
 

October 2005
ipug03_03.0a October 10, 2005 9:48 a.m.

 

Convolutional Encoder

 

User’s Guide

ispLever
CORECORE

TM



 

Lattice Semiconductor Convolutional Encoder User’s Guide

 

2

 

Introduction

 

Lattice’s Convolutional Encoder core is a parameterizable core for convolutional encoding of a continuous input
data stream. The core allows variable code rates, constraint lengths and generator polynomials. The core also sup-
ports puncturing. Puncturing enables a large range of transmission rates and reduces the bandwidth requirement
on the channel. The architectural details of the core are given in the Convolutional Encoder Core Description sec-
tion.

 

Convolutional Encoder Basics

 

Figure 1 shows a digital transmit-receive system using the convolutional encoder. The digital data stream (such as
voice, image or any packetized data) is first convolutionally encoded, then modulated and finally transmitted
through a channel. The noise block in Figure 1 represents channel noise added to the channel. The data received
from the channel at the receiver side is first demodulated and then decoded using a Viterbi decoder. The decoded
output is equivalent to the original transmitted data stream.

 

Figure 1. Digital Transmit-Receive System

 

Convolutional Coding

 

Convolutional encoding is a process of adding redundancy to a signal stream. Figure 2 shows an example of 1/2
rate convolutional encoding. 

 

Figure 2. Convolutional Encoding

 

In this example, each input symbol has two corresponding output symbols, hence the encoding is called 1/2 rate
convolutional encoding. To generate the output, the encoder uses three values of the input signal, one present and
two past. The set of past values of input data is called a “state”. The number of input data values used to generate
the code is called the constraint length. In this case, the constraint length is three. Each set of outputs is generated
by XORing a pattern of current and shifted values of input data. The patterns used to generate the coded output
value can be expressed as binary strings called generator polynomials (GP). In this example, the generator polyno-
mials are 111 and 101. The MSB of the GP corresponds to the input; the LSBs of the generator polynomial corre-
spond to the state as shown in Figure 2. A bit value of ‘1’ in the generator polynomial represents a used XOR bit
and a value of ‘0’ signifies an unused bit.

Convolutional
Encoder

Transmitted
Data Stream

Received
Data Stream

Viterbi
Decoder

Modulator DemodulatorChannel

Noise

data in D Q D Q
data out

1/2 convolutional coding with constraint length = 3
and generator polynomials 111 and 101



 

Lattice Semiconductor Convolutional Encoder User’s Guide

 

3

 

Punctured Codes and Depuncturing

 

After convolutional encoding, some of the encoded symbols can be selectively removed before transmission. This
process, called “puncturing”, is a data compression method used to reduce the number of bits transmitted. Figure 3
shows an example of puncturing.

 

Figure 3. Puncturing Process

 

If puncturing is employed in the encoder, the decoder will have to “depuncture” the data before decoding. Depunc-
turing is done by inserting NULL symbols for the punctured symbols. NULL symbols are equidistant from either ‘0’
or ‘1’.

 

Convolutional Encoder Core Description

 

Internal Architecture

 

Figure 4 shows the modules of the Convolutional Encoder and their interconnectivity. A brief description of the
modules follows.

 

Figure 4. Convolutional Encoder Internal Architecture

 

Encoder

 

This module takes input data and performs convolutional encoding. The encoder uses generator polynomials con-
figured by the user. When punctured encoding is enabled, the encoder performs 1/2 rate encoding irrespective of
the encoder rate. The puncture unit will use the 1/2 rate code to generate the appropriate user-programmed rate.

 

Puncture Unit

 

This unit performs data puncturing, as previously explained. The input is a two channel data stream and the output
is always a one channel output. The unit is capable of performing puncturing of any block size and any rate.

 

Control Unit

 

The control unit generates the handshake signals 

 

dout_valid,

 

 

 

rfi

 

 and 

 

pd_start

 

 using 

 

din_valid

 

 and the
status of the decoder. It also generates various control signals required by the encoder and puncture unit.

i0 i1 i2 i3 i4 i5 i6

a0

b0

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5
b6

a0 b0 b1 a2 a3 b3 b4

1

1

0 1

1 0

a0

b0

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5
b6

a5

Input data
After convolutional coding

Puncture pattern
superimposedPuncture pattern

Final punctured output

dout

dout_valid
pd_start
rfi

Encoder
Puncture

Unit

Control Unit

din

clk

reset_b

din_valid



 

Lattice Semiconductor Convolutional Encoder User’s Guide

 

4

 

Signal Descriptions

 

The top-level representation of the Convolutional Encoder is shown in Figure 5. Table 1 contains the signal descrip-
tions. Timing diagrams for the signals are shown in the Timing Diagrams section.

 

Figure 5. Convolutional Encoder Top Level Block Diagram

Table 1. Core Signals

 

Interfacing the Convolutional Encoder Core

 

The puncturing-enabled convolutional encoder is a multi-rate system, with the output rate greater than the input
rate. The actual output data rate is dependent on the puncturing rate. The data rate mismatch between input and
output is addressed by the output signal 

 

rfi

 

 (ready for input). The driving system should not apply an input to the
encoder if the 

 

rfi

 

 output is low (if this is done, the data will be ignored until 

 

rfi

 

 is high). When valid data is
applied at the input

 

 din,

 

 input 

 

din_valid

 

 must be asserted high. Even if the 

 

rfi

 

 output is high, the driving sys-
tem can black-out the input by pulling 

 

din_valid

 

 low. The core will optimize throughput by utilizing any user-
asserted black-out cycles as wait cycles used for data-rate matching. 

The output signal 

 

pd_start

 

 is asserted high to coincide with the start of a punctured block. This signal can be
used to synchronize the Viterbi decoder when decoding the encoded stream. 

The output control signal 

 

dout_valid

 

 is high whenever the output is valid. This can be used as an enable signal
to latch the output to a memory.

 

Convolutional Encoder Configuration Options

 

Configurable Parameters

 

The following core parameters give the user the capability to tailor the core to realize different Convolutional
Encoder configurations. These parameters can be configured through the GUI dialog box in IPexpress™.

 

Constraint Length:

 

 This defines the constraint register length. The value can be any integer from 3 to 12.

 

Input Rate:

 

 This defines the input symbol rate for the encoder. The input rate for non-punctured codes is always 1.
For punctured codes, the input rate can be any value from 2 to 12.

 

Port Bits I/O Description

 

clk

 

1 Input System clock. The clock speed is equal to the input symbol rate.

 

reset_b

 

1 Input System-wide asynchronous reset signal, active low.

 

din_valid

 

1 Input Denotes valid data is being presented at the encoder input. Must be 
asserted only if the output 

 

rfi

 

 is high.

 

din

 

1 Input Input data to the encoder. Must be presented only if the encoder output 

 

rfi 

 

is high.

 

dout_valid

 

1 Output Denotes valid data is present at the encoder output.

 

pd_start

 

1 Output Signifies the start of a punctured block.

 

rfi

 

1 Output Indicates the encoder is ready for input.

 

dout

 

2 to 8
(non-punctured)

1
(punctured)

Output data of the encoder. The data is valid only if the signal 

 

dout_valid

 

 is high.

Convolutional
Encoder

din dout

clk dout_valid

pd_start

din_valid

reset_b

rfi



 

Lattice Semiconductor Convolutional Encoder User’s Guide

 

5

 

Output Rate: 

 

This defines the output symbol rate for the encoder. The output rate for non-punctured codes can be
any value between from 2 to 8. For punctured codes, the output rate can be any value from 3 to 23 (

 

k

 

 +1 to 2

 

k 

 

-1,
where k is the input rate).

 

Generator Polynomials:

 

 GP0, GP1, GP2, GP3, GP4, GP5, GP6 and GP7 are generator polynomials. For non-
punctured encoders, the number of generator polynomials is always equal to the output rate. For punctured encod-
ers, the number of generator polynomials is 2.

 

Punctured Data Support:

 

 The encoder supports punctured or non-punctured data. For punctured data, the block
size (punctured block size) is equal to the input rate. The two puncture patterns PP0 and PP1 can be defined by the
user. The total number of 1’s in both puncture patterns must equal the output rate. 

 

Generic Core Configurations

 

Table 2 shows the description of core configurations available in the standard evaluation package.

 

Table 2. Core Configurations

 

Timing Diagrams

 

The top-level timing diagrams for various configurations are shown in Figure 6 and Figure 7. 

 

Configuration #1

 

Constraint Length 7

Input Rate 1

Output Rate 2

 

Generator Polynomials

 

GP0 (Octal) 171

GP1 (Octal) 133

GP2 (Octal) —

GP3 (Octal) —

GP4 (Octal) —

GP5 (Octal) —

GP6 (Octal) —

GP7 (Octal) —

 

Punctured Data Support

 

Punctured Decoder No

Punctured Block Size —

Puncture Pattern - PP0 —

Puncture Pattern - PP1 —



 

Lattice Semiconductor Convolutional Encoder User’s Guide

 

6

 

Figure 6. 1/2 Rate Non-punctured Encoder Timing Diagram

Figure 7. 3/5 Rate Punctured Encoder Timing Diagram

clk

dout

din d0 d1 d2 x x d3 d4 d5

din_valid

x d7 d8 d9 x

x x x d3

x

dout_valid

d0 d1 d2 x

d6

d4 d5 d7d6 d8

clk

dout1

1. For information regarding din to dout latency, see Appendix A.

din d0 d1 d2 x x d3 d4 d5

din_valid

x x 6 7 8 x

x d2++ d3

rfi

d4 d5

x

dout_valid

pd_start

d0 d1 d2 d2+



 

Lattice Semiconductor Convolutional Encoder User’s Guide

 

7

 

Convolutional Encoder Core Design Flow

 

Figure 8 illustrates the software flow model when designing with a Convolutional Encoder core.

 

Figure 8. Lattice IP Evaluation Flow

Install and launch ispLEVER software

IP Core Netlist

Start

Simulation
Model

Obtain desired IP package (download
Core Evaluation package or purchase

IP package)

Install IP package

Perform functional simulation with
the provided core model

Synthesize top-level design with the
IP black box declaration

Place and route the design

Run static timing analysis

Done



 

Lattice Semiconductor Convolutional Encoder User’s Guide

 

8

 

Convolutional Encoder File Hierarchy

 

Table 3. File Hierarchy

 

IPexpress

 

The Lattice IP configuration tool, IPexpress, is incorporated in the ispLEVER

 

®

 

 software. IPexpress includes a GUI
for entering the required parameters to configure the core. For more information on using IPexpress and the
ispLEVER design software, refer to the software help and tutorials included with ispLEVER. For more information
on ispLEVER, see the Lattice web site at: www.latticesemi.com/software.

 

Figure 9. Convolutional Encoder Parameter Configuration Dialog Box

 

Implementing a Convolutional Encoder Core Design

 

Black Box Consideration

 

Since the core is delivered as a gate-level netlist, the synthesis software will not re-synthesize the internal nets of
the core. In the synthesis process, the instantiated core must be declared as a black box. The ispLEVER software
automatically detects the provided netlist of the instantiated IP core in the design. For more detailed information
regarding Synplify’s black box declaration, please refer to the Instantiating Black Boxes in Verilog section of the
Synplify reference manual.

 

File Name Description

Parameter Files

 

conv_enco_o4_1_00x_params.v All configurable parameters

 

Core Files

 

conv_enco_o4_1_00x.ngo Core database file for ORCA

 

®

 

 Series 4 devices.

conv_enco_o4_1_00x.prf Core preference file for ORCA Series 4 devices.

conv_enco_xp_1_00x.ld2 Core database file for ispXPGA™ devices

 

Verilog Instantiation Templates

 

ce_wrap.v Verilog user design template for synthesis

conv_enco_o4_1_00x.v Verilog synthesis model for the core

 

Testbench Files

 

tb_ce_wrap_fsim.v Testbench for RTL simulation



 

Lattice Semiconductor Convolutional Encoder User’s Guide

 

9

 

Synthesis

 

For design synthesis, either the OEM synthesis tools included with the ispLEVER software or a third-party synthe-
sis tool can be used. When using an OEM synthesis tool, a design project must be created using the ispLEVER
Project Navigator. For more information on how to create a project using ispLEVER Project Navigator, refer to the
ispLEVER online documentation.

 

Synthesizing Design with Synplify Pro 7.1

 

1. Launch Synplify Pro 7.1, as shown in Figure 10.

 

Figure 10. Synplify Pro Window

 

2. Click 

 

Open Project

 

. The 

 

Open Project Window

 

 is shown in Figure 11. Click 

 

Project Wizard

 

. This will launch 
the 

 

New Project Window

 

, as shown in Figure 12. Enter a project name and select the project directory. Click 

 

Next

 

. This will launch the 

 

File Order Window

 

 as shown in Figure 13. 

 

Figure 11. Open Project Window



 

Lattice Semiconductor Convolutional Encoder User’s Guide

 

10

 

Figure 12. New Project Window

Figure 13. File Order Window

3. In the File Order Window, click Add Files to open the Select Files to Add to Project Window (Figure 14). 
Add parameters.v, the top-level design file, the verilog synthesis model for the core and other design files. The 
top-level design file must be the bottom file in the list. Click OK. Click Finish in the File Order Window.



Lattice Semiconductor Convolutional Encoder User’s Guide

11

Figure 14. Select Files to Add to Project Window

4. Click Impl Options in the Synplify Pro 7.1 window. Options for implementation window are shown in Figure 15. 
Select the Technology, Part, Speed and Package. Click OK.

Figure 15. Options for implementation Window

5. In the Synplify Pro 7.1 Window, Click Run. This will compile and map the design to the target technology. If 
there are no errors in the synthesis process, the window will say Done.



Lattice Semiconductor Convolutional Encoder User’s Guide

12

Functional Simulation with Modelsim
Both a sample script file (do_ce_fsim.do) and testbench template file (tb_ce_wrap_fsim.v) are provided with the
Convolutional Encoder core release. For additional details refer to the readme.html file in the Convolutional
Encoder core release directory.

Place and Route
Place and route engines are included in the ispLEVER software. The place and route options are available inside
the Constraint Editor. If an OEM synthesis tool is used for design synthesis, the same project can be used to com-
plete the design place and route. If a non-OEM synthesis tool is used for design synthesis, a project must be cre-
ated using the ispLEVER Project Navigator. 

ispLEVER Software Flow for ORCA Devices

1. Create a project directory.

2. Copy the synthesized design EDIF file and the Convolutional Encoder core netlist to the project directory.

3. Launch the ispLEVER software. Figure 16 shows the ispLEVER Project Navigator Window.

Figure 16. ispLEVER Project Navigator Window

4. Select File > New Project and to create a new project or browse the project directory. All the design files will 
be generated in this directory. Type project name and select EDIF as a project type.

5. Double click the device name in the Process Window of the Project Navigator and select the device. 

6. Select Source > Import. The Import File Dialog Box is shown in Figure 17. Enter the EDIF file name and 
click Open. The Import EDIF Dialog Box is shown in Figure 18. Select the EDIF vendor type and click OK. 
The EDIF file will be added to the project. 



Lattice Semiconductor Convolutional Encoder User’s Guide

13

Figure 17. Import File Dialog Box

Figure 18. Import EDIF Dialog

7. Double click Build Database. This will read the EDIF netlist and generate the design database. If there are no 
errors in this process, you will see a green mark next to the Build Database process (Figure 19).

Figure 19. Project Navigator Window with Successfully Completed Processes for ORCA Design Flow



Lattice Semiconductor Convolutional Encoder User’s Guide

14

8. Double click on the Constraint Editor. You can enter the required preferences, including pin locking, using the 
constraint editor. You can also create an ASCII preference file using a text editor. For additional details on the 
ispLEVER preference language, refer to the ispLEVER online documentation.

9. Double click on Map Design. This will map the design into the physical elements of the target device. If there 
are no errors in this process, you will see a green mark next to the Map Design process (Figure 19).

10. Double click on Place & Route Design. This will place and route the mapped design. If there are no errors in 
this process, a green mark appears next to the Place & Route Design process (Figure 19).

ispLEVER Software Flow for ispXPGA Devices
1. Create a project directory.

2. Copy the synthesized design EDIF file and the Viterbi Decoder core netlist to the project directory.

3. Launch the ispLEVER software. Figure 16 shows the ispLEVER Project Navigator Window.

4. Select File > New Project and create or browse to the project directory. All design files will be generated in this 
directory. Figure 5 shows the New Project Creation Dialog Box. Type project name and select EDIF as a 
project type.

5. Double click on the device name in the Process Window of the Project Navigator and select the device. 
Figure 6 shows the Device Selection Dialog Box.

6. Select Source > Import. The Import File Dialog Box is shown in Figure 24. Enter the EDIF filename and click 
Open. The Import EDIF Dialog Box is shown in Figure 18. Select the EDIF vendor type and click OK. The 
EDIF file will be added to the project. 

7. Double click on Build Database. This will read the EDIF netlist and generates the design database. If there are 
no errors in the process, you will see a green mark next to the Build Database process (Figure 19).

8. Double click on the Constraint Editor. You can enter the required preferences including pin locking using the 
Constraint Editor. You can also create an ASCII constraint file using a text editor. For additional details on the 
ispXPGA constraints, refer to the ispLEVER online documentation.

9. Double click on the Pack & Place Design. This will pack and place the design into the physical elements. If 
there are no errors in the process, you will see a green mark next to the Pack & Place Design process.

10. Double click on the Route Design. This will route the pack and placed design. If there are no errors in the pro-
cess, you will see a green mark next to the Route Design process.

11. Double click on the Timing Analysis. This will execute static timing analyzer on the routed design. If there are 
no errors in the process, you will see a green mark next to the Timing Analysis process.

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com



Lattice Semiconductor Convolutional Encoder User’s Guide

15

Appendix for ORCA Series 4 FPGAs
Table 4. Core Configurations for ORCA Series 4 FPGAs

Supplied Netlist Configurations
The Ordering Part Number (OPN) for all configurations of this core in ORCA Series 4 devices is CONV-ENCO-04-
N1. Table 4 lists the netlist configurations that are available in the Evaluation Package for this core, which can be
downloaded from the Lattice web site at www.latticesemi.com.

You can use the IPexpress software tool to help generate new configurations of this IP core. IPexpress is the Lattice
IP configuration utility, and is included as a standard feature of the ispLEVER design tools. Details regarding the
usage of IPexpress can be found in the IPexpress and ispLEVER help system. For more information on the
ispLEVER design tools, visit the Lattice web site at: www.latticesemi.com/software.

Table 5. Performance and Resource Utilization1

Configuration #1

Constraint length 7

Input rate 1

Output rate 2

Generator Polynomials

GP0 (octal) 171

GP1 (octal) 133

GP2 (octal) —

GP3 (octal) —

GP4 (octal) —

GP5 (octal) —

GP6 (octal) —

GP7 (octal) —

Punctured Data Support

Punctured encoder No

Puncture pattern – PP0 —

Puncture pattern – PP1 —

Configuration
ORCA 4 
PFUs2 LUTs Registers

External
I/Os

sysMEM™ 
EBRs

fMAX
(MHz) Latency3

conv_enco_o4_1_001.lpc 4 6 16 7 N/A 333 3

1. Performance and utilization characteristics using ispLEVER v.3.0 software and targeting the OR4E02, package BA352, speed 2. Synthe-
sized using Synplicity's Synplify Pro v.7.1.1. When using this IP core in a different density, package, speed, or grade within the OR4E fam-
ily, performance and utilization may vary.

2. Programmable Function Unit (PFU) is a standard logic block of Lattice FPGA devices. For more information, check the data sheet of the 
device.

3. The latency values are for din to dout with din_valid is high whenever rfi is high. The din to dout latency relationship can be 
explained as follows. For non-punctured encoders, the latency value is 3 when constraint length is greater than 4, otherwise the value is 2. 
For punctured encoders, the latency value is (output rate + 6) when constraint length is greater than 4, otherwise the value is (output rate + 
4). 



Lattice Semiconductor Convolutional Encoder User’s Guide

16

Appendix for ispXPGA® FPGAs
Supplied Core Configurations
Table 6 shows the description of core configurations available in the standard evaluation package.

Table 6. Core Configurations for ispXPGA FPGAs

Supplied Netlist Configurations
The Ordering Part Number (OPN) for all configurations of this core in ispXPGA devices is CONV-ENCO-XP-N1.
Table 6 lists the netlist configurations that are available in the Evaluation Package for this core, which can be down-
loaded from the Lattice web site at www.latticesemi.com.

You can use the IPexpress software tool to help generate new configurations of this IP core. IPexpress is the Lattice
IP configuration utility, and is included as a standard feature of the ispLEVER design tools. Details regarding the
usage of IPexpress can be found in the IPexpress and ispLEVER help system. For more information on the
ispLEVER design tools, visit the Lattice web site at: www.latticesemi.com/software.

Table 7. Performance and Resource Utilization1

Configuration #1

Constraint Length 7

Input Rate 1

Output Rate 2

Generator Polynomials

GP0 (Octal) 171

GP1 (Octal) 133

GP2 (Octal) —

GP3 (Octal) —

GP4 (Octal) —

GP5 (Octal) —

GP6 (Octal) —

GP7 (Octal) —

Punctured Data Support

Punctured Encoder No

Puncture Pattern -PP0 —

Puncture Pattern -PP1 —

Configuration
XPGA 
PFUs2 LUT-4s Registers

External 
I/Os

sysMEM 
EBRs

fMAX 
(MHz) Latency3

conv_enco_xp_1_001.lpc 6 8 22 7 N/A 510 3

1. Performance and utilization characteristics are generated using LFX1200B, package FE680, speed 4 in Lattice ispLEVER v.3.x software. 
The evaluation version of this IP core only works on this specific device density, package, and speed grade.

2. Programmable Function Unit (PFU) is a standard logic block of Lattice FPGA devices. For more information, check the data sheet of the 
device.

3. The latency values are for din to dout with din_valid is high whenever rfi is high. The din to dout latency relationship can be 
explained as follows: For Non-punctured encoders, the latency value is 3 when Constraint Length is greater than 4 or else the value is 2. For 
punctured encoders, the latency value is (Output Rate + 6) when Constraint Length is greater than 4 or else the value is (Output Rate + 4).


	Introduction
	Convolutional Encoder Basics
	Convolutional Coding
	Punctured Codes and Depuncturing

	Convolutional Encoder Core Description
	Internal Architecture
	Encoder
	Puncture Unit
	Control Unit
	Signal Descriptions

	Interfacing the Convolutional Encoder Core
	Convolutional Encoder Configuration Options
	Configurable Parameters
	Generic Core Configurations

	Timing Diagrams

	Convolutional Encoder Core Design Flow
	Convolutional Encoder File Hierarchy
	IPexpress

	Implementing a Convolutional Encoder Core Design
	Black Box Consideration
	Synthesis
	Synthesizing Design with Synplify Pro 7.1

	Functional Simulation with Modelsim
	Place and Route
	ispLEVER Software Flow for ispXPGA Devices

	Technical Support Assistance
	Appendix for ORCA Series 4 FPGAs
	Supplied Netlist Configurations

	Appendix for ispXPGA® FPGAs
	Supplied Core Configurations
	Supplied Netlist Configurations


