# ne<mark>x</mark>peria

#### Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

# INTEGRATED CIRCUITS



Product specification File under Integrated Circuits, IC04 January 1995



#### DESCRIPTION

**Philips Semiconductors** 

The HEF4016B has four independent analogue switches (transmission gates). Each switch has two input/output terminals (Y/Z) and an active HIGH enable input (E). When E is connected to V<sub>DD</sub> a low impedance bidirectional path between Y and Z is established (ON condition). When E is connected to V<sub>SS</sub> the switch is disabled and a high

13 12 5 6 8 11  $\overline{Y}_2$ Ē3 E<sub>1</sub> E2 En Υı Yo Y3 Z<sub>0</sub> Z1  $Z_2$  $Z_3$ 3 2 9 10 7269571.2 Fig.1 Functional diagram.

### PINNING

| $E_0$ to $E_3$ | enable inputs          |
|----------------|------------------------|
| $Y_0$ to $Y_3$ | input/output terminals |
| $Z_0$ to $Z_3$ | input/output terminals |

#### **APPLICATION INFORMATION**

Some examples of applications for the HEF4016B are:

- Signal gating
- Modulation
- Demodulation
- Chopper

HEF4016BP(N): 14-lead DIL; plastic (SOT27-1) HEF4016BD(F): 14-lead DIL; ceramic (cerdip) (SOT73) HEF4016BT(D): 14-lead SO; plastic (SOT108-1) (): Package Designator North America

7Z69694.3

impedance between Y and Z is established (OFF condition). Current through a switch will not cause additional V<sub>DD</sub> current provided the voltage at the terminals of the switch is maintained within the supply voltage range;  $V_{DD} \ge (V_Y, V_Z) \ge V_{SS}$ . Inputs Y and Z are electrically equivalent terminals.

 $V_{DD} E_0 E_3 Y_3 Z_3 Z_2$ 

Zo

2 3

HEF4016B  $Z_1$   $Y_1$   $E_1$   $E_2$ 

4

Fig.2 Pinning diagram.





#### V<sub>DD</sub> -VSS VDD VSS En V<sub>DD</sub>. VSS VSS z<sub>0</sub> Fig.3 Schematic diagram (one switch).

#### January 1995

#### RATINGS

| Limiting values in accordance with the Absolute Maximum System (IEC 134) |   |      |     |    |
|--------------------------------------------------------------------------|---|------|-----|----|
| Power dissipation per switch                                             | Р | max. | 100 | mW |
| For other RATINGS see Family Specifications                              |   |      |     |    |

#### DC CHARACTERISTICS

 $T_{amb}$  = 25 °C;  $V_{SS}$  = 0 V (unless otherwise specified)

| PARAMETER         | V <sub>DD</sub><br>V | SYMBOL          | TYP. | MAX. | UNIT | CONDITIONS                                                                    |
|-------------------|----------------------|-----------------|------|------|------|-------------------------------------------------------------------------------|
|                   | 5                    |                 | 8000 | _    | Ω    | $E_n$ at V <sub>IH</sub> ; V <sub>is</sub> = 0 to V <sub>DD</sub> ; see Fig.4 |
| ON resistance     | 10                   | R <sub>ON</sub> | 230  | 690  | Ω    |                                                                               |
|                   | 15                   |                 | 115  | 350  | Ω    |                                                                               |
|                   | 5                    |                 | 140  | 425  | Ω    | $E_n$ at V <sub>IH</sub> ; V <sub>is</sub> = V <sub>SS</sub> ; see Fig.4      |
| ON resistance     | 10                   | R <sub>ON</sub> | 65   | 195  | Ω    |                                                                               |
|                   | 15                   |                 | 50   | 145  | Ω    |                                                                               |
|                   | 5                    |                 | 170  | 515  | Ω    | $E_n$ at $V_{IH}$ ; $V_{is} = V_{DD}$ ; see Fig.4                             |
| ON resistance     | 10                   | R <sub>ON</sub> | 95   | 285  | Ω    |                                                                               |
|                   | 15                   |                 | 75   | 220  | Ω    |                                                                               |
| 'Δ' ON resistance | 5                    |                 | 200  | _    | Ω    | $E_n$ at V <sub>IH</sub> ; V <sub>is</sub> = 0 to V <sub>DD</sub> ; see Fig.4 |
| between any two   | 10                   | $\Delta R_{ON}$ | 15   | _    | Ω    |                                                                               |
| channels          | 15                   |                 | 10   | _    | Ω    |                                                                               |

|                           | V <sub>DD</sub> |                   |      |      | Tamb | , (°C) |      |      |      |                                             |
|---------------------------|-----------------|-------------------|------|------|------|--------|------|------|------|---------------------------------------------|
| PARAMETER                 | V               | SYMBOL            |      | 40   | +    | 25     | +    | 85   | UNIT | CONDITION                                   |
|                           |                 |                   | MIN. | MAX. | MIN. | MAX.   | MIN. | MAX. |      |                                             |
| Quiescent                 | 5               |                   | _    | 1,0  | _    | 1,0    | _    | 7,5  | μA   | V <sub>SS</sub> = 0; all valid              |
| device                    | 10              | I <sub>DD</sub>   | _    | 2,0  | _    | 2,0    | _    | 15,0 | μA   | input combinations;                         |
| current                   | 15              |                   | _    | 4,0  | _    | 4,0    | _    | 30,0 | μA   | $V_I = V_{SS} \text{ or } V_{DD}$           |
| Input leakage             | 15              | + 1               | _    | _    | _    | 300    | _    | 1000 | nA   | $E_n$ at V <sub>SS</sub> or V <sub>DD</sub> |
| current at E <sub>n</sub> | 15              | ± I <sub>IN</sub> |      |      |      |        |      |      | ΠA   |                                             |
| OFF-state leakage         | 5               |                   | -    | -    | -    | -      | -    | -    | nA   | E <sub>n</sub> at V <sub>IL</sub> ;         |
| current, any              | 10              | l <sub>oz</sub>   | _    | _    | _    | _      | _    | -    | nA   | $V_{is} = V_{SS} \text{ or } V_{DD};$       |
| channel OFF               | 15              |                   | _    | -    | _    | 200    | _    | -    | nA   | $V_{os} = V_{DD} \text{ or } V_{SS}$        |
| E <sub>n</sub> input      | 5               |                   | -    | 1,5  | -    | 1,5    | -    | 1,5  | V    | switch OFF; see                             |
| voltage LOW               | 10              | V <sub>IL</sub>   | _    | 3,0  | _    | 3,0    | _    | 3,0  | V    | Fig.9 for I <sub>OZ</sub>                   |
|                           | 15              |                   | _    | 4,0  | _    | 4,0    | _    | 4,0  | V    |                                             |
| E <sub>n</sub> input      | 5               |                   | 3,5  | _    | 3,5  | _      | 3,5  | _    | V    | low-impedance                               |
| voltage HIGH              | 10              | V <sub>IH</sub>   | 7,0  | _    | 7,0  | _      | 7,0  | _    | V    | between Y and Z (ON                         |
|                           | 15              |                   | 11,0 | -    | 11,0 | -      | 11,0 | -    | V    | condition)<br>see R <sub>ON</sub> switch    |





HEF4016B gates

#### **AC CHARACTERISTICS**

 $V_{SS}$  = 0 V;  $T_{amb}$  = 25 °C; input transition times  $\leq$  20 ns

|                             | V <sub>DD</sub><br>V | SYMBOL           | TYP. | MAX. |     |        |
|-----------------------------|----------------------|------------------|------|------|-----|--------|
| Propagation delays          |                      |                  |      |      |     |        |
| $V_{is} \rightarrow V_{os}$ | 5                    |                  | 25   | 50   | ns  |        |
| HIGH to LOW                 | 10                   | t <sub>PHL</sub> | 10   | 20   | ns  | note 1 |
|                             | 15                   |                  | 5    | 10   | ns  |        |
|                             | 5                    |                  | 20   | 40   | ns  |        |
| LOW to HIGH                 | 10                   | t <sub>PLH</sub> | 10   | 20   | ns  | note 1 |
|                             | 15                   |                  | 5    | 10   | ns  |        |
| Output disable times        |                      |                  |      |      |     |        |
| $E_n \to V_{os}$            | 5                    |                  | 90   | 130  | ns  |        |
| HIGH                        | 10                   | t <sub>PHZ</sub> | 80   | 110  | ns  | note 2 |
|                             | 15                   |                  | 75   | 100  | ns  |        |
|                             | 5                    |                  | 85   | 120  | ns  |        |
| LOW                         | 10                   | t <sub>PLZ</sub> | 75   | 100  | ns  | note 2 |
|                             | 15                   |                  | 75   | 100  | ns  |        |
| Output enable times         |                      |                  |      |      |     |        |
| $E_{n} \to V_{os}$          | 5                    |                  | 40   | 80   | ns  |        |
| HIGH                        | 10                   | t <sub>PZH</sub> | 20   | 40   | ns  | note 2 |
|                             | 15                   |                  | 15   | 30   | ns  |        |
|                             | 5                    |                  | 40   | 80   | ns  |        |
| LOW                         | 10                   | t <sub>PZL</sub> | 20   | 40   | ns  | note 2 |
|                             | 15                   |                  | 15   | 30   | ns  |        |
| Distortion, sine-wave       | 5                    |                  | -    |      | %   |        |
| response                    | 10                   |                  | 0,08 |      | %   | note 3 |
|                             | 15                   |                  | 0,04 |      | %   |        |
| Crosstalk between           | 5                    |                  | _    |      | MHz |        |
| any two channels            | 10                   |                  | 1    |      | MHz | note 4 |
|                             | 15                   |                  | _    |      | MHz |        |
| Crosstalk; enable           | 5                    |                  | _    |      | mV  |        |
| input to output             | 10                   |                  | 50   |      | mV  | note 5 |
|                             | 15                   |                  | -    |      | mV  |        |
| OFF-state                   | 5                    |                  | _    |      | MHz |        |
| feed-through                | 10                   |                  | 1    |      | MHz | note 6 |
|                             | 15                   |                  | -    |      | MHz |        |
| ON-state frequency          | 5                    |                  | _    |      | MHz |        |
| response                    | 10                   |                  | 90   |      | MHz | note 7 |
|                             | 15                   |                  | -    |      | MHz |        |

HEF4016B gates

#### Notes

 $V_{\text{is}}$  is the input voltage at a Y or Z terminal, whichever is assigned as input.

Vos is the output voltage at a Y or Z terminal, whichever is assigned as output.

- 1.  $R_L = 10 \text{ k}\Omega$  to  $V_{SS}$ ;  $C_L = 50 \text{ pF}$  to  $V_{SS}$ ;  $E_n = V_{DD}$ ;  $V_{is} = V_{DD}$  (square-wave); see Figs 6 and 10.
- $\begin{array}{ll} \text{2.} & R_L = 10 \ \text{k}\Omega; \ \text{C}_L = 50 \ \text{pF} \ \text{to} \ \text{V}_{SS}; \ \text{E}_n = \text{V}_{DD} \ \text{(square-wave)}; \\ & \text{V}_{is} = \text{V}_{DD} \ \text{and} \ \text{R}_L \ \text{to} \ \text{V}_{SS} \ \text{for} \ \text{t}_{\text{PHZ}} \ \text{and} \ \text{t}_{\text{PZH}}; \\ & \text{V}_{is} = \text{V}_{SS} \ \text{and} \ \text{R}_L \ \text{to} \ \text{V}_{DD} \ \text{for} \ \text{t}_{\text{PLZ}} \ \text{and} \ \text{t}_{\text{PZL}}; \ \text{see Figs 6 and 11.} \end{array}$
- 3.  $R_L = 10 \text{ k}\Omega$ ;  $C_L = 15 \text{ pF}$ ;  $E_n = V_{DD}$ ;  $V_{is} = \frac{1}{2}V_{DD(p-p)}$  (sine-wave, symmetrical about  $\frac{1}{2}V_{DD}$ );  $f_{is} = 1 \text{ kHz}$ ; see Fig.7.
- 4.  $R_L = 1 \ k\Omega; \ V_{is} = \frac{1}{2} V_{DD(p-p)}$  (sine-wave, symmetrical about  $\frac{1}{2} V_{DD}$ );

20 log 
$$\frac{V_{os}(B)}{V_{is}(A)}$$
 = -50 dB;  $E_n(A)$  =  $V_{SS}$ ;  $E_n(B) = V_{DD}$ ; see Fig. 8

- 5.  $R_L = 10 \text{ k}\Omega$  to  $V_{SS}$ ;  $C_L = 15 \text{ pF}$  to  $V_{SS}$ ;  $E_n = V_{DD}$  (square-wave); crosstalk is  $|V_{os}|$  (peak value); see Fig.6.
- 6.  $R_L = 1 \ k\Omega$ ;  $C_L = 5 \ pF$ ;  $E_n = V_{SS}$ ;  $V_{is} = \frac{1}{2} V_{DD(p-p)}$  (sine-wave, symmetrical about  $\frac{1}{2} V_{DD}$ );

20 log  $\frac{V_{os}}{V_{is}} =$  –50 dB; see Fig. 7.

7.  $R_L = 1 \ k\Omega; \ C_L = 5 \ pF; \ E_n = V_{DD}; \ V_{is} = \frac{1}{2} V_{DD(p-p)}$  (sine-wave, symmetrical about  $\frac{1}{2} V_{DD}$ );

20 log 
$$\frac{V_{os}}{V_{is}}$$
= -3 dB; see Fig. 7.

|                            | V <sub>DD</sub><br>V | TYPICAL FORMULA FOR P ( $\mu$ W)                                                                       |                                                            |
|----------------------------|----------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Dynamic power              | 5                    | 550 f <sub>i</sub> + $\Sigma$ (f <sub>o</sub> C <sub>L</sub> ) × V <sub>DD</sub> <sup>2</sup>          | where                                                      |
| dissipation per            | 10                   | 2 600 f <sub>i</sub> + $\Sigma$ (f <sub>o</sub> C <sub>L</sub> ) $\times$ V <sub>DD</sub> <sup>2</sup> | f <sub>i</sub> = input freq. (MHz)                         |
| package (P) <sup>(1)</sup> | 15                   | 6 500 f <sub>i</sub> + $\Sigma$ (f <sub>o</sub> C <sub>L</sub> ) × V <sub>DD</sub> <sup>2</sup>        | f <sub>o</sub> = output freq. (MHz)                        |
|                            |                      |                                                                                                        | $C_L$ = load capacitance (pF)                              |
|                            |                      |                                                                                                        | $\Sigma$ (f <sub>o</sub> C <sub>L</sub> ) = sum of outputs |
|                            |                      |                                                                                                        | V <sub>DD</sub> = supply voltage (V)                       |

#### Note

1. All enable inputs switching.









