

PT8A3270/1/2/3/4/5/6/7

Features

- Dual Voltage (120V/240V) operations
- Auto temperature control with NTC
- NTC open protection
- Multi mode LED indicator
- Proportional control
- Pulse trigger for high current SCR
- Internal Zener
- Auto Heating off after heating timer timeout
- Low cost 8-Pin DIP and SOIC package

Applications

- Curler
- Straightener

Heating Controller

Description

The PT8A3270/1/2/3/4/5/6/7 is a mixed signal CMOS LSI chip designed as heating controller with help of external NTC (Negative Temperature Component). NTC open protection is implemented for device safety. This device can be used in both 120V and 240V power line supplier, as it will automatically adjust the heating power according to the power line voltage to avoid heating appliance damage or long heating time. The proportional control algorithm is designed in this product.

Pin Configuration

Pin Description

Din Na	Pin Name		1/0		
Pin No.	3270/1/2/3	3274/5/6/7	I/O	Description	
1	NTC1	NTC1	Ι	NTC voltage input, NTC open detection input	
2	NTC2	NTC2	0	Output signal for NTC open detection	
3	CLK	CLK	Ι	Clock input from power line	
4	GND	GND	Power	Ground and Power	
5	ON	ON_OFF	I/O	3270/1/2/3: Heating-on button input. and LED1 driving output 3274/5/6/7: Heating-on/off button input and LED1 driving output	
6	GATE	GATE	0	3270/1/2/3/4/5/6/7: SCR trigger output	
7	OFF	LED2	I/O	3270/1/2/3: Heating-off button input and LED2 driving output 3274/5/6/7: LED2 driving output	
8	VDD	VDD	Power	Ground and Power	

Block Diagram

Maximum Ratings

Storage Temperature
Supply Voltage to Ground Potential (Input & V_{CC} Only)0.5V to + 5.5V
Supply Voltage to Ground Potential (Outputs)
DC Input Voltage
DC Output Current
Power Dissipation

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended operation conditions

Symbol	Pin	Parameter	Min	Тур	Max	Unit
Frequency	CLK	Input CLK Frequency	-	50/60	-	Hz
T _A	-	Operating temperature	-20	-	85	°C

AC Electrical Characteristics

 $(V_{DD} = 3.5 \sim 5.5 \text{V}, T_A = -20 \sim 85 \text{°C}, \text{ unless otherwise noted})$

Symbol	Description	Test Conditions	Min	Туре	Max	Unit
F _{CLK}	Frequency of CLK	-	-	50/60	-	Hz
T _{GATE}	Width of trigger pulse	-	160	200	240	μS
Timer	Power off timer	$F_{CLK} = 50Hz$	1.15	1.2	1.25	Hour

DC Electrical Characteristics

 $(V_{DD} = 3.5 \sim 5.5 \text{V}, T_A = -20 \sim 85 \text{°C}, \text{ unless otherwise noted})$

Symbol	Description	Test Conditions		Min	Туре	Max	Unit
		PIN: CLK	$V_{\rm IN}=V_{\rm DD}$	-	-	1	μΑ
I_{IH}	Input high current	PIN: NTC1	$V_{\rm IN} = V_{\rm DD}$	-	-	100	nA
		PIN: NTC2	$V_{IN} = V_{DD}$,Output High impedance	-	-	100	nA
		PIN: CLK	$V_{IN} = GND$	-	-	-1	μΑ
		PIN: CLK	$V_{\rm IN}{=}0.35V$	-	-	-10	μΑ
I_{IL}	Input low current	PIN: NTC1	$V_{IN} = GND$	-	-	-100	nA
		PIN: NTC2	$V_{IN} = GND$, Output High impedance	-	-	-100	nA
I _{OH}	Output High current	PIN: GATE $V_{DD} = 4.5V$ Vout = 2.5V		-15	-	-	mA
T	Ordenet I and an and	PIN: NTC2	V _{DD} =4.5V Vout =0.5V	2.0	-	-	mA
I _{OL}	Output Low current	PIN: GATE	V _{DD} =4.5V Vout =0.5V	5.0	-	-	mA
V _{POR}	Voltage of POR	-		1.5	-	2.5	v
Vz	Voltage of Zener	I _{DD} = 500uA ~ 10mA		4.5	5.0	5.5	v
I _{DD}	Current consumption	NTC1,CLK p V _{DD}	_	-	500	μΑ	

Application Circuit

PT8A3270/1/2/3 Application Circuit

PT8A3274/5/6/7 Application circuit

Functional Description

State description

Reset

The device will be of reset state after power-on.

Heating on

The device will be of heating on state after heating-on button is on

Heating off

This device enter heating-off state after its power-on reset or heating timer timeout, and all pins will be the same status as after power-on reset.

• NTC open protection

When NTC is open, NTC1 pin will be pulled low in the period of NTC open detected.

• Timer

Once IC enters Heating-on State, internal timer starts to count. When time is out after 216000 clock period, it will exit heating-on state. That is, in case of 60Hz CLK signal, the heating time is about 1 hour; and 1.2 hour for 50Hz.

In heating-on state, temperature is regulated to the selected temperature by the IC through NTC close control loop.

• Control signal output

When working in Heating-on state, Gate/LED output will be related to NTC1 input and CLK input amplitude.

Effect of NTC and VT_{CLK} (Level 2) on GATE and LED indication

		NTC (NTC open	NTC	GATE (trigger to	LED			
Workin g State	CLK input voltage		NTC (Normal temp		LED1	LED2	LED1	LED2
		detection)	detection)	SCR/TRIAC)	3270/2/4/6	3270/2/4/6	3271/3/5/7	3271/3/5/7
			$0 \sim V_{ADC_BIT15}$	Ducucational	Flash1*		On	Off
	High for level 2 (240V)	$\begin{array}{c cccc} \text{gh for} & & & V_{ADC_BI} \\ \text{vel 2} & & & V_{ADC} \\ \text{40V} & & & V_{ADC_BI} \\ \text{40V} & & & V_{ADC_BI} \\ & & & V_{DD} & & V_{ADC_BI} \\ \text{w for} & & & V_{DD} & & \\ \text{vel 2} & & & V_{ADC_BI} \\ \text{20V} & & & & V_{ADC_BI} \\ \end{array}$	$V_{ADC_BIT14} \sim V_{ADC_BIT1}$		On	Invert of LED1	On	On
ON			$V_{ADC_BIT1} \sim V_{DD}$	0	On		On	On
ON	Low for level 2 (120V)		$0 \sim V_{ADC_BIT15}$	Proportional output	Flash1		On	Off
			$V_{ADC_BIT14} \sim V_{ADC_BIT1}$		On		On	On
			$V_{ADC_BIT1} \sim V_{DD}$	0	On		On	On
Off	X*		Х	0	Off		Off	Off
Х	Х	$0 \sim V_{\rm NTCO}$	Х	0	Flash2*		Flash2*	Off

*Note: 1) X means any input. 2) Flash1 frequency is 1/32 clock. 3) Flash2 frequency is 1/8 clock

Mechanical Information

PE (DIP-8)

WE (SOIC-8)

Ordering Information

Part No.	Package Code	Package		
PT8A327xPE	Р	Lead free 8-Pin DIP		
PT8A327xWE	W	Lead free and Green 8-Pin SOIC		

Note:

• "x" shows 0~7 with different function see *Function Comparison Table*.

• E = Pb-free or Pb-free & Green

• Adding X Suffix= Tape/Reel

Function Comparison Table

Part number	LED	Timer	Switch	Driver
PT8A3270	Flash	Y	Two Key (ON + OFF)	SCR
PT8A3271*	Constant	Y	Two Key (ON + OFF)	SCR
PT8A3272*	Flash	Ν	Two Key (ON + OFF)	SCR
PT8A3273*	Constant	Ν	Two Key (ON + OFF)	SCR
PT8A3274	Flash	Y	One key (ON_OFF)	SCR
PT8A3275	Constant	Y	One key (ON_OFF)	SCR
PT8A3276*	Flash	Ν	One key (ON_OFF)	SCR
PT8A3277*	Constant	Ν	One key (ON_OFF)	SCR

Note:

• *Contact Pericom for availability.

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

Pericom reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. Pericom does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom product. The company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom.