Power MOSFET 30 V, 17 A, N-Channel, SO-8

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- DC–DC Converters
- · Points of Loads
- Power Load Switch
- Motor Controls

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Paran	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	30	V		
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	14.1	Α
Current $R_{\theta JA}$ (Note 1)	State	$T_A = 70^{\circ}C$		11.3	
Power Dissipation $R_{\theta JA}$ (Note 1)	Steady State	$T_A = 25^{\circ}C$	PD	1.46	W
Continuous Drain	Steady	T _A = 25°C	I _D	10.6	Α
Current $R_{\theta JA}$ (Note 2)	State	T _A = 70°C		8.5	
Power Dissipation $R_{\theta JA}$ (Note 2)		$T_A = 25^{\circ}C$	PD	0.82	W
Continuous Drain	Steady	T _A = 25°C	I _D	17	Α
(Note 1) Current $R_{\theta JA}$, $t \leq 10$ s	State	$T_A = 70^{\circ}C$		13.6	1
Power Dissipation $R_{\theta JA}$, t \leq 10 s(Note 1)	Steady State	$T_A = 25^{\circ}C$	P _D	2.12	W
Pulsed Drain Current $T_A = 25^{\circ}C, t_p = 10 \mu s$			I _{DM}	136	Α
Operating Junction and Storage Temperature			Т _Ј , T _{stg}	–55 to 150	°C
Source Current (Body Diode)			۱ _S	2.1	Α
			E _{AS}	162	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	85.5	°C/W
Junction-to-Ambient – t \leq 10 s (Note 1)	$R_{\theta JA}$	59	
Junction-to-Foot (Drain)	$R_{\theta JF}$	25	
Junction-to-Ambient - Steady State (Note 2)	R_{\thetaJA}	152	

1. Surfacemounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

2. Surfacemounted on FR4 board using the minimum recommended pad size.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
30 V	4.3 mΩ @ 10 V	17 Δ	
30 V	5.7 mΩ @ 4.5 V		

Top View

STYLE 12 Dovico Codo 10201

SO-8

Y

492011	= Device Code
A	= Assembly Location

= Year ww

= Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMS4920NR2G	SO–8 (Pb–Free)	2500/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS		•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D = 250 \mu A$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				12.2		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}		$T_J = 25^{\circ}C$			1.0	μΑ
		$V_{GS} = 0 V, V_{DS} = 24 V$	$T_J = 125^{\circ}C$			10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} =$	±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2$	250 μΑ	1.0		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	7.5 A		3.6	4.3	mΩ
		V _{GS} = 4.5 V, I _D =	6.5 A		4.6	5.7	
Forward Transconductance	9 FS	V _{DS} = 1.5 V, I _D =	7.5 A		30.8		S
CHARGES, CAPACITANCES AND GA	ATE RESISTAN	ICE					
Input Capacitance	C _{iss}				4068		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = 1.0 MHz,	V _{DS} = 25 V		1170		
Reverse Transfer Capacitance	C _{rss}				41		
Total Gate Charge	Q _{G(TOT)}				26.3		nC
Threshold Gate Charge	Q _{G(TH)}				6.4		
Gate-to-Source Charge	Q _{GS}	$v_{GS} = 4.5 \text{ V}, v_{DS} = 15 \text{ V}$	v, i _D = 7.5 A		10.4		
Gate-to-Drain Charge	Q _{GD}				3.8		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, \text{ V}_{DS} = 15 \text{ V}$	/, I _D = 7.5 A		58.9		nC
SWITCHING CHARACTERISTICS (No	ote 4)						
Turn-On Delay Time	t _{d(on)}				15.3		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DS} =	= 15 V,		4.7		
Turn–Off Delay Time	t _{d(off)}	$I_{\rm D} = 1.0 \text{ A}, \text{ R}_{\rm G} =$	6.0 Ω [´]		68.6		
Fall Time	t _f				42.2		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V _{SD}		$T_J = 25^{\circ}C$		0.7	1.0	V
		$V_{GS} = 0 V, I_{S} = 2.0 A$	$T_J = 125^{\circ}C$		0.53		
Reverse Recovery Time	t _{RR}				50.3		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V}, \text{d}_{\text{IS}}/\text{d}_{\text{t}} = 100 \text{ A}/\mu\text{s}, \\ \text{I}_{\text{S}} = 2.0 \text{ A}$			25.7		
Discharge Time	t _b				24.6		
Reverse Recovery Charge	Q _{RR}				65		nC
PACKAGE PARASITIC VALUES							
Source Inductance	LS				0.66		nH
Drain Inductance	L _D	T _A = 25°C			0.2		1
Gate Inductance	L _G				1.5		1
Gate Resistance	R _G				0.4	1.0	Ω

3. Pulse Test: pulse width = 300 μ s, duty cycle $\leq 2\%$. 4. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

PACKAGE DIMENSIONS

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
 - ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	1.27 BSC		0.050 BSC	
н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
Κ	0.40	1.27	0.016	0.050	
м	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
s	5.80	6.20	0.228	0.244	

STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE

4.	GAIE
5.	DRAIN
6.	DRAIN
7.	DRAIN
8.	DRAIN

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the use are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product score as a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC broducts for any such unintended or unauthorized application. Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative