

31 NC Connect to GND

32 NC Connect to GND

33 VIO I/O interface voltage, 1.8 V to 3.6 V

34 RST

Device reset. Internal 10 kohm pull down resistor. Active HIGH, con-
nect through a 0.47 µF capacitor to VBAT. Must have RST = 1 event
the first time power is applied to the radio. Otherwise the state of the
radio control registers is unknown

35 VDD
Decoupling pin for 1.8 V logic regulator, connect through a 0.47 µF
capacitor to GND

36 NC Connect to GND

37 L/D
PMU inductor/diode connection, when used. If not used, connect to
GND

38 VBAT(0-2) VBAT = 1.8 V to 3.6 V. Main supply.

39 NC Connect to GND

40 VREG PMU boosted output voltage feedback

Table 4-4. Pin Details of CYRF6936 Chip

Pin Name Description

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 37

Hardware

The CY7C60123 is targeted for the following applications:

■ PC wireless human interface devices - Mice (optomechanical, optical, trackball), keyboards, pre-
senter tools

■ Gaming - Joysticks, gamepad

■ General-purpose wireless applications - Remote controls, barcode scanners, POS terminal, con-
sumer electronics, toys

Figure 4-21. Schematic View of CY7C60123 Chip

Table 4-5. Pin Details of CY7C60123 Chip

Pin Name Description

1 NC No connect

2 NC No connect

3 NC No connect

4 NC No connect

5 VDD Power

6 P4.1 GPIO port 4-configured as a group (nibble)

7 P4.0 GPIO port 4-configured as a group (nibble)

8 P2.0 GPIO port 2-configured as a group (byte)

9 P2.1 GPIO port 2-configured as a group (byte)

10 P2.2 GPIO port 2-configured as a group (byte)

11 P2.3 GPIO port 2-configured as a group (byte)

12 P2.4 GPIO port 2-configured as a group (byte)

38 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Hardware

13 P2.5 GPIO port 2-configured as a group (byte)

14 P2.6 GPIO port 2-configured as a group (byte)

15 P2.7 GPIO port 2-configured as a group (byte)

16 P0.7 GPIO port 0 bit 7-Configured individually

17 P0.6/TIO1
GPIO port 0 bit 6-Configured individually Alternate function timer capture inputs
or timer output TIO1

18 P0.5/TIO0
GPIO port 0 bit 5-Configured individually Alternate function timer capture inputs
or timer output TIO0

19 P0.4/INT2 GPIO port 0 bit 4-Configured individually Optional rising edge interrupt INT2

20 P0.3/INT1 GPIO port 0 bit 3-Configured individually Optional rising edge interrupt INT1

21 P0.2/INT0 GPIO port 0 bit 2-Configured individually Optional rising edge interrupt INT0

22 P0.1/CLKOUT

GPIO port 0 bit 1-Configured individually On CY7C601xx, optional Clock Out
when external oscillator is disabled or external oscillator output drive when
external oscillator is enabled. On CY7C602xx, oscillator output when configured
as Clock Out

23 P0.0/CLKIN
GPIO port 0 bit 0-Configured individually on CY7C601xx, optional Clock In when
external oscillator is disabled or external oscillator input when external oscillator
is enabled. On CY7C602xx, oscillator input when configured as Clock In

24 VSS Ground

25 P1.0
GPIO port 1 bit 0 If this pin is used as a general-purpose output it draws current.
It is, therefore, configured as an input to reduce current draw

26 P1.1
GPIO port 1 bit 1 If this pin is used as a general-purpose output it draws current.
It is, therefore, configured as an input to reduce current draw

27 VDD Power

28 P1.2 GPIO port 1 bit 2

29 P1.3/SSEL
GPIO port 1 bit 3-Configured individually Alternate function is SSEL signal of the
SPI bus

30 P1.4/SCLK
GPIO port 1 bit 4-Configured individually Alternate function is SCLK signal of the
SPI bus

31 P1.5/SMOSI
GPIO port 1 bit 5-Configured individually Alternate function is SMOSI signal of
the SPI bus

32 P1.6/SMISO
GPIO port 1 bit 6-Configured individually Alternate function is SMISO signal of
the SPI bus

33 P1.7 GPIO port 1 bit 7-Configured individually TTL voltage threshold

34 P3.0 GPIO port 3-configured as a group (byte)

35 P3.1 GPIO port 3-configured as a group (byte)

36 P3.2 GPIO port 3-configured as a group (byte)

37 P3.3 GPIO port 3-configured as a group (byte)

38 P3.4 GPIO port 3-configured as a group (byte)

39 P3.5 GPIO port 3-configured as a group (byte)

40 P3.6 GPIO port 3-configured as a group (byte)

41 P3.7 GPIO port 3-configured as a group (byte)

42 P4.2 GPIO port 4-configured as a group (nibble)

43 P4.3 GPIO port 4-configured as a group (nibble)

Table 4-5. Pin Details of CY7C60123 Chip

Pin Name Description

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 39

Hardware

4.3.1.3 Keyboard Interface

A 26-pin keyboard interface J1 is present on the board, which takes input from 8 rows and 18 col-
umns with an input from 101 keys.

Figure 4-22. Schematic View of Keyboard Interface

4.3.1.4 ISSP Header

ISSP header (J2) is used to program the device. Programming can be done using the MiniProg
device.

Figure 4-23. Schematic View of ISSP Header

44 VSS Ground

45 NC No connect

46 NC No connect

47 NC No connect

48 NC No connect

Table 4-5. Pin Details of CY7C60123 Chip

Pin Name Description

40 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Hardware

4.3.1.5 Bind Button

This button is used to bind the keyboard with the bridge. When the bind button on the bridge is
pressed, the bridge goes into Bind Mode. The bind button on the keyboard is then pressed to bind
the keyboard.

Figure 4-24. Schematic View of Bind Button

4.3.2 Power Supply System

The CY4672 keyboard has power sources from the battery supply terminal and ISSP header on the
board.

Figure 4-25. Keyboard Power Supply System Structure

Figure 4-26. Schematic View of Power Supply System Structure for Keyboard

Battery

VBAT

ISSP

VCC

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 41

5. Code Examples

All code examples are available at: <install directory>\Cypress\CY4672 PRoC LP RDK\<ver>\Firm-
ware\

5.1 Project 1- PRoC_LP_RDK_Bridge

5.1.1 Project Description

This code example demonstrates the features and functions offered by the bridge. The bridge con-
tinuously checks the USB idle timer, received packet, bind button, and USB suspend. The functions
include:

■ Check the Received Packet - When the bridge receives a valid packet, it parses the packet. If it is
a data packet, the bridge formats and sends a USB packet to the USB host. If it is a connect
request with an approved device or a ping request, the bridge sends a response correspondingly.

■ Check the Bind Button: The bridge checks the bind button frequently. If this button is pressed, the
bridge goes into the bind state.

■ Check the USB Suspend: When suspended, the bridge supports remote wakeup by intermittently
turning the radio on when the sleep timer interrupt occurs, checking for valid data from the HID
devices, and then turning the radio off again if no HID traffic is detected.

There are two architectural views of the bridge. The first is a microcontroller configuration view of
user modules inside the controller. This architecture and configuration is best viewed in PSoC
Designer when the project is loaded. The second view is a logical organization of the source code
modules that make up the bridge application code and other support modules.

The following table shows the ROM/RAM usage. The top part exhibits the total ROM/RAM usage for
basic functions, which disables all the build options. The bottom part exhibits the ROM/RAM usage
for individual build options.

Table 5-1. ROM/RAM Usage

Note* The ENCRYPT_DATA option requires 64 bytes of extra ROM space to store the nonvolatile
session key.

42 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

5.1.2 Device Configurations

The PRoC LP Programmable Radio on Chip is configured using the Device Editor in PSoC
Designer. The bridge uses the SPI Master, USB Device, and 1 Millisecond Interval Timer User Mod-
ules. The SPI Master User Module is used by firmware to communicate with the LP radio module.
The USB Device User Module allows the bridge to operate as a low-speed USB device. The 1 Milli-
second Interval Timer User Module is used for timing. Figure 5-1 shows the Device Editor with user
module mapping.

Figure 5-1. Device Configuration for Project1

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 43

Code Examples

5.1.2.1 Global Configuration

Following is a description of the global resources that are configured for the PRoC LP CYRF69213.
Take care when modifying these values, because they affect the following user modules.

■ CPU Clock: This parameter is set to Internal (24 MHz). To run the CPU at 12 MHz, the CPU
Clock/N must be set to ‘2’. This operating frequency provides for faster code execution.

■ CPU Clock / N: This parameter is set to ‘2’ to provide a 12 MHz clock.

■ Timer Clock: This parameter is set to ‘FreeRun Timer’.

■ Timer Clock /N: This parameter is set to ‘4’.

■ Sleep Timer: This parameter is set to ‘1_Hz’.

■ FreeRun Timer: This parameter is set to ‘Internal (24 MHz)’.

■ FreeRun Timer /N: This parameter is set to '6'.

■ Capture Edge: This parameter is set to ‘Latest’.

■ 8 Bit Capture Prescaler: This parameter is set to '1'.

■ USB Clock: This parameter is set to ‘Internal (24 MHz)’.

■ USB Clock /2: This parameter is set to ‘Enable’.

■ CLKOUT Source: This parameter is set to ‘Internal (24 MHz)’.

■ Low V Detect: This parameter is set to 4.44 V – 4.53 V.

■ V Reset: This parameter is set to ‘3.3 V’.

■ V Reg: This parameter is set to ‘Disable’ and the VReg is enabled in the application code.

■ V Keep-alive: This parameter is set to ‘Disable’.

■ Watchdog Enable: This parameter should be set to ‘Enable’, but may be set to ‘Disable’ for debug
purposes.

5.1.2.2 SPI Master User Module

The SPI Master User Module is used to communicate with the radio transceiver. The radio trans-
ceiver supports leading edge data latching, non-inverted clock, and MSB first transmission as
defaults. A clock divisor of 6 is chosen, which generates an SPI clock of 2 MHz. The interrupt API to
this module is not used.

In the PRoC RDK bridge design, the bridge implements the "3 wire" SPI; therefore, the microcon-
troller's MISO and the radio MISO can be used as GPIOs. Also, the IRQ pin function is multiplexed
on to the MOSI pin to save the GPIO pin.

5.1.2.3 USB Device User Module

The USB Device User Module handles the enumeration and data transfers over USB endpoints.

5.1.2.4 1 Millisecond Interval Timer User Module

The 1 Millisecond Interval Timer User Module is used to determine when a USB suspend has
occurred, LED ON/OFF duration timing, RSSI checking, and others.

5.1.2.5 Flash Security

The bridge project within PSoC Designer has a file called FlashSecurity.txt. This file specifies access
rules to blocks of the flash ROM. See the documentation listed at the top of the file for definitions.
This file is shipped with a single change from its default configuration. The block starting at address
0x1FC0 is changed from W: Full (Write protected) to U: Unprotected. This location of flash is dedi-
cated to saving the nonvolatile session key for the encrypt code module and the device flag for
KISSBind.

44 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

5.1.3 Model

Figure 5-2. Firmware Architecture Model

The bridge firmware is partitioned into two logical groups. The Common group is a collection of code
modules that provide the underlying support for the application. This group provides services such
as, radio protocol, radio driver, USB, timing, flash access, SPI, and interrupts.

The Application group implements the core functionality and features of the RDK wireless bridge.
This includes USB HID packet formatting and reporting, encryption, and manufacturing test mode.
The code modules for each of these groups are described here.

The following module descriptions have corresponding <module name>.c and <module name>.h
source code files. The module API and definitions are exported in the header file while the module
implementation and local definitions are contained in the C file.

5.1.3.1 Common Code

The modules consist of the common code logical grouping.

■ PSoC Generated Library Code: There are currently only three files generated by PSoC Designer
that are modified when using the application. A minimal amount of code is added to these mod-
ules in user protected areas that are preserved across code generation.

❐ USB include (USB_1.inc): This file includes the additional code for the Battery Level and Link
Quality software application in USB_1_cls_hid.asm.

❐ USB HID Class Module (USB_1_cls_hid.asm): The additional user code provides support for
the Battery Level and Link Quality software application.

❐ 1 Millisecond Interval Timer Interrupt Module (MSTIMER.asm): The additional user code dec-
rements application countdown timers and checks for USB activity to detect a USB suspend
condition.

■ Flash: This module includes routines to write to the PRoC LP flash.

■ Timer: This module includes busy wait time routines.

■ Radio Driver: The radio driver module is a low level module providing basic radio communication
and configuration. Its application is such that it may not be changed by the firmware developer. It
provides an interface to read/write radio registers, set PN codes and initialize the radio, and
transmit or receive packets. See the Radio Driver documentation for details.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 45

Code Examples

■ Master Protocol: The module includes LP RDK master protocol routines to handle ping, button
bind, channel agility, and data packets. This module depends on the radio driver to send and
receive formatted packets and the flash module.

5.1.3.2 Application Code

The group of modules that make up the application code is responsible for implementing the bridge
functionality and behavior.

Bridge Module

The bridge module is the controlling code for the application. It is responsible for implementing vari-
ous features and functions offered by the bridge. The function main() is the entry point for the bridge
application. This function is called from the boot.asm file. The bridge first initializes all the application
modules and then initializes the master_protocol module. There is an order dependency for some of
these, so take care when modifying the bridge_init() function. For example, other modules depend
upon the timer facility running to perform initialization. When each module is initialized, the applica-
tion checks for entry to the manufacturing test mode. If the manufacturing test mode is not indicated,
then normal bridge operation begins.

The bridge continuously checks the USB idle timer, received packet, bind button, and USB suspend.

■ Check the USB Idle Timer

The check_usb_idle() function is called within the main() function to properly handle the USB
Set_Idle command. The USB Set_Idle command from the host PC is used to silence the keyboard or
mouse report until a new event occurs or the specified amount of time passes. If the host PC's
Set_Idle command sets the Idle Duration to '0', the keyboard or mouse endpoint inhibits reporting
forever, only reporting when a change is detected in the report data. This causes the bridge to NAK
any polls on the endpoint while its current report remains unchanged. If the Set_Idle command sets
the Idle Duration to a non-zero number, a single report is generated by the endpoint if the given time
duration elapses with no change in report data (see the HID Specification for more information on
this topic).

The check_usb_idle() function also checks the timeout for down key and 'keep alive' packet. A 'keep
alive' packet is transmitted every 65 ms during the time a key is pressed, so that the bridge can
detect if the RF link is lost, and in that unlikely case, the bridge inserts a 'key up' event, to prevent a
'stuck key' state being transmitted to the PC. The number of milliseconds before upkey reports are
generated is defined by DOWNKEY_TIME_OUT.

■ Check the Received Packet

When the bridge receives a valid packet, it parses the packet. If it is a data packet, the bridge for-
mats and sends a USB packet to the USB host. If it is a connect request with an approved device or
a ping request, the bridge sends a response correspondingly.

■ Check the Bind Button

The bridge checks the bind button frequently. If this button is pressed, the bridge goes into the bind
state.

■ Check the USB Suspend

The check_usb_suspend() monitors the USB suspend condition on the USB bus and puts the sys-
tem into a low-power state when no bus activity is observed for 3 ms. When suspended, the bridge
supports remote wakeup by intermittently turning the radio on when the sleep timer interrupt occurs,
checking for valid data from the HID devices, and then turning the radio off again if no HID traffic is
detected.

46 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

USB Module

This module parses the radio packets, builds the appropriate keyboard and mouse USB packets,
and loads these packets into the endpoints.

Mfgtest Module

The manufacturing test module may be conditionally compiled to provide manufacturing test sup-
port. The module configures the radio for reception and then enters a loop waiting for command
packets to be sent from the tester. The test echoes all echo command packets appended with the
number of invalid bits received and all other 'valid' command packets (no invalid bits). The manufac-
turing test code can only be exited by cycling power. The manufacturing test code in this bridge is
compatible with Cypress’s CY3631 Manufacturing Test Kit.

The manufacturing test mode on the PRoC LP RDK bridge can be entered by three different meth-
ods depending on the compile-time configuration.

■ Method 1: Press the bind button during dongle insertion into the USB host to enter the manufac-
turing test mode.

■ Method 2: Force an SE1 condition (D+ and D– are both high) on the USB bus and at the same
time apply power to the bridge.

■ Method 3: Ground the P0.7 pin during dongle insertion into the USB host to enter the manufactur-
ing test mode.

Encrypt Module

This module may be conditionally compiled to provide encryption/decryption support. Encrypted data
transfers are typically used between RDK keyboard devices and the RDK bridge. Contact Cypress
Applications support for the encryption source code.

5.1.3.3 Configuration Options

All configuration options for the application are available in the config.h file; some of them are
defined in the Project > Setting > Compiler > Macro defines. Each option is explained here and can
be changed to values that meet the developer's needs.

■ MFG_TEST_CODE

This configuration definition is used to selectively compile the manufacturing test code. The man-
ufacturing test code in this bridge is compatible with Cypress’s CY3631 Manufacturing Test Kit.
See the Mfgtest Module for a description of how this test mode is executed. The CY3631 Manu-
facturing Test Kit documentation has a description of the test operation.

■ MFG_TX_MODES

When the MFG_TEST_CODE is defined, the definition of this name adds in a carrier and random
data TX test option. See the Mfgtest Module for more information on these TX modes.

■ MFG_ENTER_BY_PIN

This configuration definition is used to selectively compile a method to enter the manufacturing
test code. When this value is defined, the manufacturing test code may be executed by ground-
ing a specific pin, when inserting the LP RDK bridge into a powered USB port or applying exter-
nal power.

■ MFG_ENTER_BY_BUTTON

This configuration definition is used to selectively compile a method to enter the manufacturing
test code. When this value is defined, the manufacturing test code may be executed by holding
the bind button, when inserting the LP RDK bridge into a powered USB port or applying external
power.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 47

Code Examples

■ MFG_ENTER_BY_USBSE1

This configuration definition is used to selectively compile a method to enter the manufacturing
test code. When this value is defined, the manufacturing test code may be executed by causing a
USB SE1 condition on the D+ and D– signals, when inserting the LP RDK bridge into a powered
USB port or applying external power.

■ ENCRYPT_TEA

This configuration definition is used to selectively compile TEA encryption for the bridge. Contact
Cypress Applications support for the encryption source code.

■ ENCRYPT_AES

This configuration definition is used to selectively compile AES encryption for the bridge. Contact
Cypress Applications support for the encryption source code.

■ GREEN_LED_ON_TIME

This configuration definition defines the number of milliseconds the green LED stays on after a
valid USB report is loaded in an endpoint.

■ DOWNKEY_TIME_OUT

This configuration definition defines the number of milliseconds before upkey reports are gener-
ated by the bridge in the absence of valid packets from an attached keyboard device.

■ BACK_CHANNEL_SUPPORT

This configuration definition is used to selectively compile the Back Channel Data Support fea-
ture. See Back Channel Data Support on page 100 for more information.

■ MASTER_PROTOCOL

This configuration definition is used to select the Master radio protocol or Slave radio protocol.
For the bridge application, it should be defined.

■ PAYLOAD_LENGTH

This configuration definition is used to define the payload length. For the bridge application, it
should be defined as 8.

■ POWER_BIND

This configuration definition is used to selectively compile Power Bind feature. When the Power
Bind feature is selected, the bridge enters the bind mode twice at power up. Each time the bridge
stays in bind mode for 1.5 seconds, and if a device is in the bind mode during this time, the
device will be bound to this bridge.

■ KISS_BIND

This configuration definition is used to selectively compile the Enhanced KissBind feature. See
Enhanced KISSBind on page 98 for more information. The bridge can be unbound by holding the
bind button for 5 seconds. After being unbound, the bridge enters an infinite loop and the red LED
is always on until it is unplugged from and plugged into a host PC.

After being unbound, the device bound flags are cleared, and the HIDs can be bound to this
bridge by KissBind.

■ RSSI_QUALIFY

This configuration definition is used to enable the RSSI qualification for the Enhanced KissBind.
Only if the RSSI reading is above KISS_BIND_RSSI_THRESHOLD, can the KissBind request/
response be accepted by the Bridge/Devices.

■ PROMISCUOUS_MODE

This configuration definition is used to enable the Promiscuous mode qualification for the
Enhanced KissBind. With this mode, multiple mice or keyboards can be bound to one bridge.

48 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

■ DAL_ENABLE

This configuration definition is used to enable Microsoft's Direct Application Launch (DAL) fea-
ture. When this feature is enabled, the DAL1 LED is turned on by holding the F11 key; the DAL2
LED is turned on by holding the F12 key. Direct Application Launch is a new feature that the Win-
dows Vista operating system provides built-in support, for a fast system startup experience. More
information on this can be found on Microsoft's Windows Hardware Developer Central website
(http://msdn.microsoft.com/en-us/windows/hardware/gg463078.aspx).

5.1.3.4 Platform and Architecture Portability

The bridge firmware is designed to use the hardware features of the PRoC LP such as USB. Porting
the code to another microprocessor architecture may require modification of the existing code to
support the different processor specific features.

5.1.3.5 Initialization

The initialization of the PRoC LP chip is done by code that is generated in boot.asm by PSoC
Designer. The module boot.asm calls main when the PRoC LP is configured and initialized.

Main initializes the components of the bridge along with the radio modules. The bridge firmware
enters a loop to receive and handle radio packets and generate USB packets.

5.1.3.6 Wireless Protocol Data Payload

The RDK HID protocol is optimized to reduce the 'on time' of the radio, which equates to reduced
power consumption on the LP devices. Refer to the RDK keyboard and RDK mouse sections for
radio packet format details.

5.1.3.7 Suspend and Remote Wakeup

To meet the USBIF compliance requirements regarding power consumption during suspend state,
the PRoC LP RDK bridge must reduce the over all power consumption to less than 500 µA if Remote
Wakeup is not enabled (Remote Wakeup is the device ability to wake up a suspended PC with user
input such as a key press, mouse movement, and others). Because the PRoC LP RDK is not config-
ured to wake up the suspended host PC, the entire bridge must go into deep sleep state to conserve
power. Only bus activity from the host PC can bring the bridge back to normal operation.

If Remote Wakeup is enabled, the bridge may draw up to 2.5 mA in suspend state. This requires that
the radio circuitry be OFF most of the time. It is necessary to periodically turn the radio on to sense
activity from the PRoC LP mouse or keyboard (and thereby know when to wake the host). The wake
up period is configurable and is set to 1 second (see Register OSC_CR0 setting). Increasing the
wakeup interrupt frequency results in a faster response to the user wakeup events at the expense of
a slightly higher than average sleep current.

Table 5-2. Bridge Average Icc in Suspend State

5.1.3.8 Interrupt Usage/Timing

The polling method is used for the bind button.

http://msdn.microsoft.com/en-us/windows/hardware/gg463078.aspx

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 49

Code Examples

5.1.3.9 Code Performance Analysis

A keyboard report processing is used to analyze the code performance. A typical keyboard report
processing contains the following steps:

■ The bridge receives the keyboard report packet and process the packet. This step takes 108 µs.

■ MCU calls function handle_keyboard_report() to format USB packet and load this packet into the
endpoint buffer. This function consumes 118 µs.

As a result, it takes 226 µs for the bridge to process a keyboard report.

5.1.3.10 USB Interface

USB Descriptors: The USB descriptors can be viewed/edited with the USB Setup Wizard.

■ Device/Config Descriptors

Figure 5-3. USB Device/Config Descriptors

50 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

■ Keyboard HID Report Descriptor: The keyboard HID report descriptor defines a Boot Protocol
keyboard. This enables a LP RDK keyboard with the LP RDK bridge to work on different BIOS
versions that do not correctly support the USB Report Protocol. Only standard 101(104) keys are
sent using this format over endpoint 1.

Figure 5-4. Keyboard HID Report Descriptor (Endpoint 1)

■ Mouse/Keyboard HID Report Descriptor: The mouse/keyboard HID Report Descriptor uses
report protocol format with a unique report ID for each report. Mouse data uses Report ID 1. The
mouse report include delta x, delta y, and scroll wheel data.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 51

Code Examples

Figure 5-5. Mouse HID Report Descriptor (Report ID 1 - Endpoint 2)

Keyboard multimedia keys use Report ID 2.

Figure 5-6. Keyboard's MM Keys HID Report Descriptor (Report ID 2 - Endpoint 2)

Keyboard power keys use Report ID 3.

52 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

Figure 5-7. Keyboard's Power Keys HID Report Descriptor (Report ID 3 - Endpoint 2)

Report ID 4 is used to send the mouse battery level and link quality report.

Figure 5-8. Mouse's Battery/Link Quality Report Descriptor (Report ID 4 - Endpoint 2)

Report ID 5 is used to send the keyboard battery level and link quality report.

Figure 5-9. Keyboard's Battery/Link Quality Report Descriptor (Report ID 5-Endpoint 2)

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 53

Code Examples

Keyboard Report Format: The keyboard standard keys information is sent to the host PC via the
data endpoint 1. The keyboard multimedia keys and power keys information is sent to the host PC
via the data endpoint 2 using Report ID (the first byte in the report). The mouse uses Report ID 1.
The keyboard multimedia keys use Report ID 2. The keyboard power keys use Report ID 3. The for-
mats of the keyboard report are shown in Figure 5-10.

Figure 5-10. Keyboard Report Format

Keyboard Endpoint (EP1)

Figure 5-11. Multimedia and Power Keys Report Format

Mouse Report Format: The mouse data is sent over the data endpoint 2 using Report ID 1. The for-
mat of the mouse report is shown in Figure 5-12.

Figure 5-12. Mouse Report Format

Mouse Endpoint (EP2)Mouse Endpoint (EP2)

54 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

Battery Level and Link Quality Reports: The WirelessUSB LP bridge implements a mechanism to
report the radio parameters of attached HID devices via the USB control endpoint. The code for this
functionality is located in the user custom code section of the user module source file
usb_1_cls_hid.asm.

The RadioParams HID report is a vendor-defined HID report for communicating several radio
parameters of the WirelessUSB LP HID devices.

The HID Report Page is defined as:

Cypress WirelessUSB HID RadioParams Report Page (0xFF01 - Vendor Defined)

Table 5-3. USB Report Usage IDs

The RadioParams Report is 8 bytes long and has the 6 data fields listed in Table 5-4.

Table 5-4. USB Report Format

■ Requesting a New Battery Reading

When the bridge receives a control endpoint request from the host with the following parameters, it
returns an 8-byte RadioParams report over the control endpoint. An attached LP device should send
an updated battery report whenever a reconnect or a change in the battery level occurs.

Control endpoint request for new battery reading.

Table 5-5. USB Set Report

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 55

Code Examples

■ Obtaining the RadioParams Report

When the bridge receives, from the host, a control endpoint request with the parameters listed on
Table 5-6, it returns an 8-byte RadioParams report over the control endpoint.

Control endpoint request for RadioParams report are listed.

Table 5-6. USB Get Report

When the bridge receives the Get Report control request code, it returns a RadioParams report and
then resets the Packets Transferred parameter for the specified device to zero. The Link Quality
value is updated whenever the bridge receives a radio packet from the wireless device. Battery
Level is only updated when the device sends an updated battery level report. At startup, the Battery
Level, Corrupt Packets, and Packets Transferred are initialized to zero.

Example USB Bus Analyzer (CATC) Traces: Figure 5-13 shows the USB data transmissions
between the bridge and the host PC captured with the USB CATC Bus Analyzer. In this example, the
Right Shift + 'g', 'h' keys were typed followed by the 'Volume Up', 'Volume Down' keys. Note the key-
board regular key reports are sent to the PC via the endpoint 1 while the multimedia key reports are
sent via the endpoint 2 with Report ID 2.

Figure 5-13. Example Keyboard CATC Trace (Standard and MM Keys)

Figure 5-14 shows the mouse data being transferred between the dongle and the host PC. The first
part of the trace shows the mouse data when the left button is pressed and held down as the mouse
is moved, and then the left button is released. The second part of the trace shows the Z-wheel being
moved down and up.

56 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

Figure 5-14. Example Mouse CATC Trace

Figure 5-15 shows the Sleep key being pressed. Note the power key reports are sent via endpoint 2
and Report ID 3.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 57

Code Examples

Figure 5-15. Example Keyboard CATC Trace (Power Key)

Figure 5-16 shows the Get_Report requests used to retrieve the keyboard and mouse battery level
and link quality information. Note the data transfers occurred on the control endpoint, endpoint 0,
and Report ID are used to differentiate keyboard and mouse requests.

Figure 5-16. CATC Trace of Battery and Link Quality Data Requests

5.1.4 Verify Output

1. Connect the bridge to the PC and wait for the device to enumerate, the red LED turns ON, it turns
OFF when the USB enumeration process completes. When enumeration is done, start using the
bridge.

2. Press the bind button, the red LED blinks ON/OFF when the dongle is in Bind Mode.

3. Press the bind button on the mouse or keyboard, the devices are bound together.

4. Press any key on the keyboard or make mouse movements, the green LED turns on when the
dongle receives data from mouse or keyboard.

5. The green LED turns on and remains on if a key is pressed and held.

58 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

5.2 Project 2 - PRoC_LP_RDK_Mouse

5.2.1 Project Description

This code example demonstrates various features and functions offered by the mouse. The mouse
is a three button mouse that includes left button, right button, and a center button along with a scroll
wheel.

5.2.1.1 ROM/RAM Usage

The following table shows the ROM/RAM usage. The top part exhibits the total ROM/RAM usage for
basic functions, which disables all the build options. The bottom part exhibits the ROM/RAM usage
for individual build options.

Table 5-7. ROM/RAM Usage

5.2.2 Device Configurations

The PRoC LP Programmable Radio on Chip is configured using the Device Editor in PSoC
Designer. The mouse uses two digital blocks to support two separate user modules. The first module
is an SPI master to communicate with the optical sensor and the radio. The second module is a Pro-
grammable Interval Timer configured to operate as a 12-bit timer. Figure 5-17 shows the Device Edi-
tor with the user module mapping.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 59

Code Examples

Figure 5-17. Device Configuration

5.2.2.1 Global Configuration

Following is a description of the Global Resources that are configured for the CYRF69103 PRoC LP
Programmable Radio on Chip. Take care when modifying these values because they affect the fol-
lowing user modules.

■ CPU Clock: This parameter is set to Internal (24 MHz). To run the CPU at 12 MHz, CPU Clock/N
needs to be set to '2'. This operating frequency provides for faster code execution so that when
events are detected the microcontroller can be put back into the sleep state quicker for improved
power savings.

■ CPU Clock/N: This parameter is set to '2' to provide a 12 MHz clock.

■ Timer Clock: This parameter is set to ‘FreeRun Timer’.

■ Timer Clock/N: This parameter is set to '4'.

■ FreeRun Timer: This parameter is set to ‘Low Power (32 kHz)’.

60 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

■ FreeRun Timer/N: This parameter is set to '6'.

■ Capture Edge: This parameter is set to ‘Latest’.

■ 8-Bit Capture Prescaler: This parameter is set to '1'.

■ CLKOUT Source: This parameter is set to ‘Internal (24 MHz)’.

■ Low V Detect: This parameter is set to 2.63 V to 2.68 V.

■ V Reset: This parameter is set to ‘2.6 V’.

■ Watchdog Enable: This parameter should be set to ‘Enable’, but may be set to ‘Disable’ for debug
purposes.

5.2.2.2 SPI Master User Module

The SPI Master User Module is used to communicate with both the radio transceiver and the optical
sensor. Both devices support leading edge data latching, noninverted clock and MSB first transmis-
sion as defaults. A clock divisor of 12 is chosen, which generates an SPI clock of 1 MHz. The inter-
rupt API to this module is not used. See the SPI Module to learn how this module is used to
implement communication with multiple devices on the SPI bus.

5.2.2.3 PWM User Module

The Programmable Interval Timer User Module is configured to use the Internal 32-kHz low-power
oscillator. This module is used to provide a periodic interrupt to the timer code module to maintain a
power saving millisecond sleep routine. The period of the timer is calibrated to the system clock at
power on to provide a period of about 250 µs. This calibration is performed to account for variations
in temperature and ILO variances from part to part. Configured the module to generate a terminal
count interrupt. The period parameter is ignored because it is programmed at run time based upon
the calibration results. See the Timer Module for more details on calibration.

5.2.2.4 Flash Security

The PSoC Designer mouse project has a file called FlashSecurity.txt. This file specifies access rules
to blocks of the flash ROM. Refer to the documentation at the top of the file for definitions. This file is
shipped with a single change from its default configuration. The block starting at hex address 1FC0
is changed from W: Full (Write protected) to U: Unprotected. This location of flash is dedicated to
saving nonvolatile configuration values for the protocol code module (refer to the Protocol Module).
Note When building the mouse firmware, check that the text image size does not occupy this block.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 61

Code Examples

5.2.3 Model

Figure 5-18. Firmware Architecture Model

The mouse firmware is partitioned into two logical groups. The Common group is a collection of code
modules that provide the underlying support for the application. This group provides services such
as radio protocol, radio driver, timing, polling, flash access, contact debounce, SPI, and interrupts.

The Application group implements the core functionality and features of the PRoC LP RDK mouse.
This includes power management, optical sensor, button, z-wheel, packet formatting and reporting,
various test modes, and battery level sensing.

The following module descriptions have corresponding <module name>.c or <module name>.asm
and <module name>.h source code files. The module API and definitions are exported in the header
file while the module implementation and local definitions are contained in the C/ assembly file.

5.2.3.1 Common Code

The modules in the common code group are a combination of two sources. The first is PSoC
Designer generated files in the lib directory that are modified to support the application. The second
group is modules that are generally used by the application.

Generated Library Code

There is currently only one file, generated by PSoC Designer, that is modified for the use of the
application. A minimal amount of code is added to this module in user protected areas that are pre-
served across code generation.

■ Timer Interrupt Module

The timer interrupt module is modified to provide a finer timing of 250 µs for the poll module and
course timing by providing a 1 ms tick. When the timer module is turned OFF, it still provides a
sense of time on the 1 ms tick by using the sleep timer. In this case, polling is disabled to con-
serve power. See the Poll Module and Timer Module for more details.

62 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

■ Debounce Module

The debounce module is an assembly coded routine to perform debounce on button presses and
z-wheel motion. The algorithm is one that is published in EDN article as a way to perform hard-
ware debounce in software.

The debounce is performed by polling the inputs at a fixed period and by adding a weighted value
of the input to an accumulated value carried from the previous poll. The output is then passed to
threshold logic, with built in hysteresis, and a logic value of one or zero is computed. The thresh-
olds can be changed to adjust the hysteresis crossings by setting SCHMITT_HIGH_THRESH
and SCHMITT_LOW_THRESH. When an input has changed state, the output can be observed
to change approximately 10x the poll period later with the current threshold settings. With a poll
period of 250 µs the input latency is about 2.5 ms. Refer to Contact-debouncing algorithm emu-
lates Schmitt trigger at http://www.edn.com for more details on the operation of this algorithm.

■ SPI Module

This module provides an interface to the SPI bus for the optical sensor only. Physically the SPI
bus is connected to the radio and the optical sensor. The radio driver is responsible for interfacing
with the radio. The PRoC LP SPI Master module does not manage the selection of slave devices.
This module is created to provide that functionality. This module has a dependency on the instan-
tiation of a SPIM module in PSoC Designer that is properly connected to the devices.

In the PRoC RDK mouse design, the master SPI communicates with both the radio and optical
sensor. Because the optical sensor does not supports 3-wire SPI mode, the 4-wire mode is
employed. To save the GPIO pin, the IRQ pin function is multiplexed onto the MOSI pin.

■ Radio Driver

The radio driver module is a low level module providing basic radio communication and configu-
ration. Its general application is such that it is likely not to be changed by the firmware developer.
It provides an interface for reading/writing radio registers, setting PN codes and initialization of
the radio and transmitting or receiving packets. See the PRoC LP Radio Driver documentation for
details.

■ Protocol Module

The protocol module defines and implements the layer used to deliver packets from the device to
the bridge. It manages the binding of devices to a bridge as well as the connection and interfer-
ence immunity by channel hopping. This module has a dependency on the Radio Driver for send-
ing formatted packets and the flash module for storing the manufacturing ID of the bridge the
device is bound to.

■ Flash Module

The flash module is a smaller version of E2PROM module provided in PSoC Designer. It is lim-
ited in functionality and only implements the read/write routines required by the device. The flash-
security.txt file must be modified so that the block being modified by this module is given read/
write privilege, such as unprotected. Currently the very top most block in flash is used for this
module.

■ Port Module

GPIO pins on the PRoC LP ports can be configured as outputs with a pull up resistor. This is the
case for mouse buttons and the bind button. To activate the pull up, a data value of one must be
written to the port data latch for the pin. This feature presents a problem when performing a read-
modify- write on the port. For example, if a button is pressed (grounding the pin), a zero is read
and written back out on the read-modify-write operation. This turns OFF the pull up for the button
thereby, essentially disables the button. The port module provides an interface to treat ports,
using the pull up feature, in a special way by caching the drive data for the port.

■ Poll Module

http://www.edn.com

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 63

Code Examples

The poll module manages the timing, enabling/disabling and polling of the mouse buttons and
zwheel inputs. When the mouse is active, polling is enabled and occurs at a rate of about 250 µs
for the z-wheel (see the Timer Module) and a rate of about 3 ms for the mouse buttons. When the
mouse is inactive, the buttons are changed to interrupt mode and the z-wheel is polled for
change only when the sleep timer expires; see the Buttons Module and Wheel Module.

■ Timer Module

The PRoC LP has an internal low-power oscillator (ILO) that is used for generating a clock to a
Programmable Interval Timer. This clock is affected by voltage and temperature and may drift
over time. This module provides an interface to calibrate this clock to the system clock. The Pro-
grammable Interval Timer period is calibrated to be approximately 250 µs. Be especially careful
when changing this period because the poll/debounce modules are coupled to this time value;
see the Poll Module and Debounce Module. The timer module also provides a set of functions for
performing busy waits in the microsecond resolution. For more coarse timing requirements, an
API is provided for millisecond delays. The millisecond delay routines must be used as often as
possible to provide for better power consumption because the microcontroller sleep feature is
used. Also, when polling is enabled, it is performed as a background task during the millisecond
delay. This module also adjusts the tick advancement based upon the sleep resolution. Turning
OFF the timer provides for more power savings, yet a sense of time is still preserved for non-crit-
ical timing.

Note When using the ICE-Cube, define the macro PSOC_ICE so that busy waits are used
instead of the sleep instruction. Using the sleep instruction with the ICE-Cube generates errors
due to synchronization issues between the OCD part and the emulator.

■ ISR Module

This module provides an interface to initialize the interrupt.

5.2.3.2 Application Code

The group of modules that make up the application code are responsible for implementing the
mouse functionality and behavior. Following is a high level description of each module responsibility
and associated algorithms.

Mouse Module

The mouse module is the controlling code for the application. It has many responsibilities in imple-
menting various features and functions offered by the mouse. The data formats and reporting algo-
rithms along with power management are explained in this section. A few format types are defined to
support the operation of the mouse. One of these is the packet format used when sending data to
the bridge. This type is defined as TX_PACKET and is structured to support the different data packet
formats as explained in Wireless Protocol Data Payload on page 48. The present definition com-
bines z-wheel data with button data into one byte to conserve battery power by shortening the 'on
time' of the radio. This format needs to change to support a mouse with more than three buttons and
a z-wheel, perhaps sending four bytes instead of three.

The function main() is the entry point for the mouse application. This function is called from the
boot.asm file. The mouse first initializes all of the application modules and then initializes the proto-
col module; see the Protocol Module. There is an order dependency for some of these, so care must
be taken in modifying the mouse_init() function. For example, other modules depend upon the timer
facility running to perform initialization. The SPI module must be initialized before the optical and
protocol modules can be initialized; see the SPI Module, Optical Module and Protocol Module. When
each module is initialized, then the application checks for entry to the 'LP' draw test mode or the
manufacturing test mode. If neither of the test modes is indicated, then normal mouse operation
begins.

64 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

The mouse module handles a variety of events at the main thread level. Most interrupt routines post
notification that an event occurred by using the macros provided by the mouse interface. The mouse
then processes these events at thread context rather than interrupt context. The mouse application
is implemented using a state machine to manage the various power modes that it executes at any
given time. The mouse initially enters a disconnected state. When there is any mouse activity, it
enters the active state.

In the active state, the timer is turned on so that more accurate timing and mouse events can be col-
lected, formatted and reported to the bridge. The mouse remains in this state as long as there is
mouse activity to report to the bridge or a period of time without any mouse activity has expired, after
which it returns to the idle state. If the mouse is unable to deliver a packet while in this state, it transi-
tions to the disconnected state.

In idle state, the optical sensor is allowed to transition through its various rest modes to conserve
power. In this state, the mouse application is waiting for input from the optical sensor, z-wheel or but-
tons. The timer is turned OFF to conserve power and the notion of time is maintained using the sleep
timer. This state is maintained indefinitely until the batteries drop below 1.8 V at which point the
mouse enters the OFF state. The OFF state is where the radio and optical sensor are prevented
from turning on. This state is reached when the battery voltage drops below 1.8 V. It is designed to
keep the battery drain to an absolute minimum to prevent battery leakage as a result of completely
draining the batteries.

The battery level is reported by the mouse application when it detects a change from the discon-
nected state to the connected state. The battery level is measured when exiting the idle state. If
there is a change in the battery level, it is reported in the active state. In the active state the mouse
attempts to deliver a packet for the amount of time designated in MOUSE_TX_TIMEOUT_MS. If it is
unable to send the packet in this time, then it transitions to the disconnected state.

The mouse application is responsible for detecting the bind button press and then calling the bind
function in the protocol module; see the Protocol Module. The mouse application sends mouse
reports as frequently as events arrive, but not any faster than the time defined in the macro
MOUSE_REPORT_IN_MS. Carefully set this time so that the report rate does not exceed that which
the USB bus is capable of handling. Keep in mind that the report rate varies slightly due to drift of the
internal oscillator used to keep track of time.

Optical Module

The optical sensor module encapsulates the initialization, calibration and reading of the optical sen-
sor. This module also handles any power management required by the sensor, along with motion
detection if supported. The contents of this module potentially change with every design and are
unique to the sensor used. This module has the responsibility to format the X and Y data into the
mouse packet payload. See Wireless Protocol Data Payload on page 48 for a definition of the packet
payload.

Testmode Module

The Testmode module provides code to continuously perform a vector drawing test within a drawing
application. This test mode is used to check radio range, co-location and interoperability of the
mouse with the keyboard. The test mode, when compiled in, is entered by holding down the left and
right button while inserting the batteries. The buttons must be held down until the optical sensor
begins to flash. As soon as the buttons are released the mouse repeatedly draws 'LP' in the drawing
application. Each successive 'LP' must be drawn on top of the previous one. The test mode may only
be exited by removing the batteries. All button presses and mouse movement are ignored when in
the test mode. However, care must be taken not to bump other mice connected to the PC.

Note The mouse 'acceleration' or 'enhance pointer precision' option needs to be turned OFF in the
Windows mouse Control Panel for this test to execute properly. If the letters are drawn erratically

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 65

Code Examples

with uneven sides or excessive amounts of space in between them, then check this setting or its
equivalent (based upon your PC operating system).

When the macro DEBUG_INDEX is defined, code is generated to move the mouse pointer to the
right and back again without the pen down. This is done in an incrementing fashion so that when
observing packet data on a Listener, a correlation can be made with a USB protocol analyzer. This is
useful for debugging data loss because the test mode guarantees packet delivery. Entry to this test
mode can be changed by modifying the macro TESTMODE_BUTTONS in the testmode.c file. The
button macros are defined in the buttons.h file.

Buttons Module

The buttons module provides an API for handling both the bind and mouse buttons. This module
must be changed when adding or removing buttons for a new mouse design. The button portion of
the packet payload is formatted by this module and needs to change if more buttons are added. See
the Mouse Module for a definition of the packet payload format.

This module manages power configurations that may be implemented to conserve power related to
button presses. For example, button polling is turned OFF and interrupts are used to detect button
presses in the idle state. It also manages the acquisition of button information depending on the
implementation: interrupts or polling.

When changes in a button state are detected, the mouse module is notified for collection and report-
ing of the data. Note It is important for the buttons module to always report the button state when a
button is pressed. This condition frequently occurs when the mouse is moved with the button held
down.

Mfgtest Module

The manufacturing test module may be optionally compiled in, at the expense of code space, by
defining the macro MFG_TEST_CODE. In addition, a more complete version may be compiled in by
defining MFG_TX_MODES. The TX modes include code to perform a carrier test and a random data
test.

The manufacturing test code is designed to be compatible with the CY3631 Manufacturing Test Kit
Tester. Entry into this mode on the mouse is performed by placing a shorting block over pins four and
five of the ISSP programming header and then inserting the batteries. The test mode may only be
exited by removing the batteries and shorting block. For more information on how to use this test
mode, refer to the CY3631 Manufacturing Test Kit documentation.

It is recommended that you not make changes to this module unless similar changes are made to
the CY3631 Tester.

Wheel Module

The wheel module implements the functionality of the z-wheel. It is responsible for power modes
associated with the z-wheel, polling, z-wheel interrupts, wheel position tracking, and partial packet
formatting for z-wheel reports.

When the z-wheel is being polled, the GPIO pins are turned on with internal pull up resistors just
long enough to read the state. This is done to conserve power when the mouse is active. When the
polling timer is turned OFF the wheel_poll_sleep() function is called which only looks for change
from the last state; it does not keep track of wheel position.

Z-wheel position tracking is done by comparing debounced wheel input to the previous two states.
Depending upon the wheel input phase transition the direction of the wheel can be determined. The
poll rate must be frequent enough to debounce and catch these transitions for a smooth response.
The RDK mouse is shipped with a mechanical encoder. It is typical for this decoder to rest on a
detent such that the z-wheel inputs are either both high or both low, hence the reason for only turning

66 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

on the pull ups when polling the input. Transition from one of these states to the other is reported as
a ±1 motion. Note Sometimes the mechanical detents do not align with the high-high or low-low
state and movement may not be seen every time from detent to detent.

When z-wheel motion is detected, the mouse module is notified for collection and reporting of the
data; see the Mouse Module.

Battery Module

The battery monitor circuit is implemented using the Low Voltage Interrupt (LVI) on the LP radio. Fol-
lowing is an explanation of the process to measure the battery voltage. The process first sets the LVI
threshold to 1.8 V and then checks for an LVI interrupt. If the interrupt does not occur then it repeat-
edly sets the LVI TH and PMU OUTV with the following combination and checks the status.

Table 5-8. LVI TH and PMU OUTV Combinations

It then returns a battery level between 1 and 10: 1 being below 1.8 V and 10 being above 2.7 V.

5.2.3.3 Configuration Options

All configuration options for the application can be found in the config.h file, and some of them are
defined in the Project > Setting > Compiler > Macro defines. Each option is explained below and can
be changed to values that meet the developer's needs.

■ MOUSE_REPORT_IN_MS

This configuration value sets the shortest period at which the firmware honors events from the
mouse hardware to transmit using the radio. The default value is approximately 10 milliseconds.
Setting this value to something smaller than the USB poll period of 8 milliseconds generates
excessive radio retries from the mouse and is not recommended. Larger values improve battery
life, but may affect usability of the mouse. See the Timer Module for a description of timing accu-
racy. This valued is defined in milliseconds.

■ MOUSE_ACTIVE_MS

This value sets how long the timer module runs generating poll interrupts for the z-wheel and but-
tons. This time affects power consumption of the mouse. When this time expires, the buttons and
zwheel go into a power down state, improving battery life. In power down state, z-wheel move-
ment exhibits latency. See the Buttons Module and Wheel Module for descriptions of power down
states and operation. This value is defined in milliseconds.

■ MOUSE_DISCONNECTED_POLL_MS

Sets the rate at which the battery voltage is monitored while in the disconnected state. This
ensures that if the batteries go below the minimum battery voltage of 1.8 V, the radio and optical
sensor are prevented from turning on.

■ MOUSE_TX_TIMEOUT_MS

The transmit loop in the mouse attempts to guarantee delivery of mouse events. This loop even-
tually times out if it does not receive a response from the bridge. This value sets that time-out
time. The default value is 2000. This value is defined in milliseconds.

■ MOUSE_CONNECT_ATTEMPT_TIMES

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 67

Code Examples

This value sets the attempt times for the mouse trying to connect to the bridge before entering the
Briefcase Mode. The default value is 20.

■ PLATFORM_H

This configuration value identifies the header file that has the platform configuration information.
The default value is pdc9347.h, which is the identifier for the mouse board that is shipped with the
RDK. This macro changes when the code is ported to another platform.

■ MOUSE_800_NOT_400_CPI

This configuration definition is used to select between 800 or 400 counts per inch (cpi) when con-
figuring the optical chip. If it is defined then 800 cpi is selected. If it not defined then 400 cpi is
selected. The default is 800 cpi.

■ MOUSE_BATTERY_STATUS

Enabling this feature causes the battery level measurement code to be compiled into the mouse
image. The mouse then measures the battery level and reports any changes to the bridge. Notifi-
cation of the battery level is done at the following events: the battery level changes, the mouse
transitions from the idle state to the active state, mouse transitions from the disconnected state to
the connected state.

■ MOUSE_TEST_MODE

This configuration definition is used to selectively compile code for mouse test mode. If this value
is defined, then the test mode is compiled into the executable image. The test mode moves the
mouse in a fashion to repeatedly draw the letters 'LP' in a drawing program. When performing
this test, turn OFF Mouse acceleration or advanced motion. See the Testmode Module for more
information on entering this test mode.

■ MFG_TEST_CODE

This configuration definition is used to selectively compile the manufacturing test code. The man-
ufacturing test code in this mouse is compatible with the CY3631 Manufacturing Test Kit offered
by Cypress Semiconductor. See the Mfgtest Module for a description of how this test mode is
executed. The CY3631 Manufacturing Test Kit documentation has a description of the test opera-
tion.

■ MFG_TX_MODES

When the MFG_TEST_CODE is defined, then the definition of this name adds in a carrier and
random data TX test option. See the Mfgtest Module for more information on these TX modes.

■ MASTER_PROTOCOL

This configuration definition is used to select the Master radio protocol or Slave radio protocol.
For the mouse application, it should be undefined.

■ PAYLOAD_LENGTH

This configuration definition is used to define the payload length. For the mouse application, it
should be defined as 3.

■ KISS_BIND

This configuration definition is used to selectively compile the Enhanced KissBind feature. See
Enhanced KISSBind on page 98 for more information. The mouse can be unbound by holding the
right and middle buttons, and pressing the bind button. After being unbound, the mouse enters an
infinite loop until a POR. After being unbound, the mouse can be bound to a bridge by KissBind.

■ RSSI_QUALIFY

This configuration definition is used to enable the RSSI qualification for the Enhanced KissBind.
Only if the RSSI reading is above KISS_BIND_RSSI_THRESHOLD, can the KissBind request/
response be accepted by the Bridge/Devices.

■ AUTO_CONNECT

68 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

When the bridge is absent, after MOUSE_CONNECT_ATTEMPT_TIMES times of attempts to
connect to the bridge, the mouse enters the Briefcase Mode. In this mode, the mouse shuts down
the sensor to save power. When the mouse enters the Briefcase Mode, if the AUTO_CONNECT
is defined, the mouse tries to connect to the bridge automatically every
MOUSE_DISCONNECTED_POLL_MS seconds. If the AUTO_CONNECT is not defined, the
mouse tries to connect to the bridge only when the buttons are pressed.

5.2.3.4 Platform and Architecture Portability

The mouse firmware is designed to be easily ported from one hardware platform to another platform
with a simple re-mapping of pins on the PRoC LP. The file pdc9347.h maintains the pin mapping def-
initions that are used throughout the code and is included in about every file by using the macro
PLATFORM_H that is defined in config.h. Porting the code to another microprocessor architecture
requires modification or leverage of the existing code for processor specific features, along with pin
definitions.

5.2.3.5 Initialization

Initialization of the PRoC LP chip is done by code that is generated in boot.asm by PSoC Designer.
The module boot.asm calls main() in the mouse module when the Wireless PRoC LP is configured
and initialized; see the Mouse Module.

5.2.3.6 Wireless Protocol Data Payload

The mouse protocol is optimized to reduce the 'on-time' of the radio, which equates to reduced
power consumption. This optimization relies upon the PRoC LP RDK requirement of a three-button
mouse. With this requirement, it is possible to combine the z-wheel and the button report into a sin-
gle byte, allowing five bits of information for the z-wheel and three bits for the buttons.

The protocol code module offers the ability to send variable length packets, thereby allowing a
reduced number of bytes to be transmitted over the air, to extend battery life.

Because mouse usage data demonstrates that X, Y optical sensor data is more frequent than z-
wheel or button presses, the following transmission packet formats are implemented in this RDK.
The packet formats only show the application payload and do not show the protocol packet format.

■ Packet Format 1: When there is only X, Y delta data, the transmitted packet is two bytes.

Table 5-9. Packet Format 1

■ Packet Format 2: When there is either z-wheel data or button data, the transmitted packet is
three bytes. In the case where there is no X, Y delta data, but there is z-wheel or button data, the
X, Y delta bytes is set to zero. The z-wheel data is a signed value with bit 4 as the sign bit.

Table 5-10. Packet Format 2

■ Packet Format 3: When battery voltage level is communicated, the transmitted packet is 1 byte.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 69

Code Examples

Table 5-11. Packet Format 3

5.2.3.7 Interrupt Usage and Timing

In the RDK mouse, the following interrupts are enabled:

■ Motion interrupt from the optical sensor

■ Button (Left, Middle and Right buttons) interrupt

■ Bind button interrupt

The interrupt latency includes two portions. The first portion is the time between the assertion of an
enabled interrupt and the start of its ISR, which can be calculated using the following equation:

Latency1 = Time for current instruction to finish + Time for M8C to change program counter to inter-
rupt address + Time for LJMP instruction in interrupt table to execute.

For example, if the 5-cycle JMP instruction is executing when an interrupt becomes active, the total
number of CPU clock cycles before the ISR begins are as follows:

(1 to 5 cycles for JMP to finish) + (13 cycles for interrupt routine) + (7 cycles for LJMP) = 21 to 25
cycles.

In the example above, at 12 MHz, 25 clock cycles take 2.083 µs.

The second portion is the time between the start of the ISR and the post of the event flag. For exam-
ple, the motion interrupt takes 23 CPU clock cycles for this portion. Therefore, the Latency2 equals
to 1.917 µs for the 12 MHz CPU.

Consequently, the total latency for a motion interrupt is:

Latency1 + Latency2 = 4 µs

5.2.3.8 Code Performance Analysis

A mouse motion report is used to analyze the code performance. A typical mouse motion report con-
tains the following steps:

■ Optical sensor responds to a mouse motion. With the mouse the sensor in the rest 1 state, it
takes 16.5 ms for the sensor to responds to this sensor motion.

■ The sensor interrupts the MCU by lowering its motion pin. In the previous section, it is calculated
that it takes 4 µs for MCU to respond to this Interrupt.

■ In the function timer_wait_event (), the MCU exits the sleep state and spends 53 µs to finish the
wheel poll.

■ Firmware delays MOUSE_REPORT_IN_MS, which is 10 ms for the default. This delay is to pre-
vent excessive radio retries from the mouse.

■ Firmware calls function mouse_do_report() to read the Delta_X and Delta_Y value and send the
packet to the bridge. This step takes 1.98 ms, which includes 1.66 ms radio transmission time.

As a result, if a mouse is in the rest 1 state, it takes 28.6 ms for the mouse to report a motion to a
bridge.

5.2.4 Verify Output

1. Connect the bridge dongle to the PC, power the mouse with the two AA batteries.

70 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

2. Press the bind button on the bridge, the red LED blinks ON/OFF in the bind mode. Now press the
bind button on the mouse the red LED stops blinking on binding the mouse with the bridge.

3. Press any switch on the mouse the green LED turns on when the dongle receives data from the
mouse.

5.3 Project 3 - PRoC_LP_RDK_Keyboard

5.3.1 Project Description

This code example demonstrates various features and functions offered by the keyboard. This is a
multimedia keyboard with 101 key inputs. It has 18 columns and 6 rows inputs.

There are two architectural views of the keyboard. The first is a microcontroller configuration view of
user modules. This architecture and configuration is best viewed in PSoC Designer unwhen the proj-
ect is loaded. The second view is a logical organization of the source code modules that make up
the keyboard application code and other support modules.

5.3.1.1 ROM/RAM Usage

The following table shows the ROM/RAM usage. The top part exhibits the total ROM/RAM usage for
basic functions, which disables all the build options. The bottom part exhibits the ROM/RAM usage
for individual build options.

Table 5-12. ROM/RAM Usage

Note *ENCRYPT_TEA option needs 64 bytes extra flash space to store the nonvolatile session key.

5.3.1.2 Keyboard Matrix

The RDK keyboard matrix has 18 columns and 8 rows. Key presses generate a GPIO interrupt when
a column is connected (shorted) to a row. The keyboard then scans the matrix to determine which
keys have been pressed.

The RDK keyboard matrix with the USB scan codes are shown in Table 5-13.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 71

Code Examples

Table 5-13. RDK Keyboard Matrix

Notes

■ Yellow indicates Multimedia Key (16-bit value)

■ Red indicates Power Key

■ Blue indicates Modifier Key

■ No color indicates a Standard 101 Key

5.3.2 Device Configurations

The enCoRe II LV is configured using the Device Editor in PSoC Designer. The Device Editor allows
the Global Resources for the part and user module parameters to be configured. The keyboard uses
two separate user modules. The first module is an SPI master for communicating with the radio. The
second module is a Programmable Interval Timer configured to operate as a 12-bit timer.
Figure 5-19 shows the Device Editor with the user module mapping.

72 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

Figure 5-19. Device Configuration

5.3.2.1 Global Configuration

The following is a description of the Global Resources that are configured for the CY7C60123-PVXC
enCoRe II LV microcontroller. Take care when modifying these values because they affect the follow-
ing user modules.

■ CPU Clock: This parameter is set to Internal (24 MHz). To run the CPU at 12 MHz, CPU Clock/N
must to be set to '2'. This operating frequency provides for faster code execution so that when
events are detected the microcontroller can be put back into the sleep state quicker for improved
power savings.

■ CPU Clock / N: This parameter is set to ‘1’ to provide a 12 MHz clock.

■ Timer Clock: This parameter is set to ‘TCAP’.

■ Timer Clock /N: This parameter is set to ‘4’.

■ Capture Clock: This parameter is set to ‘Low Power (32 kHz)’.

■ Capture Clock /N: This parameter is set to ‘6’.

■ Capture Edge: This parameter is set to ‘Latest’.

■ 8 Bit Capture Prescaler: This parameter is set to ‘1’.

■ CLKOUT Source: This parameter is set to ‘Internal (24 MHz)’.

■ EFTB: This parameter is set to ‘Enable’.

■ Crystal OSC: This parameter is set to ‘Disable’.

■ Crystal OSC Xgm: This parameter is set to ‘000’.

■ Low V Detect: This parameter is set to 2.63 - 2.68 V.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 73

Code Examples

■ V Reset: This parameter is set to ‘2.6 V’.

■ Watchdog Enable: This parameter should be set to ‘Enable’, but may be set to Disable for debug
purposes.

5.3.2.2 SPI Master User Module

The SPI Master User Module is used to communicate with the radio transceiver. The radio trans-
ceiver supports leading edge data latching, non-inverted clock, and MSB first transmission as
defaults. A clock divisor of 6 is chosen which generates an SPI clock of 2 MHz. The interrupt API to
this module is not used. In the PRoC RDK keyboard design, the 4-wire mode is employed.

5.3.2.3 Programmable Interval Timer User Module

The Programmable Interval Timer User Module is configured to use the Internal 32-KHz Low-power
Oscillator. This module is used to provide a periodic interrupt to the timer code module to maintain a
power saving millisecond sleep routine. The period of the timer is calibrated to the system clock at
power on to provide a period of about 1 ms. This calibration is performed to account for variations in
temperature and ILO variances from part to part. Configure the module to generate a terminal count
interrupt. The period parameter is ignored because it is programmed at run time based upon the cal-
ibration results. See the Timer Code Module for more details on calibration.

5.3.2.4 Flash Security

The keyboard project within PSoC Designer has a file called FlashSecurity.txt. This file specifies
access rules to blocks of flash ROM. See the documentation at the top of the file for definitions. This
file is shipped with a single change from its default configuration. The blocks starting at address
1FC0 hex are changed from W: Full (Write protected) to U: Unprotected. These locations of flash are
dedicated to save nonvolatile configuration values for the protocol code module and nonvolatile ses-
sion key for the encrypt code module. Note when building the mouse firmware, be sure to check that
the text image size does not occupy this block.

5.3.3 Model

Figure 5-20. Firmware Architecture Model

The keyboard firmware is partitioned into two logical groups. The Common group is a collection of
code modules that provide the underlying support for the application. This group provides services
such as, radio protocol, radio driver, timing, flash access, and interrupts.

The Application group implements the core functionality and features of RDK wireless keyboard.
This includes power management, encryption, packet formatting and reporting, various test modes,

74 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

and battery level sensing. The code modules for each of these groups are described below in further
detail.

All the following module descriptions have corresponding <module name>.c or <module name>.asm
and <module name>.h source code files. The module API and definitions are exported in the header
file while the module implementation and local definitions are contained in the C/assembly file.

5.3.3.1 Common Code

The modules in the common code group are a combination of two sources. The first is PSoC
Designer generated files in the 'lib' directory that are modified to support the application. The second
group is modules that are generally used by the application.

Generated Library Code

There are currently no files, generated by PSoC Designer, that are modified for the use of the appli-
cation.

Radio Driver

The radio driver module is a low level module providing basic radio communication and configura-
tion. Its general application is such that it is likely not to be changed by the firmware developer. It
provides an interface for reading/writing radio registers, setting PN codes and initialization of the
radio and transmitting or receiving packets. See the Radio Driver documentation for details.

Protocol Module

The protocol module defines and implements the layer used to deliver packets from the device to the
bridge. It manages the binding of devices to a bridge as well as the connection and interference
immunity by channel hopping. This module has a dependency on the radio driver for sending and
receiving formatted packets and the flash module for storing the manufacturing ID of the bridge the
device is bound to.

Flash Module

The flash module is a smaller version of the E2PROM module provided in PSoC Designer. It is lim-
ited in functionality and only implements the read/write routines required by the device. The flashse-
curity.txt file must be modified so that the block being modified by this module is given read/write
privilege, such as unprotected. Currently the one very top most block in flash is used by this module
for storing the encryption key if encryption is enabled and the bind parameters.

ISR Module

This module provides an interface to initialize the interrupt.

Timer Module

The timer module provides a one-millisecond tick for the system. The tick resolution can be
changed, but is set for one millisecond for the keyboard. This module requires the use of a 12-bit
Programmable Interval Timer user module of the enCoRe II LV. The delay function used for millisec-
ond timing provides at least the delay requested with no more than one additional millisecond of
delay. The millisecond delay function puts the PSoC to sleep for the duration of the requested delay.
The microprocessor wakes just long enough to update the tick every millisecond and check if the
delay is met and then returns to sleep state if it has not. See the documentation in the module for
requirements on configuring the enCoRe II LV block.

5.3.3.2 Application Code

The group of modules that make up the application code is responsible for implementing the key-
board functionality and behavior. Following is a high level description of each module responsibility
and associated algorithms.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 75

Code Examples

Keyboard Module

The keyboard module is the controlling code for the application. It has many responsibilities in imple-
menting various features and functions offered by the keyboard.

The function main() is the entry point for the keyboard application. This function is called from the
boot.asm file. The keyboard first initializes all of the application modules and then initializes the pro-
tocol module. There is an order dependency for some of these, so care must be taken in modifying
the keyboard_init() function. For example, other modules depend upon the timer facility running to
perform initialization. When each module is initialized, then the application checks for entry to the
manufacturing test mode. If the manufacturing test mode is not indicated, then normal keyboard
operation begins.

There are two states for the keyboard operation: the idle state and the active state. The keyboard ini-
tially enters idle state; when there is any keystroke, it enters the active state. In active state the key-
board is scanned for both the keys and the bind button. The keystrokes are collected, formatted and
reported to the bridge. After that, the keyboard goes into the idle state.

In idle state, the MCU and radio go to sleep to save power, and the keyboard application remains
waiting for input from the keys or bind button. The timer is turned OFF to conserve power. This state
is maintained indefinitely until a keystroke or a button press occurs.

The battery level is reported by the keyboard application when it detects a keystroke after it has
been in an idle state for 8 seconds.

In the active state, the keyboard attempts to deliver a packet for the amount of time designated in
KEYBOARD_TX_TIMEOUT. The keyboard application is also responsible for detecting the bind but-
ton press and then calling the bind function in the protocol module.

The keyboard application sends keyboard reports as frequently as events arrive, but not any faster
than the time defined in the macro KEY_DOWN_DELAY_SAMPLE_PERIOD. Carefully set this time
so that the report rate does not exceed that which the USB bus is capable of handling. Keep in mind
that the report rate varies slightly due to drift of the internal oscillator used to keep track of time.

Mfgtest Module

The RDK provides a compile-time option of adding a manufacturing test mode to the keyboard. The
manufacturing test code in this keyboard is compatible with the CY3631 Manufacturing Test Kit
offered by Cypress Semiconductor.

If MFG_TEST_CODE is defined and ENTER_BY_PIN is not defined, holding down the system sleep
key and the bind button while inserting the batteries into the keyboard enters the manufacturing test
mode.

If MFG_TEST_CODE and ENTER_BY_PIN are both defined, connecting pin 4 and 5 on the ISP
header with a shunt and then inserting the batteries into the keyboard enters the manufacturing test
mode.

The only way to exit this mode is to cycle power.

Battery Module

The battery monitor circuit is implemented using the Low Voltage Interrupt (LVI) on the LP radio. Fol-
lowing is an explanation of the process to measure the battery voltage.

The process first sets the LVI threshold to 1.8 V and then checks for an LVI interrupt. If the interrupt
does not occur then it repeatedly sets the LVI TH and PMU OUTV with the following combination
and checks the status.

76 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

Table 5-14. LVI TH and PMU OUTV Combinations

It then returns a battery level between 1 and 10: 1 being below 1.8 V and 10 being above 2.7 volts.

Test Module

This RDK keyboard provides a compile-time option of adding test modes to the keyboard. The test
mode module is implemented in a way that it can be easily extended to add other test modes. Cur-
rently there are only two test modes supported in the module. When this option is not enabled then
all test mode code is removed from the compilation.

The first test mode is initiated by holding down the left Ctrl, left Alt, right Alt, right Ctrl, and F1 keys at
the same time. If PANGRAM_TEST_MODE is defined, the test sends the key up/down scan codes
for the test pangram:"a quick brown fox jumps over the lazy dog.<carriage return>". Otherwise the
up/down scan codes are repeatedly sent for the test sequence 'wirelessusb' followed by the same
number of backspaces. The test repeats the appropriate sequence until the escape key is pressed.
When the test has finished execution, the keyboard returns to normal operation.

The repeating 'x' test selection is initiated by holding down the left Ctrl, left Alt, right Alt, right Ctrl, and
F3 keys at the same time. The test continuously sends the 'x' key up/down scan codes. The test con-
tinues until the escape key is pressed. When the test has finished execution, the keyboard returns to
normal operation.

Encrypt Module

This module may be conditionally compiled in to provide encryption/decryption support. Encrypted
data transfers are typically used between RDK keyboard devices and the RDK bridge. Contact
Cypress Applications support for the encryption source code.

5.3.3.3 Configuration Options

All configuration options for the application can be found in the config.h file, and some of them are
defined in the Project > Setting > Compiler > Macro defines. Each option is explained below and can
be changed to values that meet the developer's needs.

■ KEYBOARD_KEEP_ALIVE_TIMEOUT

When a key is held down, this configuration value sets the period at which the firmware gener-
ates a KEEP_ALIVE packet since the last keyboard report. The default is 65 milliseconds.

■ KEY_DOWN_DELAY_SAMPLE_PERIOD

This configuration value sets the period at which the firmware polls the hardware for keyboard
events to transmit over the radio. This poll period is only active when the keyboard has not
entered sleep because keys are currently being pressed. The default value is 10 milliseconds.

■ KEYBOARD_DEBOUNCE_COUNT

The button debounce logic detects changes in the button state and immediately indicates a
change causing a report to be sent to the radio. The debounce logic then blocks out any further
button state changes for the specified debounce time. This operation is somewhat different from
the usual method of waiting for a button to stabilize during a debounce interval, and then report-
ing the change in button state. It is implemented this way to improve button-reporting latency.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 77

Code Examples

This configuration value sets the debounce time for buttons that are pressed. It is measured in
units of the poll rate. For example, if KEYBOARD_DEBOUNCE_COUNT is defined as '2' and
KEY_DOWN_DELAY_SAMPLE_PERIOD is defined as 10, the button debounce time is 20 milli-
seconds. The default setting is '2'.

■ KEYBOARD_MULTIMEDIA_SUPPORT

This configuration definition is used to selectively compile support for multimedia (hot) keys. If
this value is defined, then multimedia key support is compiled into the executable image. If it is
not defined, then the multimedia support code is omitted.

■ KEYBOARD_TEST_MODES

This configuration definition is used to selectively compile code for keyboard test modes. If this
value is defined, then test modes are compiled into the executable image. If it is not defined, then
the test mode code is omitted.

■ KEYBOARD_TEST_MODE_PERIOD

This configuration value sets the period that the keyboard generates on test key presses. A key
press consists of a scan code as the down key and a NULL as the up key. The default value is 10
ms.

■ PANGRAM_TEST_MODE

This configuration definition is used to selectively compile the pangram test mode. A pangram is
a sentence that contains all of the letters of the alphabet at least once.

■ KEYBOARD_BATTERY_VOLTAGE_SUPPORT

This configuration definition is used to selectively compile support for battery voltage level report-
ing. If this value is defined, then battery voltage level reporting is compiled into the executable
image. If it is not defined, then the battery voltage level reporting code is omitted.

■ LP_RDK_KEYBOARD_MATRIX

This configuration definition is used to selectively compile the keyboard matrix for the RDK key-
board hardware.

■ KEYBOARD_TX_TIMEOUT

This configuration value sets the maximum time that the keyboard tries to send a report to the
bridge. The default value is 5000 ms.

■ TIMER_CAL

This configuration definition is used to selectively compile the one-millisecond timer calibration
routine. The routine is called on power on and during protocol reconnect.

■ ENCRYPT_TEA

This configuration definition is used to selectively compile TEA encryption for the keyboard. Con-
tact Cypress Applications support for the encryption source code.

■ ENCRYPT_AES

This configuration definition is used to selectively compile AES encryption for the keyboard. Con-
tact Cypress Applications support for the encryption source code.

■ MFG_TEST_CODE

This configuration definition is used to selectively compile the manufacturing test code. The man-
ufacturing test code in this keyboard is compatible with the CY3631 Manufacturing Test Kit
offered by Cypress Semiconductor. See the Mfgtest Module for a description of how this test
mode is executed. The CY3631 Manufacturing Test Kit documentation has a description of the
test operation.

■ MFG_ENTER_BY_PIN

This configuration definition is used to select whether the manufacturing test code is executed by
connecting pin 4 and 5 on the ISP (programming) header. When this value is not defined, then

78 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

the manufacturing test code may be executed by holding the system sleep key and the bind but-
ton when the batteries are inserted into the keyboard.

■ MFG_TX_MODES

When the MFG_TEST_CODE is defined, the definition of this name adds in a carrier and random
data TX test option. See the Mfgtest Module for more information on these TX modes.

■ MOUSE_EMULATION_MODE

This configuration definition is used to selectively compile the mouse Emulation mode. The Scroll
Lock key is used to toggle this mode ON/OFF. When in this mode, the arrow keys are used to
move the mouse. The Delete key is the left mouse button, the End key is the right mouse button,
and Page Up and Page Down emulate the scroll wheel.

■ BACK_CHANNEL_SUPPORT

This configuration definition is used to selectively compile the Back Channel Data Support fea-
ture. See Back Channel Data Support on page 100 for more information.

■ MASTER_PROTOCOL

This configuration definition is used to select the Master radio protocol or Slave radio protocol.
For the keyboard application, it should be undefined.

■ PAYLOAD_LENGTH

This configuration definition is used to define the payload length. For the keyboard application, it
should be defined as 8.

■ KISS_BIND

This configuration definition is used to selectively compile the Enhanced KissBind feature. See
Enhanced KISSBind on page 98 for more information. The keyboard can be unbound by holding
the 'Esc' key and 'Delete' key. After being unbound, the keyboard enters an infinite loop until a
POR. After being unbound, the keyboard can be bound to a bridge by KissBind.

■ RSSI_QUALIFY

This configuration definition is used to enable the RSSI qualification for the Enhanced KissBind.
Only if the RSSI reading is above KISS_BIND_RSSI_THRESHOLD, can the KissBind request/
response be accepted by the Bridge/Devices.

■ PLATFORM_H

This configuration value identifies the header file that has the platform configuration information.
The default value is pdc9265.h, which is identifier for the keyboard board that is shipped with the
RDK. It is anticipated that this macro will change when the code is ported to another platform.

5.3.3.4 Platform and Architecture Portability

The keyboard firmware is designed to be easily ported from one hardware platform to another plat-
form with a simple re-mapping of pins on the enCoRe II LV. The file pdc9265.h maintains the pin
mapping definitions that are used throughout the code and is included in about every file by using
the macro PLATFORM_H that is defined in config.h.

The keyboard scan matrix is defined in kdefs.h and may need to be changed for different keyboards.
Porting the code to another microprocessor architecture requires modification or leverage of the
existing code for processor specific features, along with pin definitions.

5.3.3.5 Initialization

Initialization of the enCoRe II LV chip is done by code that is generated in boot.asm by PSoC
Designer. The module boot.asm calls main when the enCoRe II LV is configured and initialized.

Main initializes the components of the keyboard along with timer, isr and radio modules. The main
routine then goes into an infinite loop monitoring keyboard activity and sleeping between keystrokes.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 79

Code Examples

5.3.3.6 Wireless Protocol Data Payload

The keyboard protocol is optimized to reduce the ON time of the radio and power consumption. The
radio driver offers the ability to send variable length packets, allowing the opportunity to minimize the
number of bytes transmitted over the air, to extend battery life.

The following transmission packet formats are implemented in this RDK. The report formats show
the application payload and the radio protocol overhead with example packet headers.

Keyboard Application Report Formats

The first byte of the data packet payload, byte 2 of the radio packet, is used as a keyboard applica-
tion report header. There are five possible keyboard application reports. The reports are:

■ Standard 101 Keys Report

■ Multimedia Keys Report

■ Power Keys Report

■ Keep Alive Report

■ Battery Voltage Level Report

The first application report byte is Scan Code 1 if the byte is less than 0xFC. Otherwise, the first
application report byte is the Application Report Header (Multimedia, Power, Battery, or Keep Alive).

This also assumes that multimedia and power keys do not use modifier keys and that 0xFF, 0xFE,
0xFD and 0xFC are not valid Standard 101 key scan codes.

Trailing zeros in the reports are also removed to further minimize the number of bytes sent by the
radio.

The LP radio sends the reports with the format shown in Table 5-15.

Table 5-15. LP Generic Report

■ Standard 101 Keys Report

If the Application Report Header byte is less than 0xFC then this indicates that this report is a Stan-
dard 101 Keys Report and the first byte is the actual scan code rather than the Report Header. This
is done to optimize the packet size based on the fact that the most common report has only one non-
zero scan code without a modifier. The full Standard 101 Keys report format is shown in Table 5-16.

80 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

Table 5-16. Standard 101 Keys Report Format

Example: The following reports is sent if you press an 'a' on the keyboard. The down key packet sent
from the keyboard to the bridge is shown in Table 5-17.

Table 5-17. Example 'a' down key Standard 101 Keys Report

The bridge adds the trailing zeros, inserts the reserved byte, rearranges the modifier, and scans
code 1 bytes and remove the packet header to produce the USB report shown in Table 5-18.

Table 5-18. Example USB report for the 'a' down key

The up key packet sent from the keyboard to the bridge (all data bytes are zero) is shown in
Table 5-19.

Table 5-19. Example up key Standard 101 Keys Report

The bridge adds the trailing zeros, inserts the reserved byte, and removes the packet header to pro-
duce the USB report shown in Table 5-20.

Table 5-20. Example USB report for a Standard 101 Key Null Packet Report

■ Multimedia Keys (Hot keys) Report

An Application Report Header of 0xFF indicates that this report is a Multimedia Keys Report. The
Multimedia Keys report format is shown in Table 5-21.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 81

Code Examples

Table 5-21. Multimedia Keys Report Format

Example: The following reports is sent if you press 'Volume Increase' (Hot Key 8) key on the key-
board. The 'Volume Increase' down key packet sent from the keyboard to the bridge is shown in
Table 5-22.

Table 5-22. Example 'Volume Increase' down key Multimedia Keys Report

■ Power

The up key packet sent from the keyboard to the bridge is shown in Table 5-23.

Table 5-23. Example up key Multimedia Keys Report

■ Power Keys (Suspend/Sleep) Report

An Application Report Header of 0xFE indicates that this report is a Power Keys Report. The Power
Keys report format is shown in Table 5-24.

Table 5-24. Power Keys Report Format

Example: The following reports is sent if you press the Suspend/Sleep (Power Key 0) key on the
keyboard.

The Suspend/Sleep down key packet sent from the keyboard to the bridge is shown in Table 5-25.

Table 5-25. Example Suspend/Sleep Down Key Power Keys Report

The up key packet sent from the keyboard to the bridge is shown in Table 5-26.

82 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

Table 5-26. Example Up Key Power Keys Report

■ Keep Alive Report

An Application Report Header of 0xFC indicates that this report is a Keep Alive Report. An example
of a Keep Alive reports sent from the keyboard to the bridge is shown in Table 5-27.

Table 5-27. Example Keep Alive Report (Null Packet Support disabled)

If the bridge does not receive a Keep Alive packet or an up key within a specified interval
(DOWNKEY_TIME_OUT) while a down key is present, the bridge generates an up key to the com-
puter.

■ Battery Voltage Level Report

An Application Report Header of 0xFD indicates that this report is a Battery Voltage Level Report.
The Battery Voltage Level report format is shown in Table 5-28.

Table 5-28. Battery Voltage Level Report Format

The Battery Voltage Level ranges from 1 (low) to 10 (full). The Battery Voltage Level Report is sent
after a keystroke that occurs whenever the keyboard has been in idle for more than 8 seconds. An
example of a Battery Voltage Level Report with fully charged batteries is shown in Table 5-29.

Table 5-29. Example 'full' Battery Voltage Level Report

An example of a Battery Voltage Level Report with low batteries is shown in Table 5-30.

Table 5-30. Example 'low' Battery Voltage Level Report

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 83

Code Examples

5.3.3.7 Ghost Key Detection

Ghost keys are possible on the RDK keyboard because it does not use diodes with the keyboard
switches. Ghost keys are caused when three keys are pressed at the same time and two of the keys
are on the same column and two of the keys are on the same row. When scanning the keyboard, it
appears that four keys have been pressed and it is impossible to tell which three of the four keys are
actually valid. The keyboard code detects this condition and does not send a report until one of the
three keys is released.

For example, assume the keys (RowX, ColumnA), (RowX, ColumnB), and (RowY, ColumnA) have
been pressed as shown in Figure 5-21. It appears that the key (RowY, ColumnB) has been pressed
as well when it has not because the other keys electrically connect RowY to ColumnB.

Figure 5-21. Ghost Key Example

5.3.3.8 Interrupt Usage and Timing

In the RDK keyboard, the following interrupts are enabled:

■ Row Port interrupt

■ Bind button interrupt

When either of the above interrupts occurs, its ISR sets the flag. The interrupt latency includes two
portions. The first portion is the time between the assertion of an enabled interrupt and the start of its
ISR, which can be calculated using the following equation:

Latency1 = Time for current instruction to finish + Time for M8C to change program counter to inter-
rupt address + Time for LJMP instruction in interrupt table to execute.

For example, if the 5-cycle JMP instruction is executing when an interrupt becomes active, the total
number of CPU clock cycles before the ISR begins is as follows:

(1 to 5 cycles for JMP to finish) + (13 cycles for interrupt routine) + (7 cycles for LJMP) = 21 to 25
cycles.

In the example above, at 12 MHz, 25 clock cycles take 2.083 µs. The second portion is the time
between the start of the ISR and the set of the flag. For example, the row port interrupt (caused by
pressing any key) takes 19 CPU clock cycles for this portion. Therefore, the Latency2 equals to
1.583 µs for the 12 MHz CPU.

Consequently, the total latency for a button interrupt is Latency1 + Latency2 = 3.667 µs

5.3.3.9 Code Performance Analysis

A key press report is used to analyze the code performance. A typical key press report contains the
following steps:

■ A key press interrupts the MCU. As calculated in the previous section, it takes 3.667 µs for MCU
to responds to this Interrupt.

■ MCU exits the sleep state, scans the bind button and turns on the timer. It takes 40.8 µs.

84 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

■ MCU calls function scan_keyboard() to detect which key is pressed. This function consumes 1.15
ms.

■ MCU calls function generate_standard_report () to format the report and send the report to the
bridge. This step takes 2.01 ms, which includes 1.66 ms radio transmission time.

As a result, it takes 3.20 ms for the keyboard to report a key press to the bridge.

5.3.3.10 Modifying Keyboard Matrix or Adding New Keys

The current keyboard matrix with the USB scan codes are shown in Table A-6. Customers may mod-
ify the keyboard matrix or they may add new keys to their keyboard. The following sections explain
the procedure.

Modifying the Keyboard Matrix: In the file kdefs.h, a table called default_keyboard_scan_table
matches the keyboard matrix shown in Table A-6. By modifying this table, the keyboard matrix is
automatically modified.

Adding New Keys: Example: The customer wants to add a multimedia key called My Computer,
which is located at Column 15 and Row 6 and has a scan code of 0x0194. The following steps must
be performed:

1. Go to file kdefs.h, and search for default_keyboard_scan_table. In the Col 15 (0xF) section, mod-
ify line 7 from {NO_DEVICE, NOKEY} to {DEVICE_2, 0x000E}. The 0x000E is the index into the
device 2 table.

2. Go to the table called device_2_keyboard_scan_table within the same file and add the scan code
of 0x0194 to the end of the table, as shown:

const UINT16 device_2_keyboard_scan_table[] =

{

0x0192, // Calculator

0x0223, // WWW Home

0x00CD, // Play/Pause

0x0221, // WWW Search

0x018A, // Mail

0x00E9, // Volume Up

0x00E2, // Mute

0x00B7, // Stop

0x00EA, // Volume Down

0x022A, // WWW Favorites

0x0225, // WWW Forward

0x0224, // WWW Back

0x00B6, // Scan Previous Track

0x00B5, // Scan Next Track

0x0194, // My Computer\

};

3. Build the firmware, the new key My Computer will work.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 85

Code Examples

5.3.4 Verify Output

1. Connect the bridge dongle to the PC, power the keyboard with the 2 AA batteries.

2. Press the bind button on the bridge, the red LED blinks ON/OFF in the bind mode. Now press the
bind button on the keyboard the red LED stops blinking on binding the keyboard with the bridge.

3. Press any key on the keyboard the green LED turns on when the dongle receives data from the
keyboard.

4. The green LED turns on and remains on if a key is pressed and held (due to the keyboard's send-
ing Keep Alive packets).

86 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Code Examples

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 87

A. Appendix

A.1 Schematic

Figure A-1. Bridge

"BIND"

"CONNECT/ACTIVITY"

E-PAD must be soldered to ground.

USB_DM
VBUS

RST

BIND_BUTTON

RED_LED

GRN_LED

USB_DP

IRQ

MISO

MISO

DAL_2

IRQ

RST

DAL_15V

5V

VREG0

VREG0

5V

VREG0

TP3

IND0402

L2

1.8 nH

U1
CYRF69213

35

4

9

19

16

20

5

8

25

27

30

34

29

3 7

1

13

6

37 2

15

28

40

41

36

38

14

10

11

12

26

17
18

21

31

22

33 23

24
32

39

P_1_7

P_0_3

V
B

A
T2

RESV1

V
C

C
3

NC4

P_0_1

P_2_1

RESV2

IRQ

XOUT

RST

MISO

V
C

C
1

V
C

C
2

P_0_4

RFn

V
B

A
T1

L/D XTAL

P_2_0

RESV4

V
R

E
G

E
-P

A
D

V
D

D
18

P_0_7

NC1

RFbias

RFp

G
N

D
1

RESV3

NC2
NC3

DP

PACTL

DM

V
IO

V
D

D

Regout
P_1_6

V
B

A
T0

TV7

TP4

0402

C6

0.047 uFd

J1

USB A SMT PLUG

1
2
3
4
5
6

VBUS
DM
DP

GND
S1
S2

0402

R2

620

D1

LED Green Red

1

2

3

4

GR

RD

C

C

0402

R3

NO LOAD

04
02

C1

15 pFd

TV5

TV8

0402

C15

0.047 uFd

04
02

C5

0.47 uFd

04
02

R1
zero

0402

C11

0.047 uFd

ANT1
WIGGLE 32

1 2

0402

C16

0.047 uFd

04
02

C3

2.0 pFd

0402

R4

NO LOAD

0805

C13

4.7 uFd

0805

C14

2.2 uFd

Y1

12 MHz Crystal

0402

C10

0.047 uFd

TV9

TP2

0402

C9

0.047 uFd
0402 C4

1.5 pFd

TV1

0402

C7

0.047 uFd

TV6

S1

SW RA PUSH

1A
1B

2A
2B

0402

C8

0.047 uFd

0402

C12

0.047 uFd

TV10

IND0603

L1

22 nH

88 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Figure A-2. Mouse

PCB: PDC

Layout J11 and J10.1 in
a 0.100" spacing
configuration.

A 2-pin jumper installed from J11
to enable the boost regulator outpu
processor at VDD. Jumper removal i
to physically attach the MiniProg
Jumper removal will disconnect the
MiniProg 5V source when programmin

R19 is a zero ohm resistor that sh
lieu of the 2-pin jumper for produ
following the final programming of

ISSP

Power Supply

Mouse Optical Sensor

Mouse Buttons and Z-Wheel

BIND

The power supply decoupling shown for VBAT0
is a recommended cost effective
configuration:
C6=No Load R9= 1ohm C7=10uF ceramic.
For this configuration, it is required that
C18 be installed.

An alternate decoupling configuration is
the following:
C6=47uF ceramic R9=0ohm C7=.047uF.
For this configuration, it is not required
to load C18.

For reference design part numbers, please
refer to the Bill of Materials file
121-34700_A.xls.

REF-13634

PRoC LP Mo

C

Tuesday

Title

Size Document

Date:

CYPRESS SEMIC

MID_SW

O_nCS

RT_SW

MFG_IN P_1_0

XOUT Z_PWR
LF_SW

RST

Zwheel2

VBAT

O_SHTDWN

O_nCS

O_MISO
O_SCLK

O_MOTION

O_MOSI

LF_SW

MID_SW

RT_SW

O_MOTION

P_1_0
P_1_1

Zwheel1

Bind_SW

O_MISO

O_SCLK
O_MOSI

O_SHTDWN

Z_PWR

Zwheel1

BATT-

Zwheel2

O_MISO

P_1_1

VBAT

VCC

VCC

VBAT

VBAT

VCC

DVCCAVCC VCC

VCC

VCC

VCC

0402

C23

0.01 uFd

S3

SW PUSHBUTTON

1 2

J10

5 PIN HDR

1
2
3
4
5

0603

C28

1.0 uFd

0805

C12

10 uFd 6.3V

S2

SW PUSHBUTTON

1 2

0402

C9

0.047 uFd

0402

R1

47

TV3

TP3

0603R19

NO LOAD

0
6
0
3

R4

NO LOAD

0402

C24

0.01 uFd

TV10

ANT1
WIGGLE 63

1 2

0402

C13

0.047 uFd

EN1

ENCODER

1

4
5

2

3

COM

GND1
GND2

QA

QB

L3

10 uH

TV9

TV1

TV2

BH1

BATTHLDR 2 AA

1

2

3

4

POS1

NEG1

POS2

NEG2

0805

C7

10 uFd 6.3V

0402

C10

0.047 uFd

0603

C22

NO LOAD

TV4

TP4

0402

C16

0.047 uFd

Y1

12 MHz Crystal

0402

C25

0.01 uFd

S4

SW PUSHBUTTON

1 2

0
4
0
2

C3

2.0 pFd

0
6
0
3

R5

NO LOAD

TP1

0805

R9

1 1%

0603

R7

5.11 1%

1210

C6

No Load

0603

C26

1.0 uFd

0603

C21

NO LOAD

TV6

SW1

SPDT

2
1

3

J11

1 PIN HDR
1

U2

ADNS-3040

1
5

1
3

1
6

1
2

17

1
1

1810
20

8

7

6

5

1
9

9

4

3
2

1

1
4

V
D

D
G

N
D

G
N

D

G
N

D

NC2

A
V

D
D

NC3SHTDWN
NC4

NC1

LED_GND

XY_LED

MOTION

A
G

N
D

A
G

N
D

MOSI

SCLK
MISO

nCS

A
G

N
D

0402

C15

0.047 uFd

0402

C8

1 uFd

D2

LED Red

21

TV7

IND0402

L2

1.8 nH

0402

C17

0.47 uFd

0402

C4

1.5 pFd

TV8

0
4
0
2

C1

15 pFd

IND0603

L1

22 nH

D-64

D1

DIODE SS12

2 1

0
4
0
2

C5

0.47 uFd

0
6
0
3

R8

5.11 1%

0603

R6

5.11 1%

0603

C27

1.0 uFd

U1
CYRF69103

35

4

9

19

1
6

20

5

8

25

27

30

34

29

3 7

1

13
6

37 2

15

28

4
0

4
1

3
6

38

14

10

11

1
2

26

17
18

21

31

22

3
3

2
3

24
32

3
9

P_1_7

P_0_3

V
B

A
T

2

RESV1

V
C

C
3

NC4

P_0_1

P_2_1

RESV2

IRQ

XOUT

RST

MISO

V
C

C
1

V
C

C
2

P_0_4

RFn
V

B
A

T
1

L/D XTAL

P_2_0

RESV4

V
R

E
G

E
-P

A
D

V
D

D
1
8

P_0_7

NC1

RFbias

RFp

G
N

D
1

RESV3

NC2
NC3

P_1_0

PACTL

P_1_1

V
IO

V
D

D

P_1_2
P_1_6

V
B

A
T

0

+E C18

100 uFd 10v

0402

C11

0.047 uFd

0402

C14

0.047 uFd

TP2

S1

SW PUSHBUTTON

1A
1B

2A
2B

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 89

Figure A-3. Keyboard

Keyboard Interface

Power Supply

SDATA

ISSP

SCLK

"-"

XRES

"+"

BIND

Serial debug
header

Layout J3 and J2.1 in a
0.100" spacing
configuration

E-PAD must be soldered to ground.

Radio Decoupling Caps

RF VCO
and VCO
Buffer
Filter

The power supply decoupling shown for VBAT0
is a recommended cost effective
configuration:
C6=No Load R2= 1ohm C7=10uF ceramic.
For this configuration, it is required that
C18 be installed.

An alternate decoupling configuration is
the following:
C6=47uF ceramic R2=0ohm C7=.047uF.
For this configuration, it is not required
to load C18.

For reference design part numbers, please
refer to the Bill of Materials file
121-26504_A.xls.

A 2-pin jumper
installed from J3.1
to J2.1 enables the
radio to power the
processor. Jumper
removal is required
when programming U2
to disconnect the
radio from the
Miniprog 5V source.

R1 is a zero ohm
resistor that should
be installed for
production units
only, following
programming.

MISO
MOSI

P1_1

SCK

P1_0

MISO

nSS

IRQ

MOSI

CLKOUT

RST

SCK

COL16

COL10

COL17

COL9

COL13

P1_0

COL15

COL18

COL12
COL11

COL14

nSS

P1_1

COL5

COL3
COL2

COL8

COL1

COL6
COL7

COL4

ROW5
ROW4

ROW6

ROW2

ROW7

ROW1

ROW8

ROW3

COL7

COL11

ROW4

ROW2

COL1

COL3

COL8

COL10

COL14

ROW8

ROW3

COL2

COL6

ROW6
ROW5

COL18

ROW1

COL13

COL16

COL9

ROW7

COL5
COL4

COL12

COL15

COL17

IRQ

SW1

PACTL

EVCC

VCCVBAT

VBAT

VCC

VBAT

VBAT VCC

EVCC

SOT23

D1

BAT400D

2 1

IND0402

L2
1.8 nH

U2

CY7C60123-PVXC

30

16
17
18

29
28
26
25

19

23

12

5

7

2
4

10

20

43

21

42

22

6

34
35
36
37
38
39
40
41

13
14
15

31
32
33

2
7

4
4

11

9
8

4

1
2
3

46
47
48

45

P1_4 / SCLK

P0_7
P0_6 / TIO1
P0_5 / TIO0

P1_3 / SSEL
P1_2
P1_1
P1_0

P0_4 / INT2

P0_0 / CLKIN

P2_3

V
D

D
1

P4_0

V
S

S
1

P2_5

P0_3 / INT1

P4_3

P0_2 / INT0

P4_2

P0_1 / CLKOUT

P4_1

P3_0
P3_1
P3_2
P3_3
P3_4
P3_5
P3_6
P3_7

P2_2
P2_1
P2_0

P1_5 / SMOSI
P1_6 / SMISO
P1_7

V
D

D
2

V
S

S
2

P2_4

P2_6
P2_7

NC4

NC1
NC2
NC3

NC6
NC7
NC8

NC5

S1

SW PUSHBUTTON

1A
2A

1B
2B

0
4
0
2

C5

0.47 uFd

IND0603

L1
22 nH

0603

R1

NO LOAD

J1

KB 26 Pin

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

TV4

0402

C8

1 uFd 6.3V

BH1

BATT CON 2xAA

1

2

3

POS

NEG1

NEG2

0
4
0
2

C11

0.047 uFd

0402

C17
0.47 uFd

0805

R2

1 1%

L3

10 uH

TV5

0805

C12

10 uFd 6.3V

0805

C7

10 uFd 6.3V

0402

C20

0.01 uFd

0
4
0
2

C16

0.047 uFd

J3

1 PIN HDR
1

TV8

J2

5 PIN HDR

1
2
3
4
5

J4

3 PIN HDR

1
2
3

0402

R3

47

TP2

TP1

0402

C13

0.047 uFd

U1
CYRF6936

36

4

8

19

1
6

202

25
27

26

29

34

28

3 7

5

13

6

37

1

24

39

4
0

4
1

3
5

9
14

10

11

1
2

15
17
18

21

30

22

3
3

23
31
32

3
8

NC15

NC2

V
B

A
T

2

RESV

V
C

C
3

NC9NC1

SCK
MOSI

IRQ

XOUT

RST

MISO

V
C

C
1

V
C

C
2

NC3

RFn

V
B

A
T

1

L/D

XTAL

SS

NC16

V
R

E
G

E
-P

A
D

V
D

D

NC4
NC5

RFbias

RFp

G
N

D
1

NC6
NC7
NC8

NC10

PACTL

NC11

V
IO

NC12
NC13
NC14

V
B

A
T

0

0
4
0
2

C3

2.0 pFd

0
4
0
2

C1

15 pFd

+E C18

100 uFd 10v

0
4
0
2

C15

0.047 uFd

TV7

TV6

ANT1
WIGGLE 63

1 2

0402

C4

1.5 pFd

Y1

12 MHz Crystal

TV2

1210

C6

No Load

0
4
0
2

C10

0.047 uFd

TV1

TV3

0402

C19

0.01 uFd

0
4
0
2

C9

0.047 uFd

90 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

A.2 Board Layout

Figure A-4. Bridge Top

Figure A-5. Bridge Bottom

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 91

Figure A-6. Mouse Top

92 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Figure A-7. Mouse Bottom

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 93

Figure A-8. Keyboard Top

Figure A-9. Keyboard Bottom

94 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

A.3 WirelessUSB Two-Way HID Protocol Overview

The WirelessUSB protocol 2.2 is designed to address two-way HID and general purpose devices; it
provides reliable two-way communication between a wireless device configured as 1:1 (one HID and
one bridge) or 2:1 (two HIDs and one bridge) systems. The WirelessUSB protocol 2.2 allows HID
applications to establish a connection to the bridge and receive ACK and DATA packets.

Figure A-10. WirelessUSB Two-Way System

A.3.1 Radio Channel Management

WirelessUSB uses the unlicensed 2.4 GHz Industrial, Scientific, and Medical (ISM) band for connec-
tivity. WirelessUSB uses 78 of the available channels and splits the 78 channels into 6 channel sub-
sets consisting of 13 channels each. The channel subsets are used by each network to minimize the
probability of interference from other WirelessUSB systems (see “Channel Selection Algorithm” on
page 95 for more details). A designated channel subset is used during bind mode (along with an
associated pseudo noise code) to enable all WirelessUSB devices to effectively communicate during
this procedure.

A.3.2 Pseudo-Noise Codes

Pseudo-Noise codes (PN codes) are used to achieve the special matched filter characteristics of
direct sequence spread spectrum (DSSS) communication. Certain codes referred to as 'multiplica-
tive codes' are used for WirelessUSB two-way communication. These codes have minimal cross-
correlation properties, meaning they are less susceptible to interference caused by overlapping
transmissions on the same channel. The length of the PN code results in different communication
characteristics. Higher data rates are achieved with 32-chips/bit PN codes, while 64-chips/bit PN
codes allow a longer range. The number of frequency/code pairs is large enough to comfortably
accommodate hundreds of WirelessUSB devices in the same space. Each bridge/HID pair must use
the same PN code and channel to communicate with each other.

A.3.3 Chip Error Correction

In the presence of interference (or near the limits of range), the transmitted PN code is often
received with some PN code chips corrupted. DSSS receivers use a data correlator to decode the
incoming data stream. WirelessUSB LP supports a separate start of packet (SOP) and data thresh-
old. The RDK uses an SOP threshold of '4'. The data threshold is set to the default value of '4'.

A.3.4 Automatic Acknowledgment

The WirelessUSB LP radio contains an automatic acknowledgment feature that allows it to automat-
ically send an ACK to any valid packet that is received. The WirelessUSB LP radio also uses the
concept of transactions to allow the radio in the HID to automatically power down after transmitting a

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 95

packet and receiving an AutoACK instead of waiting for the firmware to power the radio down. This
conserves power and reduces the firmware complexity of WirelessUSB applications.

A.3.5 Network ID

The network ID contains the parameters for the channel selection algorithm and the PN code to be
used. HIDs retrieve the network ID information from the bridge during the bind procedure. A special
network ID is reserved for bind mode, known as the bind ID. The bind ID gives a common channel
subset so that any two devices can communicate with each other during bind mode. The network ID
is composed of the following fields:

PIN - This is a random number, between 2 and 5, that defines the channel subset and is used in the
channel selection algorithm.

Base Channel - This is the first channel to be used in the channel selection algorithm that deter-
mines which channels are contained in the channel subset.

PN Code - This is used as an index to select one of 10 used SOP PN codes, as noted in the radio
driver.

CRC Seed - This 8-bit value is used for the CRC calculation that further diversifies transmissions
from different networks. All packets sent between non-bound devices use the default CRC seed of
0x0000. All packets sent between bound devices use a CRC seed that is common to all devices
bound to a particular bridge or network, but unique from network to network.

A.3.6 Manufacturing ID

Each WirelessUSB radio contains a 4-byte manufacturing ID (MID), that is laser fused into the
device during manufacturing. The bridge uses its MID to help randomize channel subsets, PN
codes, and network CRC seeds. The bridge sends its MID to the HIDs when binding. The HID then
stores the bridge's MID in nonvolatile memory after binding. The HID sends the bridge's MID as part
of the connect request packet, allowing the bridge to verify the identity of the HID when establishing
a connection.

Both the bridge and the HID use the bridge's MID to generate the device network ID components.
The following equations ensure that each network has a unique set of network ID components:

PN Code = [(mid_1 << 2) + mid_2 + mid_3] mod 10

Base Channel = [(mid_2 >> 2) - (mid_1 << 5) + mid_3] mod 78

PIN = [(((mid_1 -mid_2) & PIN_MASK) + MIN_PIN)] mod 78

CRC Seed = ((mid_2 >> 6)) + mid_1 + mid_3 if=0 then Seed = 1

A.3.7 Channel Selection Algorithm

The channel selection algorithm produces a subset containing 13 of the possible 78 channels. The
channel selection algorithm is based on the Network ID, with each channel in the subset 6 MHz from
the nearest neighboring channels in the subset. This algorithm reduces the possibility of multiple
bridges selecting the same channels in the same order at the same time.

96 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

A.3.8 Protocol Modes

Figure A-11. Protocol Master

Figure A-12. Protocol Slave

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 97

A.3.8.1 Ping Mode (Bridge Only)

Ping mode is used by the bridge to find an available channel; channels are unavailable if they are
being used by another network with the same PN code, or if there is excessive noise on the channel.
The bridge first listens for activity on the selected channel. If the channel is inactive, the bridge alter-
nately transmits ping packets and listens for ping response packets for a defined period of time. Dur-
ing ping mode the bridge also checks the Receive Signal Strength Indicator (RSSI) of the radio to
determine if a non-WirelessUSB device is using this channel (or a WirelessUSB device on the same
channel using a different PN code). If a ping response is received, indicating that another bridge is
using this channel the bridge selects the next channel using the channel selection algorithm and
repeats this procedure. The bridge also selects another channel using the channel selection algo-
rithm if RSSI is high; this indicates that there are other RF sources on the channel. If a ping response
is not received and RSSI is low, the bridge assumes the channel is available and moves to data
mode. Bridges send ping response packets in response to all received ping packets if the bridge is in
data mode. HIDs never respond to ping packets.

Note The timeout value is configurable using the PING_NUM_RSSI define.

A.3.8.2 Idle Mode (HID only)

The HID enters this mode after a power on reset before it has had any communication with the RDK
bridge. If the bridge's MID is stored in nonvolatile memory, the HID retrieves the bridge's MID, calcu-
lates the network ID and moves to reconnect mode. If the bridge's MID is not stored in nonvolatile-
memory, the HID waits in idle mode until a user-initiated event causes the HID to enter bind mode.
After a defined period of time in idle mode, the HID goes to sleep to conserve power. When the HID
wakes up due to a user action, it re-enters Idle mode.

A.3.8.3 Reconnect Mode (HID only)

Reconnect mode is used by the HID to discover the current channel used by the bridge and to estab-
lish a connection with the bridge. Upon entering reconnect mode, the HID uses the network ID to
select a channel using the channel selection algorithm. The HID transmits 'connect requests' con-
taining the manufacturing ID of the desired bridge and listens for an AutoACK. If an AutoACK is
received, the HID disables the AutoACK and continues to listen for a 'connect response'. If a bridge
in data mode receives a 'connect request' containing its manufacturing ID, it sends a positive 'con-
nect response' to the HID. If a HID receives a positive 'connect response', it moves to data mode. If
a HID does not receive a positive 'connect response', it selects the next channel using the channel
selection algorithm and repeats the procedure. If the HID does not receive a positive 'connect
response' on any of the channels in the subset, it enters goes to sleep to conserve power. When the
HID wakes up due to a user action it reenters reconnect mode.

A.3.8.4 Bind Mode

HID

Bind mode allows the HID to retrieve the bridge's manufacturing ID, which is used to calculate the
network ID. Upon entering bind mode, the HID sets the current channel and PN code to the channel
and PN code specified in the bind ID. The HID then transmits bind requests and listens for an Auto-
ACK. If an AutoACK is received, the HID (keeping the AutoACK enabled) continues to listen for a
bind response (containing the bridge's MID) from the bridge. If a bind response is not received, the
HID moves to the next channel. If a bind response is received, the HID stores the bridge's MID, cal-
culates the network ID, and moves to reconnect mode. The algorithms used to calculate these fields
are implementation specific and should be the same on the bridge and the HID (both devices use the
bridge's manufacturing ID to calculate these fields). If a defined period of time has elapsed while in
bind mode without receiving a bind response, the HID exits bind mode and restores the channel and
PN code settings that were in use before entering bind mode. Bind mode should last long enough to

98 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

locate and push the button on both the bridge and the HID. A user-initiated event can cause the HID
to enter bind mode from any other mode.

Note The timeout value is configurable using the BIND_RETRY_COUNT define.

Bridge

Upon entering bind mode, the bridge sets the current channel and PN code to the channel and PN
code specified in the bind ID. The bridge listens for a bind request on each channel for approxi-
mately 320 ms before selecting the next channel using the channel selection algorithm. This reduces
the possibility of the bridge not receiving the bind request from the HID in the event of channel inter-
ference. If the bridge receives a bind request from the HID containing a supported device type, it
sends a bind response containing the bridge's manufacturing ID and then switches to ping mode.
The bridge also switches to ping mode if the defined time period has elapsed while in bind mode.
The channel selection algorithm uses the bind ID to produce the channel subset for bind mode.

Note The timeout value is configurable using the NUM_CHANNELS_PER_SUBSET define.

A.3.8.5 Enhanced KISSBind

KISSBind provides the ability to automatically bind out of the box without any intervention other than
installing the batteries. KISSBind essentially is a bind process while in the data mode. The bridge
goes through the normal process of pinging and then going to the data mode. The device upon pow-
ering up and determining that it is not bound, transmits KISS_BIND_REQ packets on all channels
and PN codes looking for a bridge that is not bound to that specific device. The bridge keeps track of
which device is connected and only responds with a KISS_BIND_RESP packet if it is not already
bound to that specific device. When bound, the bridge stores the device specific state in flash.

HID

When the HID first powers up it checks the validity of the flash bind parameters. If the bind parame-
ters checksum is not valid, then the HID is considered to be unbound. The HID then transmits KISS-
Bind request packets on all channels and PN codes using a CRC seed of zero to locate the bridge. If
an AutoACK is received, the HID enters the receive state to listen for a KISSBind response packet
from the bridge. The HID completes the KISSBind process if a KISSBind response packet is
received from the bridge. If, after RX_PACKET_TIMEOUT (ms), the HID does not receive from the
bridge, it then resumes the channel/PN code search for the bridge. If the search sequence is unsuc-
cessful after BIND_RETRY_COUNT attempts, then the HID enters a low power state waiting for a
button press or other activity and begin the search process all over.

Bridge

The bridge, upon powering up, enters the ping mode to locate a suitable channel/PN code based on
its MID. When the ping mode is complete, the bridge enters the data mode. If a KISSBind Request
packet is received, the bridge checks the bind status for the specific device that sent the KISSBind
request (mouse or keyboard) based on the device type in the packet header. If the specific device is
not bound, then the bridge proceeds by sending a KISSBind response packet and completing the
KISSBind process. When an AutoACK is received from the HID in response to the KISSBind
response, the bridge updates the flash bind status for the specific device.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 99

Figure A-13. KISSBind Transaction Sequence

A.3.8.6 Unbind

An 'unbind' mechanism allows the bridge and HIDs to return to their default unbind mode as if they
had never bound to any system before. The bridge dedicates a bind flag to each device type that it
supports. A bind flag is a 1-bit field in =Flash. When the bridge is bound to an HID by either KISS-
Bind or button bind mechanism, the bridge sets the corresponding bind flag for that device type and
stores the flag in its flash. If the bind flag for a particular device type is set, the bridge treats future
KISSBind packets from this device type as nonfunctional packets. The bridge unbind process clears
all bind flags, and the bridge allows devices to KISSBind. The HID dedicates a byte in its flash, called
SIGNATURE, to indicate whether or not the HID has bound to a bridge before. The SIGNATURE is
set to 0x90 after a successful KISSBind or button bind. If the SIGNATURE is not set to 0x90, the HID
tries to KISSBind to any bridge in the area that allows the HID to KISSBind. When the SIGNATURE
is set, the HID does not attempt to KISSBind.

Note When the HID enters unbind mode, power-cycle the HID to exit this mode. When the bridge is
unbound, the bridge continues to communicate with any HID that already has the bridge MID. To
completely unbind the system, the HIDs and bridge must be unbound.

100 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

A.3.8.7 Data Mode

HID

When the HID application has data to send to the bridge the HID transmits a DATA packet and lis-
tens for an AutoACK. If an AutoACK is not received, the HID retransmits the packet. If the HID does
not receive an AutoACK after N DATA_PACKETS_RETRIES of retransmissions of the data packet it
assumes the channel has become unavailable due to excessive interference and moves to recon-
nect mode.

Bridge

Data mode allows application data to be transmitted from the HID to the bridge. The bridge continu-
ously listens for data packets from the HID. When valid data is received from the HID the bridge
sends an ACK to the HID and sends the data to the USB host. If invalid data is received the bridge
ignores the packet and listens for the HID to retransmit the data. The bridge monitors the interfer-
ence level and moves to ping mode if the RSSI interference threshold RSSI_NOISE_THRESHOLD
is reached. This ensures that the bridge is operating on a clean channel.

A.3.8.8 Back Channel Data Support

Back channel data support provides a mechanism for the host to send data to the device at the
request of the device. The device is responsible for interrogating the bridge for back channel data
either as part of a forward data packet or a simple null packet. The device starts by setting the BCDR
bit in the data header. If the packet is successfully acknowledged by the bridge then the device
inverts the upper byte of the checksum seed and then waits for N ms before trying to receive from
the bridge for M ms. The bridge also inverts the checksum seed and wait N ms before attempting to
transmit to the device. If the bridge has more data to send then it can also set the BCDR flag and can
then expect the device to receive another packet.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 101

Figure A-14. Back Channel Transaction Sequence

A.3.8.9 Dynamic Data Rate and Dynamic PA

Dynamic data rate and dynamic PA provide the ability to improve the immunity to interference and
reduce power consumption. Dynamic data rate is device behavior based and two data modes, GFSK
and 8DR, are used for the data transmission. Depending on the retry number of prior packets, the
protocol determines whether to stay with the current data mode or change to another data mode.
The dynamic PA relies on both the behavior and the bridge signal strength to the device.

HID

■ Dynamic Data Rate

If the HID fails to transmit either the application or protocol data to the bridge after
DATA_PACKET_RETRIES of retransmissions, it toggles data modes and transmit again. If the HID
still fails after DATA_PACKET_RETRIES of retransmissions, it assumes the channel has become
unavailable due to excessive interference and moves to reconnect mode.

102 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

If the HID transmits application data successfully, the retries for PKT_NUM packets are summed up
in 'total_retry'. If the total_retry exceeds the threshold 'total_retry_threshold', the HID changes to
another data mode.

The total_retry_threshold is an adaptive number that has a minimum value of
TOTAL_RETRY_THRESHOLD_LOW. The following rules are applied to it:

❐ When the data mode is toggled, the total_retry for the previous data mode is used as current
total_retry_threshold.

❐ If the total_retry is zero, the total_retry_threshold is decreased by one until
TOTAL_RETRY_THRESHOLD_LOW.

■ Dynamic PA

If the total_retry is zero and the RSSI reading for the bridge AutoACK packet is above
PA_RSSI_RX_THRESHOLD, the PA is decreased by one until DATA_MODE_PA_MIN. When one of
the following cases occurs, the PA is set back to its maximum value of

DATA_MODE_PA_MAX:

❐ The data mode is toggled.

❐ The RSSI reading for the bridge AutoACK packet is equal to or below
PA_RSSI_RX_THRESHOLD.

❐ The retries for any packet exceeds PA_RETRY_THRESHOLD.

Bridge

The bridge does not need to implement the dynamic PA because it is bus powered. Its PA is always
set to the maximum value DATA_MODE_PA_MAX to get the highest transmission power. The
dynamic data rate is driven by the devices. When the bridge receives the packet, it sets the transmis-
sion data mode to the data mode of received packet. As a result, when it sends the back channel
data, it uses the same data mode as the device.

A.3.9 Packet Structures

The first byte of each packet is the Header byte. Some packets may consist only of the header byte
while other packets may contain up to 5 bytes.

Type[7:4]: The following packet types are supported:

BIND_REQ (HID) = 0x0, // Bind Request Packet Type

BIND_RESP (bridge) = 0x0, // Bind Response Packet Type

CONNECT_REQ = 0x1, // Connect Request Packet Type

CONNECT_RESP = 0x2, // Connect Response Packet Type

PING_PACKET = 0x3, // Ping Packet Type

DATA_PACKET = 0x4, // Data Packet Type

BACK_CHANNEL_PACKET = 0x5, // Back Channel Packet Type

NULL_PACKET = 0x7, // Null Packet Type

ENCRYPT_KEY_REQ = 0x8, // Key Packet Type for encryption

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 103

ENCRYPT_KEY_RESP = 0x8, // Key Packet Type for encryption

KISS_BIND_REQ = 0xD, // KISSBind request

KISS_BIND_RESP = 0xD, // KISSBind response

Res[3:0]: The lower nibble is used for packet specific information. The packet definitions below
define how these four bits are used in each case.

A.3.9.1 Bind/KISSBind Request Packet (HID)

Byte 1

Packet Type: 0 for bind request and 0xD for KISSBind request.

Device Type: This is a 2-bit field that specifies a vendor-defined device type. This allows the bridge
to determine HID type.

Currently the following device types are defined in the PRoC LP RDK:

0x0 Presenter

0x1 Reserved

0x2 Keyboard

0x3 Mouse

A.3.9.2 Bind Response Packet (Bridge)

Byte 1

Packet Type: 0 for bind request, 0xD for KISSBind request

Device Type: This is a 2-bit field that specifies a vendor-defined device type. This allows the bridge
to determine HID type.

Currently the following device types are defined in the KBM RDK:

0x0 Presenter

0x1 Reserved

0x2 Keyboard

0x3 Mouse

Byte 2-5

Manufacturing ID (MID 1-MID 4): This is the 4-byte manufacturing ID retrieved from the bridge's
radio and is used by the HID.

104 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

A.3.9.3 Connect Request (HID)

Byte 1

Device Type: 0x1

Byte 2-5

Manufacturing ID (MID 1-MID 4): This is the 4-byte MID that is received from the bridge during the
bind procedure. This enables the bridge to identify if the HID belongs to its network.

A.3.9.4 Connect Response Packet (Bridge)

Connect response packets are sent from the bridge to the HID in Idle and data mode in response to
valid connect requests.

Byte 1

Packet Type: 2

Flag (F): This is a 1-bit field that specifies a positive or negative connect response packet (1 = posi-
tive, 0 = negative).

A.3.9.5 Ping Packet (Bridge)

Byte 1

Packet Type - 3

Flag (F) - This is a 1-bit field specifying a Ping or Ping Response (0 = Ping, 1 = Ping Response).

A.3.9.6 Data Packet (Bridge and HID)

Data packets are sent from the HID to the bridge in Connected Mode. They are also sent from the
bridge to the HID in Connected Mode if there is an asynchronous back channel.

Byte 1

Data Packet Type:

4 = Data Packet type

5 = Back Channel Packet Type

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 105

BCDR: This is a 1-bit field used to request back channel data. Setting this bit indicates to the bridge
that the HID is listening for data following the transaction.

Data Toggle Bit: This is a 1-bit field that is toggled for each new data packet. It is used to distinguish
between new and retransmitted packets.

Data Device Type 0/1: This is a 2-bit field that specifies a vendor-defined device type. This allows the
bridge to determine HID type. The two bits are swapped to be backward compatible. In most cases
the data device type is the same as the device type in the bind request and connect request. How-
ever, they may differ when one device tries to simulate the other device, for instance, the keyboard
simulates the mouse.

DT0=0, DT1= 0 Presenter (0x0)

DT0=1, DT1= 0 Undefined (0x1)

DT0=0, DT1= 1 Keyboard (0x2)

DT0=1, DT1= 1 Mouse (0x3)

Byte 2-N

Data Byte 0-N - This is byte-aligned application data.

A.3.10 Bind and Reconnect Timing

When the bind button on the bridge is pressed, the bridge goes into bind mode. In bind mode, the
bridge uses the bind ID to communicate with any HID that want to bind to the system (see “Bind
Mode” on page 97 for more information on the bind ID). The bridge enables its receiver and 'listens'
for any bind request packets from the HID, starting from channel 0. The bridge listens for approxi-
mately 320 ms on the channel, and if there is no bind request packet, it moves to the next channel in
the bind channel subset (the bind channel subset consists of channels 0, 6, 12, 18, 24 … 78). It
takes the bridge approximately 4.16 seconds to sequentially 'listen' on all 13 channels of the bind
channel subset. The bridge repeats the process for up to five times before it times out and exits bind
mode (time out is approximately 21 seconds). If it receives a valid bind request packet, it immedi-
ately responds to the request with a bind response packet and exit the bind mode. When the bind
button on the HID is pressed, the HID goes into bind mode. While in bind mode, the HID also uses
the bind ID to communicate with the bridge. The HID sends a bind request packet and listens for an
AutoACK packet. If the HID does not receive the AutoACK, it moves to the next channel in the bind
channel subset and repeats the bind request packet. It takes the HID approximately 23.4 ms to
sequentially hop through all 13 channels of the bind channel subset, and the HID repeats the pro-
cess for up to 1000 times before it times out. Because the bind buttons of the bridge and HID may be
pressed at different times, the HID and the bridge can be on very different channels when the two
are in bind mode. However, because the HID 'hops' very quickly on all bind channels while the
bridge stays relatively long on a channel, the bridge and HID have multiple opportunities of being on
the same channel. As a result, binding normally completes very quickly as soon as the bridge and
the HID are both in bind mode (at 1.8 ms/ channel 'hopping' frequency of the HID and the bridge's
320 ms/channel, the two 'meet' on the same channel at least 13 times in any 320 ms period).

106 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

Figure A-15. Bind Timing Diagram

The bridge uses the RSSI to determine the noise level on the channel. If the channel has become
noisy, the bridge moves to ping mode to find a quieter channel in its channel subset. When the HID
loses connection with the bridge, it moves to reconnect mode to find the bridge. The HID sends a
connect request packet and listens for an AutoACK packet. If the HID receives the AutoACK, it
immediately enables its receiver and listens for the connect response packet from the bridge. If the
HID does not receive the AutoACK it selects the next channel using the channel selection algorithm
and repeats this procedure. As shown in the reconnect timing diagram below, the reconnect attempt
takes approximately 1.76 ms/channel. The HID moves through its channel subset up to 19 times
before it times out and exits reconnect mode. The keyboard tries to send the data for up to five sec-
onds, and the mouse tries for two seconds, causing the HID to re-enter reconnect mode multiple
times if necessary.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 107

Figure A-16. Reconnect Timing Diagram

A.3.11 Signature Byte

The PRoC LP RDK uses the Signature byte to determine if the HID has been bound to any bridge
before.

If the HID has never bound to a bridge, the nonvolatile memory used to store the signature and the
bridge's MID data remains in its default value. When the HID has bound to a bridge, the Signature
byte is set to 0x90 and the bridge's MID is also stored.

At power up, the HID reads the Signature and the MID bytes to determine its next action. If the Sig-
nature byte is 0x90, the HID uses the retrieved MID to calculate the networkID and moves to Recon-
nect mode. If the Signature byte is not 0x90, the HID goes to sleep, waiting for the user to initiate the
bind process.

A.3.12 Encryption

WirelessUSB PRoC LP RDK supports Tiny Encryption Algorithm (TEA) and Advanced Encryption
Standard (AES) 128 to encrypt application data. Data packets may be encrypted for privacy. All
encrypted data packets must have a payload of 8 or 16 bytes depending on the method chosen; this
is the minimum block size for the encryption algorithm.

A.3.12.1 TEA Encryption

Some of the features of TEA are:

■ 128-bit encryption key

■ 8-byte block size

■ Minimal RAM requirements

■ Small code size

■ Highly resistant to differential crypt analysis

108 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

To use the TEA algorithm both the bridge and HIDs must possess the data encryption key. The
bridge is responsible for creating the key, which is then shared with the HIDs. There are a variety of
possible methods to share the key between the two devices. The key may be exchanged over the
WirelessUSB link using the encryption key request and encryption key response packets.

TEA Key Management over WirelessUSB

After binding and connecting to the bridge, the HID transmits an encryption key request packet and
listens for an AutoACK followed by an encryption key response packet that contains the first half of
the data encryption key. The HID then uses the key encryption key (calculated from the bridge and
the HID MIDs) to decrypt the data encryption key. The HID repeats this process for the second half
of the data encryption key and stores the key in flash. After receiving both halves of the data encryp-
tion key the HID may begin transmitting encrypted data to the bridge.

Figure A-17. TEA Encryption Key Management

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 109

AES Encryption

AES_Encrypt requires the two variables tx_packet and AES_Key to be set before the call. Each con-
tains a 16 byte (128 bit) value. At the completion of the function, tx_packet is encrypted in place and
contains the cipher text. AES_Key is scheduled in-place during the encryption process, so multiple
calls to AES_Encrypt each need to be proceeded with reloading of AES_Key.

AES_Decrypt is the same as the AES_Encrypt; rx_packet and AES_Key both need to be loaded
before each call. However there is one small difference (because the decrypt key schedule is in
reverse order), the decryption key is not the same as the encryption key. The key used by
AES_Decrypt is the same as the key left in the AES_Key field after an execution of AES_Encrypt.
This is the key after it has gone through ten rounds of Key scheduling.

AES Key Management

The encrypt key is stored on the keyboard and the decrypt key is stored on the bridge during compil-
ing time. There is no dynamic encrypt key exchange in the running time.

Encryption and Power Consumption Trade Off

If the keyboard encryption is enabled, each key code is encrypted into an 8 byte key code (TEA) or
16 byte key code (AES). When a single key is pressed, a non-encrypted key down packet consists of
a 16-bit Preamble + 2 bytes SOP + 1 byte packet header + 1 byte key code + 2 bytes CRC; an
encrypted key down packet consists of the same overhead packets plus 8 or 16 byte key code
instead of one byte key code. This results in an increase in the average power consumption when
encryption is enabled.

A.4 Manufacturing Test Support, MTK

A.4.1 Introduction

The Manufacturing Test Kit (MTK) provides production line test support in addition to providing FCC
certification tests. This section provides a description of the Tester serial protocol, the RF protocol
between the MTK Tester and the MTK Device-Under-Test (DUT) and a brief description of porting
the MTK DUT code to different platforms.

Refer to the Manufacturing Test Kit User's Guide for instructions on operating the MTK Tester.

A.4.2 MTK Block Diagram

Figure A-18. Block Diagram

110 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

A.4.3 MTK Serial Protocol

The MTK Tester implements a text-based protocol over an RS232 serial port to provide both a con-
figurable standard test and script-based testing.

All commands listed under the standard test set a configuration value that is stored in nonvolatile
storage. All remaining serial commands only affect the current setting and are not stored (reset
across power cycles). Commands are not case sensitive. All commands are of the form <command>
space <command parameter>. For example 'TC 20'. Table A-1 describes the serial port protocol in
the PC to tester direction.

Table A-1. Serial Command Protocol

Every serial command issued by the PC is returned with a response when the command is com-
plete. The valid responses are shown in Table A-2.

Table A-2. Serial Response Protocol

All serial commands must end in either a carriage return or carriage return and line feed. All
responses end with a carriage return and linefeed.

The serial port settings for the MTK Tester are shown in Table A-3. Neither software nor hardware
handshake is supported.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 111

Table A-3. Serial Port Parameter Settings

A.4.4 MTK RF Protocol

Command packets received by the Device-Under-Test (DUT) are 'echoed' with the addition of an
added byte that contains the count of invalid bits for the received packet. Extra bytes in packets that
are larger than what the DUT can support are ignored. Commands other than 'Echo Packet' are only
'echoed' and executed if the number of invalid bits are zero.

The RF command packets exchanged between the MTK Tester and the MTK DUT contain two
bytes. The first byte contains the command type and the subsequent byte(s) contain the parameter
values as shown in Table A-4.

Table A-4. RF Commands

The 'Transmit carrier' and 'Transmit random pattern' test mode can be conditionally compiled with
the define MFG_TX_MODES.

A.4.5 MTK DUT Source Code Porting

The RDK keyboard, bridge and mouse use the C source files mfgtest.c and mfgtest.h. Select the
appropriate source files for the target platform as a starting point. Make code changes as necessary
to work in your environment.

A.4.6 Accessing MTK in the DUT

Mouse: Apply a jumper across the ISSP header pins 4/5 and install the batteries.

Keyboard: Same as mouse.

Bridge: Press the button while plugging it into the USB port. The LEDs should blink.

112 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

A.5 Regulatory Testing Results

A.5.1 Introduction

The LP mouse is tested in a certified lab and meets FCC part 15, Subpart B, Title 47 CFR -Uninten-
tional radiators, FCC Part 15 Subpart C -Intentional radiators, and Industry Canada RSS-Gen. The
following table outlines the results of the testing.

Testing for the keyboard and bridge is expected in the near future.

Table A-5. EMC Test Results

A.6 Power Considerations

A.6.1 RDK Keyboard

A.6.1.1 Usage Model

The following usage model are considered for the RDK keyboard.

■ 4 hours a day of 6 keystrokes per second, 5 days a week

■ 24 hours a day with no activity, 2 days a week

■ A packet is transmitted on both key-up and key-down events

■ A 'keep alive' is transmitted for each key-down event

A.6.1.2 Current Measurements

Per the keyboard usage model, there are 6 keystrokes per second in the active state, and every key-
stroke includes one 'down key' packet, one 'up key' packet and one 'keep alive' packet. The test
mode firmware only sends out one 'down key' packet and one 'up key' packet for each keystroke.

Therefore, we need to set the typing rate to 8 keystrokes per second in test mode to consume the
equivalent power of the usage model. It is accomplished by changing the
KEYBOARD_TEST_MODE_PERIOD define in the config.h file to 50.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 113

The following is the results of RDK keyboard current measurement:

Table A-6. Keyboard Current Measurement

A.6.1.3 Battery Life Calculations

The following table shows the times spent in each state by the RDK keyboard usage model. By sub-
stituting the current measurements in “Current Measurements” on page 114, the overall average Icc
for RDK keyboard can be calculated.

Table A-7. RDK keyboard Power Consumption

The RDK keyboard uses two AA cells and enables the PMU function. Therefore, it is able to access
approximately 2850-mAh battery capacity, which yields a battery life estimate of 829 days or 27
months.

A.6.2 RDK Mouse

A.6.2.1 Usage Model

The following usage model is considered for the RDK mouse.

■ 1 hour a day with the 3030/3040 sensor in 'active' state

■ 2 hours a day with the 3030/3040 sensor in 'rest1' state

■ 2 hours a day with the 3030/3040 sensor in 'rest2' state

■ 19 hours a day with the 3030/3040 sensor in 'rest3' state

■ 5 days a week as above, 2 days a week 24 hours in 'rest3' state

114 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

A.6.2.2 Current Measurements

The following is the results of RDK mouse current measurement:

Table A-8. Mouse Current Measurement

A.6.2.3 Battery Life Calculations

The following table shows the times spent in each state by the RDK mouse usage model. By substi-
tuting the current measurements in “Current Measurements” on page 114, the overall average Icc for
RDK mouse can be calculated.

Table A-9. RDK Mouse Power Consumption

The RDK mouse uses two AA cells and enables the PMU function. Therefore, it is able to access
approximately 2850-mAh battery capacity, which yields a battery life estimate of 338 days or 11
months.

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 115

A.7 Software Guide

A.7.1 Introduction

This section describes the software source code modules used to communicate with the PRoC LP
bridge HID device to obtain the current radio parameters for the attached WirelessUSB LP devices.
It does not cover the details of the Microsoft Foundation Class (MFC) Library or the HID Library that
contains standard system-supplied routines that user-mode applications use to communicate with
USB devices that comply with the USB HID Standard. Refer to the Microsoft Visual C++ documenta-
tion for more on MFC and HID Class concepts, in addition to the Device Class Definition for Human
Interface Devices (HID) defined by the USB Implementers Forum, Inc. (http://www.usb.org/develop-
ers/hidpage).

A.7.2 Software Code Modules

There are three main modules contained in the WirelessUSB software:

■ USB HID API module-generic class interface to HID class compliant devices

■ System Tray module-generic class to create and control an icon on the system tray

■ WirelessUSB System Tray Application module-main system tray application module

The following sections describe the software module contents.

A.7.2.1 USB HID API module

The USB HID API module defines two classes, CHidDevice and CHidManager. The CHidDevice
class is the primary interface to a HID device, while the CHidManager class keeps track of the arrival
and removal of HID devices, along with notification to the application of such events. The building
blocks for the USB HID API module is derived from the HCLIENT sample code provided in the Win-
dows DDK. This module is designed to provide a generic interface to any HID class compliant device
and is not expected to require any modification, however all source code is provided for reference.

http://www.usb.org/developers/hidpage
http://www.usb.org/developers/hidpage

116 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

CHidDevice Class Methods

Table A-10. CHidDeviceClass Methods

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 117

CHidManager Class Methods

Table A-11. CHidManagerClass Methods

118 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

A.7.2.2 System Tray Module

The System Tray module defines the CCySysTray class, which provides the interface to the system
tray for the application. This module is not expected to require any modification; however, all source
code is provided for reference.

CCySysTray Class Methods

Table A-12. CCySysTray Methods

A.7.2.3 WirelessUSB System Tray Application Module

The WirelessUSB System Tray module is the main system tray application. This module places the
icon on the system tray bar, manages the HID devices, displays pop up messages, and controls the
WirelessUSB Status Property Sheet. Additionally, via command-line parameters, this module can
enable and disable the system tray application from running at startup.

CWirelessUSBTrayApp Class Methods

The CWirelessUSBTrayApp class performs application initialization and removal; in addition, it
parses command-line parameters used to enable or disable the system tray application from being
run at startup.

Table A-13. CWirelessUSBTrayApp Methods

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 119

CMainFrame Class Methods

The CMainFrame class is the Visual C++ generated file that is a derived frame-window class for the
system tray application's main frame window. This class is modified to also perform the timer based
polling of the PRoC LP bridge HID device to obtain the radio parameters and display any appropriate
pop up messages. Additionally, this class also processes the command message to create the Wire-
lessUSB Status Property Sheet.

Table A-14. CMainFrame Methods

CWirelessUSBStatusPropertyPage Class Methods

The CWirelessUSBStatusPropertyPage class is the Visual C++ generated file that implements the
WirelessUSB Device Status Property Page, a unique property page is created for each WirelessUSB
device enumerated.

Table A-15. CWirelessUSBStatusPropertyPage Methods

120 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

CWirelessUSBStatusPropertySheet Class Methods

The CWirelessUSBStatusPropertySheet class is the Visual C++ generated file that implements the
WirelessUSB Status Property Sheet, which generates a unique WirelessUSB Device Status Prop-
erty Page for each WirelessUSB device enumerated.

Table A-16. CWirelessUSBStatusPropertySheet Methods

CHidTrayDevice Class Methods

The CHidTrayDevice class is derived from the CHidDevice class and is the class used to interface
with WirelessUSB devices.

Table A-17. CHidTrayDevice Methods

CHidTrayManager Class Methods

The CHidTrayManager class is derived from the CHidManager class and is used to manage Wire-
lessUSB devices.

Table A-18. CHidTrayManager Methods

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 121

A.8 Bill of Materials (BOM)

A.8.1 Bridge

No. Qty. Reference Description Manufacturer Mfr Part Number

1 1 ANT1
2.5GHZ H-STUB WIGGLE ANTENNA FOR
32MIL PCB

NA NA

2 1 C1 CAP 15PF 50 V CERAMIC NPO 0402 Panasonic ECJ-0EC1H150J

3 1 C3 CAP 2.0 PF 50 V CERAMIC NPO 0402 Kemet C0402C209C5GACTU

4 1 C4
CAP 1.5PF 50 V CERAMIC NPO 0402
SMD

Panasonic ECJ-0EC1H1R5C

5 1 C5 CAP CER .47UF 6.3 V X5R 0402 Murata GRM155R60J474KE19D

6 9
C6,C7,C8,C9,C1
0,C11,C12,C15,C
16

CAP CERM .047UF 10% 16 V X5R 0402 AVX 0402YD473KAT2A

7 1 C13 CAP CER 4.7UF 16 V X5R 0805 Panasonic - ECG ECJ-2FB1C475K

8 1 C14 CAP CER 2.2UF 10 V 10% X7R 0805
Murata Electronics
North America

GRM21BR71A225KA01
L

9 1 D1 LED GREEN/RED BICOLOR 1210 SMD LITEON LTST-C155KGJRKT

10 1 J1 CONN USB PLUG TYPE A PCB SMT ACON UAR72-4N5J10

11 1 L1 INDUCTOR 22NH 2% FIXED 0603 SMD Panasonic - ECG ELJ-RE22NGFA

12 1 L2
INDUCTOR 1.8NH +-.3NH FIXED 0402
SMD

Panasonic - ECG ELJ-RF1N8DFB

13 1 R1 RES ZERO OHM 1/16W 0402 SMD Panasonic - ECG ERJ-2GE0R00X

14 1 R2 RES CHIP 620 OHM 1/16W 5% 0402 SMD Panasonic - ECG ERJ-2GEJ621X

15 1 S1 SWITCH LT 3.5MMX2.9MM 160GF SMD Panasonic - ECG EVQ-P7J01K

16 3 TP2,TP3,TP4 TEST PAD 40 SMT NA NA

17 7
TV1,TV5,TV6,TV
7,TV8,TV9,TV10

TEST VIA 36 HOLE 20 PLATED NONE

18 1 U1 IC, LP-PRoC 5CR 2.4 GHz SIP QFN-40
Cypress Semicon-
ductor

Rev 6381B/6936A5

19 1 Y1 CRYSTAL 12.00MHZ HC49 SMD eCERA GF-1200008

20 1 PCB PRINTED CIRCUIT BOARD
Cypress
Semiconductor

21 1 LABEL1 Serial Number

22 1 LABEL2 PCA # 121-34801 **

No load components - Do not install

23 2 NO LOAD

122 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

A.8.2 Mouse

No. Qty. Reference Description Manufacturer Mfr Part Number

1 1 C1 CAP 15PF 50 V CERAMIC NPO 0402 Panasonic ECJ-0EC1H150J

2 1 C3 CAP 2.0 PF 50 V CERAMIC NPO 0402 Kemet
C0402C209C5GAC
TU

3 1 C4 CAP 1.5PF 50 V CERAMIC NPO 0402 SMD Panasonic ECJ-0EC1H1R5C

4 2 C17,C5 CAP CER .47UF 6.3 V X5R 0402 Murata
GRM155R60J474K
E19D

5 2 C12,C7 CAP CERAMIC 10UF 6.3 V X5R 0805 Kemet
C0805C106K9PACT
U

6 1 C8 CAP 1 uF 6.3 V CERAMIC X5R 0402 Panasonic ECJ-0EB0J105M

7 7
C9,C10,C11,C1
3,C14,C15,C16

CAP CERM .047UF 10% 16 V X5R 0402 AVX 0402YD473KAT2A

8 1 C18 CAP 100UF 10 V ELECT FC RADIAL Panasonic - ECG EEU-FC1A101S

9 3 C23,C24,C25 CAP 10000PF 16 V CERAMIC 0402 SMD Panasonic - ECG ECJ-0EB1C103K

10 3 C26,C27,C28 CAP CERAMIC 1.0UF 10 V X5R 0603 Kemet
C0603C105K8PACT
U

11 1 D1 DIODE SCHOTTKY 20 V 1A SMA Taiwan Semiconductor SS12

12 1 J10 CONN HDR BRKWAY 5POS STR AU PCB AMP Division of TYCO 103185-5

13 1 J11 HEADER 1 POS 0.230 HT MODII .100CL AMP/Tyco 103185-1

14 1 L1 INDUCTOR 22NH 2% FIXED 0603 SMD Panasonic - ECG ELJ-RE22NGFA

15 1 L2 INDUCTOR 1.8NH +-.3NH FIXED 0402 SMD Panasonic - ECG ELJ-RF1N8DFB

16 1 L3 COIL 10UH 1.23A UNSHIELDED SMD Sumida CDH53NP-100LC

17 1 R1 RES 47 OHM 1/16W 5% 0402 SMD Panasonic - ECG ERJ-2GEJ470X

18 3 R6,R7,R8 RES CHIP 5.11 OHM 1/16W 1% 0603 SMD Yageo America
9C06031A5R11FGH
FT

19 1 R9 RES 1.00 OHM 1/8W 1% 0805 SMD Yageo
9C08052A1R00FKH
FT

20 1 U1 IC, PRoC LP 5CR 2.4 GHz SIP QFN-40
Cypress Semiconduc-
tor

21 1 Y1 CRYSTAL 12.00MHZ HC49 SMD eCERA GF-1200008

22 1 PCB PRINTED CIRCUIT BOARD
Cypress Semiconduc-
tor

23 1 LABEL1 Serial Number

24 1 LABEL2 PCA # 121-34700 *A

No load components - Do not install

25 1 C6 CAP NO LOAD 1210 NA NA

26 2 C22,C21 CAP NO LOAD 0603 NA NA

27 3 R4,R5,R19 RES NO LOAD 0603 SMD NA NA

28 4
TP1,TP2,TP3,T
P4

TEST POINT 43 HOLE 65 PLATED NONE

29 9
TV1,TV2,TV3,T
V4,TV6,TV7,TV
8,TV9,TV10

TEST VIA 40 HOLE 20 PLATED NONE

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 123

A.8.3 Keyboard

30 1 ANT1
2.5GHZ H-STUB WIGGLE ANTENNA FOR
63MIL PCB

NA NA

Do not install the following components - these parts will be installed at Cypress, Boise

31 1 BH1 BATTERY HOLDER BTC MOUSE SKIN Recycled BTC Mouse M957U

32 2 BATTERY CLIPS POSITIVE Recycled BTC Mouse Unknown

33 2 BATTERY CLIPS NEGATIVE Recycled BTC Mouse Unknown

34 1 EN1 ENCODER CHICONY MOUSE Recycled BTC Mouse Unknown

35 1 SW1 SWITCH SLIDE MINI SPDT BTC ON/OFF Recycled BTC Mouse 1101M2S3CQE2

36 1 S1 LT SWITCH SMD BTC BIND Recycled BTC Mouse BTC_PUSH

37 3 S2,S3,S4 SWITCH 6MM VERT LEFT MIDDLE RIGHT Recycled BTC Mouse Unknown

38 1 U2
IC, ULTRA LOW POWER MOUSE SENSOR
DIP20

Avago Technologies ADNS-3040

39 1 MOUSE SENSOR PLASTIC SPACER Recycled BTC Mouse Unknown

40 1 D2 LED 3MM RED DIFFUSED TH Lite-On LTL-4261N

41 1 LED CLIP Recycled BTC Mouse Unknown

42 1 LENS Stuart Lens 5042-8121

43 1 Z-WHEEL Recycled BTC Mouse Unknown

No. Qty. Reference Description Manufacturer Mfr Part Number

1 1 ANT1
2.5GHZ H-STUB WIGGLE ANTENNA FOR
63MIL PCB

NA NA

2 1 BH1 BATTERY CLIPS 2AA CELL CHICONY KB CHICONY KBR0108

3 1 C1 CAP 15PF 50 V CERAMIC NPO 0402 Panasonic ECJ-0EC1H150J

4 1 C3 CAP 2.0 PF 50 V CERAMIC NPO 0402 Kemet
C0402C209C5GAC
TU

5 1 C4 CAP 1.5PF 50 V CERAMIC NPO 0402 SMD PANASONIC ECJ-0EC1H1R5C

6 2 C5,C17 CAP CER .47UF 6.3 V X5R 0402 Murata
GRM155R60J474K
E19D

7 2 C12,C7 CAP CERAMIC 10UF 6.3 V X5R 0805 Kemet
C0805C106K9PAC
TU

8 1 C8 CAP 1 uF 6.3 V CERAMIC X5R 0402 Panasonic ECJ-0EB0J105M

9 6
C9,C10,C11,C1
3,C15,C16

CAP 0.047 uF 16 V CERAMIC X5R 0402 AVX 0402YD473KAT2A

10 1 C18 CAP 100UF 10 V ELECT FC Panasonic - ECG EEU-FC1A101S

11 2 C20,C19 CAP 10000PF 16 V CERAMIC 0402 SMD Panasonic - ECG ECJ-0EB1C103K

12 1 D1 DIODE SCHOTTKY 0.5A 40 V SOT23 DIODES INC BAT400D-7-F

13 1 J1 PCB COPPER PADS NONE

14 1 J2 CONN HDR BRKWAY 5POS STR AU PCB
AMP Division of
TYCO

103185-5

15 1 J3 HEADER 1 POS 0.230 HT MODII .100CL AMP/Tyco 103185-1

16 1 L1 INDUCTOR 22NH 2% FIXED 0603 SMD Panasonic - ECG ELJ-RE22NGF2

17 1 L2 INDUCTOR 1.8NH +-.3NH FIXED 0402 SMD Panasonic - ECG ELJ-RF1N8DF

No. Qty. Reference Description Manufacturer Mfr Part Number

124 CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A

18 1 L3 COIL 10UH 1100MA CHOKE 0805 Newark 30K5421

19 1 R2 RES 1.00 OHM 1/8W 1% 0805 SMD Yageo
9C08052A1R00FKH
FT

20 1 R3 RES 47 OHM 1/16W 5% 0402 SMD Panasonic - ECG ERJ-2GEJ470X

21 1 S1 LT SWITCH 6MM 100GF H=7MM TH Panasonic - ECG EVQ-PAC07K

22 1 U1 IC, LP 2.4 GHz RADIO SoC QFN-40
Cypress Semiconduc-
tor

23 1 U2
IC WIRELESS EnCore II CONTROLLER
SSOP48

Cypress Semiconduc-
tor

24 1 Y1 CRYSTAL 12.00MHZ HC49 SMD eCERA GF-1200008

25 1 PCB PRINTED CIRCUIT BOARD
Cypress Semiconduc-
tor

26 1 LABEL1 Serial Number

27 1 LABEL2 PCA # 121-26505 **

No load components - Do not install

28 1 C6 CAP 47UF 6.3 V CERAMIC X5R 1210 Panasonic ECJ-4YB0J476M

29 1 R2 RES CHIP 0.0 OHM 1/10W 5% 0805 SMD Phycomp USA Inc
9C08052A0R00JLH
FT

30 1 C7 CAP 0.047 uF 50 V CERAMIC X5R 0402 AVX 0402YD473KAT2A

31 1 J4 HEADER 3POS FRIC STRGHT MTA 100 AMP/Tyco 644456-3

32 1 R1 RES ZERO OHM 1/16W 5% 0603 SMD Panasonic - ECG ERJ-3GEY0R00V

No. Qty. Reference Description Manufacturer Mfr Part Number

CY4672 PRoC LP Reference Design Kit Guide, Doc. # 001-69289 Rev.*A 125

	Contents
	1. Introduction
	1.1 Kit Contents
	1.2 PSoC Designer
	1.3 PSoC Programmer
	1.4 Additional Learning Resources
	1.4.1 Reference Documents

	1.5 Document History
	1.6 Documentation Conventions

	2. Getting Started
	2.1 Kit Installation
	2.2 PSoC Designer
	2.3 PSoC Programmer
	2.4 Installation of Battery Level and Link Quality Application
	2.5 Install Hardware

	3. Kit Operation
	3.1 Introduction
	3.2 Bridge
	3.3 Mouse
	3.4 Keyboard

	4. Hardware
	4.1 Bridge
	4.1.1 Functional Description
	4.1.1.1 CYRF69213 Chip
	4.1.1.2 USB A Connector
	4.1.1.3 Bind Button
	4.1.1.4 LEDs

	4.1.2 Power Supply System

	4.2 Mouse
	4.2.1 Functional Description
	4.2.1.1 CYRF69103 Chip
	4.2.1.2 Optical Sensor
	4.2.1.3 ISSP Header
	4.2.1.4 Bind Button
	4.2.1.5 Wheel and Buttons

	4.2.2 Power Supply System

	4.3 Keyboard
	4.3.1 Functional Description
	4.3.1.1 CYRF6936 Chip
	4.3.1.2 CY7C60123 Chip
	4.3.1.3 Keyboard Interface
	4.3.1.4 ISSP Header
	4.3.1.5 Bind Button

	4.3.2 Power Supply System

	5. Code Examples
	5.1 Project 1- PRoC_LP_RDK_Bridge
	5.1.1 Project Description
	5.1.2 Device Configurations
	5.1.2.1 Global Configuration
	5.1.2.2 SPI Master User Module
	5.1.2.3 USB Device User Module
	5.1.2.4 1 Millisecond Interval Timer User Module
	5.1.2.5 Flash Security

	5.1.3 Model
	5.1.3.1 Common Code
	5.1.3.2 Application Code
	5.1.3.3 Configuration Options
	5.1.3.4 Platform and Architecture Portability
	5.1.3.5 Initialization
	5.1.3.6 Wireless Protocol Data Payload
	5.1.3.7 Suspend and Remote Wakeup
	5.1.3.8 Interrupt Usage/Timing
	5.1.3.9 Code Performance Analysis
	5.1.3.10 USB Interface

	5.1.4 Verify Output

	5.2 Project 2 - PRoC_LP_RDK_Mouse
	5.2.1 Project Description
	5.2.1.1 ROM/RAM Usage

	5.2.2 Device Configurations
	5.2.2.1 Global Configuration
	5.2.2.2 SPI Master User Module
	5.2.2.3 PWM User Module
	5.2.2.4 Flash Security

	5.2.3 Model
	5.2.3.1 Common Code
	5.2.3.2 Application Code
	5.2.3.3 Configuration Options
	5.2.3.4 Platform and Architecture Portability
	5.2.3.5 Initialization
	5.2.3.6 Wireless Protocol Data Payload
	5.2.3.7 Interrupt Usage and Timing
	5.2.3.8 Code Performance Analysis

	5.2.4 Verify Output

	5.3 Project 3 - PRoC_LP_RDK_Keyboard
	5.3.1 Project Description
	5.3.1.1 ROM/RAM Usage
	5.3.1.2 Keyboard Matrix

	5.3.2 Device Configurations
	5.3.2.1 Global Configuration
	5.3.2.2 SPI Master User Module
	5.3.2.3 Programmable Interval Timer User Module
	5.3.2.4 Flash Security

	5.3.3 Model
	5.3.3.1 Common Code
	5.3.3.2 Application Code
	5.3.3.3 Configuration Options
	5.3.3.4 Platform and Architecture Portability
	5.3.3.5 Initialization
	5.3.3.6 Wireless Protocol Data Payload
	5.3.3.7 Ghost Key Detection
	5.3.3.8 Interrupt Usage and Timing
	5.3.3.9 Code Performance Analysis
	5.3.3.10 Modifying Keyboard Matrix or Adding New Keys

	5.3.4 Verify Output

	A. Appendix
	A.1 Schematic
	A.2 Board Layout
	A.3 WirelessUSB Two-Way HID Protocol Overview
	A.3.1 Radio Channel Management
	A.3.2 Pseudo-Noise Codes
	A.3.3 Chip Error Correction
	A.3.4 Automatic Acknowledgment
	A.3.5 Network ID
	A.3.6 Manufacturing ID
	A.3.7 Channel Selection Algorithm
	A.3.8 Protocol Modes
	A.3.9 Packet Structures
	A.3.10 Bind and Reconnect Timing
	A.3.11 Signature Byte
	A.3.12 Encryption

	A.4 Manufacturing Test Support, MTK
	A.4.1 Introduction
	A.4.2 MTK Block Diagram
	A.4.3 MTK Serial Protocol
	A.4.4 MTK RF Protocol
	A.4.5 MTK DUT Source Code Porting
	A.4.6 Accessing MTK in the DUT

	A.5 Regulatory Testing Results
	A.5.1 Introduction

	A.6 Power Considerations
	A.6.1 RDK Keyboard
	A.6.2 RDK Mouse

	A.7 Software Guide
	A.7.1 Introduction
	A.7.2 Software Code Modules

	A.8 Bill of Materials (BOM)
	A.8.1 Bridge
	A.8.2 Mouse
	A.8.3 Keyboard

