General Description

The MAX6391/MAX6392 microprocessor (μ P) supervisory circuits provide sequenced logic reset outputs for multicomponent or dual-voltage systems. Each device can monitor two supply voltages and time-sequence two reset outputs to control the order in which system components are turned on and off. The MAX6391/MAX6392 increase system reliability and reduce circuit complexity and cost compared to separate ICs or discrete components.

The MAX6391/MAX6392 monitor V_{CC} as the master reset supply. Both RESET1 and RESET2 are asserted whenever V_{CC} drops below the selected factory-fixed reset threshold voltage. RESET1 remains asserted as long as V_{CC} is below the threshold and deasserts 140ms (min) after V_{CC} exceeds the thresholds.

RESET IN2 is monitored as the secondary reset supply and is adjustable with an external resistive-divider network. RESET2 is asserted whenever either V_{CC} or RESET IN2 is below the selected thresholds. RESET2 remains asserted 140ms (min) or a capacitoradjustable time period after V_{CC} and RESET IN2 exceed their thresholds. RESET2 is always deasserted after RESET1 during system power-up and is always asserted before RESET1 during power-down.

The MAX6391 includes two internal pullup resistors for RESET1 and RESET2 (the open-drain outputs can be externally connected to the desired pullup voltages). The MAX6392 includes an active-low manual reset input (MR) that asserts both RESET1 (push-pull) and RESET2 (open drain).

The MAX6391/MAX6392 are available in small 8-pin SOT23 packages and are specified over the -40°C to +85°C extended temperature range.

Applications

- Computers
- Controllers
- Critical µP Power Monitoring
- Set-Top Boxes
- Printers
- Servers/Workstations
- Industrial Equipment
- Multivoltage Monitoring

_Features

- Preset VCC Reset Threshold Voltages from 1.58V to 4.63V (master supply)
- Customer-Adjustable RESET IN2 to Monitor Voltages Down to 625mV (secondary supply)
- ◆ Fixed (140ms min) RESET1 Timeout
- Fixed (140ms min) or Customer-Adjustable RESET2 Timeout Period
- ♦ Guaranteed Reset Valid to V_{CC} = 1V
- Active-Low Open-Drain Outputs or Push-Pull/Open-Drain Combination
- Internal Open-Drain Pullup Resistors (for external V_{OH} voltage connections)
- Manual Reset Input (MAX6392 only)
- Immune to Short Negative V_{CC} Transients
- ♦ 15µA Typical Supply Current
- Few External Components
- Small 8-Pin SOT23 Package

Ordering Information

PART*	TEMP RANGE	PIN-PACKAGE
MAX6391KAT	-40°C to +85°C	SOT23-8
MAX6392KAT	-40°C to +85°C	SOT23-8

*Insert the desired suffix (see Selector Guide) into the blanks to complete the part number. The MAX6391/MAX6392 require a 2.5k minimum order increment and are available in tape-andreel only. Samples are typically available for standard versions (see Selector Guide for standard versions). Contact factory for availability.

Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with "+T" when ordering.

Pin Configurations

Typical Operating Circuit appears at end of data sheet.

///XI///

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +6.0V
RESET1 (MAX6392), RESET IN2, CSRT,	
MR to GND0.3	
RESET1 (MAX6391), RESET2, R1, R2 to GND	0.3V to +6.0V
Input Current (V _{CC} , GND, CSRT, R1, R2, MR)	±20mA
Output Current (RESET1, RESET2)	±20mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
8-Pin SOT23 (derate 5.26mW/°C above +70°C	C)421mW

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 1.2V \text{ to } 5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } V_{CC} = +5V \text{ and } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Mar Dense		$T_A = 0^{\circ}C \text{ to } +85^{\circ}C$	1.0		5.5	v
V _{CC} Range		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	1.2		5.5	v
Supply Current	ICC	No load		15	25	μΑ
		MAX639_UA46	4.50	4.63	4.75	
		MAX639_UA44	4.25	4.38	4.50	
		MAX639_UA31	3.00	3.08	3.15	
		MAX639_UA29	2.85	2.93	3.00	V
V _{CC} Reset Threshold	VTH1	MAX639_UA26	2.55	2.63	2.70	
		MAX639_UA23	2.25	2.32	2.38	
		MAX639_UA22	2.12	2.19	2.25	
		MAX639_UA17	1.62	1.67	1.71	
		MAX639_UA16	1.54	1.58	1.61	
RESET IN2 Threshold	V _{TH2}	$V_{CC} = 5V$	610	625	640	mV
RESET IN2 Input Current					50	nA
V _{CC} to RESET1 Delay	t _{RD1}			20		
V _{CC} or RESET IN2 to RESET2 Delay	trd2	V _{CC} falling at 1mV/µs (Note 2)		10		μs

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 1.2V \text{ to } 5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } V_{CC} = +5V \text{ and } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
RESET1 Timeout Period	t _{RP1}			140	200	280	ms
		C _{CSRT} = 1500pF		2.2	3.1	4.0	ms
RESET2 Timeout Period (Note 3)	IRP2	tRP2 CCSRT = VCC		140	200	280	
		$I_{SINK} = 50\mu A$, reset asserted	$V_{CC} \ge 1.0V,$ $T_A = 0^{\circ}C \text{ to } +85^{\circ}C$			0.3	v
RESET_ Output Voltage Low	V _{OL}		$V_{CC} \ge 1.2V$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$			0.3	
		I _{SINK} = 1.2mA, reset	asserted, $V_{CC} \ge 2.5V$			0.3	
		$I_{SINK} = 3.2$ mA, reset asserted, $V_{CC} \ge 4.25$ V				0.4	1
Open-Drain RESET Output Leakage Current	ILKG	$V_{CC} \ge V_{TH1}$, $V_{RESET IN2} \ge V_{TH2}$, reset not asserted				1.0	μA
Push-Pull RESET1 Output Voltage High (MAX6392 only)		$V_{CC} \ge 2.25V$, $I_{SOURCE} = 500\mu A$, reset not asserted				0.8 x	V
	V _{OH}	$V_{CC} \ge 4.5V$, ISOURCI asserted	<u>=</u> = 800μA, reset not			Vcc	v
	VIL	V _{CC} > 4.0V				0.8	V
	VIH			2.4			
MR Input	VIL	V _{CC} < 4.0V			0.3 x V _{CC}		
	VIH		0.7 x V _{CC}				
MR Minimum Pulse Width				50			μs
MR Glitch Rejection					100		ns
MR to RESET1 Delay	t _{MR1}				10		μs
MR to RESET2 Delay	t _{MR2}				100		ns
t _{MR} Skew		t _{MR1} - t _{MR2}			10		μs
MR Pullup Resistance		Pullup to V _{CC}		35	47	60	kΩ
Reset Pullup Resistance		RESET1 to R1 or RES	SET2 to R2	35	47	60	kΩ

Note 1: Overtemperature limits are guaranteed by design and not production tested. Devices tested at +25°C only.

Note 2: RESET2 asserts before RESET1 when V_{CC} goes below the threshold for all supply voltage and temperature ranges.

Note 3: CSRT must be connected to either V_{CC} (for fixed RESET2 timeout period) or an external capacitor (for user-

adjustable $\overline{\text{RESET2}}$ timeout period).

Typical Operating Characteristics (V_{CC} = +5V, T_A = +25°C, unless otherwise noted.) V_{CC} FALLING TO RESET1 DELAY vs. V_{CC} FALLING TO RESET2 DELAY SUPPLY CURRENT vs. TEMPERATURE TEMPERATURE vs. TEMPERATURE 17 28 17 27 16 16 26 15 SUPPLY CURRENT (µA) 25 DELAY (µs) DELAY (µs) 14 15 24 13 23 12 14 22 11 21 10 13 20 9 -40 -15 10 35 60 85 -40 -15 10 35 60 85 -40 -15 10 35 60 85 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) **RESET2 TO RESET1 DELAY RESET1 TIMEOUT PERIOD RESET1 TO RESET2 TIMEOUT PERIOD** vs. TEMPERATURE vs. TEMPERATURE vs. TEMPERATURE (CSRT = 1500pF) 11.8 300 3.50 11.6 3.25 3.00 3.00 3.00 275 **FIMEOUT DELAY (ms)** (sri) 11.4 AF DELAY 11.2 250 225 2.75 11.0 10.8 200 2.50 -15 10 35 60 10 35 -40 -15 10 35 60 85 -40 85 -40 -15 60 85 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) MAXIMUM TRANSIENT DURATION **RESET1 TO RESET2 TIMEOUT PERIOD** vs. TEMPERATURE (CSRT TIED TO V_{CC}) vs. RESET COMPARATOR OVERDRIVE 60 300 MAXIMUM TRANSIENT DURATION (µs) 50 275 TIMEOUT DELAY (ms) 40 RESET ASSERTS ABOVE 250 THIS LINE 30 225 20 10 200 10 -40 -15 10 35 60 85 1 100 1000 OVERDRIVE (mV) TEMPERATURE (°C) /N/IXI/N

MAX6391/MAX6392

Pin Description

PIN		NAME	FUNCTION			
MAX6391	AX6391 MAX6392 NAME		FUNCTION			
1	1	RESET IN2	Input Voltage for RESET2 Monitor. High-impedance input for internal reset comparator. Connect this pin to an external resistive-divider network to set the res threshold voltage.			
2	2	Vcc	Supply Voltage and Input Voltage for Primary Supply Monitor			
3	3	CSRT	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
4	4	GND	Ground			
5	5	RESET2	Secondary Reset Output, Open-Drain, Active-Low. RESET2 changes from high to low when either V_{CC} or RESET IN2 drop below their thresholds. RESET2 remains low for user-adjustable timeout period (see CSRT) or a fixed 140ms (min) after V_{CC} and RESET IN2 meet their minimum thresholds.			
6	6	R2	$47k\Omega$ Internal Pullup Resistor for RESET2. Connect to external voltage for RESET2 high pullup.			
7	7	RESET1	Primary Reset Output, Open-Drain (MAX6391) or Push-Pull (MAX6392), Active-Low. RESET1 changes from HIGH to LOW when the V_{CC} input drops below the selected reset threshold. RESET1 remains LOW for the reset timeout period after V_{CC} exceeds the minimum threshold.			
8	_	R1	47k Ω Internal Pullup Resistor for RESET1. Connect to external voltage for RESET1 high pullup.			
_	8	MR	Manual Reset, Active-Low, Internal 47k Ω Pullup to V _{CC} . Pull LOW to force a reset. RESET1 and RESET2 remain asserted as long as MR is LOW and for the RESET1 and RESET2 timeout periods after MR goes HIGH. Leave unconnected or connect to V _{CC} if unused.			

Detailed Description

Each device includes a pair of voltage monitors with sequenced reset outputs. The first block monitors V_{CC} only (RESET1 output is independent of the RESET IN2 monitor). It asserts a reset signal (LOW) whenever V_{CC} is below the preset voltage threshold. RESET1 remains asserted for at least 140ms after V_{CC} rises above the reset threshold. RESET1 timing is internally set in each device. V_{CC} voltage thresholds are available from 1.57V to 4.63V. In all cases V_{CC} acts as the master supply (all resets are asserted when V_{CC} goes below its selected threshold). The V_{CC} input also acts as the device power supply.

The second block monitors both RESET IN2 and V_{CC}. It asserts a reset signal (LOW) whenever RESET IN2 is below the <u>625mV</u> threshold or V_{CC} is below its reset threshold. RESET2 remains asserted for a fixed 140ms

(min) or a user-adjustable time period after RESET IN2 rises above the 625mV reset threshold and $\overline{\text{RESET1}}$ is deasserted. Resets are guaranteed valid for V_{CC} down to 1V.

The timing diagram in Figure 2 shows the reset timing characteristics of the MAX6391/MAX6392. As shown in Figure 2, RESET1 deasserts 140ms (min) (t_{RP1}) after V_{CC} exceeds the reset threshold. RESET2 deasserts t_{RP2} (140ms minimum or a user-adjustable timeout period) after RESET IN2 exceeds 625mV and RESET1 is deasserted. When RESET IN2 drops below 625mV while V_{CC} is above the reset threshold, RESET2 asserts within 10µs typ. RESET1 is unaffected when this happens. When V_{CC} falls below V_{TH1}, RESET2 always asserts before RESET1 (t_{RD2} < t_{RD1}).

Figure 1. Functional Diagram

Figure 2. Timing Diagram

PART NUMBER	NOMINAL THRESHOLD (V)	TOP MARK
MAX6391KA 46	4.63	AAHJ
MAX6391KA44	4.38	AAHK
MAX6391KA31	3.08	AAHL
MAX6391KA 29	2.93	AAHM
MAX6391KA26	2.63	AAHN
MAX6391KA 23	2.32	AAHO
MAX6391KA22	2.19	AAHP
MAX6391KA17	1.67	AAHQ
MAX6391KA 16	1.58	AAHR
MAX6392KA 46	4.63	AAHS
MAX6392KA44	4.38	AAHT
MAX6392KA31	3.08	AAHU
MAX6392KA 29	2.93	AAHV
MAX6392KA26	2.63	AAHW
MAX6392KA 23	2.32	AAHX
MAX6392KA22	2.19	AAHY
MAX6392KA17	1.67	AAHZ
MAX6392KA 16	1.58	AAIA

Selector Guide

Standard versions in bold face. Samples are typically available for standard versions. Contact factory for availability.

Applications Information

Selecting the Reset Timeout Capacitor

The RESET2 delay may be adjusted by the user with an external capacitor connected from the CSRT pin to ground. The MAX6391 includes a 600nA current source that is switched to C_{CSRT} to create a voltage ramp. The voltage ramp is compared to the internal 1.25V reference to set the RESET2 delay period. The period is calculated by:

$$\Delta t = C \times \Delta V/I$$

where ΔV = 1.25V, I = 600nA, and C is the external capacitor.

Simplifying,

 $t_{RP} = 2.08 \times 10^6 \text{ s} / \text{F} \times \text{C}_{CSRT}$

For
$$C_{CSRT} = 1500 pF$$
, $t_{RP} = 3.1 ms$

A fixed internal 140ms (min) reset delay time for RESET2 may be chosen by connecting the CSRT pin to V_{CC}. The V_{CC} to CSRT connection disables the voltage ramp and enables a separate fixed delay counter

M/IXI/M

chain. The MAX6391 internally determines the CSRT connection and provides the proper timing setup.

In all cases, RESET IN2 acts as the slave supply. V_{CC} can assert the $\overrightarrow{\text{RESET2}}$ output but RESET IN2 will have no effect on the $\overrightarrow{\text{RESET1}}$ output.

Monitoring Voltages Other Than Vcc

An external resistive-divider network is required at RESET IN2 for most applications. The divider resistors, R3 and R4, may be calculated by the following formula:

$$/RST = VTH_2 \times (R3 + R4)/R_1$$

where $V_{TH2} = 625 \text{mV}$ (internal reference voltage) and V_{RST} is the desired reset threshold voltage. R4 may be set to a conveniently high value (500k Ω for example, to minimize current consumption) and the equation may be solved for R3 by:

$R3 = R4 \times (V_{RST}/V_{TH2} - 1)$

For single-supply operations requiring two reset outputs (RESET1 before RESET2), connect RESET IN2 directly to V_{CC} and adjust RESET2 timeout delay with C_{CRST} as desired.

Pullup Resistors

The MAX6391 includes open-drain outputs for both RESET1 and RESET2. Two internal resistors, R1 and R2, of $47k\Omega$ each are provided with internal connections to RESET1 and RESET2. These resistors may be connected to the appropriate external voltage for independent V_{OH} drive with no additional component requirements.

The MAX6392 includes a manual reset option, $\overline{\text{MR}}$, that replaces the R1 pullup resistor. The active-low manual reset input forces both RESET1 and RESET2 low. RESET2 is driven active before RESET1 in all cases (10µs typ). The resets follow standard reset timing specifications after the manual reset is released. The manual reset is internally pulled up to V_{CC} through a 47k Ω resistor.

Negative-Going Vcc Transients

In addition to issuing a reset to the μ P during power-up, power-down, and brownout conditions, these devices are relatively immune to short-duration, negative-going V_{CC} or RESET IN2 transients (glitches). The *Typical Operating Characteristics* show the Maximum Transient Duration vs. Reset Comparator Overdrive graph. The graph shows the maximum pulse width that a negativegoing V_{CC} transient may typically have without issuing a reset signal. As the amplitude of the transient increases, the maximum allowable pulse width decreases.

Pin Configurations (continued)

Chip Information

TRANSISTOR COUNT: 810 PROCESS: BICMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2005 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products, Inc.

9