

LOW NOISE 150mA LDO REGULATOR

NO.EA-058-111026

OUTLINE

The R1121N Series are CMOS-based voltage regulator ICs with high output voltage accuracy, extremely low supply current, low ON-resistance, and high Ripple Rejection. Each of these voltage regulator ICs consists of a voltage reference unit, an error amplifier, resistors, a current limit circuit, and a chip enable circuit.

These ICs perform with low dropout voltage and a chip enable function. The line transient response and load transient response of the R1121N Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The output voltage of these ICs is fixed with high accuracy.

Since the package for these ICs is SOT-23-5 (Mini-mold) package , high density mounting of the ICs on boards is possible.

FEATURES

- Supply Current Typ. 35µA
- Standby ModeTyp. 0.1μA
- Dropout VoltageTyp. 0.2V (lout=100mA)
- Ripple Rejection......Typ. 70dB(f=1kHz)
- Temperature-Drift Coefficient of Output VoltageTyp. ±100ppm/°C
- Line RegulationTyp. 0.05%/V
- Output Voltage Accuracy.....±2.0%
- - (For other voltages, please refer to MARK INFORMATIONS.)
- PackageSOT-23-5 (Mini-mold)
- Built-in chip enable circuit (2 types; A: active "L", B: active "H")
- Pin-out.....Similar to the TK112, TK111

APPLICATIONS

- Power source for cellular phones such as GSM, CDMA and various kinds of PCSs.
- Power source for domestic appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

BLOCK DIAGRAM

SELECTION GUIDE

The output voltage, the active type for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1121Nxx1*-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes
 xx: The output voltage can be (For other voltages, plea) * : Designation of Active Ty (A) "L" active (B) "H" active 	se refer to MARK INFOR		√(50) in 0.1V step	S.

PIN CONFIGURATION

PIN DESCRIPTION

Pin No	Symbol	Description
1	Vout	Output pin
2	GND	Ground Pin
3	Vdd	Input Pin
4	CE or CE	Chip Enable Pin
5	NC	No Connection

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
VIN	Input Voltage	9.0	V
Vce	Input Voltage(CE or CE Pin)	-0.3 ~ VIN+0.3	V
Vout	Output Voltage	-0.3 ~ VIN+0.3	V
Ιουτ	Output Current	200	mA
PD	Power Dissipation (SOT-23-5)*	420	mW
Topt	Operating Temperature Range	-40 ~ 85	°C
Tstg	Storage Temperature Range	-55 ~ 125	°C

*) For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

ELECTRICAL CHARACTERISTICS

• R1121Nxx1A

Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vout	Output Voltage	$ \begin{array}{l} {\sf VIN}={\sf Set}\;{\sf Vout}+1{\sf V}\\ {\sf 1mA}\leq{\sf Iout}\leq30{\sf mA} \end{array} \end{array} $	Vоит ×0.98		Vоит ×1.02	V
Ιουτ	Output Current	Refer to the ELECTRICAL CHARA	CTERISTICS I	by OUTPU	T VOLTAGE	
ΔVουτ/ΔΙουτ	Load Regulation	$V_{IN} = \text{Set Vout} + 1V$ $1\text{mA} \leq I\text{out} \leq 80\text{mA}$		12	40	mV
Vdif	Dropout Voltage	Refer to the ELECTRICAL CHARA	CTERISTICS I	by OUTPU	T VOLTAGE	
Iss	Supply Current	VIN = Set VOUT + 1V		35	70	μΑ
Istandby	Supply Current (Standby)	VIN = VCE = Set VOUT + 1V		0.1	1.0	μΑ
ΔVουτ/ΔVin	Line Regulation	$\begin{array}{l} \text{Set Vout+0.5V} \leq \text{Vin} \leq 8.0\text{V} \\ \text{Iout} = 30\text{mA} \end{array}$		0.05	0.20	%/V
RR	Ripple Rejection	f = 1kHz, Ripple 0.5Vp-p VIN = Set Vout + 1V		70		dB
Vin	Input Voltage		2.0		8.0	V
ΔVουτ/ ΔTopt	Output Voltage Temperature Coefficient	$I_{OUT} = 30mA$ -40°C \leq Topt ≤ 85 °C		±100		ppm/°C
Isc	Short Current Limit	Vout = 0V		50		mA
Rpu	CE Pull-up Resistance		2.5	5.0	10.0	MΩ
Vсен	CE Input Voltage "H"		1.5		Vin	V
VCEL	CE Input Voltage "L"		0.00		0.25	V
en	Output Noise	BW=10Hz to 100kHz		30		μVrms

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

• R1121Nxx1B

Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vout	Output Voltage	$V_{IN} = Set V_{OUT} + 1V$ 1mA $\leq I_{OUT} \leq 30mA$	Vоит ×0.98		Vоит ×1.02	V
Ιουτ	Output Current	Refer to the ELECTRICAL CHARAC	CTERISTICS b	by OUTPU	T VOLTAGE	
ΔVουτ/ΔΙουτ	Load Regulation	$V_{IN} = Set V_{OUT} + 1V$ 1mA $\leq I_{OUT} \leq 80mA$		12	40	mV
Vdif	Dropout Voltage	Refer to the ELECTRICAL CHARAC	CTERISTICS b	y OUTPU	T VOLTAGE	
lss	Supply Current	VIN = Set VOUT + 1V		35	70	μΑ
Istandby	Supply Current (Standby)	VIN = Set VOUT + 1V VCE =GND		0.1	1.0	μΑ
ΔVουτ/ΔVin	Line Regulation	$\begin{array}{l} \text{Set Vout} + 0.5 \text{V} \leqq \text{Vin} \leqq 8.0 \text{V} \\ \text{Iout} = 30 \text{mA} \end{array}$		0.05	0.20	%/V
RR	Ripple Rejection	f = 1kHz, Ripple 0.5Vp-p VIN = Set Vout + 1V		70		dB
Vin	Input Voltage		2.0		8.0	V
ΔVουτ/ ΔTopt	Output Voltage Temperature Coefficient	$I_{OUT} = 30 \text{mA}$ -40°C $\leq \text{Topt} \leq 85^{\circ}\text{C}$		±100		ppm/°C
Isc	Short Current Limit	Vout = 0V		50		mA
Rpd	CE Pull-down Resistance		2.5	5.0	10.0	MΩ
Vсен	CE Input Voltage "H"		1.5		Vin	V
VCEL	CE Input Voltage "L"		0.00		0.25	V
en	Output Noise	BW=10Hz to 100kHz		30		μVrms

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE

		Iopt = 25°C	
Output Voltage Vout (V)	Output Current		
	louт (mA)		
	Condition	Min.	
$1.5 \leq V_{\text{OUT}} \leq 1.7$	VIN - VOUT = 1.0V	100	
$1.8 \leq V_{\text{OUT}} \leq 5.0$		150	

Topt = 25°C

Output Voltage Vout (V)	Dropout	Voltage	•			
	Vdif (V)					
	Condition	Min.	Тур.	Max.		
1.5		0.50				
1.6		0.40				
1.7		0.30				
$1.8 \leq V_{\text{OUT}} \leq 1.9$	lout = 100mA		0.60	1.40		
$2.0 \leq V_{\text{OUT}} \leq 2.4$			0.35	0.70		
$2.5 \leq V_{\text{OUT}} \leq 2.7$			0.24	0.35		
$2.8 \leq V_{\text{OUT}} \leq 3.3$			0.20	0.30		
$3.4 \leq V_{\text{OUT}} \leq 5.0$			0.17	0.26		

Note : When set Output Voltage is equal or less than 2.0V, $V_{\mbox{\scriptsize IN}}$ should be equal or more than 2.0V.

OPERATION

In these ICs, fluctuation of output voltage, V_{OUT} is detected by feed-back registers R1, R2, and the result is compared with a reference voltage by the error amplifier, so that a constant voltage is output. A current limit circuit for protection in short mode and a chip enable circuit, are included.

TEST CIRCUITS

Fig.1 Standard test Circuit

Fig.2 Supply Current Test Circuit

Response Test Circuit

Fig.4 Load Transient Response Test Circuit

TYPICAL CHARACTERISTICS

R1121N301B

Nisshinbo Micro Devices Inc.

R1121N301B

R1121N501B

7) Dropout Voltage vs. Set Output Voltage R1121Nxx1B

8) Ripple Rejection vs. Frequency R1121N181B

R1121N301B

Nisshinbo Micro Devices Inc.

Ιουτ = 1mA Coυτ = 2.2μF

R1121N301B

IOUT = 50mA COUT = 2.2μF

R1121N301B

IOUT = 10mA COUT = 2.2μF

10) LineTransient Response

Nisshinbo Micro Devices Inc.

11) Load Transient Response

TECHNICAL NOTES

When using these ICs, be sure to consider the following points:

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, be sure to use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance) in the range described as follows:

Measuring Circuit for white noise; R1121N301B

The relationship between IOUT (output current) and ESR of output capacitor is shown in the graphs below. The conditions when the white noise level is under 40mV (Avg.) are indicated by the hatched area in the graph.

(note: When the additional ceramic capacitors are connected to the output pin with output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as the same external components as the ones to be used on the PCB.)

<Measurement conditions>

- (1) VIN=4V
- (2) Frequency Band: 10Hz to 1MHz
- (3) Temperature: 25°C

· Make VDD and GND lines sufficient. If their impedance is high, noise pick up or incorrect operation may result.

 \cdot Connect the capacitor with a capacitance of 1μ F or more between V_{DD} and GND as close as possible.

 \cdot Set external components, especially the output capacitor, as close as possible to the ICs and make wiring as short as possible.

CE CE IN -> Vdd R1121Nxx1A Vout ►OUT IN --Vdd R1121Nxx1B Vout ►OUT ΤÌΤ TΤΤ Τ GND Cap. GND Cap. Cap. Cap. 777 777 777 777

TYPICAL APPLICATION

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
- 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

NSSHNBO

Nisshinbo Micro Devices Inc.

Official website

https://www.nisshinbo-microdevices.co.jp/en/ Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/