F e

\
'i\ U
\

S

)) seeed

[

Wifi Shield V2.0

This WiFi shield features the RN171 TCP/IP module to allow your Arduino/Seeeduino to
connect with up to 802.11b/g wireless networks.

The shield's default communication protocol with the Arduino is UART/Serial, and you
may select which digital pins (DO to D7) to use for RX and TX with two jumper rows
we've incorporated. The shield also has two on-board Grove connectors for 12C and
Serial to allow the shield to be used with any of our Grove devices.

An on-board antenna allows the shield to cover a wider range and transmit stronger
signals. The RN171 module supports TCP, UDP, FTP, and HTTP communication
protocols to meet the needs of most wireless and Internet of Things (IoT) network
projects e.g. smart home networks, robots control, personal weather stations.

The shield is very well documented with our examples below and its user manual.

Version Tracker

Parameter Wifi Shield V1.0 Wifi Shield V1.1(v1.2) Wifi Shield V2.0
Voltage +3.5V~+5V +3.5V~+5V +3.5V~+5V
Standard Shield Yes Yes Yes
Communication Mode (Serial port Serial port Serial port
Standard Shield No Yes Yes

Antenna Type mast antenna PCB antenna onboard antenna
Library File Wifi Shield Library V1.0 |[New Wifi Shield Library [New Wifi Shield Library the same as v1.2
Specifications

Parameter Value

Operating voltage

3.3~5.5V

Compatible board directly

Arduino Uno/Seeeduino

Current

25~400mA

Transmit power

0-10 dBm

Frequency

2402~2480 MHz

Channel

0~13

Network rate

1-11 Mbps for 802.11b/6-54Mbps for 802.11g

Dimension

60X56X19 mm

Net Weight

24+1g

Secure WiFi authentication

WEP-128, WPA-PSK (TKIP), WPA2-PSK (AES)

Built-in networking applications

DHCP client, DNS client, ARP, ICMP ping, FTP, TELNET, HTTP, UDP, TCP

Certification

RN171: FCC, CE

Compatibility

We have produced a lot of extension board that can make your platform board more powerful,
however not every extension board is compatible with all the platform board, here we use a table
to illustrate how are those boards compatible with platform board.

Note

Please note that "Not recommended™ means that it might have chance to work with the platform
board however requires extra work such as jump wires or rewriting the code. If you are
interested in digging more, welcome to contact with techsupport@seeed.cc.

Click to see full
picture
Arduino Uno Arduino Nega Zero (m0) Arduino Leonardo E Arduino Due Intel s

L Seeeduino vd4. 2 | Seeeduino Nega Lorafan Seeeduino Lite LA 3.3v Edison 5v Lapkdyitus
- 2.8'" TFT Touch Shield ¥2.0 | bap t | bap nonsupport |Hot recommend bap t | Hot Hot : Hot reconnended |Not x

y [Baze Shield V2 Yes Yes Yez Yex Yez Yes Yez Yez

4 Camera Shield Only Pin234667 Hardware Serial OK |Not Not x Yez Hardware Serial OK Ho No

s [EL Shield Yes Yes Ko Yex Ko Ho Ho No

s Enexgy Shield Yes Yez Yoz Yoz Yes Yes Yes No

» [GPRS Shield Not Not Yes Tez Tes Not recommended Yes No need
5 Motor Shield V2.0 Yes Stepper motor only Ne Yes Stepper motor cnly| Stepper motor only No No

5 Music Shield V2.0 Yes Yes Hot recommended Yes Yes Yes Yes Yes
49 NFC Shield V2.0 Yes Yes Yez Tes Yes Yes Ho Tez
4+ |Protoshield Kit for Arduino Yes Yes Tes Tes Yes Yes Tes Tez
42 |R5232 Shield Yes Yes Ho Tes Ho Ho Ho Ho
42 Relay Shield V3.0 Yes Yes Tes Yes Yes Yes Tes Tes
24 |5D Card Shield V4.0 Yes Yes Hot recommended Tes Yes Yes Ho Ho
4z Seeed BLE Shield V1 Yes Hot Hot r Tes No need Not Kot Ho need
4o W5500 Ethernet Shield Yes Yes Tes Tes Yes Yes Tes Tez
g7 WAL Shield(Fi250) V1.1 Hot Hot Hot Tes Yes Not recommended Ho need Ho need
4 |Wifi Shield V2 Yes Hot Hot Yes Yes Not recommended Ho need Ho need
45 ¥Bee Shield V2 Yes Hot Hot Tes Yes Not ded |Not d|Hot

Hardware Overview

The WiFi shield is compatible with any Arduino/Seeeduino development board as it only
requires two digital pins of your choice between D0O-D7 for UART/serial communication. To

install, simply stack the shield on the Arduino/Seeeduino board.

gttatpms

H'_.;}'_. 0000000 00O0000000DN
H8cdfmg o0& 521312111898 7 6 68 4 3 2 1
Hags @ @ € WL ” m:smﬂo
n Lnr: - OOOWOOE Qc_._,.'a)m
Be— OO |sex |pos cooocooom;: w00 "
©ymes| oo oooo-ooon = s |of0
UIFT_AX]JI'{[IJDO[)
eciume | QO]
o (T “me
o f+|]_[1pea 00
. "f'_lJI'Jf'l_'lp; oo
2+~ Niadi=slxs) aa1
Ll J._G Rii 120 SERIAL
- ; sl 19
e | M9 %0
.J[?L]] g pee g T
@ Hel *fe
S . r 1 ._] 1
B g Kl] R :
e ,|-r| f’; a8 ALOG .
gwaﬁ Iu O rr! Eu AU GMO Uin a Lrwl L,]
{ OL{[ooooooonﬂfuooooo

Reset

Analog pins

Serial Peripheral Interface (SPI) Connections (MOSI, SCK, MISO): These pins are not
connected to any of the Arduino’s pins, they are independent and the logic level output/input
of them is 3.3V. They can be used to communicate with the Arduino via SPI but a 3.3V
logic converter between these pins and the Arduino's will be needed. The data rate in SPI
mode can reach up to 2Mbps.

RES_Wifi: The Wifi shield has an on-board "Rest Button™ for the RN-171 module, you
may also reset the RN-171 via software by sending the reset command. Additionally, if you
would like to connect this pin to the Arduino's digital 6 pin, simply solder the pad labeled
"P5" on the shield.

RN171: A super low power consumption wireless module with TCP/IP stack built in.
Antenna: |.PEX connector.

RN171 breakout section: The RN171 module has its own analog input and GPIO pins, which the
shield provides access to via this breakout section. The GPIO pins (103, 107, 108, and 109) are 3.3V
tolerant while the analog input pins (S_0 and S_1) can read 0-400mV (Do not exceed 1.2V). The
RN171 can be configured to use these pins by software or they may connected to other pins to use
other RN171 functions such as adhoc mode. The voltage of VCC is dependent on the supply power
of the WiFi shield.

UART/Serial Select area: Two jumper rows to let you select which RX and TX pins you want to use
to communicate with the Arduino.

Grove connectors: Analog I12C Grove (if using Arduino UNO or Seeeduino) for pins A4&A5 and
Digital Serial Grove for D8&D9. The voltage VCC is dependent on the power supply of the board.

Pins Used / Shield Compatibility{

The WiFi shield uses any two digital pins of your choice between DO and D7 to communicate

with

the RN171 WiFi module, however keep in mind that DO and D1 are used by the Arduino

for programming and serial communication purposes and using them might interfere with these
two functions.

In th

e example codes in this page we use D2 and D3 as RX and TX for the shield. In this case,

the jumper hats should be connected as shown below:

L)Y

D2s

WIFI_TX

D e = S
O O O 00|80 © O|oo

(— et

WIFI_RX

elected for WIFI_TX, D3 selected for WIFI_RX

RN171 WiFi Module

The RN-171 is a standalone complete TCP/IP wireless networking module. Due to its small form
factor and extremely low power consumption, the RN-171 is perfect for mobile wireless
applications. It incorporates a 2.4GHz radio, 32-bit SPARC processor, TCP/IP stack, real-time
clock, crypto accelerator, power management, and analog sensor interfaces.

In the simplest configuration the hardware only requires four connections (PWR, TX, RX and
GND) to create a wireless WiFi data connection. Additionally, the analog sensor inputs of the
RN171 can be used as analog input pins, their rating is 0-400 mV (Do not exceed 1.2V DC).

Power: The operating voltage of the RN-171 module is 3.3VDC typically, so a voltage regulator
and logic level translator are designed on the WiFi shield. The LD1117 regulator on the shield
converts to 3.3VDC, which supplies the RN171 module. However, due to the auto judgement
schematic of power supply, the RN-171 can be powered via both 3V3 pin and 5V pin. But the
supply power would be 5v if providing both 3.3v and 5v to the board. If using with an
Arduino/Seeeduino board simply stack the WiFi shield on the board.

Voltage regulator
LD1117

Diagram of how the RN171 module is interfaced to the Arduino

GPIO_6 : The GPIO6 pin of the RN171 WiFi module is by default only connected to the LED
labeled D5 on the WiFi shield. This LED is used to display the status of the Access Point (AP)
connection. If however, you would like to connect GPIO6 to digital pin 5 of the Arduino, simply
solder the pad labeled "P6" on the WiFi shield.

LED Status Indicators
Label Description Status Hardware Connection

D5 |Green LED. Indicates the OFF: means the module is not associated with |[Connected to GPIO6 of the
association status. a network. RN171 module

Label Description Status Hardware Connection

Solid ON: indicates that it is associated and
Internet access is OK

D1 |[Red LED. Indicates the Solid ON: connected over TCP. Connected to GP104 of the
TCP/IP connection status. RN171 module

Fast Toggle (2 times/second): No IP
address or module is in command mode.

Slow Toggle (once/second): IP address is
OK.

RST |Red LED. WiFi module reset [Solid ON: The reset button (WIFI_RST) is been |Connected to Reset of the
status. pressed. RN171 module.

PWR |Green LED. Indicates WiFi [Solid ON:The module/shield is powered up. |Connected to the 3.3V output of
module's power up status. the LD1117 voltage regulator.

WiFi Library

We have created a library to help you interface with the shield, in this section we'll show you
how to set up the library and introduce some of the functions.

Setup

Download the library code as a zip file from the Wifi Shield github page.

Unzip the downloaded file into your .../arduino/libraries/ folder .
Rename the unzipped folder "WifiShield"

o

Start the Arduino IDE (or restart if it is open).
Functions

These are the most important/useful function in the library, we invite you to look at the .h files
yourself to see all the functions available.

join()

e Description:

e Used to join a WiFi access point
e Syntax:

e join(const char *ssid, const char *phrase, int auth)

e Parameters:
e ssid: The name of the access point you want the shield to connect to
e phrase: The password/phrase of the access point you want the shield to connect to

e auth: The authentication type of the access point you want the shield to connect to. Can be
one of the following constants:
e WIFLY_AUTH_OPEN

e WIFLY_AUTH_WEP

e WIFLY_AUTH_WPA1

e WIFLY_AUTH_WPA1_2

e WIFLY_AUTH_WPA2_PSK

e WIFLY_AUTH_ADHOC
e Returns:

¢ boolean: true if the connection to the access point was successful, false otherwise.
e Example:

1#include <SoftwareSerial.h>
2#include "WiFly.h"

3

4SoftwareSerial uart(2, 3);
S5WiFly wifly(&uart);

6

7

8void setup()

9
10 uart.begin(9600);
11 Serial.begin(9600);
12 wifly.reset();
13 while(wifly.join("mySSID","mySSIDpassword",WIFLY_AUTH_WPA2_PSK) == false)
14 {
15 Serial.printin("Failed to connect to accesspoint. Will try again.");
16 }
17 Serial.printin("Connected to access point!");
18}
19
20void loop()
21
22

}

Tip
The examples is based on Arduino UNO and we take D2/D3 as the SoftwareSerial pins. If you
are using an Arduino Mega, D2 is not available anymore. More details please refer to

Here's an example.

As for the code, you need to do some change as well:

1SoftwareSerial uart(10, 3); / create a serial connection to the WiFi shield TX and RX pins.

receive()

e Description:

e Can be used to read data from the shield, an alternative for the Arduino's read() function.
e Syntax:

e receive(uint8_t *buf, int len, int timeout)
e Parameters:

e buf: A buffer array where the bytes read from the shield is stored.
e len: The length/size of the buffer array

e timeout: A timeout value to know when to stop trying to read.
e Returns:

e int: The number of bytes read from the shield.
e Example:

char c;
while (wifly.receive((uint8_t *)&c, 1, 300) > 0) {
Serial.print((char)c);

A WODNBE
=

See File->Examples->WiFi_Shield->wifly_test sketch for a complete example.

sendCommand()

Description:

e Some our functions (e.g. join(), reboot(), save()) act as wrappers for the text commands listed
in the user manual of the RN171 module. The function sendCommand() allows you to come up
with your own wrapper function if ours do not meet your needs.

e Syntax:

e sendCommand(const char *cmd, const char *ack, int timeout)
e Parameters:

e cmd: Any command from the RN-171's user manual.

e ack: The expected return string from the command

e timeout: The time allowed before considering the output a bad request/response
e Returns:

e boolean: true if the WiFi shield responded with the ack string, false otherwise.

o Example:

1
2
3
4if(sendCommand(“join\r", "Associated”,DEFAULT_WAIT_RESPONSE_TIME*10))
S{
6
Tlelse{
8
}

See File->Examples->WiFi_Shield->wifly_test sketch for a complete example.

WiFi Shield Examples/Applications

Example 1: Send Commands to WiFi Shield and Receive Response Via The Arduino
Serial Monitor Window

The WiFi shield's RN-171 module is configured by sending it the commands found in

. You may write a sketch to send the commands automatically, but this is a great
example that we recommend you go through because it will teach you exactly how the WiFi
shield and RN-171 works.

To proceed follow the steps below, we have also created a video if you prefer to watch that

Step 1: WiFi Shield Jumpers Configuration

Position the jumpers in the WiFi shield such that digital pin 2 (D2) is selected for WIFI_TX, and
digital pin 3 (D3) is selected for WIFI_RX as shown in the photo below. These are the pins we
will use to send and receive information from the RN-171.

ANATI4RM

FCC 1D TSRN1TY

Model RN-1T1
CES148-ANY

NIaass

000666693302

d 6
D 2C SERIAL
...

g -] .1 o5 ANALOG
HIFI_RST o & RST3U3BVU GND Win ©® 1 2 3 4 S

iy
=~

Pins D2 for TX, and D3 for RX
Step 2: Software/Code

In the sketch below we have created a UART object to allow us to send and receive data from
the RN-171/WiFi Shield. We then use this object in conjunction with the WiFly library to send
data to the shield. The Arduino's Serial object is used to print the data we receive from the shield,
and to receive the commands we want to send to the shield via the WiFly/UART object.

Upload the following code to your Arduino board:

1#include <Arduino.h>
2#include <SoftwareSerial.h>
3#include "WiFly.h"
4
5
6SoftwareSerial uart(2, 3);
TWiFly wifly(&uart);
8
9void setup()

10{

11 uart.begin(9600);

12 Serial.begin(9600);

13 delay(3000);

14}

15

16void loop()

17{

48 while (wifly.available()) //if there is data available from the shield

19 {

20 Serial.write(wifly.read()); // display the data in the Serial monitor window.
21

22 while (Serial.available()) // if we typed a command

23

24 wifly.write(Serial.read()); / send the command to the WiFi shield.

25 }

26}

Step 3: Entering Command Mode

The WiFly RN-171 module in the WiFi shield can operate in two modes: data, and command.
When in data mode, the shield is able to receive and initiate connections. When in command
mode, we are able to configure the module using the commands listed in its datasheet.

To enter command mode, follow these steps:

1. Open the Arduino Serial monitor.

2. Set the serial monitor to “No line ending”, baud rate to 9600.
3. Type "SS" into the Arduino Serial Monitor and press enter.
4

The module will respond with the letters “CMD”, indicating that it has entered command mode.
Let's go ahead and test some commands, do the following:

1. Inthe Arduino Serial monitor window, select “Carriage return” and a baud rate of 9600.

2. Now type each of the commands in the table below into the Arduino Serial Monitor and press
enter.

3. The module will output a response, as described in the table, for each command.

Commands Description

scan This command performs an active probe scan of access points on all 13 channels. When you use this

command, the module returns the MAC address, signal strength, SSID name, and security mode of the
access points it finds.

get ip This command displays the IP address and port number settings

For a complete list of configuration commands, please see the RN-171 Reference Guide starting
on page 11.

Example 2: Connect to An Access Point / Internet Router

In this example we will show you how to connect the WiFi shield to an access point (your
internet router) with and without you typing the commands required:

Connecting By Typing Commands

This section will teach you how to connect the WiFi shield to an access point using commands
from the RN-171 datasheet, by going through this section you will then know exactly what is
happening in the background when you use our WiFi Arduino libraries.

Do the following:

1. Upload the code in Example One to your Arduino board
2. Enter command mode:
a. Set the serial monitor to “No line ending”, baud rate to 9600.
b. Type $SS into the Arduino Serial Monitor and press enter.
Set the serial monitor to “Carriage return”.
4. Scan for available access points:
a. Type scan and press enter. The Arduino serial monitor window will output a list of comma
separated values for each access point the WiFi shield has found. From left to right the third
value is the security mode, the last value is the SSID. This example shows a security mode of 4

with an SSID name MySSID: 01,01,-88,04,1104,1c,00,45:56:78 93:1f,MySSID

5. From the list of access points found, find the one which corresponds to your internet router
and note the security mode, and SSID as we will need these two values to connect to it.

6. Set the security mode in the shield:

a. Type set wian auth m. Replace m with the security mode number (in this example that would
be 4) of the access point you wish to connect to.

b. The security modes supported by the WiFi shield are listed in Figure 1 below.
7. Set the access point phrase

a. Type set wlan phrase myPhrase. Replace myPhrase with your access point's
password/security key.

Note

If your access point's security type is WEP use key instead of phrase in the command above.

b. The access point's (internet router) phrase is the password you use to connect to it from
your PC. In Windows you can find it as shown in the animated image below:

10:26 PM
1/10/2015

How to find a networks' security key/password

8. Join the access point

a. Now that we have set the security type and phrase of the access point, we may connect to it.

b. Type join MySSID. Replace MySSID with your access point's broadcast name.

c¢. The word "Associated!" will be displayed in the Arduino serial monitor window if successful.

A description of the commands you entered in the steps above is available in the table below. A
more detailed description of each command can be found in the RN171's user manual.

Number/Commands

Description

1 scan This command performs an active probe scan of access points on all 13 channels. When
you use this command, the module returns the MAC address, signal strength, SSID name,
and security mode of the access points it finds.

2 set wlan auth 4 |Find the value that corresponds to the security protocol on your access point. Then, tell
the WiFly what security protocol to use, it is the number shown in Figure 1 that
corresponds to the access point's security protocol. Here we choose “4”.

3 set wlan phrase(Tell the WiFi shield your passphrase.

seeed-mkt

Number Commands Description
4 join SEEED- Tell the WiFi shield to join, “SEEED-MKT“ is the name of the access point we choose to
MKT connect. After sending the command the module should now connect and print out

information about the connection. (If the connection is failed, try to send the command
again until it works)

Value |Authentication Mode

0 Open (Default)

1 WEP-128

2 WPA1

3 Mixed WPA1 and WPA2-PSK

4 WPA2-PSK

5 Not used

6 AD hoc mode (join any ad hoc network)

8 WPE-64

Figure 1

Connecting Using Our WiFi Libraries

Now that you know how to connect to an access point by typing each command it's time to use
the libraries and examples we provide.

To see code required to connect to an access point go to “File -> Examples -> Wifi_Shield ->
wifi_test”. Change the code to use your own SSID (access point name), and KEY (your access
point's password), then upload the sketch to your Arduino IDE.

#define SSID " SEEED-MKT "
#define KEY " seeed-mkt "

With the sketch uploaded to your Arduino board, open the serial monitor window. If the shield
was successful in joining the access point an "OK" message will be displayed along with the
connection information resulting from the "get everything™ command. If the shield failed to join
the access point a "Failed" message will be displayed.

Configuring The Shield to Connect On Power-Up
The shield can be configured to connect on power up, you only have to do this once:

1. Send the "set wlan ssid mySSID" command replacing mySSID with your SSID
2. Send the "set wlan join 1" command.

3. Send the "save" command.
Now the shield will connect to the access point automatically on power up.

A description of what each command does can be found in the RN-171 datasheet and in the table
below.

Number Commands Description

1 set wlan ssid |"" is the name of the access point you'd like to connect to automatically
2 set wlan join 1 [This tells the module to try and connect to the SSID stored in memory automatically.
3 save Store/Save these settings in the Wifi's config file

Setting a Static IP Address

To have the shield obtain a static IP address from the access point, once connected to the access
point, send the following commands:

Number Commands Description
1 setip dhcp O Turn of DHCP .
2 set ip address Set the IP address you want .

Example 3: Communicating With the Network ()

This example will show you how a device such as your PC and/or phone may talk to the WiFi
shield.

Follow these steps:

1. Configure the module with step1-7 in Example 2's section Connecting By Typing Commands
2. Set the listening IP port to "80" by sending the commands "set ip local 80"

3. Connect/Join your shield to an access point as shown in the step 8 in Example 2's
section Connecting By Typing Commands

4. Save these setting by sending the "save" command

5. Get the IP address of your shield with the command "get ip". The IP address and port will be
displayed to the right of "IP="in the response (e.g. IP=192.168.0.10:80)

6. Open your web browser and type your shield's IP address in your web browser's URL bar and press
Enter to visit it.

7. Your Arduino's serial monitor window will display an HTTP response similar to the one below. This
is the information that your browser sent to the shield to request data.
1*OPEN*GET / HTTP/1.1
2Host: 192.168.0.10
3Connection: keep-alive
4Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
5User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
6Chrome/39.0.2171.95 Safari/537.36
7Accept-Encoding: gzip, deflate, sdch
Accept-Language: en-US,en;q=0.8

The browser is now waiting for data, the Wifi module can send sensor values, serve web pages,
or any other data straight back to the browser! In this case, the browser is waiting for a web page.
If the Wifi module responds with an HTML-formatted page, the browser will display it. The next
examples will teach you how to do all this fun stuff.

Example 4: Using the WiFi Shield as Webserver (Serving Webpages From the Shield)q

As you saw in Example 3, an internet/web browser is able to connect to the WiFi shield. Once a
connection has been established (when the browser sends its HTTP request), the WiFi shield
may then send back HTML code for the browser to display as a webpage. In this example you
will learn what is needed for the shield to reply to a web browser.

Step One: Arduino Code

Upload the following code to your Arduino board replacing "myssid™" and "mypassword" with
your accesspoint's values respectively:

1#include <SoftwareSerial.h>
2#include "WiFly.h"
3
4#define SSID "myssid"
5#define KEY "mypassword"
6
7
8
9#define AUTH WIFLY_AUTH_WPA2_PSK
10
11int flag = 0;
12
13
14
15
16
17

d8SoftwareSerial wiflyUart(2, 3); // create a WiFi shield serial object
1OWiFly wifly(&wiflyUart); // pass the wifi siheld serial object to the WiFly class
20

21void setup()

22{

23 wiflyUart.begin(9600); // start wifi shield uart port

24 Serial.begin(9600); // start the arduino serial port

25 Serial.println(*--------- WIFLY Webserver -------- ");

26

27 // walit for initilization of wifly

28 delay(1000);

29

30 wifly.reset(); / reset the shield

31 delay(1000);

32 /Iset WiFly params

33

34 wifly.sendCommand("set ip local 80\r"); // set the local comm port to 80
35 delay(100);

36

37 wifly.sendCommand('set comm remote O\r"); / do not send a default string when a connection
38opens

39 delay(100);

40

41 wifly.sendCommand(“set comm open *OPEN*\r"); // set the string that the wifi shield will output when
42a connection is opened

43 delay(100);

44

45 Serial.printin("Join " SSID);

46 if (wifly.join(SSID, KEY, AUTH)) {

47 Serial.printin("OK");

48 }else {

49 Serial.printin("Failed");

50 }

51

52 delay(5000);

53

54 wifly.sendCommand(“get ip\r");

55 charc;

56

57 while (wifly.receive((uint8_t *)&c, 1, 300) > 0) { // print the response from the get ip command
58 Serial.print((char)c);

59 }

60

61 Serial.printin("Web server ready");

62

63}

64

65void loop()

66{

67

68 if(wifly.available())

69 {// the wifi shield has data available

70 if(wiflyUart.find("*OPEN*")) // see if the data available is from an open connection by looking for
dthe *OPEN* string

72 {

73 Serial.printin("New Browser Request!");

74 delay(1000); // delay enough time for the browser to complete sending its HTTP request string
75 /l send HTTP header

76 wiflyUart.printin("HTTP/1.1 200 OK");

77 wiflyUart.printin("Content-Type: text/html; charset=UTF-8");

78 wiflyUart.printin("Content-Length: 244"); // length of HTML code
79 wiflyUart.printin("Connection: close");

80 wiflyUart.printin();

81

82 /I send webpage's HTML code

83 wiflyUart.print("<htm|>");

84 wiflyUart.print("<head>");

85 wiflyUart.print("<title>My WiFI Shield Webpage</title>");

86 wiflyUart.print("</head>");

87 wiflyUart.print("<body>");

88 wiflyUart.print("<h1>Hello World!</h1>");

89 wiflyUart.print("<h3>This website is served from my WiFi module</h3>");
90 wiflyUart.print("Yahoo! <a
91href=\"http://google.com\">Google");

92 wiflyUart.print("
<button>My Button</button>");

wiflyUart.print("</body>");
wiflyUart. print("</html>");
}
}
}

Step Two: Get the Shield's IP Address

Open the serial monitor window and wait for the "Web server ready"” message to display. The
serial monitor will also display the WiFi shield's IP address:

COM19

IP=192.165.0.10:80
NM=255.255.255.0
GW=192.168.0.1
HOS5T=0.0.0.0:2000
PROTC=HTTE, SMTP,
MITU=1524

FLAGS=0x7

TCEMODE=0x0
BACKUF=0.0.0.0

<4.00> Web server ready

Autoscroll Camage return - :9600 baud

Arduino program serial comm output. The IP address of the shield is highlighted.

Step Three: Visiting the webpage

Now visit that IP address in your web browser. The webpage below should be displayed, it
contains a link to Yahoo! and Google and a button that doesn't do anything (yet):

i o o S
), [My WiFI Shield Webpage x\'\: L
- C [192.168.0.10 w7 =
Hello World!

This website is served from my WiFi module

Yahoo! Google

Wy Button

g e ¥

A simple webpage with two links and one button served from the WiFi shield.

When the webpage is visited the serial monitor window will also display a "New Browser
Request!" string as shown below:

' ™
COM19 [
————————— WIFLY Webserver --------

Join RARBBB
oK

¢ phy
IF=UP
DHCE=0N

IP=192.168.0.10:80
WM=255.255.255.0
GW=192.168.0.1
HOS5T=0.0.0.0:2000 I
FROTCO=HITF, SMIE,
MIU=1524

FLAGS=0x7

TCEFMODE=0x0
BACEUP=0.0.0.0

<4.00> Wek server ready
lNew Browser Request!
|New Browser Reguest!

Autoscroll Nolineending | [9600baud |

The Arduino serial comm window showing that it detected a new browser connection/request.

Note
In case of some browsers, like Google Chrome, even typing the URL in the bar sends a webpage request,

this is because these browsers try to get the webpage's title for the user's convenience even before
he/she visits the webpage.

Example 5: Controlling The Arduino Digital Pins From a Webpage (Toggling LEDs
From an Webpage)

In this example we will create a webpage with three buttons to control three different digital pins
in the Arduino.

For this tutorial follow the steps below. We have also created a video where we explain the code
in more detail.

Step 1: Hardware

Connect three LEDs and resistor to digital pins 11, 12, and 13 as shown in the schematic below:

Juinng

Three LEDs and 1k resistors connected to pins 11, 12, and 13.

Step 2: Arduino Sketch

Upload the following code to your Arduino board but replace "mySSID™ and "myPassword" with
your access point's SSID name and password:

1#include <SoftwareSerial.h>
2#include "WiFly.h"
3
4#define SSID "mySSID"
b#define KEY "myPassword"
6// check your access point's security mode, mine was WPA20-PSK
Z// if yours is different you'll need to change the AUTH constant, see the file WiFly.h for avalable
8security codes
9#define AUTH WIFLY_AUTH_WPA2_PSK
10
11int flag = 0;
12
43// Pins' connection
44// Arduino WiFly
15// 2 <--> TX
16/ 3 <--> RX
17
18SoftwareSerial wiflyUart(2, 3); // create a WiFi shield serial object
19WiFly wifly(&wiflyUart); // pass the wifi siheld serial object to the WiFly class
20char ip[16];
21
22void setup()
23{
24 pinMode(11,0UTPUT);
25 digitalWrite(11,LOW);
26
27 pinMode(12,0UTPUT);
28 digitalWrite(12,LOW);
29
30 pinMode(13,0UTPUT);
31 digitalWrite(13,LOW);

32
33 wiflyUart.begin(9600); // start wifi shield uart port
34
85 Serial.begin(9600); // start the arduino serial port
36 Serial.printin("--------- WIFLY Webserver -------- ");
37

38 // wait for initilization of wifly

39 delay(1000);

40

41 wifly.reset(); // reset the shield

42 delay(1000);

43 //set WiFly params

44

45 wifly.sendCommand("set ip local 80\r"); // set the local comm port to 80
46 delay(100);

47

48 wifly.sendCommand('set comm remote O\r"); // do not send a default string when a connection
490pens

50 delay(100);

51

52 wifly.sendCommand("set comm open *OPEN*\r"); // set the string that the wifi shield will output
53when a connection is opened

54 delay(100);

55

56 Serial.printin("Join " SSID);

57 if (wifly.join(SSID, KEY, AUTH)) {
58 Serial.printin("OK");

59 }lelse{

60 Serial.printin("Failed");

61 }

62

63 delay(5000);

64

65 wifly.sendCommand(“get ip\r");
66

67 wiflyUart.setTimeout(500);

68 if('wiflyUart.find("IP="))

69

70 Serial.printin("can not get ip");
71 while(1);;

72 lelse

73 {

74 Serial.print("IP:");

75 }

76

77 char c;

78 intindex = 0;
79 while (wifly.receive((uint8_t *)&c, 1, 300) > 0) { // print the response from the get ip command

80 if(c =="")

81 {

82 ip[index] = 0;
83 break;

84 }

85 ip[index++] = c;

86 Serial.print((char)c);

87 ?

88 1}

89 Serial.printin();

90 while (wifly.receive((uint8_t *)&c, 1, 300) > 0);;
91 Serial.printin("Web server ready");

92}

93

94void loop()

95{

96 if(wifly.available()) /I the wifi shield has data available

97 {

98

99 if(wiflyUart.find("*OPEN*")) // see if the data available is from an open connection by looking for
100the *OPEN* string
101 {
102 Serial.printin("New Browser Request!");
103 delay(1000); // delay enough time for the browser to complete sending its HTTP request string
104
105 if(wiflyUart.find("pin=")) // look for the string "pin="in the http request, if it's there then we want

#06to control the LED

107 {

108 Serial.printin("LED Control");

109 /I the user wants to toggle the LEDs

110 int pinNumber = (wiflyUart.read()-48); // get first number i.e. if the pin 13 then the 1st
44dnumber is 1

112 int secondNumber = (wiflyUart.read()-48);

113 if(secondNumber>=0 && secondNumber<=9)

114 {

115 pinNumber*=10;

116 pinNumber +=secondNumber; // get second number, i.e. if the pin number is 13 then the
4172nd number is 3, then add to the first number

118 }

119 digitalWrite(pinNumber, !digitalRead(pinNumber)); // toggle pin
120 /[Build pinstate string. The Arduino replies to the browser with this string.
121 String pinState = "Pin ";

122 pinState+=pinNumber;

123 pinState+="1is ";

124 if(digitalRead(pinNumber)) // check if the pin is ON or OFF

125

126 pinState+="ON"; // the pin is on

127 }

128 else

129 {

130 pinState+="OFF"; // the pin is off

131 }

132 /[build HTTP header Content-Length string.

133 String contentLength="Content-Length: ";

134 contentLength+=pinState.length(); // the value of the length is the lenght of the string the
A85Arduino is replying to the browser with.

136 /l send HTTP header

137 wiflyUart.printin("HTTP/1.1 200 OK");

138 wiflyUart.printin("Content-Type: text/html; charset=UTF-8");
139 wiflyUart.printin(contentLength); // length of HTML code

140 wiflyUart.printin("Connection: close");

141 wiflyUart.printin();

142 /I send response

143 wiflyUart.print(pinState);

144 }

145 else

146 {

147 /l send HTTP header

148 wiflyUart.printin("HTTP/1.1 200 OK");

149 wiflyUart.printin("Content-Type: text/html; charset=UTF-8");
150 wiflyUart.printin("Content-Length: 540"); // length of HTML code
151 wiflyUart.printin("Connection: close");

152 wiflyUart.printin();

153

154 /I send webpage's HTML code

155 wiflyUart.print("<htmI>");

156 wiflyUart.print("<head>");

157 wiflyUart.print("<title>WiFi Shield Webpage</title>");

158 wiflyUart.print("</head>");

159 wiflyUart.print("<body>");

160 wiflyUart.print("<h1>LED Toggle Webpage</h1>");

161 /I In the <button> tags, the ID attribute is the value sent to the arduino via the "pin" GET

d62parameter

163 wiflyUart.print("<button id=\"11\" class=\"led\">Toggle Pin 11</button>"); // button for pin 11

164 wiflyUart.print("<button id=\"12\" class=\"led\">Toggle Pin 12</button>"); // button for pin 12
165 wiflyUart.print("<button id=\"13\" class=\"led\">Toggle Pin 13</button>"); // button for pin 13
166 wiflyUart.print("<script
167src=\"http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js\"></script>");
168 wiflyUart.print("<script type=\"text/javascript\">");
169 wiflyUart.print("$(document).ready(function(){");
170 wiflyUart.print("$(\".led\").click(function(){");
171 wiflyUart.print("var p = $(this).attr('id");"); // get id value (i.e. pinl13, pin12, or pinl1)
172 /l send HTTP GET request to the IP address with the parameter "pin" and value "p", then
I73execute the function
174 /[IMPORTANT: dont' forget to replace the IP address and port with YOUR shield's IP
@75address and port
176 wiflyUart.print("$.get(\"http://");

wiflyUart.print(ip);

wiflyUart.print(":80/a\", {pin:p},function(data){alert(data)});");// execute get request. Upon
return execute the "function” (display an alert with the "data" send back to the browser.
wiflyUart.print("});");
wiflyUart.print("});");
wiflyUart.print("</script>");
wiflyUart.print("</body>");
wiflyUart.print("</htmI>");
}
Serial.printin("Data sent to browser");
}
}
}

Step 3: Serial Monitor Window

Open the serial monitor window and wait for the "Web server ready" message to display. The
serial monitor will also display the WiFi shield's IP address:

com19

HO5T=0.0.0.0:2000
PROTO=HTTE, SMTE,
MITU=1524

FLAGS=0x7

TCPMODE=0x0
BACKUF=0.0.0.0

<4.00> Web server ready

Autoscroll Camage return :9600 baud

Arduino program serial comm output. The IP address of the shield is highlighted.

Step 4: Visit The Webpage

Visit the IP address in a web browser. A webpage with three buttons, like the one below, should
display. Click on the buttons to control the LEDs.

i ["'IEI g
/[WiFi Shield Webpage ® '

€« C' [} 192168.0.10 gl =

LED Toggle Webpage

| Toggle Pin 11 || Toggle Pin 12 || Toggle Pin 13 |

b

LED control webpage served from the WiFi shield.

The Arduino will also respond back to the web browser with the pin's state, the browser will
display this in an alert window.

The page at 192.168.0.10 says:

Pinl12is OM

-l

Alert dialog displaying the state of Pin12, The string Pin12 is ON was sent from the Arduino.

The serial monitor window will also show when a browser sends a request to either visit the
webpage or control the LED pins.

COM19 =NrEl X

Join MARBER

oK

get ip

IF=0F

DHCP=0ON
IP=192.168.0.10:80
M MM=255,255.255.0
GW=192.1628.0.1
HOST=0.0.0.0:2000
FROTO=HTTP, SMTE, 1
MIU=1524

FLAGS=0xT

TCPMODE=0x0
BACEUP=0.0.0.0

<4.00> Web server ready
New Browser Reguest!
LED Control

Data sent to browaer
Hew Browser Regquest!
LED Control

Data sent to browser

m

-

V| Autoscroll Carriage return - | 9600 baud «

e

Arduino serial comm output when an HTTP request is sent to the shield.

Example 6: WiFi Shield and Android App

- s I
Il Ethernet/WiFi Shield LED Control

The Android app you can use to control the Arduino’s pins through the WiFi or Ethernet Shield.

Android Application

We've created an Android app that can toggle the digital pins in the Arduino through the WiFi
shield, to see how the app works and learn about the code watch the video in this link:

Software
Download the Android Studio project/source form this

Example 7: Sending Data To and Retrieving Data From an External Server

The RN-171 module in the WiFi shield has the ability to act as an HTML client (a text based
web browser essentially), this means that we can use the shield to send and receive data from a
web server. In this example you will learn to use the shield with a web Application Programming
Interface (API) that displays any city's weather data (i.e. temperature, humidity, etc).

The name of the API we'll use is , when you send the name of a city and
country to this website it returns a JSON string with weather information. If you want to display
the weather for London UK for example, please refer to the toturial in this

link .Starting from 9 Oct 2015, the website requires users to
sign up for a API key before visiting the API. Once you have got the API key, you will be able to
visit the following URL which

would return a JSON string like the following, where the weather data and other information is
embedded.

1{

2 "coord":{"lon":-0.13,"lat":51.51},

3
4"sys"{"type":3,"id":60992,"message":0.0079,"country":"GB","sunrise":1421395087,"sunset":142142535
52},

6 ‘“"weather":[{"id":802,"main":"Clouds","description":"scattered clouds","icon":"03n"}],
7 "base":"cmc stations",

8 "main":{

9 "temp":277.25,"humidity":79,"pressure":998.4,

1 "temp_min":277.25,"temp_max":277.25

0 }

1 "wind"{

1 “speed":2,"gust":5,"deg":180},

1 ‘“rain":{"3h":0},"clouds":{"all":32},

2 '"dt":1421372140,"id":2643743,"name":"London","cod":200
1}

3

1

4

Step 1: The URL

Let us go ahead and retrieve the weather JSON string for San Francisco, US. The URL our WiFi
shield needs to visit is the following (you may test it in your web browser):

http://api.openweathermap.org/data/2.5/weather?q=San%20Francisco,US
Step 2: The Arduino Code

Section 13 of the WiFly manual teaches you different ways to connect to a web server, but in all
cases we need to specify the name of the server (or IP address if the server does not have a
domain name), and then the data we wish to send.

The commands we need to send to the WiFi shield to receive the JSON string from the
OpenWeatherMap server are the following:

set ip proto 18 //enable html client

set dns name api.openweathermap.org //name of your webserver

set ip address 0 // so WiFly will use DNS

set ip remote 80 // standard webserver port

set com remote 0 // turn off the REMOTE string so it does not interfere with the post
open // to open the connection

GET /data/2.5/weather?g=San%20Francisco,US \n\n // to send the data

This is the arduino code that will send the commands:

1#include <SoftwareSerial.h>
2#include "WiFly.h"
3
4#define SSID "mySSID"
5#define KEY "myPassword"
6// check your access point's security mode, mine was WPA20-PSK
/! if yours is different you'll need to change the AUTH constant, see the file WiFly.h for avalable security
8codes
9#define AUTH WIFLY_AUTH_WPA2_PSK
10
41// Pins' connection
42// Arduino WiFly
13/ 2 <-—--—> TX
14// 3 <----> RX
15
d6SoftwareSerial wiflyUart(2, 3); // create a WiFi shield serial object
@ WiFly wifly(&wiflyUart); // pass the wifi siheld serial object to the WiFly class
18
19void setup()
20{
21 wiflyUart.begin(9600); / start wifi shield uart port
22 Serial.begin(9600); // start the arduino serial port
23 Serial.println("--------- OpenWeatherMap API -------- ");
24
25 // wait for initilization of wifly
26 delay(3000);
24 wifly.reset(); // reset the shield
28 Serial.printin("Join " SSID);
29 if (wifly.join(SSID, KEY, AUTH)) {
30 Serial.printin("OK");
31 }else{
32 Serial.printin("Failed");
33 }

34
35 delay(5000);
36
37 wifly.sendCommand(“set ip proto 18\r"); //enable html client
38 delay(100);
39
40 wifly.sendCommand(“set dns name api.openweathermap.org\r"); // name of the webserver we want
4dto connect to
42 delay(100);
43
44 wifly.sendCommand("set ip address 0\r"); // so WiFly will use DNS
45 delay(100);
46
47 wifly.sendCommand(“set ip remote 80\r"); /// standard webserver port
48 delay(100);
49
50 wifly.sendCommand('set com remote O\r"); // turn off the REMOTE string so it does not interfere with
5dlthe post
52 delay(100);
53
54 wifly.sendCommand("open\r"); // open connection
55 delay(100);
56
57 wiflyUart.print("GET /data/2.5/weather?g=San%20Francisco,US \n\n");
58 delay(1000);
59
60}
61
62void loop()
63{
64 //As soon as the data received from the Internet ,output the data through the UART Port .
65 while (wifly.available())
66 {
Serial.write(wifly.read());
}
}

Step 3: Result

Open the serial monitor window, you should be able to see the same JSON string you saw in the
browser.

-

COM19

| i —

————————— CpenWeatherMap API ——————-

Join ARRBER

O

open

<4.00> *Q0PEN*["coord™:{"lon™:-122.42,"1lat™:37.78],"sya™: {"type™:3,"1d": 56874, "m
CLOS

« i b

V] Autoscrol Carriage return » | |9600baud |

JSON weather string shown in the Arduino serial monitor window.

Example 8: TCP Communication With Terminal

In this example we'll show you how to send information from the WiFi shield to a PC terminal
program. We'll make a simple Arduino console with menus that will give you the option to see
the Arduino digital pin's state and toggle them.

Step 1: Download a TCP Terminal

Download and install RealTerm, a utility terminal that will allow us to connect to the WiFi
shield.

Step 2: Arduino Code

Upload the code below to your Arduino board replacing "mySSID", "myPassword", and
authentication code with your own access point's information:

1#include <SoftwareSerial.h>
2#include "WiFly.h"
3
4#define SSID "mySSID"
5#define KEY "myPassword"
6// check your access point's security mode, mine was WPA20-PSK
7/l if yours is different you'll need to change the AUTH constant, see the file WiFly.h for avalable
8security codes
9#define AUTH WIFLY_AUTH_WPA2_PSK
10
11#define FLAG_MAIN_MENU 1
12#define FLAG_SUB_MENU_2 2
13
14int flag = FLAG_MAIN_MENU;
15
16// Pins' connection
47// Arduino WiFly
18/ 2 <----> TX
19// 3 <---> RX
20
21SoftwareSerial wiflyUart(2, 3); // create a WiFi shield serial object
22WiFly wifly(&wiflyUart); // pass the wifi siheld serial object to the WiFly class
23
24void setup()
25{
26
27 // define the pins we can control
28 pinMode(11,0UTPUT);
29 digitalWrite(11,LOW);
30
31 pinMode(12,0UTPUT);
32 digitalWrite(12,LOW);
33
34 pinMode(13,0UTPUT);
35 digitalWrite(13,LOW);
36
37 pinMode(7,0UTPUT);
38 digitalWrite(7,LOW);

39

40 wiflyUart.begin(9600); // start wifi shield uart port
41

42 Serial.begin(9600); // start the arduino serial port
43 Serial.printin("--------- TCP Communication -------- ");
44

45 // wait for initilization of wifly

46 delay(1000);

47

48 wifly.reset(); // reset the shield

49 delay(1000);

50

51 wifly.sendCommand("set ip local 80\r"); // set the local comm port to 80
52 delay(100);

53

54 wifly.sendCommand("set comm remote O\r"); // do not send a default string when a connection
550pens

56 delay(100);

57

58 wifly.sendCommand("set comm open *\r"); // set the string or character that the wifi shield will
590output when a connection is opened "*"

60 delay(100);

61

62 wifly.sendCommand("set ip protocol 2\r"); // set TCP protocol
63 delay(100);

64

65 Serial.printin("Join " SSID);

66 if (wifly.join(SSID, KEY, AUTH)) {

67 Serial.printin("OK");

68 }else

69 Serial.printin("Failed");

70 }

71

72 delay(5000);

73

74 wifly.sendCommand(“"get ip\r");

75 charc;

76

71 while (wifly.receive((uint8_t *)&c, 1, 300) > 0) { // print the response from the get ip command
78 Serial.print((char)c);

79 }

80

81 Serial.printin("TCP Ready");

82}

83

84void loop()

85{

86

87 if(wifly.available())

88 {

89 delay(1000); // wait for all the characters to be sent to the WiFi shield
90 char val = wiflyUart.read(); // read the first character

91
92 if(flag == FLAG_MAIN_MENU)
93
94 switch(val)
95 {
96 case "': // search for the new connection string
97 printMainMenu();
98 break;
99 case '1": /[the user typed 1, display the pin states
100 printPinStates();
101 printMainMenu();
102 break;
103 case '2": // the user typed 2, display the sub menu (option to select a particular pin)
104 printSubMenu2();
105 flag = FLAG_SUB MENU_2; // flag to enter the sub menu
106 break;
107 default:
108 wiflyUart.print("INVALID SUBMENU\r\n");
109 break;
110 }
111

}
112 else if(flag == FLAG_SUB_MENU_2)

113 {

114 int pinNumber = val-48; // get first number i.e. if the pin 13 then the 1st number is 1
115 int secondNumber = (wiflyUart.read()-48);

116 if(secondNumber>=0 && secondNumber<=9)

117 {

118 pinNumber*=10;

119 pinNumber +=secondNumber; // get second number, i.e. if the pin number is 13 then the
42@2nd number is 3, then add to the first number

121 }

122

123 /I Create the "You want to toggle pin x?? OK..." string.

124 String response = "\r\nYou want to toggle pin “;

125 response+=pinNumber;

126 response+="? OK..\r\n";

127

128 wiflyUart.print(response);

129

130 digitalWrite(pinNumber, !digitalRead(pinNumber)); // toggle pin
131

132 wiflyUart.print("Pin Toggled!\r\n"); // let user know the pin was toggled.
133 printMainMenu();

134 flag = FLAG_MAIN_MENU,;

135 }

136 }

137

138}

139

140/

243* Prints the main menu options

1427/

143void printMainMenu()

144{

145 wiflyUart.print("\r\n\r\n");

146 wiflyUart.print("Arduino Console Menu: \r\n");
147 wiflyUart.print("1. Show digital pin states\r\n");
148 wiflyUart.print("2. Toggle a digital pin's state\r\n");
149 wiflyUart.print("\r\n\r\n");

150}

151

152// displays the pin states

153void printPinStates()

154{

155

156 String pinState = "Pin 7 is ";

157 pinState+=getPinState(7);

158 pinState+="\r\n";

159

160 pinState +="Pin 11is";

161 pinState+=getPinState(11);

162 pinState+="\r\n";

163

164 pinState +="Pin 12 is";

165 pinState+=getPinState(12);

166 pinState+="\r\n";

167

168 pinState +="Pin 13is";

169 pinState+=getPinState(13);

170 pinState+="\r\n";

171

172 wiflyUart.print(pinState);

173}

174

4%75// prints the option to enter a pin number
176void printSubMenu2()

177§

178 wiflyUart.print("\r\nEnter the pin number you wish to toggle: ");
179}

1807

481/ get a pin state as a string.

182String getPinState(int pinNumber)

183{
184 if(digitalRead(pinNumber)) // check if the pin is ON or OFF
185
186 return "ON"; // the pin is on
187 }
188 else

{

return "OFF"; // the pin is off
}
}

Step 3: Obtain the Shield's IP Address and Port

Open the Arduino serial monitor window to obtain the WiFiShield's IP address and port number,
highlighted in the image below.

COM19

pem192.168.0.10:80]

NM=255.255.255.0
GW=192.162.0.1
HOST=0.0.0.0:2000
FROTO=TCE,
MIU=1524
FLAGS=0x7
TCEMODE=0x0
BACKUF=0.0.0.0
<4.00> ICF Ready

Autoscroll Carriage return | [9600baud |

Arduino serial monitor window output from TCP example, the ip address and port number are
highlighted.

In the image above the IP Address and Port would be the following:
192.168.0.10:80
Step 4: Configure The TCP Terminal and Connect to The Shield

Open RealTerm and in the "Display" tab enter "30" for "Rows" and select the "Scrollback™
option:

By RealTerm: Serial Capture Program 2.0.0.70 = POf0 X

m

4
Display |Port | Captue| Fins | Send | EchoPat] 120 | 1202 |\n| Clear] Freeze| |

Dizplay fﬂs [~ Half Duplex Statuz
?: ﬁﬁg:' [newLine mode [Connec
" Hesfspace] | | lnwvert | 7Bits _IRXD (2
i H Az
o X0
F Iﬁg Data Frames _|CT5 (8)
F it ?5 Bytes 2 A moco(
A [~ Single _G =il
& Non R Col iRl
ibble ows ols _|BREAK
(c ﬂg:lés\; Temminal Fonty (30 £ #1580 S|V Scolback§200 5 | Enor
You can use Activex automation to control me! Char Count:0 CPS:
] i | lII

RealTerm window: rows = 30, and Scrollback option checked.

In the "Port" tab of the RealTerm program, type your shield's IP address and port e.g.
192.168.0.10:80, then click the "Open" button, the Arduino's hard coded main menu should
display in the terminal.

-
By RealTerm: Serial Capture Program 2.0.0.70 | L S|

1. Show digital pin states(ilF
2.

Arduino Console Menu:z (ilF
1. Show digital pin states(ilF
2. Toggle a digital pin’'s state (RLFCRLFIRLF

Pl nm 3
Digplay Port]Eapture] Fins] Send I Echo F'ort] 12C] 12C-2 ’_nl Clear| Freeze ﬂ
| Status
Baud | | Eol [192.168.0.10:80 I =Nl 0pen | 5py| | & Change B Connecte
Parityr Data Bitz) —Stop Bits e (R Ce il j ?;:g [[g]]
El L 2 R 17
@ Nore || & bis || & 16t 2bits I Feceive. on Cher [17] o7 (8]
i . i %
- E\?edn " 7 bits | ~Hardware Flow Cartral [Transrrit off Char: |ﬁ W DCD (1)
O Wk || © Bhits || & None " RTS/CTS wincock i B DSF (6]
" Space || © Sbits | | € DTR/DSA ¢ R54851ts " Baw | _|Ring (9]
* Telnet |pREAK
_ | Error
You can use ActiveX automation to control me! Char Count:624 CP5:0
4 T m

RealTerm window. Port field has WiFi shield's IP address and port number. The Arduino's menu
is displayed

In the "Send" tab select one of the options from the menu either "1" or "2", enter it in the text box
and press "Send ASCII" to send the value.

For example, to toggle pin 13 enter "2" and press "Send ASCII", then when prompted "Enter the
pin number you wish you toggle™ enter "13" and click "Send ASCII". The Arduino should reply
"Pin Toggled!" and go back to the main menu, now enter "1" and press "Send ASCII" to see the
present state of the pins.

B RealTerm: Serial Capture Program 2.0.0.70 l Cre) | (5] |ﬁh

Enter the pin number vou wiszh to toggle: CORlF
You want to toggle pin 137 OK...ULF

Pin Toggled?® CLrlelrliln states iRLF

2. Toggle a digital pin's state (RLFCRLFCRLFCRLFCRLE

Arduino Gonsole Menu: OlF
1. Show digital pin statesiilr R
2. Toggle a digital pin's state (RLFIRLFIRLF

? iz OFFlr
11 is OFFlilr
12 is OFFUilr
13 is OMLr

Arduino Conszole Menw: CglF
1. Show digital pin stateslilF
2. Toggle a digital pin's statelilF
CRLF
[RLF
INUALID SUBMEMU L

F] T 2
Display | Port | Captwe | Fins Send |EchaPart| 12 | 12c2 [\n| Clear| Freeze| ?|
Statuz
13 = | Send Mumbers =" M Cornecteq
{ _|R=D[2)
| ﬂ Send Humbers| Send ASCI - 1 | THD (3]
r__JU:giﬂH@ﬁhh E] [Literal r_%m%mﬂ[_'jggﬁ%
Damp File ta Port W DSE (5)
|mmmmmmmm :J;J %m5m| XSMQ|W_JmmE]
........... _ | BREAK
Bepeatz | Erar
You can use ActiveX automation to control me! Char Count:1892 CP%0
4 10 I

RealTerm window. The state of pin 13 was changed from OFF to ON as shown in the yellow text.

Example 9: WiFi Shield and Relay Shield

Now that you know how to send and receive information to and from the WiFi shield you can
see how easy it would be to control any kind of device via the web.

If you wish to control high power devices such as your desk lamp, a motor, or a water pump via
a webpage or phone application we recommend our

The Relay Shield V2.0 uses pins 4, 5, 6, and 7 so it is fully compatible with the code in the
examples in this page.

Example 10: Adhoc Mode

To use the shield in Adhoc mode, as an access point, simply connect pin 109 from the shield to
the 3.3V pin in the Arduino, as shown below, and reset the shield if it was on.

Shield connection required for adhoc mode. Pin 109 of the shield connected to 3.3V.

To obtain the shield's SSID upload the code in Example 1 to your Arduino and open the serial
monitor, the shield will respond with it's SSID as in the example below, where in this
case WiFly-EZX-1b is the SSID.

AP mode as WiFly-EZX-1b on chan 1

You should now be able to connect to your WiFi shield as an access point, for example the SSID
should be visible in your PC's list of WiFi networks available.

To learn more about adhoc mode check out the WiFly RN User Manual section 16 "Adhoc
Networking Mode"

Tech Support

Please submit any technical issue into our forum or drop mail to techsupport@seeed.cc.

http://wiki.seeedstudio.com/Wifi_Shield V2.0/ /12-6-18

