

ISD Cortex[™]-M0 ChipCorder ISD9160 Technical Reference Manual

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of ISD ChipCorder microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

Table of Contents-

TAB			TENTS	
1	GEN	NERAL	DESCRIPTION	6
2	FEA	TURE	S	7
3	PAR	RT INFO	ORMATION AND PIN CONFIGURATION	
	3.1	Pin	Configuration	
		3.1.1	ISD9160 LQFP 48 pin	10
		3.1.2	Pin Description	
4	BLC	CK DI	AGRAM	
5	FUN		VAL DESCRIPTION	
	5.1		/ [®] Cortex™-M0 core	
	5.2		em Manager	
		5.2.1	Overview	
		5.2.2	System Reset	
		5.2.3	System Power Distribution	
		5.2.4	System Memory Map	
		5.2.5	System Manager Control Registers	
		5.2.6	System Timer (SysTick)	
		5.2.7	Nested Vectored Interrupt Controller (NVIC)	
		5.2.8	System Control Registers	83
	5.3	Cloc	k Controller and Power Management Unit (PMU)	
		5.3.1	Clock Generator	90
		5.3.2	System Clock & SysTick Clock	91
		5.3.3	Peripheral Clocks	92
		5.3.4	Power Management	92
		5.3.5	Clock Control Register Map	93
		5.3.6	Clock Control Register Description	95
	5.4	Gen	eral Purpose I/O	111
		5.4.1	Overview and Features	111
		5.4.2	GPIO I/O Modes	111
		5.4.3	GPIO Control Register Map	
		5.4.4	GPIO Control Register Description	
	5.5	Brov	wnout Detection and Temperature Alarm	124
		5.5.1	Brownout and Temperature Alarm Register Map	124
	5.6	I2C	Serial Interface Controller (Master/Slave)	129
		5.6.1	Introduction	129
		5.6.2	I2C Protocol Registers	134
		5.6.3	Register Mapping	137
		5.6.4	Register Description	138
		5.6.5	Modes of Operation	
		5.6.6	Data Transfer Flow in Five Operating Modes	
	5.7		M Generator and Capture Timer	
		5.7.1	Introduction	
		5.7.2	Features	
		5.7.3	PWM Generator Architecture	
		5.7.4	PWM-Timer Operation	154

	5.7.5	PWM Double Buffering, Auto-reload and One-shot Operation	156
	5.7.6	Modulate Duty Cycle	156
	5.7.7	Dead-Zone Generator	157
	5.7.8	Capture Timer Operation	158
	5.7.9	PWM-Timer Interrupt Architecture	159
	5.7.10	PWM-Timer Initialization Procedure	159
	5.7.11	PWM-Timer Stop Procedure	159
	5.7.12	Capture Start Procedure	160
	5.7.13	Register Map	161
	5.7.14	Register Description	162
5.8	Real	Time Clock (RTC) 1	177
	5.8.1	Overview	177
	5.8.2	RTC Features	177
	5.8.3	RTC Block Diagram	178
	5.8.4	RTC Function Description	179
	5.8.5	Register Map	181
	5.8.6	Register Description	182
5.9	Seria	al Peripheral Interface (SPI) Controller1	195
	5.9.1	Overview	195
	5.9.2	Features	
	5.9.3	SPI Block Diagram	
	5.9.4	SPI Function Descriptions	
	5.9.5	SPI Timing Diagram	
	5.9.6	SPI Configuration Examples	
	5.9.7	SPI Serial Interface Control Register Map	
	5.9.8	SPI Control Register Description	
5.10	Time	r Controller	
	5.10.1	General Timer Controller	219
	5.10.2	Features	
	5.10.3	Timer Controller Block Diagram	
	5.10.4	Timer Controller Register Map	
5.11	Wate	chdog Timer	
-		Watchdog Timer Control Registers Map	
5.12		T Interface Controller	
0.12	5.12.1	Overview	
	5.12.1	Features of UART controller	
	5.12.2		
	5.12.3	Block Diagram	
	5.12.4	IrDA Mode	
	5.12.5	LIN (Local Interconnection Network) mode	
	5.12.7	UART Interface Control Register Description	
E 10	-	Audio PCM Controller	
5.15			
	5.13.1	Overview	
	5.13.2	Features	
	5.13.3	I2S Block Diagram	
	5.13.4	I2S Operation	
	5.13.5	FIFO operation	
	5.13.6	I2S Control Register Description	
	5.13.7	I2S Control Register Description	
		Release Date: Mar 30, 20	J16

	5.14	Cycli	ic Redundancy Check (CRC) Controller	278
		5.14.1	Overview and Features	278
		5.14.2	Operation	278
		5.14.3	Example	
		5.14.4	CRC Controller Register Map	
			Control Register Description	
	5.15	PDM	IA Controller	283
		5.15.1	Overview	283
		5.15.2	Features	283
		5.15.3	Block Diagram	283
		5.15.4	Function Description	
		5.15.5	PDMA Controller Register Map	
		5.15.6	PDMA Control Register Description	
6			MORY CONTROLLER (FMC)	
	6.1	Over	view	305
	6.2	Feat	ures	305
	6.3	Flas	h Memory Controller Block Diagram	306
	6.4	Flas	h Memory Organization	307
	6.5		Selection	
	6.6			
			Flash (DATAF)	
	6.7		Configuration (CONFIG)	
	6.8	In-Sy	ystem Programming (ISP)	
		6.8.1	ISP Procedure	
	6.9	Flas	h Control Register Map	314
	6.10	Flash	h Control Register Description	315
7	ANA	LOG S	IGNAL PATH BLOCKS	322
	7.1	Audi	o Analog-to-Digital Converter (ADC)	322
		7.1.1	Functional Description	322
		7.1.2	Features	322
		7.1.3	Block Diagram	322
		7.1.4	Operation	
		7.1.5	ADC Register Map	
		7.1.6	ADC Register Description	
	7.2	Audi	o Class D Speaker Driver (DPWM)	
		7.2.1	Functional Description	
		7.2.2	Features	
		7.2.3	Block Diagram	
		7.2.4 7.2.5	Operation DPWM Register Map	
		7.2.5	DPWM Register Description	
	7.3		og Comparator	
	7.0			
		7.3.1 7.3.2	Functional Description	
		7.3.2	Block Diagram	
		7.3.4	Operational Procedure	
			Procedure	
		•	Release Date: Mar 30	

8 9

> 9.4.3 9.4.4

9.4.5

9.4.6

01	0	ISD9160 Technical Reference Manual	
	7.3.5	Register Map	
	7.3.6	Register Description	
7.4	Anal	og Functional Blocks	
	7.4.1	Overview	
	7.4.2	Features	
	7.4.3	Register Map	
	7.4.4	VMID Reference Voltage Generation	
	7.4.5	GPIO Current Source Generation	
	7.4.6	LDO Power Domain Control	
	7.4.7	Microphone Bias Generator	
	7.4.8	Analog Multiplexer	
	7.4.9	Programmable Gain Amplifier	
	7.4.10	Capacitive Touch Sensing Relaxation Oscillator/Counter	
	7.4.11	Oscillator Frequency Measurement and Control	
7.5	Auto	matic Level Control (ALC)	
	7.5.1	Overview and Features	
	7.5.2	ALC Control Register Map	
	7.5.3	ALC Control Register Description	
7.6	Biqu	ad Filter (BIQ)	
	7.6.1	Overview and Features	
	7.6.2	BIQ Control Register Map	
APF	PLICATI	ON DIAGRAM	
		AL CHARACTERISTICS	
9.1		blute Maximum Ratings	
9.2		Electrical Characteristics	
9.3		Electrical Characteristics	
9.5			
	9.3.1	External 32kHz XTAL Oscillator	
	9.3.2	Internal 49.152MHz Oscillator	
	9.3.3	Internal 16 kHz Oscillator	
9.4	Anal	og Characteristics 403	
	9.4.1	Specification of ADC and Speaker Driver403	
	9.4.2	Specification of PGA and BOOST404	
	9.4.3	Specification of ALC an MICBIAS	

	9.4.7	Specification of Temperature Sensor	408
	9.4.8	Specification of Comparator	408
	9.5 Rese	et Characteristics	408
10	PACKAGE	DIMENSIONS	411
	10.1.1	48L LQFP (7x7x1.4mm footprint 2.0mm)	411
11	ORDERING		412
12	REVISION	HISTORY	414
IMPC	ORTANT NO	TICE	415

Specification of LDO & Power management406

Specification of Power-On Reset (VCCD)407

1 GENERAL DESCRIPTION

The ISD9160 is a system-on-chip product optimized for low power, audio record and playback with an embedded ARM® Cortex[™]-M0 32-bit microcontroller core.

The ISD9160 embeds a Cortex[™]-M0 core running up to 50 MHz with 145K-byte of non-volatile flash memory and 12K-byte of embedded SRAM. It also comes equipped with a variety of peripheral devices, such as Timers, Watchdog Timer (WDT), Real-time Clock (RTC), Peripheral Direct Memory Access (PDMA), a variety of serial interfaces (UART, SPI/SSP, I²C, I²S), PWM modulators, GPIO, Analog Comparator, Low Voltage Detector and Brown-out detector.

The ISD9160 comes equipped with a rich set of power saving modes including a Deep Power Down (DPD) mode drawing less than 1 μ A. A micro-power 16KHz oscillator can periodically wake up the device from deep power down to check for other events. A Standby Power Down (SPD) mode can maintain a real time clock function at less than 10 μ A.

For audio functionality the ISD9160 includes a Sigma-Delta ADC with 92dB SNR performance coupled with a Programmable Gain Amplifier (PGA) capable of a maximum gain of 61dB to enable direct connection of a microphone. Audio output is provided by a Differential Class D amplifier (DPWM) that can deliver 1W of power to an 8Ω speaker.

The ISD9160 provides eight analog enabled general purpose IO pins (GPIO). These pins can be configured to connect to an analog comparator, can be configured as analog current sources or can be routed to the SDADC for analog conversion. They can also be used as a relaxation oscillator to perform capacitive touch sensing.

2 FEATURES

nuvoTon

- Core
 - ARM® Cortex[™]-M0 core runs up to 50MHz.
 - One 24-bit System tick timer for operating system support.
 - Supports a variety of low power sleep and power down modes.
 - Single-cycle 32-bit hardware multiplier.
 - NVIC (Nested Vector Interrupt Controller) for 32 interrupt inputs, each with 4-levels of priority.
 - Serial Wire Debug (SWD) supports with 2 watchpoints/4 breakpoints.
- Power Management
 - Wide operating voltage range from 2.4V to 5.5V.
 - Power management Unit (PMU) providing four levels of power control.
 - Deep Power Down (DPD) mode with sub micro-amp leakage (<1µA).
 - Wakeup from Deep Power Down via dedicated WAKEUP pin or timed operation from internal low power 16KHz oscillator.
 - Standby mode with limited RAM retention and RTC operation (<10µA).
 - Wakeup from Standby can be from any GPIO interrupt, RTC or BOD.
 - Sleep mode with minimal dynamic power consumption.
 - 3V LDO for operation of external 3V devices such as serial flash.
- Flash EPROM Memory
 - 145K bytes Flash EPROM for program code and data storage.
 - 4KB of flash can be configured as boot sector for ISP loader.
 - Support In-system program (ISP) and In-circuit program (ICP) application code update
 - 1K byte page erase for flash
 - Configurable boundary to delineate code and data flash.
 - Support 2 wire In-circuit Programming (ICP) update from SWD ICE interface
- SRAM Memory
 - 12K bytes embedded SRAM.
- Clock Control
 - One high speed and two low speed oscillators providing flexible selection for different applications. No external components necessary.
 - Built-in trimmable oscillator with range of 16-50MHz. Factory trimmed within 1% to settings of 49.152MHz and 32.768MHz. User trimmable with in-built frequency measurement block (OSCFM) using reference clock of 32kHz crystal or external reference source.
 - Ultra-low power (<1uA) 16KHz oscillator for watchdog and wakeup from power-down or sleep operation.
 - External 32kHz crystal input for RTC function and low power system operation.
- GPIO
 - Four I/O modes:
 - Quasi bi-direction
 - Push-Pull output
 - Open-Drain output
 - Input only with high impendence
 - TTL/Schmitt trigger input selectable.
 - I/O pin can be configured as interrupt source with edge/level setting.
 - Switchable pull-up.
- Audio Analog to Digital converter
 - Sigma Delta ADC with configurable decimation filter and 16 bit output.
 - 92dB Signal-to-Noise (SNR) performance.
 - Programmable gain amplifier with 32 steps from -12 to 35.25dB in 0.75dB steps.
 - Boost gain stage of 26dB, giving maximum total gain of 61dB.
 - Input selectable from dedicated MIC pins or analog enabled GPIO.
 - Programmable biquad filter to support multiple sample rates from 8-32kHz.

- DMA support for minimal CPU intervention.
- Differential Audio PWM Output (DPWM)
 - Direct connection of speaker
 - 1W drive capability into 8Ω load.
 - High efficiency 88%
 - Configurable up-sampling to support sample rates from 8-32kHz.
 - DMA support for minimal CPU intervention.
- Timers
 - Two timers with 8-bit pre-scaler and 24-bit resolution.
 - Counter auto reload.
- Watch Dog Timer

NUVOTON

- Default ON/OFF by configuration setting
- Multiple clock sources
- 8 selectable time out period from micro seconds to seconds (depending on clock source)
- WDT can wake up power down/sleep.
- Interrupt or reset selectable on watchdog time-out.
- RTC
 - Real Time Clock counter (second, minute, hour) and calendar counter (day, month, year)
 - Alarm registers (second, minute, hour, day, month, year)
 - Selectable 12-hour or 24-hour mode
 - Automatic leap year recognition
 - Time tick and alarm interrupts.
 - Device wake up function.
 - Supports software compensation of crystal frequency by compensation register (FCR)
- PWM/Capture
 - Built-in up to two 16-bit PWM generators provide two PWM outputs or one complementary paired PWM outputs.
 - The PWM generator equipped with a clock source selector, a clock divider, an 8-bit pre-scaler and Dead-Zone generator for complementary paired PWM.
 - PWM interrupt synchronous to PWM period.
 - 16-bit digital Capture timers (shared with PWM timers) provide rising/falling capture inputs.
 - Support Capture interrupt
- UART
 - UART ports with flow control (TX, RX, CTS and RTS)
 - 8-byte FIFO.
 - Support IrDA (SIR) and LIN function
 - Programmable baud-rate generator up to 1/16 of system clock.
- SPI
 - Master up to 20 Mbps / Slave up to 10 Mbps.
 - Support MICROWIRE/SPI master/slave mode (SSP)
 - Full duplex synchronous serial data transfer
 - Variable length of transfer data from 1 to 32 bits
 - MSB or LSB first data transfer
 - 2 slave/device select lines when used in master mode.
 - Hardware CRC calculation module available for CRC calculation of data stream.
 - DMA support for burst transfers.
- I2C
 - Master/Slave up to 1Mbit/s
 - Bidirectional data transfer between masters and slaves
 - Multi-master bus (no central master).
 - Arbitration between simultaneously transmitting masters without corruption of serial data on the bus

- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- Programmable clock allowing versatile rate control.
- I2C-bus controller supports multiple address recognition.
- I²S
 - Interface with external audio CODEC.
 - Operate as either master or slave.
 - Capable of handling 8, 16, 24 and 32 bit word sizes
 - Mono and stereo audio data supported
 - I²S and MSB justified data format supported
 - Two 8 word FIFO data buffers are provided, one for transmit and one for receive
 - Generates interrupt requests when buffer levels cross a programmable boundary
 - Supports DMA requests, for transmit and receive
- Brown-out detector
 - With 8 levels: 2.1V, 2.2V, 2.4V, 2.5V, 2.625V, 2.8V, 3.0V, and 4.6V
 - Supports time-multiplex operation to minimize power consumption.
 - Supports Brownout Interrupt and Reset option
- Built in Low Dropout Voltage Regulator (LDO)
 - Capable of delivering 30mA load current.
 - Configurable for output voltage of 1.8V, 2.4V, 3.0V and 3.3V
 - Eight GPIO (GPIOA<7:0>) operate from LDO voltage domain allowing direct interface to, for example, 3V SPI Flash.
 - Can be bypassed and voltage domain supplied directly from system power.
- Additional Features
 - Over temperature alarm. Can generate interrupt if device exceeds safe operating temperature.
 - Temperature proportional voltage source which can be routed to ADC for temperature measurements.
 - Digital Microphone interface.
- Operating Temperature: -40C~85C
- Package:
 - All Green package (RoHS)
 - LQFP 48-pin

ISD9160 Technical Reference Manual

3 PART INFORMATION AND PIN CONFIGURATION

3.1 Pin Configuration

nuvoton

3.1.1 ISD9160 LQFP 48 pin

3.1.2 Pin Description

The ISD9160 is a low pin count device where many pins are configurable to alternative functions. All General Purpose Input/Output (GPIO) pins can be configured to alternate functions as described in the table below and also in **Error! Reference source not found.**_and **Error! Reference source not found.**

Pin No.			A 1/	
LQFP 48	Pin Name	Pin Type	CFG	Description

Pin No.			Alt	
LQFP 48	Pin Name	Pin Type	Alt CFG	Description
1	WAKEUP	I		Pull low to wake part from deep power down
	PB.7	A/I/O	0	General purpose input/output pin, analog capable; Port B, bit 7
2	I2S_SDO	0	1	Serial Data Output for I2S interface
	CMP7	AIO	2	Configure as relaxation oscillator for capacitive touch sensing
	PB.6	A/I/O	0	General purpose input/output pin, analog capable; Port B, bit 6
3	I2S_SDI	I	1	Serial Data Input for I2S interface
5	CMP6	AIO	2	Configure as relaxation oscillator for capacitive touch sensing
	SPI_MOSI1	0	3	Master Out, Slave In channel 1 for SPI interface
	PB.5	A/I/O	0	General purpose input/output pin, analog capable; Port B, bit 5
4	PWM1B	0	1	PWM channel 1 complementary output pin
4	CMP5	AIO	2	Configure as relaxation oscillator for capacitive touch sensing
	SPI_MISO1	I	3	Master In, Slave Out channel 1 for SPI interface
	PB.4	A/I/O	0	General purpose input/output pin, analog capable; Port B, bit 4
5	PWM0B	0	1	PWM channel 0 complementary output pin
5	CMP4	AIO	2	Configure as relaxation oscillator for capacitive touch sensing
	SPI_MOSI0	0	3	Master Out, Slave In channel 0 for SPI interface
	PB.3	A/I/O	0	General purpose input/output pin, analog capable; Port B, bit 3
6	I2C_SDA	I/O	1	Serial Data, I2C interface
0	СМРЗ	AIO	2	Configure as relaxation oscillator for capacitive touch sensing
	SPI_MISO0	I	3	Master In, Slave Out channel 0 for SPI interface
	PB.2	A/I/O	0	General purpose input/output pin, analog capable; Port B, bit 2
7	I2C_SCL	I/O	1	Serial Clock, I2C interface
,	CMP2	AIO	2	Configure as relaxation oscillator for capacitive touch sensing
	SPI_SCLK	I/O	3	Serial Clock for SPI interface
	PB.1	A/I/O	0	General purpose input/output pin, analog capable; Port B, bit 1. Triggers external interrupt 1 (EINT1/IRQ3)
8	MCLK	0	1	Master clock output for synchronizing external device
	CMP1	AIO	2	Configure as relaxation oscillator for capacitive touch sensing
	SPI_SSB1	0	3	Slave Select Bar 1 for SPI interface
9	PB.0	A/I/O	0	General purpose input/output pin, analog capable; Port B, bit 0. Triggers external interrupt 0 (EINT0/IRQ2)
	SPI_SSB1	0	3	Slave Select Bar 1 for SPI interface

Pin No.				
LQFP 48	Pin Name	Pin Type	Alt CFG	Description
	CMP0	AIO	2	Configure as relaxation oscillator for capacitive touch sensing
	SPI_SSB0	I/O	3	Slave Select Bar 0 for SPI interface
10	VCCD	Р		Main Digital Supply for Chip. Supplies all IO except analog, Speaker Driver and PA<7:0>
11	VREG	Р		Logic regulator output decoupling pin. A 1µF capacitor returning to VSSD must be placed on this pin.
12	NC			Should remain unconnected.
13	NC			Should remain unconnected.
	PA.15	I/O	0	General purpose input/output pin; Port A, bit 15
14	TM1	I	1	External input to Timer 1
	SDIN	I	2	Sigma Delta bit stream input for digital MIC mode
	PA.9	I/O	0	General purpose input/output pin; Port A, bit 9
15	UART_RX	I	1	Receive channel of UART
	I2S_BCLK	I/O	2	Bit Clock for I2S interface
	PA.8	I/O	0	General purpose input/output pin; Port A, bit 8
16	UART_TX	0	1	Transmit channel of UART
	I2S_FS	I/O	2	Frame Sync Clock for I2S interface
17	VCCSPK	Р		Power Supply for PWM Speaker Driver
18	SPK+	0		Positive Speaker Driver Output
19	VSSSPK	Р		Ground for PWM Speaker Driver
20	SPK-	0		Negative Speaker Driver Output
21	VCCSPK	Р		Power Supply for PWM Speaker Driver
22	RESETN	I		External reset input. Pull this pin low to reset device to initial state. Has internal weak pull-up.
23	ICE_DAT	I/O		Serial Wire Debug port data pin. Has internal weak pull-up.
24	ICE_CLK	I		Serial Wire Debug port clock pin. Has internal weak pull-up.
25	VSSD	Р		Digital Ground.
26	PA.7	I/O	0	General purpose input/output pin; Port A, bit 7
20	I2S_SDO	0	1	Serial Data Out for I2S interface
27	PA.6	I/O	0	General purpose input/output pin; Port A, bit 6
21	I2S_SDI	I	1	Serial Data In for I2S interface
20	PA.5	I/O	0	General purpose input/output pin; Port A, bit 5
28	I2S_BCLK	I/O	1	Bit Clock for I2S interface

Pin No.				
LQFP 48	Pin Name	Pin Type	Alt CFG	Description
29	PA.4	I/O	0	General purpose input/output pin; Port A, bit 4
29	I2S_FS	I/O	1	Frame Sync Clock for I2S interface
	PA.3	I/O	0	General purpose input/output pin; Port A, bit 3
30	SPI_MISO0	I	1	Master In, Slave Out channel 0 for SPI interface
	I2C_SDA	I/O	2	Serial Data, I2C interface
31	PA.2	I/O	0	General purpose input/output pin; Port A, bit 2
51	SPI_SSB0	I/O	1	Slave Select Bar 0 for SPI interface
32	VDD33	Р		LDO Regulator Output. If used, a 1μ F capacitor must be placed to ground. If not used then tie to VCCD.
	PA.1	I/O	0	General purpose input/output pin; Port A, bit 1
33	SPI_SCLK	I/O	1	Serial Clock for SPI interface
	I2C_SCL	I/O	2	Serial Clock, I2C interface
	PA.0	I/O	0	General purpose input/output pin; Port A, bit 2
34	SPI_MOSI0	0	1	Master Out, Slave In channel 0 for SPI interface
	MCLK	0	2	Master clock output.
35	VCCLDO	Р		Power Supply for LDO, should be connected to VCCD
	PA.14	I/O	0	General purpose input/output pin; Port A, bit 14
36	тмо	I	1	External input to Timer 0
00	SDCLK	0	1	Clock output for digital microphone mode.
	SDCLKn	0	2	Inverse Clock output for digital microphone mode.
	PA.13	I/O	0	General purpose input/output pin; Port A, bit 13
37	PWM1	0	1	PWM1 Output.
01	SPKM	0	2	Equivalent to SPK
	I2S_BCLK	I/O	3	Bit Clock for I2S interface
	PA.12	I/O	0	General purpose input/output pin; Port A, bit 12
38	PWM0	0	1	PWM0 Output.
	SPKP	0	2	Equivalent to SPK+
	I2S_FS	I/O	3	Frame Sync Clock for I2S interface
39	XO32K	0		32.768kHz Crystal Oscillator Output
40	XI32K	I		32.768kHz Crystal Oscillator Input. Max Voltage 1.8V
41	VSSA	AP		Ground for analog circuitry.
42	VMID	0		Mid rail reference. Connect 4.7µF to VSSA.

ISD9160 Technical Reference Manual

Pin No.			Ali	
LQFP 48	Pin Name	Pin Type	Alt CFG	Description
43	MIC+	AI		Positive microphone input.
44	MIC-	AI		Negative microphone input.
45	MICBIAS	AO		Microphone bias output.
46	VCCA	AP		Analog power supply.
	PA.11	I/O	0	General purpose input/output pin; Port A, bit 11
47	I2C_SCL	I/O	1	Serial Clock, I2C interface
47	I2S_SDO	0	2	Serial Data Out I2S interface
	UART_CTSn	I	3	UART Clear to Send Input.
	PA.10	I/O	0	General purpose input/output pin; Port A, bit 10
48	I2C_SDA	I/O	1	Serial Data, I2C interface
40	I2S_SDI	I	2	Serial Data In I2S interface
	UART_RTSn	0	3	UART Request to Send Output.

Note:

1. Pin Type I=Digital Input, O=Digital Output; AI=Analog Input; P=Power Pin; AP=Analog Power

ηυνοτοη

4 BLOCK DIAGRAM

Figure 4-1 ISD9160 Block Diagram

5 FUNCTIONAL DESCRIPTION

5.1 ARM[®] Cortex[™]-M0 core

The Cortex[™]-M0 processor is a multistage, 32-bit RISC processor. It has an AMBA AHB-Lite interface and includes an NVIC component. It also has hardware debug functionality. The processor can execute Thumb code and is compatible with other Cortex-M profile processor.

Figure 5-1 shows the functional blocks of processor.

Figure 5-1 Functional Block Diagram

The implemented device provides:

- A low gate count processor that features:
 - The ARMv6-M Thumb® instruction set.
 - Thumb-2 technology.
 - ARMv6-M compliant 24-bit SysTick timer.
 - A 32-bit hardware multiplier.
 - The system interface supports little-endian data accesses.
 - The ability to have deterministic, fixed-latency, interrupt handling.
 - Load/store-multiples that can be abandoned and restarted to facilitate rapid interrupt handling.
 - C Application Binary Interface compliant exception model.
 This is the ARMv6-M, C Application Binary Interface (C-ABI) compliant exception model that enables the use of pure C functions as interrupt handlers.
 - Low power sleep-mode entry using Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or the return from interrupt sleep-on-exit feature.
- NVIC that features:
 - 32 external interrupt inputs, each with four levels of priority.
 - Dedicated non-Maskable Interrupt (NMI) input.
 - Support for both level-sensitive and pulse-sensitive interrupt lines
 - Wake-up Interrupt Controller (WIC), providing ultra-low power sleep mode support.
- Debug support
 - Four hardware breakpoints.
 - Two watchpoints.
 - Program Counter Sampling Register (PCSR) for non-intrusive code profiling.

- Single step and vector catch capabilities.
- Bus interfaces:
 - Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals and memory.
 - Single 32-bit slave port that supports the DAP (Debug Access Port).

5.2 System Manager

5.2.1 Overview

The following functions are included in system manager section

- System Memory Map
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System management registers for product ID
- System management registers for chip and module functional reset and multi-function pin control
- Brown-Out and chip miscellaneous Control Register
- Combined peripheral interrupt source identify

5.2.2 System Reset

The system reset includes one of the list below event occurs. For these reset event flags can be read by SYS_RSTSTS register.

- The Power-On Reset
- The low level on the RESETN pin
- Watchdog Time Out Reset
- Low Voltage Reset
- Cortex-M0 MCU Reset
- PMU Reset for details of wakeup events, also examine CLK_PWRCTL register.
- SWD Debug interface.

A power-on reset (POR) will occur if the main external supply rail ramps from 0V or the voltage of the main supply drops below reset threshold. A low voltage reset monitors the regulated core logic (1.8V) supply and will assert if the voltage on this rail drops below reliable logic threshold.

5.2.3 System Power Distribution

nuvoton

The ISD9160 implements several power domains:

- Analog power from VCCA and VSSA provides the power for analog module operation.
- Digital power from VCCD and VSSD supplies the power to the IO ring and the internal regulator which provides 1.8V power for digital operation.
- VCCLDO supplies the LDO regulator whose output is available on pin VDD33. This supply powers the IO ring for GPIOA<7:0>.
- An internal Standby reference (SB REG) generates a 1.8V rail to part of the logic including the IO ring, Standby RAM and RTC during standby mode for low power operation.

The outputs of internal voltage regulators; VREG and VDD33, require external decoupling capacitors which should be located close to the corresponding pin. The following diagram shows the power distribution of this device.

Figure 5-2 ISD9160 Power Distribution Diagram

5.2.4 System Memory Map

The ISD9160 provides 4G-byte address space. The memory locations assigned to each on-chip module is shown in Table 5-1. The detailed register definition, memory space, and programming detailed will be described in the following sections for each on-chip module. The ISD9160 supports little-endian data format.

Address Space	Token	Modules	Reference
Flash & SRAM Memory Space			
0x0000_0000 - 0x0002_33FF	FLASH_BA	FLASH Memory Space (141KB)	
0x0000_0000 - 0x0002_43FF	FLASH_BA	FLASH Memory Space (145KB)	
0x2000_0000 - 0x2000_2FFF	SRAM_BA	SRAM Memory Space (12KB)	
AHB Modules Space (0x5000_0	000 – 0x501F_FFF		
0x5000_0000 – 0x5000_01FF	SYS_BA	System Global Control Registers	<u>5.2.5</u>
0x5000_0200 - 0x5000_02FF	CLK_BA	Clock Control Registers	<u>5.3.5</u>
0x5000_0300 - 0x5000_03FF	INT_BA	Interrupt Multiplexer Control Registers	0
0x5000_4000 - 0x5000_7FFF	GPIO_BA	GPIO Control Registers	<u>5.4.3</u>
0x5000_8000 – 0x5000_BFFF	PDMA_BA	SRAM_APB DMA Control Registers	<u>5.15</u>
0x5000_C000 - 0x5000_FFFF	FMC_BA	Flash Memory Control Registers	<u>6.3</u>
APB1 Modules Space (0x4000_	0000 ~ 0x400F_FFF	F)	
0x4000_4000 – 0x4000_7FFF	WDT_BA	Watch-Dog Timer Control Registers	<u>5.11</u>
0x4000_8000 - 0x4000_BFFF	RTC_BA	Real Time Clock (RTC) Control Register	<u>5.8</u>
0x4001_0000 - 0x4001_3FFF	TIMER0_BA	Timer0/Timer1 Control Registers	<u>5.10</u>
0x4002_0000 - 0x4002_3FFF	I2C0_BA	I2C0 Interface Control Registers	<u>5.6</u>
0x4003_0000 - 0x4003_3FFF	SPI0_BA	SPI0 Serial Interface Control Registers	<u>5.9</u>
0x4004_0000 - 0x4004_3FFF	PWM_BA	PWM0/1 Control Registers	<u>5.7</u>
0x4005_0000 – 0x4005_3FFF	UART0_BA	UART0 Control Registers	<u>5.12</u>
0x4007_0000 – 0x4007_3FFF	DPWM_BA	Differential Audio PWM Speaker Driver	<u>7.2</u>
0x4008_0000 - 0x4008_3FFF	ANA_ BA	Analog Block Control Registers	<u>0</u>
0x4008_4000 - 0x4008_7FFF	BODTALM_BA	Brown Out Detector Control Registers	<u>5.5.1</u>

Table 5-1 Address Space Assignments for On-Chip Modules

0x4009_0000 - 0x4009_7FFF	CRC_BA	CRC Block Control Registers	<u>5.14</u>
0x400A_0000 - 0x400A_FFFF	I2S_BA	I2S Interface Control registers	<u>5.13</u>
0x400B_0000 - 0x400B_FFFF	BIQ_BA	Biquad Filter Control Registers	<u>7.6</u>
0x400D_0000 - 0x400D_3FFF	ACMP_BA	Analog Comparator Control Registers	<u>0</u>
0x400E_0000 - 0x400E_FFFF	ADC0_BA	Analog-Digital-Converter (ADC) Registers	<u>7.1</u>
0x400F_0000 - 0x400F_7FFF	SBRAM_BA	Standby RAM Block Address space	
System Control Space (0xE000	_E000 ~ 0xE000_EF	FF)	
0xE000_E010 - 0xE000_E0FF	SYSTICK_BA	System Timer Control Registers	<u>5.2.6</u>
0xE000_E100 - 0xE000_ECFF	SCS_BA	External Interrupt Controller Control Registers	<u>5.2.7</u>
0xE000_ED00 - 0xE000_ED8F	SYSINFO_BA	System Control Registers	<u>5.2.8</u>

0.2.0 0,	otoni managor s			
Register	Offset	R/W	Description	Reset Value
SYS Base Address	:	•		
SYS_BA = 0x5000_	_0000			
SYS_RSTSTS	SYS_BA+0x04	R/W	System Reset Source Register	0x0000_00XX
SYS_IPRST0	SYS_BA+0x08	R/W	IP Reset Control Resister1	0x0000_0000
SYS_IPRST1	SYS_BA+0x0C	R/W	IP Reset Control Resister2	0x0000_0000
SYS_PASMTEN	SYS_BA+0x30	R/W	GPIOA input type control register	0x0000_0000
SYS_PBSMTEN	SYS_BA+0x34	R/W	GPIOB input type control register	0x0000_0000
SYS_GPA_MFP	SYS_BA+0x38	R/W	GPIOA multiple function control register	0x0000_0000
SYS_GPB_MFP	SYS_BA+0x3C	R/W	GPIOB multiple function control register	0x0000_0000
SYS_WKCTL	SYS_BA+0x54	R/W	WAKEUP pin control register	0x0000_0006
SYS_REGLCTL	SYS_BA+0x100	R/W	Register Lock Key Address register	0x0000_0000
SYS_IRCTCTL	SYS_BA+0x110	R/W	Oscillator Frequency Adjustment control register	0xXXXX_XXXX
	1	1		I

5.2.5 System Manager Control Registers

System Reset Source Register (SYS_RSTSTS)

This register provides specific information for software to identify this chip's reset source from last operation.

Register	Offset	R/W	Description	Reset Value
SYS_RSTSTS	SYS_BA+0x04	R/W	System Reset Source Register	0x0000_00XX

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
CPURF	PMURSTF	SYSRF	Reserved	Reserved	WDTRF	Reserved	CORERSTF

Table 5-2 System Reset Source Register (SYS_RSTSTS, address 0x5000_0004) Bit Description.

Bits	Description	
[31:8]	Reserved	Reserved
[7]	CPURF	Reset Source From CPU The CPURF flag is set by hardware if software writes SYS_IPRST0.CPURST with a "1" to reset Cortex-M0 CPU kernel and Flash memory controller (FMC). 0= No reset from CPU 1= The Cortex-M0 CPU kernel and FMC has been reset by software setting CPURST to 1. This bit is cleared by writing 1 to itself.
[6]	PMURSTF	Reset Source From PMUThe PMURSTF flag is set if the PMU.0= No reset from PMU1= PMU reset the system from a power down/standby event.This bit is cleared by writing 1 to itself.

		Reset Source From MCU
		The SYSRF flag is set if the previous reset source originates from the Cortex_M0 kernel.
[5]	SYSRF	0= No reset from MCU
		 1= The Cortex_M0 MCU issued a reset signal to reset the system by software writing 1 to bit SYSCTL_AIRCTL.SYSRESTREQ, Application Interrupt and Reset Control Register) in system control registers of Cortex_M0 kernel.
		This bit is cleared by writing 1 to itself.
[4:3]	Reserved	Reserved
[2]	WDTRF	Reset Source From WDT The WDTRF flag is set if pervious reset source originates from the Watch-Dog module. 0= No reset from Watch-Dog 1= The Watch-Dog module issued the reset signal to reset the system. This bit is cleared by writing 1 to itself.
[1]	Reserved	Reserved
[0]	CORERSTF	Reset Source From CORE The CORERSTF flag is set if the core has been reset. Possible sources of reset are a Power-On Reset (POR), RESETn Pin Reset or PMU reset. 0= No reset from CORE 1= Core was reset by hardware block. This bit is cleared by writing 1 to itself.

Register	Offset	R/W	Description	Reset Value
SYS_IPRST0	SYS_BA+0x08	R/W	IP Reset Control Resister1	0x0000_0000

IP Reset Control Register1 (SYS_IPRST0)

31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	-	Reserved	PDMARST	CPURST	CHIPRST			

Table 5-3 IP Reset Control Register 1 (SYS_IPRST0 address 0x5000_0008) Bit Description.

Bits	Description	
[31:3]	Reserved	Reserved
[2]	PDMARST	PDMA Controller Reset Set "1" will generate a reset signal to the PDMA Block. User needs to set this bit to "0" to release from the reset state 0= Normal operation 1= PDMA IP reset
[1]	CPURST	CPU Kernel One Shot Reset Setting this bit will reset the CPU kernel and Flash Memory Controller(FMC), this bit will automatically return to "0" after the 2 clock cycles This bit is a protected bit, to program first issue the unlock sequence (see Protected Register Lock Key Register (SYS REGLCTL)) 0= Normal 1= Reset CPU
[0]	CHIPRST	CHIP One Shot Reset Set this bit will reset the whole chip, this bit will automatically return to "0" after the 2 clock cycles. CHIPRST has same behavior as POR reset, all the chip modules are reset and the chip configuration settings from flash are reloaded. This bit is a protected bit, to program first issue the unlock sequence (see Protected Register Lock Key Register (SYS_REGLCTL)) 0= Normal 1= Reset CHIP

IP Reset Control Register2 (SYS_IPRST1)

Setting these bits "1" will generate an asynchronous reset signal to the corresponding peripheral block. The user needs to set bit to "0" to release block from the reset state.

Register	Offset	R/W	Description	Reset Value
SYS_IPRST1	SYS_BA+0x0C	R/W	IP Reset Control Resister2	0x0000_0000

31	30	29	28	27	26	25	24
Reserved	ANARST	I2S0RST	EADCRST	Reserved	Reserved	Reserved	Reserved
23	22	21	20	19	18	17	16
Reserved	ACMPRST	Reserved	PWM0RST	CRCRST	BIQRST	Reserved	UARTORST
15	14	13	12	11	10	9	8
Reserved	Reserved	DPWMRST	SPIORST	Reserved	Reserved	Reserved	I2C0RST
7	6	5	4	3	2	1	0
TMR1RST	TMRORST	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

Table 5-4 IP Reset Control Register 2 (SYS_IPRST1 address 0x5000_000C) Bit Description.

Bits	Description	
[30]	ANARST	Analog Block Control Reset 0 = Normal Operation 1 = Reset
[29]	I2SORST	I2S Controller Reset 0 = Normal Operation 1 = Reset
[28]	EADCRST	ADC Controller Reset 0 = Normal Operation 1 = Reset
[22]	ACMPRST	Analog Comparator Reset 0 = Normal Operation 1 = Reset
[20]	PWMORST	PWM10 controller Reset 0 = Normal Operation 1 = Reset
[19]	CRCRST	CRC Generation Block Reset 0 = Normal Operation 1 = Reset

[18]	BIQRST	Biquad Filter Block Reset 0 = Normal Operation 1 = Reset
[16]	UARTORST	UART0 Controller Reset 0 = Normal Operation 1 = Reset
[13]	DPWMRST	DPWM Speaker Driver Reset 0 = Normal Operation 1 = Reset
[12]	SPIORST	SPI0 Controller Reset 0 = Normal Operation 1 = Reset
[8]	I2CORST	I2C0 Controller Reset 0 = Normal Operation 1 = Reset
[7]	TMR1RST	Timer1 Controller Reset 0 = Normal Operation 1 = Reset
[6]	TMRORST	Timer0 Controller Reset 0 = Normal Operation 1 = Reset

NUVOTON ISD9160 Technical Reference Manual

GPIOA Input Type Control Register (SYS_PASMTEN)						
Register Offset R/W Description Reset Va						
SYS_PASMTEN	SYS_BA+0x30	R/W	GPIOA input type control register	0x0000_0000		

31	30	29	28	27	26	25	24		
	SMTEN [15:8]								
23	22	21	20	19	18	17	16		
	SMTEN [7:0]								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved								

Table 5-5 GPIOA Input Type Control Register (SYS_PASMTEN address 0x5000_0030) Bit Description.

Bits	Description	Description			
[n] n=16,1731	SMTEN	Schmitt Trigger This register controls whether the GPIO input buffer Schmitt trigger is enabled. 0 = GPIOA[15:0] I/O input Schmitt Trigger disabled 1 = GPIOA[15:0] I/O input Schmitt Trigger enabled			
[15:0]	Reserved	Reserved			

NUVOTON ISD9160 Technical Reference Manual

GPIOB Input Type Control Register (SYS_PBSMTEN)						
Register Offset R/W Description I				Reset Value		
SYS_PBSMTEN	SYS_BA+0x34	R/W	GPIOB input type control register	0x0000_0000		

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	SMTEN [7:0]								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved								

Table 5-6 GPIOB Input Type Control Register (SYS_PBSMTEN address 0x5000_0034) Bit Description.

Bits	Description	Description				
[n] n=16,1723	Schmitt Trigger This register controls whether the GPIO input buffer Schmitt trigger is enabled. 0= GPIOB(port 0 ~ port 7) I/O input Schmitt Trigger disabled					
		1= GPIOB(port 0 ~ port 7) I/O input Schmitt Trigger enabled				

GPIO Alternative Function Control Register (SYS_GPA_MFP)

Each GPIO pin can take on multiple alternate functions depending on the setting of this register. Each pin has two bits of alternate function control. Set to 00 the pin is a standard GPIO pin whose attributes are defined by the GPIO control registers (See Section 0). Set to other values the pin is assigned to a peripheral as outlined in table below.

Register	Offset	R/W	Description	Reset Value
SYS_GPA_MFP	SYS_BA+0x38	R/W	GPIOA multiple function control register	0x0000_0000

31	30	29	28	27	26	25	24
PA1	PA15MFP PA14MFP		MFP	PA13MFP		PA12MFP	
23	22	21	20	19	18	17	16
PA11	PA11MFP PA10MFP		MFP	PA9MFP		PA8MFP	
15	14	13	12	11	10	9	8
PA7	MFP	PA6MFP		PA5MFP		PA4MFP	
7	6	5	4	3	2	1	0
PA3MFP PA2		MFP	PA1	MFP	PAO	MFP	

Table 5-7 GPIOA Alternate Function Register (SYS_GPA_MFP address 0x5000_0038)

Bits	Description	Description				
		Alternate Function Setting For PA15MFP				
[31:30]	PA15MFP	00 = GPIO				
[51.50]		01 = TM1				
		10 = SDIN				
		Alternate Function Setting For PA14MFP				
	PA14MFP	00 = GPIO				
[29:28]		01 = TM0				
		10 = SDCLK				
		11 = SDCLKn				
		Alternate Function Setting For PA13MFP				
		00 = GPIO				
[27:26]	PA13MFP	01 = PWM1				
		10 = SPKM				
		11 = I2S_BCLK				

		Alternate Function Setting For PA12MFP
		00 = GPIO
[25:24]	PA12MFP	01 = PWM0
		10 = SPKP
		11 = I2S_FS
		Alternate Function Setting For PA11MFP
		00 = GPIO
[23:22]	PA11MFP	01 = I2C_SCL
		10 = I2S_SDO
		11 = UART_CTSn
		Alternate Function Setting For PA10MFP
		00 = GPIO
[21:20]	PA10MFP	01 = I2C_SDA
		10 = I2S_SDI
		11 = UART_RTSn
		Alternate Function Setting For PA0MFP
[19:18] F	PA9MFP	00 = GPIO
		01 = UART_RX
		10 = I2S_BCLK
		Alternate Function Setting For PA8MFP
[17:16]	PA8MFP	00 = GPIO
[17.10]		01 = UART_TX
		10 = I2S_FS
		Alternate Function Setting For PA7MFP
[15:14]	PA7MFP	00 = GPIO
		01 = I2S_SDO
		Alternate Function Setting For PA6MFP
[13:12]	PA6MFP	00 = GPIO
		01 = I2S_SDI
		Alternate Function Setting For PA5MFP
[11:10]	PA5MFP	00 = GPIO
		01 = I2S_BCLK
		Alternate Function Setting For PA4MFP
[9:8]	PA4MFP	00 = GPIO
		01 = I2S_FS

[7:6]	PA3MFP	Alternate Function Setting For PA3MFP 00 = GPIO 01 = SPI_MISO0 10 = I2C_SDA
[5:4]	PA2MFP	Alternate Function Setting For PA2MFP 00 = GPIO 01 = SPI_SSB0
[3:2]	PA1MFP	Alternate Function Setting For PA1MFP 00 = GPIO 01 = SPI_SCLK 10 = I2C_SCL
[1:0]	PA0MFP	Alternate Function Setting For PA0MFP 00 = GPIO 01 = SPI_MOSIO 10 = MCLK

GPIO Alternative Function Control Register (SYS_GPB_MFP)

Each GPIO pin can take on multiple alternate functions depending on the setting of this register. Each pin has two bits of alternate function control. Set to 00 the pin is a standard GPIO pin whose attributes are defined by the GPIO control registers (See Section 0). Set to other values the pin is assigned to a peripheral as outlined in table below.

Register	Offset	R/W	Description	Reset Value
SYS_GPB_MFP	SYS_BA+0x3C	R/W	GPIOB multiple function control register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Res	erved				
15	14	13	12	11	10	9	8	
PB7	MFP	PB6	MFP	PB5MFP		PB4MFP		
7	6	5	4	3	2	1	0	
PB3	MFP	PB2MFP		PB1MFP		PB0MFP		

Table 5-8 GPIOB Alternate Function Register (SYS_GPB_MFP address 0x5000_003C)

Bits	Description	
[31:16]	Reserved	Reserved
[15:14]	PB7MFP	Alternate Function Setting For PB7MFP 00 = GPIO 01 = I2S_SDO 10 = CMP7
[13:12]	PB6MFP	Alternate Function Setting For PB6MFP 00 = GPIO 01 = I2S_SDI 10 = CMP6 11 = SPI_MOSI1
[11:10]	PB5MFP	Alternate Function Setting For PB5MFP 00 = GPIO 01 = PWM1B 10 = CMP5 11 = SPI_MISO1

[9:8] PB4MFP 00 = GPIO 00 = GPIO 01 = PWM0B 10 = CMP4 11 = SPI_MOSIO	
10 = CMP4 11 = SPI_MOSI0	
10 = CMP4 11 = SPI_MOSI0	
Alternate Function Setting For PB3MFP	
00 = GPIO	
[7:6] PB3MFP 01 = I2C_SDA	
10 = CMP3	
11 = SPI_MISO0	
Alternate Function Setting For PB2MFP	
00 = GPIO	
[5:4] PB2MFP 01 = I2C_SCL	
10 = CMP2	
11 = SPI_SCLK	
Alternate Function Setting For PB1MFP	
00 = GPIO	
[3:2] PB1MFP 01 = MCLK	
10 = CMP1	
11 = SPI_SSB1	
Alternate Function Setting For PB0MFP	
00 = GPIO	
[1:0] PB0MFP 01 = SPI_SSB1	
10 = CMP0	
11 = SPI_SSB0	

GPIO	Power Domain			GPAn =10		GPAn =11	
GFIO		Function	Туре	Function	Туре	Function	Туре
GPIOA0	VDD33	SPI_MOSI0	0	MCLK	0		
GPIOA1	VDD33	SPI_SCLK	IO	I2C_SCL	IO		
GPIOA2	VDD33	SPI_SSB0	IO				
GPIOA3	VDD33	SPI_MISO0	1	I2C_SDA	IO		
GPIOA4	VDD33	I2S_FS	10				
GPIOA5	VDD33	I2S_BCLK	10				
GPIOA6	VDD33	I2S_SDI	1				

GPIOA7	VDD33	I2S_SDO	0				
GPIOA8	VCCD	UART_TX	0	I2S_FS	IO		
GPIOA9	VCCD	UART_RX	I	I2S_BCLK	IO		
GPIOA10	VCCD	I2C_SDA	IO	I2S_SDI	I	UART_RTSn	0
GPIOA11	VCCD	I2C_SCL	IO	I2S_SDO	0	UART_CTSn	I
GPIOA12	VCCD	PWM0	0	SPKP	0	I2S_FS	IO
GPIOA13	VCCD	PWM1	0	SPKM	0	I2S_BCLK	IO
GPIOA14	VCCD	тмо	I	SDCLK	0	SDCLKn	0
GPIOA15	VCCD	TM1	I	SDIN	1		

GPIO	Power Domain	GPBn=01		GPBn =10		GPBn =11	
GFIC	Fower Domain	Function	Туре	Function	Туре	Function	Туре
GPIOB0	VCCD	SPI_SSB1	0	CMP0	AIO	SPI_SSB0	IO
GPIOB1	VCCD	MCLK	0	CMP1	AIO	SPI_SSB1	0
GPIOB2	VCCD	I2C_SCL	IO	CMP2	AIO	SPI_SCLK	Ю
GPIOB3	VCCD	I2C_SDA	IO	CMP3	AIO	SPI_MISO0	I
GPIOB4	VCCD	PWM0B	0	CMP4	AIO	SPI_MOSI0	0
GPIOB5	VCCD	PWM1B	0	CMP5	AIO	SPI_MISO1	I
GPIOB6	VCCD	I2S_SDI	1	CMP6	AIO	SPI_MOSI1	0
GPIOB7	VCCD	I2S_SDO	0	CMP7	AIO		

Wakeup Pin Control Register (SYS_WKCTL)

The WAKEUP pin of the ISD9160 is a special purpose pin that can be used to wake the device from a deep power down condition when all other pins of the device are inactive. When the device is active, this register can be used to set the state of the WAKEUP pin. The default state of the pin is as a tristate input.

Register	Offset	R/W	Description	Reset Value
SYS_WKCTL	SYS_BA+0x54	R/W	WAKEUP pin control register	0x0000_0006

7	6	5	4	3	2	1	0
Reserved			WKDIN	WKPUEN	WKOENB	WKDOUT	

Table 5-9 Wakeup Pin Control Register (SYS_WKCTL, address 0x5000_0054) Bit Description.

Bits	Description	
[3]	WKDOUT	Wakeup Output State0 = drive Low if the corresponding output mode bit is set (default)1 = drive High if the corresponding output mode bit is set
[2]	WKOENB	Wakeup Pin Output Enable Bar 0 = drive WKDOUT to pin 1 = tristate (default)
[1]	WKPUEN	Wakeup Pin Pull-up ControlThis signal is latched in deep power down and preserved.0 = pull-up enable1 = tristate (default)
[0]	WKDIN	State Of Wakeup Pin Read only.

Protected Register Lock Key Register (SYS_REGLCTL)

Certain critical system control registers are protected against inadvertent write operations which may disturb chip operation. These system control registers are locked after power on reset until the user specifically issues an unlock sequence to open the lock. The unlock sequence is to write to SYS_REGLCTL the data 0x59, 0x16, 0x88. Any different sequence, data or a write to any other address will abort the unlock sequence.

MDK provides the defined function UNLOCKREG(x); which will execute this sequence.

The status of the lock can be determined by reading SYS_REGLCTL bit0: "1" is unlocked, "0" is locked. Once unlocked, user can update protected register values. To lock registers again, write any data to SYS_REGLCTL.

This register is write accessible for writing key values and read accessible to determine REGLCTL status.

Register	Offset	R/W	Description	Reset Value
SYS_REGLCTL	SYS_BA+0x100	R/W	Register Lock Key Address register	0x0000_0000

7	6	5	4	3	2	1	0
							REGLCTL

Table 5-10 Protected Register Lock Key Register (SYS_REGLCTL address 0x5000_0100) Bit Description.

Bits	Description	Description				
[31:1]	Reserved	Reserved				
		Protected Register Unlock Register				
[0]	REGLCTL	0 = Protected registers are locked. Any write to the target register is ignored.				
		1 = Protected registers are unlocked				
Oscillator Trim Control Register (SYS_IRCTCTL)

The master oscillator of the ISD9160 has an adjustable frequency and is controlled by the SYS_IRCTCTL register. This register contains two oscillator frequency trim values, which one is active depends upon the setting of register CLK_CLKSEL0.HIRCFSEL bit. If this bit is 0, SYS_IRCTCTL[0] is active, if 1 then SYS_IRCTCTL[1] is active. Upon power on reset this register is loaded from flash memory with factory stored values to give oscillator frequencies of 49.152MHz for SYS_IRCTCTL[0] and 32.768MHz for SYS_IRCTCTL[1]. If users wish to change either of the default frequencies it is possible to do so by setting this register. An additional SUPERFINE trim register is also available to interpolate frequencies between the available SYS_IRCTCTL settings (see Table 7-37)

This register is a protected register, to write to register first issue the unlock sequence (<u>see Protected</u> <u>Register Lock Key Register (SYS_REGLCTL)</u>)

Register	Offset	R/W	Description	Reset Value
SYS_IRCTCTL	SYS_BA+0x110	R/W	Oscillator Frequency Adjustment control register	0xXXXX_XXXX

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			FREG	1SEL				
15	14	13	12	11	10	9	8	
			Reserved				RGE0SEL	
7	6	5	4	3	2	1	0	
	FREQ0SEL							

Table 5-11 Oscillator Frequency Adjustment Control Register (SYS_IRCTCTL, address 0x5000_0110).

Bits	Description	
[24]	RGE1SEL	Range Bit For Oscillator0 = high range1 = low range
[23:16]	FREQ1SEL	8 Bit Trim For Oscillator FREQ1SEL [7:5] are 8 coarse trim ranges which overlap in frequency. FREQ1SEL [4:0] are 32 fine trim steps of approximately 0.5% resolution.
[8]	RGE0SEL	Range Bit For Oscillator0 = high range1 = low range
[7:0]	FREQ0SEL	8 Bit Trim For Oscillator FREQ0SEL [7:5] are 8 coarse trim ranges which overlap in frequency. FREQ0SEL [4:0] are 32 fine trim steps of approximately 0.5% resolution.

Release Date: Mar 30, 2016 Revision V1.41

5.2.6 System Timer (SysTick)

The Cortex-M0 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit, clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example 100Hz) and invokes a SysTick routine.
- A high speed alarm timer using Core clock.
- A variable rate alarm or signal timer the duration range dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

When enabled, the timer will count down from the value in the SysTick Current Value Register (SYST_CVR) to zero, reload (wrap) to the value in the SysTick Reload Value Register (SYST_RVR) on the next clock edge, then decrement on subsequent clocks. When the counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to zero before enabling the feature. This ensures the timer will count from the SYST_RVR value rather than an arbitrary value when it is enabled.

If the SYST_RVR is zero, the timer will be maintained with a current value of zero after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit.

In DEEPSLEEP and power down modes, the SysTick timer is disabled so cannot be used to wake up the device.

For more detailed information, please refer to the documents "ARM® Cortex™-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

5.2.6.1 System Timer Control Register Map

R: read only, W: write only, R/W: both read and write, W&C: Write 1 clear

Register	Offset	R/W	Description	Reset Value		
SYSTICK Base Address:						
SYSTICK_BA =	SYSTICK_BA = 0xE000_E000					
SYST_CSR	SYSTICK_BA+0x10	R/W	SysTick Control and Status Register	0x0000_0004		
SYST_RVR	SYSTICK_BA+0x14	R/W	SysTick Reload value Register	0xXXXX_XXXX		
SYST_CVR	SYSTICK_BA+0x18	R/W	SysTick Current value Register	0xXXXX_XXXX		

5.2.6.2 System Timer Control Register Description

SysTick Control and Status (SYST_CSR)

Register	Offset	R/W	Description	Reset Value
SYST_CSR	SYSTICK_BA+0x10	R/W	SysTick Control and Status Register	0x0000_0004

Table 5-12 SysTick Control and Status Register (SYST_CSR, address 0xE000_E010)

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved				CLKSRC	TICKINT	ENABLE		

Bits	Description						
[31:17]	Reserved	Reserved					
[16]	COUNTFLAG	 Count Flag Returns 1 if timer counted to 0 since last time this register was read. 0= Cleared on read or by a write to the Current Value register. 1= Set by a count transition from 1 to 0. 					
[15:3]	Reserved	Reserved					
[2]	CLKSRC	Clock Source 0= Core clock unused. 1= Core clock used for SysTick, this bit will read as 1 and ignore writes.					
[1]	TICKINT	 Enables SysTick Exception Request 0 = Counting down to 0 does not cause the SysTick exception to be pended. Software can use COUNTFLAG to determine if a count to zero has occurred. 1 = Counting down to 0 will cause SysTick exception to be pended. Clearing the SysTick Current Value register by a register write in software will not cause SysTick to be pended. 					
[0]	ENABLE	 ENABLE 0 = The counter is disabled 1 = The counter will operate in a multi-shot manner. 					

SysTick Reload Value Register (SYST_RVR)

Register	Offset	R/W	Description	Reset Value
SYST_RVR	SYSTICK_BA+0x14	R/W	SysTick Reload value Register	0xXXXX_XXXX

Table 5-13 SysTick Reload Value Register (SYST_RVR, address 0xE000_E014)

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	RELOAD[23:16]									
15	14	13	12	11	10	9	8			
			RELOA	D[15:8]						
7	6	5	4	3	2	1	0			
	RELOAD[7:0]									

Bits	Description	
[31:24]	Reserved	Reserved
[23:0]	RELOAD	SysTick Reload Value to load into the Current Value register when the counter reaches 0. To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. For example, if the SysTick interrupt is required every 200 clock pulses, set RELOAD to 199.

SysTick Current Value Register (SYST_CVR)

Register	Offset	R/W	Description	Reset Value
SYST_CVR	SYSTICK_BA+0x18	R/W	SysTick Current value Register	0xXXXX_XXXX

Table 5-14 SysTick Current Value Register (SYST_CVR, address 0xE000_E018)

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			CURREN	IT [23:16]						
15	14	13	12	11	10	9	8			
			CURREN	NT [15:8]						
7	6	5	4	3	2	1	0			
	CURRENT[7:0]									

Bits	Description		
[31:24]	Reserved	Reserved	
[23:0]	CURRENT	Current Counter Value This is the value of the counter at the time it is sampled. The counter does not provide read-modify-write protection. The register is write-clear. A software write of any value will clear the register to 0 and also clear the COUNTFLAG bit.	

5.2.7 Nested Vectored Interrupt Controller (NVIC)

Cortex-M0 includes an interrupt controller the "Nested Vectored Interrupt Controller (NVIC)". It is closely coupled to the processor kernel and provides following features:

- Nested and Vectored interrupt support
- Automatic processor state saving and restoration
- Dynamic priority changing

nuvoton

Reduced and deterministic interrupt latency

The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in "Handler Mode". This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of the interrupts and most of the system exceptions can be configured to different priority levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one's priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will override the current handler.

When any interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched from a vector table in memory. There is no need to determine which interrupt is accepted and branch to the starting address of the corresponding ISR by software. While the starting address is fetched, NVIC will also automatically save processor state including the registers "PC, PSR, LR, R0~R3, R12" to the stack. At the end of the ISR, the NVIC will restore the above mentioned registers from the stack and resume normal execution. This provides a high speed and deterministic time to process any interrupt request.

The NVIC supports "Tail Chaining" which handles back-to-back interrupts efficiently without the overhead of state saving and restoration and therefore reduces delay time in switching to a pending ISR at the end of the current ISR. The NVIC also supports "Late Arrival" which improves the efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will give priority to the higher one without delay penalty. This aids real-time, high priority, interrupt capability.

For more detailed information, please refer to the documents <u>"ARM® Cortex™-M0 Technical</u> <u>Reference Manual"</u> and <u>""ARM® v6-M Architecture Reference Manual"</u>.

5.2.7.1 Exception Model and System Interrupt Map

The following table lists the exception model supported by ISD9160. Software can set four levels of priority on certain exceptions as well as on all interrupts. The highest user-configurable priority is denoted as "0" and the lowest priority is denoted as "3". The default priority of all the user-configurable interrupts is "0". Note that priority "0" is treated as the fourth priority on the system, after three system exceptions "Reset", "NMI" and "Hard Fault".

Exception Name	Vector Number	Priority
Reset	1	-3
NMI	2	-2
Hard Fault	3	-1
Reserved	4 ~ 10	N/A
SVCall	11	Configurable
Reserved	12 ~ 13	N/A
PendSV	14	Configurable
SysTick	15	Configurable
Interrupt (IRQ0 ~ IRQ31)	16 ~ 47	Configurable

Table 5-15 Exception Model

Table 5-16 System Interrupt Map

Vector Number	Interrupt Number (Bit in Interrupt Registers)	Interrupt Name	Source IP	Interrupt description
0 ~ 15	-	-	-	System exceptions
16	0	BOD_IRQn	Brown-Out	Brownout low voltage detector interrupt
17	1	WDT_IRQn	WDT	Watch Dog Timer interrupt
18	2	EINT0_IRQn	GPIO	External signal interrupt from PB.0 pin
19	3	EINT1_IRQn	GPIO	External signal interrupt from PB.1 pin
20	4	GPAB_IRQn	GPIO	External signal interrupt from PA[15:0] / PB[7:2]
21	5	ALC_IRQn	ALC	Automatic Level Control Interrupt
22	6	PWM_IRQn	PWM01	PWM0, PWM1 interrupt
23	7	Reserved		
24	8	TMR0_IRQn	TMR0	Timer 0 interrupt

25	9	TMR1_IRQn	TMR1	Timer 1 interrupt
26	10	Reserved		
27	11	Reserved		
28	12	UART0_IRQn	UART0	UART0 interrupt
29	13	Reserved		
30	14	SPI0_IRQn	SPI0	SPI0 interrupt
31	15	Reserved		
32	16	Reserved		
33	17	Reserved		
34	18	I2C0_IRQn	I2C0	I2C0 interrupt
35	19	Reserved		
36	20	Reserved		
37	21	TALARM_IRQn	TALARM	Temperature Alarm Interrupt
38	22	Reserved		
39	23	Reserved		
40	24	Reserved		
41	25	ACMP_IRQn	ACMP	Analog Comparator-0 or Comaprator-1 interrupt
42	26	PDMA_IRQn	PDMA	PDMA interrupt
43	27	I2S_IRQn	I2S	I2S interrupt
44	28	CAPS_IRQn	ANA	Capacitive Touch Sensing Relaxation Oscillator Interrupt
45	29	ADC_INT	SDADC	Audio ADC interrupt
46	30	Reserved		
47	31	RTC_INT	RTC	Real time clock interrupt

5.2.7.2 Vector Table

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from the vector table in memory. For ARMv6-M, the vector table base

address is fixed in flash at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table.

Vector Table Word Offset	Description
0	SP_main - The Main stack pointer
Vector Number	Exception Entry Pointer using that Vector Number

Table 5-17 Vector Table Format

5.2.7.3 Operation Description

NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not activate. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in next section.

5.2.7.4 NVIC Control Registers

R: read only, W: write only, R/W: both read and write, W&C: Write 1 clear

Register	Offset	R/W	Description	Reset Value			
SCS Base Addres	SCS Base Address:						
SCS_BA = 0xE00	0_E000						
NVIC_ISER	SCS_BA+0x100	R/W	IRQ0 ~ IRQ31 Set-Enable Control Register	0x0000_0000			
NVIC_ICER	SCS_BA+0x180	R/W	IRQ0 ~ IRQ31 Clear-Enable Control Register	0x0000_0000			
NVIC_ISPR	SCS_BA+0x200	R/W	IRQ0 ~ IRQ31 Set-Pending Control Register	0x0000_0000			
NVIC_ICPR	SCS_BA+0x280	R/W	IRQ0 ~ IRQ31 Clear-Pending Control Register	0x0000_0000			
NVIC_IPR0	SCS_BA+0x400	R/W	IRQ0 ~ IRQ3 Priority Control Register	0x0000_0000			
NVIC_IPR1	SCS_BA+0x404	R/W	IRQ4 ~ IRQ7 Priority Control Register	0x0000_0000			
NVIC_IPR2	SCS_BA+0x408	R/W	IRQ8 ~ IRQ11 Priority Control Register	0x0000_0000			
NVIC_IPR3	SCS_BA+0x40C	R/W	IRQ12 ~ IRQ15 Priority Control Register	0x0000_0000			
NVIC_IPR4	SCS_BA+0x410	R/W	IRQ16 ~ IRQ19 Priority Control Register	0x0000_0000			
NVIC_IPR5	SCS_BA+0x414	R/W	IRQ20 ~ IRQ23 Priority Control Register	0x0000_0000			
NVIC_IPR6	SCS_BA+0x418	R/W	IRQ24 ~ IRQ27 Priority Control Register	0x0000_0000			
NVIC_IPR7	SCS_BA+0x41C	R/W	IRQ28 ~ IRQ31 Priority Control Register	0x0000_0000			

IRQ0 ~ IRQ31 Set-Enable Control Register (NVIC_ISER)

Register	Offset	R/W	Description	Reset Value
NVIC_ISER	SCS_BA+0x100	R/W	IRQ0 ~ IRQ31 Set-Enable Control Register	0x0000_0000

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its priority.

Table 5-18 Interrupt Set-Enable Control Register (ISER, address 0xE000_E100) Bit Description

Bits	Description	
[31:0]	SETENA	Set-Enable ControlEnable one or more interrupts within a group of 32. Each bit represents an interruptnumber from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47).Writing 1 will enable the associated interrupt.Writing 0 has no effect.The register reads back the current enable state.

IRQ0 ~ IRQ31 Clear-Enable Control Register (NVIC_ICER)

Register	Offset	R/W	Description	Reset Value
NVIC_ICER	SCS_BA+0x180	R/W	IRQ0 ~ IRQ31 Clear-Enable Control Register	0x0000_0000

Table 5-19 Interrupt Clear-Enable Control Register (ICER, address 0xE000_E180) Bit Description

Bits	Description		
[31:0]	CLRENA	Clear-Enable Control Disable one or more interrupts within a group of 32. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Writing 1 will disable the associated interrupt. Writing 0 has no effect. The register reads back with the current enable state.	

IRQ0 ~ IRQ31 Set-Pending Control Register (NVIC_ISPR)

Register	Offset	R/W	Description	Reset Value
NVIC_ISPR	SCS_BA+0x200	R/W	IRQ0 ~ IRQ31 Set-Pending Control Register	0x0000_0000

Table 5-20 Interrupt Set-Pending Control Register (ISPR, address 0xE000_E200)

Bits	Description		
[31:0]	SETPEND	Set-Pending ControlWriting 1 to a bit forces pending state of the associated interrupt under software control. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47).Writing 0 has no effect. The register reads back with the current pending state.	

IRQ0 ~ IRQ31 Clear-Pending Control Register (NVIC_ICPR)

Register	Offset	R/W	Description	Reset Value
NVIC_ICPR	SCS_BA+0x280	R/W	IRQ0 ~ IRQ31 Clear-Pending Control Register	0x0000_0000

Table 5-21 Interrupt Clear-Pending Control Register (ICPR, address 0xE000_E280)

Bits	Description	
[31:0]	CLRPEND	Clear-Pending Control Writing 1 to a bit to clear the pending state of associated interrupt under software control. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Writing 0 has no effect. The register reads back with the current pending state.

IRQ0 ~ IRQ3 Interrupt Priority Register	(NVIC IPR0)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR0	SCS_BA+0x400	R/W	IRQ0 ~ IRQ3 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	l_3	Reserved					
23	22	21	20	19	18	17	16
PR	I_2	Reserved					
15	14	13	12	11	10	9	8
PR	l_1			Rese	erved		
7	6	5	4	3	2	1	0
PR	I_0	Reserved					

Table 5-22 Interrupt Priority Register (IPR0, address 0xE000_E400)

Bits	Description	Description				
[31:30]	PRI_3	Priority of IRQ3 "0" denotes the highest priority and "3" denotes lowest priority				
[23:22]	PRI_2	Priority of IRQ2 "0" denotes the highest priority and "3" denotes lowest priority				
[15:14]	PRI_1	Priority of IRQ1 "0" denotes the highest priority and "3" denotes lowest priority				
[7:6]	PRI_0	Priority of IRQ0 "0" denotes the highest priority and "3" denotes lowest priority				

Release Date: Mar 30, 2016 Revision V1.41

IRQ4 ~	IRQ7 Interrupt I	Priority Register	r (NVIC_IPR1)	
-				

Register	Offset	R/W	Description	Reset Value
NVIC_IPR1	SCS_BA+0x404	R/W	IRQ4 ~ IRQ7 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	I_7	Reserved					
23	22	21	20	19	18	17	16
PR	I_6		Reserved				
15	14	13	12	11	10	9	8
PR	I_5			Rese	erved		
7	6	5	4	3	2	1	0
PR	I_4	Reserved					

Table 5-23 Interrupt Priority Register (IPR1, address 0xE000_E404)

Bits	Description	Description				
[31:30]	PRI_7	Priority of IRQ7 "0" denotes the highest priority and "3" denotes lowest priority				
[23:22]	PRI_6	Priority of IRQ6 "0" denotes the highest priority and "3" denotes lowest priority				
[15:14]	PRI_5	Priority of IRQ5 "0" denotes the highest priority and "3" denotes lowest priority				
[7:6]	PRI_4	Priority of IRQ4 "0" denotes the highest priority and "3" denotes lowest priority				

IRQ8 ~ IRQ11 Interrupt Priority Register	(NVIC_IPR2)
--	-------------

Register	Offset	R/W	Description	Reset Value
NVIC_IPR2	SCS_BA+0x408	R/W	IRQ8 ~ IRQ11 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_11	Reserved					
23	22	21	20	19	18	17	16
PRI	_10		Reserved				
15	14	13	12	11	10	9	8
PR	1_9			Rese	erved		
7	6	5	4	3	2	1	0
PR	I_8	Reserved					

Table 5-24 Interrupt Priority Register (IPR2, address 0xE000_E408)

Bits	Description	Description				
[31:30]	PRI_11	Priority of IRQ11 "0" denotes the highest priority and "3" denotes lowest priority				
[23:22]	PRI_10	Priority of IRQ10 "0" denotes the highest priority and "3" denotes lowest priority				
[15:14]	PRI_9	Priority of IRQ9 "0" denotes the highest priority and "3" denotes lowest priority				
[7:6]	PRI_8	Priority of IRQ8 "0" denotes the highest priority and "3" denotes lowest priority				

IRQ12 ~ IRQ15 Interrupt Priority Regist	ter (NVIC_IPR3)
---	-----------------

Register	Offset	R/W	Description	Reset Value
NVIC_IPR3	SCS_BA+0x40C	R/W	IRQ12 ~ IRQ15 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	l_15	Reserved					
23	22	21	20	19	18	17	16
PR	l_14		Reserved				
15	14	13	12	11	10	9	8
PR	L_13			Rese	erved		
7	6	5	4	3	2	1	0
PR	l_12	Reserved					

Table 5-25 Interrupt Priority Register (IPR3, address 0xE000_E40C)

Bits	Description	Jescription				
[31:30]	PRI_15	Priority of IRQ15 "0" denotes the highest priority and "3" denotes lowest priority				
[23:22]	PRI_14	Priority of IRQ14 "0" denotes the highest priority and "3" denotes lowest priority				
[15:14]	PRI_13	Priority of IRQ13 "0" denotes the highest priority and "3" denotes lowest priority				
[7:6]	PRI_12	Priority of IRQ12 "0" denotes the highest priority and "3" denotes lowest priority				

IRQ16 ~ IRQ19 Interrupt Priority Register (NVIC_IPR4)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR4	SCS_BA+0x410	R/W	IRQ16 ~ IRQ19 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_19	Reserved					
23	22	21	20	19	18	17	16
PRI	_18	Reserved					
15	14	13	12	11	10	9	8
PRI	_17			Rese	erved		
7	6	5	4	3	2	1	0
PRI	_16	Reserved					

Table 5-26 Interrupt Priority Register (IPR4, address 0xE000_E410)

Bits	Description	Description				
[31:30]	PRI_19	Priority of IRQ19 "0" denotes the highest priority and "3" denotes lowest priority				
[23:22]	PRI_18	Priority of IRQ18 "0" denotes the highest priority and "3" denotes lowest priority				
[15:14]	PRI_17	Priority of IRQ17 "0" denotes the highest priority and "3" denotes lowest priority				
[7:6]	PRI_16	Priority of IRQ16 "0" denotes the highest priority and "3" denotes lowest priority				

IRQ20 ~ IRQ23 Interrupt Priority Register	(NVIC_IPR5)
---	-------------

Register	Offset	R/W	Description	Reset Value
NVIC_IPR5	SCS_BA+0x414	R/W	IRQ20 ~ IRQ23 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_23	Reserved					
23	22	21	20	19	18	17	16
PRI	_22	Reserved					
15	14	13	12	11	10	9	8
PRI	_21			Rese	erved		
7	6	5	4	3	2	1	0
PRI	_20	Reserved					

Table 5-27 Interrupt Priority Register (IPR5, address 0xE000_E414)

Bits	Description	Description				
[31:30]	PRI_23	Priority of IRQ23 "0" denotes the highest priority and "3" denotes lowest priority				
[23:22]	PRI_22	Priority of IRQ22 "0" denotes the highest priority and "3" denotes lowest priority				
[15:14]	PRI_21	Priority of IRQ21 "0" denotes the highest priority and "3" denotes lowest priority				
[7:6]	PRI_20	Priority of IRQ20 "0" denotes the highest priority and "3" denotes lowest priority				

IRQ24 ~ IRQ27 Interrupt Priority Register (NVIC_IPR6)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR6	SCS_BA+0x418	R/W	IRQ24 ~ IRQ27 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	_27	Reserved					
23	22	21	20	19	18	17	16
PR	L_26			Rese	erved		
15	14	13	12	11	10	9	8
PR	_25			Rese	erved		
7	6	5	4	3	2	1	0
PR	24		Reserved				

Table 5-28 Interrupt Priority Register (IPR6, address 0xE000_E418)

Bits	Description	Description				
[31:30]	PRI_27	Priority of IRQ27 "0" denotes the highest priority and "3" denotes lowest priority				
[23:22]	PRI_26	Priority of IRQ26 "0" denotes the highest priority and "3" denotes lowest priority				
[15:14]	PRI_25	Priority of IRQ25 "0" denotes the highest priority and "3" denotes lowest priority				
[7:6]	PRI_24	Priority of IRQ24 "0" denotes the highest priority and "3" denotes lowest priority				

IRQ28 ~ IRQ31 Interrupt Priority Register	(NVIC_IPR7)
---	-------------

Register	Offset	R/W	Description	Reset Value
NVIC_IPR7	SCS_BA+0x41C	R/W	IRQ28 ~ IRQ31 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	l_31	Reserved					
23	22	21	20	19	18	17	16
PR	L_30			Rese	erved		
15	14	13	12	11	10	9	8
PR	l_29			Rese	erved		
7	6	5	4	3	2	1	0
PR	_28	Reserved					

Table 5-29 Interrupt Priority Register (IPR7, address 0xE000_E41C)

Bits	Description	Description					
[31:30]	PRI_31	Priority of IRQ31 "0" denotes the highest priority and "3" denotes lowest priority					
[23:22]	PRI_30	Priority of IRQ30 "0" denotes the highest priority and "3" denotes lowest priority					
[15:14]	PRI_29	Priority of IRQ29 "0" denotes the highest priority and "3" denotes lowest priority					
[7:6]	PRI_28	Priority of IRQ28 "0" denotes the highest priority and "3" denotes lowest priority					

5.2.7.5 Interrupt Source Control Registers

Along with the interrupt control registers associated with the NVIC, the ISD9160 also implements some specific control registers to facilitate the interrupt functions, including "interrupt source identify", "NMI source selection" and "interrupt test mode". They are described as below.

Register	Offset	R/W	Description	Reset Value
INT Base Address:				
INT_BA = 0x5000_0	0300			
IRQ0_SRC	INT_BA+0x00	R	IRQ0 (BOD) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ1_SRC	INT_BA+0x04	R	IRQ1 (WDT) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ2_SRC	INT_BA+0x08	R	IRQ2 (EINT0) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ3_SRC	INT_BA+0x0C	R	IRQ3 (EINT1) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ4_SRC	INT_BA+0x10	R	IRQ4 (GPA/B) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ5_SRC	INT_BA+0x14	R	IRQ5 (ALC) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ6_SRC	INT_BA+0x18	R	IRQ6 (PWMA) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ7_SRC	INT_BA+0x1C	R	IRQ7 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ8_SRC	INT_BA+0x20	R	IRQ8 (TMR0) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ9_SRC	INT_BA+0x24	R	IRQ9 (TMR1) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ10_SRC	INT_BA+0x28	R	IRQ10 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ11_SRC	INT_BA+0x2C	R	IRQ11 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ12_SRC	INT_BA+0x30	R	IRQ12 (UART0) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ13_SRC	INT_BA+0x34	R	IRQ13 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ14_SRC	INT_BA+0x38	R	IRQ14 (SPI0) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ15_SRC	INT_BA+0x3C	R	IRQ15 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ16_SRC	INT_BA+0x40	R	IRQ16 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ17_SRC	INT_BA+0x44	R	IRQ17 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ18_SRC	INT_BA+0x48	R	IRQ18 (I2C0) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ19_SRC	INT_BA+0x4C	R	IRQ19 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ20_SRC	INT_BA+0x50	R	IRQ20 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ21_SRC	INT_BA+0x54	R	IRQ21 (TALARM) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ22_SRC	INT_BA+0x58	R	IRQ22 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX

R: read only, W: write only, R/W: both read and write, W&C: Write 1 clear

nuvoTon

ISD9160 Technical Reference Manual

IRQ23_SRC	INT_BA+0x5C	R	IRQ23 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ24_SRC	INT_BA+0x60	R	IRQ24 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ25_SRC	INT_BA+0x64	R	IRQ25 (ACMP) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ26_SRC	INT_BA+0x68	R	IRQ26 (PDMA) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ27_SRC	INT_BA+0x6C	R	IRQ27 (I2S) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ28_SRC	INT_BA+0x70	R	IRQ28 (CAPS) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ29_SRC	INT_BA+0x74	R	IRQ29 (ADC) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ30_SRC	INT_BA+0x78	R	IRQ30 (Reserved) Interrupt Source Identity Register	0xXXXX_XXXX
IRQ31_SRC	INT_BA+0x7C	R	IRQ31 (RTC) Interrupt Source Identity Register	0xXXXX_XXXX
NMI_SEL	INT_BA+0x80	R/W	NMI Source Interrupt Select Control Register	0x0000_0000
MCU_IRQ	INT_BA+0x84	R/W	MCU IRQ Number Identify Register	0x0000_0000

IRQ0(BOD) Interrupt Source Identify Register (IRQ0_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ0_SRC	INT_BA+0x00	R	IRQ0 (BOD) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
Reserved						INT_SRC[2:0]				

Bits	Description			
	INT_SRC	Interrupt Source Identity		
[2:0]		Bit2: 0		
[=:0]		Bit1: 0		
		Bit0: BOD_INT		

IRQ1(WDT) Interrupt Source Identify Register (IRQ1_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ1_SRC	INT_BA+0x04	R	IRQ1 (WDT) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
Reserved					INT_SRC[2:0]					

Bits	Description			
	INT_SRC	Interrupt Source Identity		
[2:0]		Bit2: 0		
[=:0]		Bit1: 0		
		Bit0: WDT_INT		

IRQ2(ENIT0) Interrupt Source Identify Register (IRQ2_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ2_SRC	INT_BA+0x08	R	IRQ2 (EINT0) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
Reserved						INT_SRC[2:0]				

Bits	Description			
	INT_SRC	Interrupt Source Identity		
[2:0]		Bit2: 0 Bit1: 0		
		Bit0: INT0_INT		

IRQ3(ENIT1) Interrupt Source Identify Register (IRQ3_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ3_SRC	INT_BA+0x0C	R	IRQ3 (EINT1) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved					INT_SRC[2:0]					

Bits	Description			
	INT_SRC	Interrupt Source Identity		
[2:0]		Bit2: 0		
[=:0]		Bit1: 0		
		Bit0: INTO_INT		

IRQ4(GPA/B) Interrupt Source Identify Register (IRQ4_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ4_SRC	INT_BA+0x10	R	IRQ4 (GPA/B) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved					INT_SRC[2:0]					

Bits	Description			
[2:0]	INT_SRC	Interrupt Source Identity Bit2: 0		
		Bit1: GPB_INT Bit0: GPA_INT		

IRQ5(ALC) Interrupt Source Identify Register (IRQ5_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ5_SRC	INT_BA+0x14	R	IRQ5 (ALC) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
Reserved					INT_SRC[2:0]					

Bits	Description			
	INT_SRC	Interrupt Source Identity		
[2:0]		Bit2: 0		
[=:0]		Bit1: 0		
		Bit0: ALC_INT		

IRQ6(PWMA) Interrupt Source Identify Register (IRQ6_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ6_SRC	INT_BA+0x18	R	IRQ6 (PWMA) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved						INT_SRC[2:0]				

Bits	Description			
	INT_SRC	Interrupt Source Identity		
[2:0]		Bit2: 0		
[=:0]		Bit1: 0		
		Bit0: PWM_INT		

IRQ8(TMR0) Interrupt Source Identify Register (IRQ8_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ8_SRC	INT_BA+0x20	R	IRQ8 (TMR0) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved						INT_SRC[2:0]				

Bits	Description		
	INT_SRC	Interrupt Source Identity	
[2:0]		Bit2: 0	
[=:0]		Bit1: 0	
		Bit0: TMR0_INT	

IRQ9(TMR1) Interrupt Source Identify Register (IRQ9_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ9_SRC	INT_BA+0x24	R	IRQ9 (TMR1) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved						INT_SRC[2:0]				

Bits	Description		
[2:0] INT_		Interrupt Source Identity	
	INT_SRC	Bit2: 0	
		Bit1: 0	
		Bit0: TMR1_INT	

IRQ12(UART0) Interrupt Source Identify Register (IRQ8_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ12_SRC	INT_BA+0x30	R	IRQ12 (UART0) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
Reserved				INT_SRC[2:0]			

Bits	Description		
[2:0] INT_SR		Interrupt Source Identity	
	INT_SRC	Bit2: 0	
		Bit1: 0	
		Bit0: UART0_INT	

IRQ14(SPI0) Interrupt Source Identify Register (IRQ14_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ14_SRC	INT_BA+0x38	R	IRQ14 (SPI0) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
Reserved			INT_SRC[2:0]				

Bits	Description		
[2:0] II	INT_SRC	Interrupt Source Identity	
		Bit2: 0	
		Bit1: 0	
		Bit0: SPI0_INT	
IRQ18(I2C0) Interrupt Source Identify Register (IRQ18_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ18_SRC	INT_BA+0x48	R	IRQ18 (I2C0) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					INT_SRC[2:0]		

Bits	Description		
		Interrupt Source Identity	
[2:0] INT_S	INT_SRC	Bit2: 0	
[=:0]		Bit1: 0	
	Bit0: I2C0_INT		

IRQ21(TALARM) Interrupt Source Identify Register (IRQ21_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ21_SRC	INT_BA+0x54	R	IRQ21 (TALARM) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					INT_SRC[2:0]		

Bits	Description		
		Interrupt Source Identity	
[2:0]	INT_SRC	Bit2: 0	
[=:0]		Bit1: 0	
	Bit0: TALARM_INT		

IRQ25(TALARM) Interrupt Source Identify Register (IRQ25_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ25_SRC	INT_BA+0x64	R	IRQ25 (ACMP) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					INT_SRC[2:0]		

Bits	Description		
		Interrupt Source Identity	
[2:0]	INT_SRC	Bit2: 0	
[=-•]		Bit1: 0	
	Bit0: TALARM_INT		

IRQ26(PDMA) Interrupt Source Identify Register (IRQ26_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ26_SRC	INT_BA+0x68	R	IRQ26 (PDMA) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					INT_SRC[2:0]		

Bits	Description		
		Interrupt Source Identity	
[2:0]	INT_SRC	Bit2: 0	
[=:0]		Bit1: 0	
	Bit0: PDMA_INT		

IRQ27(I2S) Interrupt Source Identify Register (IRQ27_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ27_SRC	INT_BA+0x6C	R	IRQ27 (I2S) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	7 6 5 4 3 2 1 0						0
Reserved					INT_SRC[2:0]		

Bits	Description		
		Interrupt Source Identity	
[2:0]	INT_SRC	Bit2: 0	
[=-•]		Bit1: 0	
		Bit0: I2S_INT	

IRQ28(CAPS) Interrupt Source Identify Register (IRQ28_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ28_SRC	INT_BA+0x70	R	IRQ28 (CAPS) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	7 6 5 4 3 2 1 0						0
Reserved					INT_SRC[2:0]		

Bits	Description		
		Interrupt Source Identity	
[2:0]	INT_SRC	Bit2: 0	
[=-•]		Bit1: 0	
		Bit0: CAPS_INT	

IRQ29(ADC) Interrupt Source Identify Register (IRQ29_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ29_SRC	INT_BA+0x74	R	IRQ29 (ADC) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	7 6 5 4 3 2 1 0						0
Reserved					INT_SRC[2:0]		

Bits	Description		
		Interrupt Source Identity	
[2:0]	INT_SRC	Bit2: 0	
[=:0]		Bit1: 0	
		Bit0: ADC_INT	

IRQ31(RTC) Interrupt Source Identify Register (IRQ31_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ31_SRC	INT_BA+0x7C	R	IRQ31 (RTC) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	7 6 5 4 3 2 1 0						0
Reserved					INT_SRC[2:0]		

Bits	Description		
		Interrupt Source Identity	
[2:0]	INT_SRC	Bit2: 0	
		Bit1: 0	
		Bit0: RTC_INT	

NMI Interrupt Source Select Control Register (NMI_SEL)

Register	Offset	R/W	Description	Reset Value
NMI_SEL	INT_BA+0x80	R/W	NMI Source Interrupt Select Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
IRQ_TM	TM Reserved		NMI_SEL[4:0]							

Bits	Description	Description					
[31:7]	Reserved	Reserved					
[7]	IRQ_TM	IRQ Test Mode If set to 1 then peripheral IRQ signals (0-31) are replaced by the value in the MCU_IRQ register. This is a protected register to program first issue the unlock sequence (<u>see Protected Register Lock Key Register (SYS_REGLCTL</u>))					
[4:0]	NMI_SEL	NMI Source Interrupt Select The NMI interrupt to Cortex-M0 can be selected from one of the interrupt[31:0] The NMI_SEL bit[4:0] used to select the NMI interrupt source					

MCU Interrupt Request Source Test Mode Register (MCU_IRQ)

Register	Offset	R/W	Description	Reset Value
MCU_IRQ	INT_BA+0x84	R/W	MCU IRQ Number Identify Register	0x0000_0000

31	30	29	28	27	26	25	24			
	MCU_IRQ[31:24]									
23	22	21	20	19	18	17	16			
			MCU_IR	Q[23:16]						
15	14	13	12	11	10	9	8			
	MCU_IRQ[15:8]									
7	6	5	4	3	2	1	0			
	MCU_IRQ[7:0]									

Bits	Description			
		MCU IRQ Source Test Mode		
		In Normal mode (NMI_SEL register bit [7] aaa 0) The device collects interrupts from each peripheral and synchronizes them to interrupt the Cortex-M0.		
[21.0]	MCU IRQ	In Test mode (NMI_SEL register bit [7] aaa 1), the interrupts from peripherals are blocked, and the interrupts are replaces by MCU_IRQ[31:0].		
[31:0]		When MCU_IRQ[n] is "0" : Writing MCU_IRQ[n] "1" will generate an interrupt to Cortex_M0 NVIC[n].		
		When MCU_IRQ[n] is "1" (meaning an interrupt is asserted) writing MCU_bit[n] '1' will clear the interrupt		
		Writing MCU_IRQ[n] "0" : has no effect.		

5.2.8 System Control Registers

nuvoton

Key control and status features of Coterx-M0 are managed centrally in a System Control Block within the System Control Registers.

For more detailed information, please refer to the documents <u>"ARM® Cortex™-M0 Technical</u> <u>Reference Manual"</u> and <u>"ARM® v6-M Architecture Reference Manual"</u>.

R: read only, W: write only	, R/W : both read and write, W&C : Write 1 clear
-----------------------------	--

Register	Offset	R/W	Description	Reset Value
SYSINFO Base Add	dress:			
SYSINFO_BA = 0xl	E000_E000			
SYSCTL_CPUID	SYSINFO_BA+0xD00	R	CPUID Base Register	0x410C_C200
SYSCTL_ICSR	SYSINFO_BA+0xD04	R/W	Interrupt Control State Register	0x0000_0000
SYSCTL_AIRCTL	SYSINFO_BA+0xD0C	R/W	Application Interrupt and Reset Control Register	0x0000_0000
SYSCTL_SCR	SYSINFO_BA+0xD10	R/W	System Control Register	0x0000_0000
SYSCTL_SHPR2	SYSINFO_BA+0xD1C	R/W	System Handler Priority Register 2	0x0000_0000
SYSCTL_SHPR3	SYSINFO_BA+0xD20	R/W	System Handler Priority Register 3	0x0000_0000

CPUID Base Register (SYSCTL_CPUID)						
Register	Offset	R/W	Description	Reset Value		
SYSCTL_CPUID	SYSINFO_BA+0xD00	R	CPUID Base Register	0x410C_C200		

31	30	29	28	27	26	25	24			
	IMPCODE[7:0]									
23	22	21	20	19	18	17	16			
Reserved				PART[3:0]						
15	14	13	12	11	10	9	8			
			PAR	TNO						
7	6	5	4	3	2	1	0			
PARTNO					REVISI	ON[3:0]				

Bits	Description	
[31:24]	IMPCODE	Implementer Code Assigned By ARM ARM aaa 0x41.
[23:20]	Reserved	Reserved
[19:16]	PART	ARMv6-M Parts Reads as 0xC for ARMv6-M parts
[15:4]	PARTNO	Part Number Reads as 0xC20.
[3:0]	REVISION	Revision Reads as 0x0

Interrupt Control State Register (SYSCTL_ICSR)						
Register Offset R/W Description Reset Value						
SYSCTL_ICSR	SYSINFO_BA+0xD04	R/W	Interrupt Control State Register	0x0000_0000		

31	30	29	28	27	26	25	24
NMIPNSET	Reserved		PPSVISET	PPSVICLR	PSTKISET	PSTKICLR	Reserved
23	22	21	20	19	18	17	16
ISRPREEM	ISRPEND	Reserved			VTPEND[8:4]		
15	14	13	12	11	10	9	8
	VTPEN	ND[3:0]			VTACT[8]		
7	6	5	4	3	2	1	0
VTACT[7:0]							

Bits	Description	
[31]	NMIPNSET	NMI Pending Set Control Setting this bit will activate an NMI. Since NMI is the highest priority exception, it will activate as soon as it is registered. Reads back with current state (1 if Pending, 0 if not).
[28]	PPSVISET	Set A Pending PendSV Interrupt This is normally used to request a context switch. Reads back with current state (1 if Pending, 0 if not).
[27]	PPSVICLR	Clear A Pending PendSV Interrupt Write 1 to clear a pending PendSV interrupt.
[26]	PSTKISET	Set A pending SysTick Reads back with current state (1 if Pending, 0 if not).
[25]	PSTKICLR	Clear A pending SysTick Write 1 to clear a pending SysTick.
[23]	ISRPREEM	ISR Preemptive If set, a pending exception will be serviced on exit from the debug halt state.
[22]	ISRPEND	ISR Pending Indicates if an external configurable (NVIC generated) interrupt is pending.
[20:12]	VTPEND	Vector Pending Indicates the exception number for the highest priority pending exception. The pending state includes the effect of memory-mapped enable and mask registers. It does not include the PRIMASK special-purpose register qualifier. A value of zero indicates no pending exceptions.
[8:0]	VTACT	Vector Active 0: Thread mode Value > 1: the exception number for the current executing exception.

Application Interrupt and Reset Control Register (SYSCTL_AIRCTL)							
Register Offset R/W Description Reset Value							
SYSCTL_AIRCTL	SYSINFO_BA+0xD0C	R/W	Application Interrupt and Reset Control Register	0x0000_0000			

31	30	29	28	27	26	25	24			
	VTKEY									
23	22	21	20	19	18	17	16			
			VTI	KEY						
15	14	13	12	11	10	9	8			
ENDIANES				Reserved						
7	6	5	4	3	2	1	0			
Reserved					SRSTREQ	CLRACTVT	Reserved			

Bits	Description	
[31:16]	VTKEY	Vector Key The value 0x05FA must be written to this register, otherwise a write to register is UNPREDICTABLE.
[15]	ENDIANES	Endianess Read Only. Reads 0 indicating little endian machine.
[2]	SRSTREQ	System Reset Request0 =do not request a reset.1 =request reset.Writing 1 to this bit asserts a signal to request a reset by the external system.
[1]	CLRACTVT	Clear All Active VectorClears all active state information for fixed and configurable exceptions.0= do not clear state information.1= clear state information.The effect of writing a 1 to this bit if the processor is not halted in Debug, isUNPREDICTABLE.

System Control Register (SYSCTL_SCR)						
Register	Offset	R/W	Description	Reset Value		
SYSCTL_SCR	SYSINFO_BA+0xD10	R/W	System Control Register	0x0000_0000		

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
Reserved			SEVNONPN	Reserved	SLPDEEP	SLPONEXC	Reserved			

Bits	Description	
[4]	SEVNONPN	Send Event On Pending Bit 0 = only enabled interrupts or events can wake-up the processor, disabled interrupts are excluded. 1 = enabled events and all interrupts, including disabled interrupts, can wake-up the processor. When enabled, interrupt transitions from Inactive to Pending are included in the list of wakeup events for the WFE instruction. When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not waiting for an event, the event is registered and affects the next WFE. The processor also wakes up on execution of an SEV instruction.
[2]	SLPDEEP	Sleep Deep Control Controls whether the processor uses sleep or deep sleep as its low power mode: 0 = sleep 1 = deep sleep. The SLPDEEP flag is also used in conjunction with CLK_PWRCTL register to enter deeper power-down states than purely core sleep states.
[1]	SLPONEXC	Sleep On Exception When set to 1, the core can enter a sleep state on an exception return to Thread mode. This is the mode and exception level entered at reset, the base level of execution. Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.

System Handler Priority Register 2 (SYSCTL_SHPR2) Register Offset R/W Description Reset Value SYSCTL_SHPR2 SYSINFO_BA+0xD1C R/W System Handler Priority Register 2 0x0000_0000

31	30	29	28	27	26	25	24	
PR	111			Rese	erved			
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
Reserved								

Bits	Description	
[31:30]	PRI11	Priority Of System Handler 11 – SVCall "0" denotes the highest priority and "3" denotes lowest priority

System Handler Priority Register 3 (SYSCTL_SHPR3)

Register	Offset	R/W	Description	Reset Value
SYSCTL_SHPR3	SYSINFO_BA+0xD20	R/W	System Handler Priority Register 3	0x0000_0000

31	30	29	28	27	26	25	24			
PR	115		Reserved							
23	22	21	20	19	18	17	16			
PR	114			Rese	erved					
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
	Reserved									

Bits	Description		
[31:30]	PRI15	Priority Of System Handler 15 – SysTick "0" denotes the highest priority and "3" denotes lowest priority	
[23:22]	PRI14	Priority Of System Handler 14 – PendSV "0" denotes the highest priority and "3" denotes lowest priority	

5.3 Clock Controller and Power Management Unit (PMU)

The clock controller generates the clock sources for the whole device, including all AMBA interface modules and all peripheral clocks. Clock gating is provided on all peripheral clocks to minimize power consumption. The Power Management Unit (PMU) implements power control functions which can place the device into various power saving modes. The device will enter these various modes by requesting a power mode then requesting the Cortex-M0 to execute the WFI or the WFE instruction.

5.3.1 Clock Generator

The clock generator consists of 3 sources listed below:

- An internal programmable high frequency oscillator factory trimmed to provide frequencies of 49.152MHz and 32.768MHz to 1% accuracy.
- An external 32kHz crystal
- An internal low power 16 kHz oscillator.

Figure 5-3 Clock generator block diagram

5.3.2 System Clock & SysTick Clock

The system clock has 3 clock sources from clock generator block. The clock source switch depends on the register HCLKSEL (CLK_CLKSEL0[2:0]). The clock is then divided by HCLKDIV+1 to produce the master clock for the device.

Figure 5-4 System Clock Block Diagram

The SysTick clock (STCLK) has five clock sources. The clock source switch depends on the setting of the register STCLKSEL (CLK_CLKSEL0[5:3]).

Figure 5-5 SysTick Clock Control Block Diagram

5.3.3 Peripheral Clocks

Each peripheral has a selectable clock gate. The register CLK_APBCLK0 determines whether the clock is active for each peripheral. In addition, the CLK_SLEEP register determines whether these clocks remain on during M0 sleep mode. Certain peripheral clocks have selectable sources these are controlled by the CLK_CLKSEL1 & CLK_CLKSEL2 register.

5.3.4 Power Management

The ISD9160 is equipped with a Power Management Unit (PMU) that implements a variety of power saving modes. There are four levels of power control with increasing functionality (and power consumption):

- Level0 : Deep Power Down (DPD)
- Level1 : Standby Power Down (SPD)
- Level2 : Deep Sleep
- Level3 : Sleep
- Level4 : Normal Operation

Within each of these levels there are further options to optimize power consumption.

5.3.4.1 Level0: Deep Power Down (DPD)

Deep Power Down (DPD) is the lowest power state the device can obtain. In this state there is no power provided to the logic domain and power consumption is only from the higher voltage chip supply domain. All logic state in the Cortex-M0 is lost as is contents of all RAM. All IO pins of the device are in a high impedance state. On a release from DPD the Cortex-M0 boots as if from a power-on reset. There are certain registers that can be interrogated to allow software to determine that previous state was a DPD state.

In DPD there are three ways to wake up the device:

- 1. A high to low transition on the WAKEUP pin.
- 2. A timed wakeup where the 16KHz oscillator is configured active and reaches a certain count.
- 3. A power cycle of main chip supply triggering a POR event.

To assist software in determining previous state of device before a DPD, a one-byte register is available PD_STATE[7:0] that can be loaded with a value to be preserved before issuing a DPD request.

To configure the device for DPD the user sets the following options:

- CLK_PWRCTL.WKPINEN: If set to '1' then the WAKEUP pin is disabled and will not wake up the chip.
- CLK_PWRCTL.LIRCDPDEN: If set to '1' then the 16KHz oscillator will power down in DPD. No timed wakeup is possible.
- CLK_PWRCTL.SELWKTMR: Each bit in this register will trigger a wakeup event after a certain number of OSC16K clock cycles.

When a WAKEUP event occurs the PMU will start the Cortex-M0 processor and execute the reset vector. The condition that generated the WAKEUP event can be interrogated by reading the registers CLK_PWRCTL.WKPINWKF, CLK_PWRCTL.TMRWKF and CLK_PWRCTL. PORWKF.

To enter the DPD state the user must set the register bit CLK_PWRCTL.DPDEN then execute a WFI or WFE instruction. Note that when debug interface is active, device will not enter DPD. Also once device enters DPD the debug interface will be inactive. It is possible that user could write code that makes it impossible to activate the debug interface and reprogram device, for instance if device reenters DPD mode with insufficient time to allow an ICE tool to activate the SWD debug port. Especially

during development it is recommended that some checks are placed in the boot sequence to prevent device going to power down. A register bit, CLK_DBGPD.DISPDREQ is included for this purpose that will disable power down features. A check such as:

```
void Reset_Handler(void){
/* check ICECLKST and ICEDATST to disable power down to the chip */
    if ( CLK_DBGPD.ICECLKST == 0 && CLK_DBGPD.ICEDATST == 0)
        CLK_DBGPD.DISPDREQ = 1;
    __main();
}
```

Can check the SWD pin state on boot and prevent power down from occurring.

5.3.4.2 Level1: Standby Power Down (SPD) mode.

Standby Power Down mode is the lowest power state that some logic operation can be performed. In this mode power is removed from the majority of the core logic, including the Cortex-M0 and main RAM. A low power standby reference is enabled however that supplies power to a subset of logic including the IO ring, GPIO control, RTC module, 32kHz Crystal Oscillator, Brownout Detector and a 256Byte Standby RAM.

In Standby mode there are three ways to wake up the device:

- 1. An interrupt from the GPIO block (exclude GPB0 & GPB1), for instance a pin transition.
- 2. An interrupt from the RTC module, for instance an alarm or timer event.
- 3. A power cycle of main chip supply triggering a POR event.

When a wake up event occurs the PMU will start the Cortex-M0 processor and execute the reset vector. Software can determine whether the device woke up from SPD by interrogating the register bit CLK_PWRSTSF.SPDF.

To enter the SPD state the user must set the register bit CLK_PWRCTL.PD then execute a WFI or WFE instruction. Note that when debug interface is active, device will not enter SPD. Also once device enters SPD the debug interface will be inactive.

5.3.4.3 Level2: Deep Sleep mode.

The Deep Sleep mode is the lowest power state where the Cortex-M0 and all logic state are preserved. In Deep Sleep mode the CLK48M oscillator is shutdown and a low speed oscillator is selected, if CLK32K is active this source is selected, if not then CLK16K is enabled and selected. All clocks to the Cortex-M0 core are gated eliminating dynamic power in the core. Clocks to peripheral are gated according to the CLK_SLEEP register, note however that HCLK is operating at a low frequency and CLK48M is not available. Deep Sleep mode is entered by setting System Control register bit 2: SCB->SCR \mid = (1UL << 2) and executing a WFI/WFE instruction. Software can determine whether the device woke up from Deep Sleep by interrogating the register bit CLK_PWRSTSF.DSF.

5.3.4.4 Level3: Sleep mode.

The Sleep mode gates all clocks to the Cortex-M0 eliminating dynamic power in the core. In addition, clocks to peripherals are gated according to the CLK_SLEEP register. The mode is entered by executing a WFI/WFE instruction and is released when an event occurs. Peripheral functions, including PDMA can be continued while in Sleep mode. Using this mode power consumption can be minimized while waiting for events such as a PDMA operation collecting data from the ADC, once PDMA has finished the core can be woken up to process the data.

5.3.5 Clock Control Register Map

R: read only, W: write only, R/W: both read and write

nuvoTon

Register	Offset	R/W	Description	Reset Value			
CLK Base Address:	CLK Base Address:						
CLK_BA = 0x5000_	0200						
CLK_PWRCTL	CLK_BA + 0x00	R/W	System Power Control Register	0xXX00_0006			
CLK_AHBCLK	CLK_BA + 0x04	R/W	AHB Device Clock Enable Control Register	0x0000_0005			
CLK_APBCLK0	CLK_BA + 0x08	R/W	APB Device Clock Enable Control Register	0x0000_0000			
CLK_DPDSTATE	CLK_BA + 0x0C	R/W	Deep Power Down State Register	0x0000_XX00			
CLK_CLKSEL0	CLK_BA + 0x10	R/W	Clock Source Select Control Register 0	0x0000_0038			
CLK_CLKSEL1	CLK_BA + 0x14	R/W	Clock Source Select Control Register 1	0x3300_771F			
CLK_CLKDIV0	CLK_BA + 0x18	R/W	Clock Divider Number Register	0x0000_0000			
CLK_CLKSEL2	CLK_BA + 0x1C	R/W	Clock Source Select Control Register 2	0xFFFF_FFFX			
CLK_SLEEPCTL	CLK_BA + 0x20	R/W	Sleep Clock Source Select Register	0xFFFF_FFF			
CLK_PWRSTSF	CLK_BA + 0x24	R/W	Power State Flag Register	0x0000_0000			
CLK_DBGPD	CLK_BA + 0x28	R/W	Debug Port Power Down Disable Register	0x0000_00XX			

5.3.6 Clock Control Register Description

nuvoton

System Power Control Register (CLK_PWRCTL)

This is a protected register, to write to register, first issue the unlock sequence (<u>see Protected Register</u> Lock Key Register (SYS_REGLCTL))

Register	Offset	R/W	Description	Reset Value
CLK_PWRCTL	CLK_BA + 0x00	R/W	System Power Control Register	0xXX00_0006

Table 5-30 System Power Control Register (CLK_PWRCTL, address 0x5000_0200)

31	30	29	28	27	26	25	24
	WKTMRSTS				PORWKF	TMRWKF	WKPINWKF
23	22	21	20	19	18	17	16
	SELWKTMR			Reserved		LIRCDPDEN	WKPINEN
15	14	13	12	11	10	9	8
				DPDEN	SPDEN	STOP	Reserved
7	6	5	4	3	2	1	0
	Reserved				HIRCEN	LXTEN	Reserved

Table 5-31 System Power Control Register (CLK_PWRCTL, address 0x5000_0200) Bit Description.

Bits	Description	
[31:28]	WKTMRSTS	Current Wakeup Timer Setting Read-Only. Read back of the current WAKEUP timer setting. This value is updated with SELWKTMR upon entering DPD mode.
[27]	Reserved	Reserved
[26]	PORWKF	POI Wakeup Flag Read Only. This flag indicates that wakeup of device was requested with a power-on reset. Flag is cleared when DPD mode is entered.
[25]	TMRWKF	Timer Wakeup Flag Read Only. This flag indicates that wakeup of device was requested with TIMER count of the 16Khz oscillator. Flag is cleared when DPD mode is entered.
[24]	WKPINWKF	Pin Wakeup Flag Read Only. This flag indicates that wakeup of device was requested with a high to low transition of the WAKEUP pin. Flag is cleared when DPD mode is entered.

nuvoTon

ISD9160 Technical Reference Manual

Select Wakeup Timer SELWKTMR[0] aaa 1: WAKEUP after 128 OSC16K clocks (12.8 ms) SELWKTMR[1] aaa 1: WAKEUP after 256 OSC16K clocks (25.6 ms) SELWKTMR[2] aaa 1: WAKEUP after 512 OSC16K clocks (51.2 ms) SELWKTMR[2] aaa 1: WAKEUP after 512 OSC16K clocks (51.2 ms)	
[23:20] SELWKTMR SELWKTMR[1] aaa 1: WAKEUP after 256 OSC16K clocks (25.6 ms) SELWKTMR[2] aaa 1: WAKEUP after 512 OSC16K clocks (51.2 ms)	
SELWKTMR[2] aaa 1: WAKEUP after 512 OSC16K clocks (51.2 ms)	
SELWKTMR[3] aaa 1: WAKEUP after 1024 OSC16K clocks (102.4ms)	
[19:18] Reserved Reserved	
OSC16K Enabled Control	
[17] LIRCDPDEN Determines whether OSC16K is enabled in DPD mode. If OSC16K is discumpted and the cannot wake from DPD with SELWKTMR delay.	sabled, device
0 = enabled	
1 = disabled	
Wakeup Pin Enabled Control	
Determines whether WAKEUP pin is enabled in DPD mode.	
[16] WKPINEN 0 = enabled	
1 = disabled	
[15:12] Reserved Reserved	
Deep Power Down (DPD) Bit	
[11] DPDEN Set to '1' and issue WFI/WFE instruction to enter DPD mode.	
Standby Power Down (SPD) Bit	
[10] SPDEN Set to '1' and issue WFI/WFE instruction to enter SPD mode.	
Stop	
[9] STOP Reserved – do not set to '1'	
[8:4] Reserved Reserved	
OSC16K Oscillator Enable Bit	
[3] LIRCEN 0 = disable	
1 = enable (default)	
OSC49M Oscillator Enable Bit	
[2] HIRCEN 0 = disable	
1 = enable (default)	
External 32.768 kHz Crystal Enable Bit	
[1] LXTEN 0 = disable (default)	
1 = enable	
[0] Reserved Reserved	

AHB Device Clock Enable Control Register (CLK_AHBCLK)

These register bits are used to enable/disable the clock source for AHB (Advanced High-Performance Bus) blocks. This is a protected register, to write to register, first issue the unlock sequence (see Protected Register Lock Key Register (SYS_REGLCTL))

Register	Offset	R/W	Description	Reset Value
CLK_AHBCLK	CLK_BA + 0x04	R/W	AHB Device Clock Enable Control Register	0x0000_0005

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
					ISPCKEN	PDMACKEN	HCLKEN

Table 5-32 AHB Device Clock Enable Register (CLK_AHBCLK, address 0x5000_0204) Bit Description.

Bits	Description	Description		
[31:3]	Reserved	Reserved		
[2]	ISPCKEN	Flash ISP Control0 = To disable the Flash ISP engine clock.1 = To enable the Flash ISP engine clock.		
[1]	PDMACKEN	PDMA Controller Clock Enable Control0 = To disable the PDMA engine clock1 = To enable the PDMA engine clock.		
[0]	HCLKEN	CPU Clock Enable (HCLK) Must be left as '1' for normal operation.		

APB Device Clock Enable Control Register (CLK_APBCLK0)

These register bits are used to enable/disable clocks for APB (Advanced Peripheral Bus) peripherals. To enable the clocks write '1' to the appropriate bit. To reduce power consumption and disable the peripheral, write '0' to the appropriate bit.

Register	Offset	R/W	Description	Reset Value
CLK_APBCLK0	CLK_BA + 0x08	R/W	APB Device Clock Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved	ANACKEN	I2S0CKEN	ADCCKEN	Reserved	SBRAMCKEN	Reserved	Reserved
23	22	21	20	19	18	17	16
Reserved	ACMPCKEN	Reserved	PWM0CH01CKE N	CRCCKEN	BFALCKEN	Reserved	UARTCKEN
15	14	13	12	11	10	9	8
Reserved	Reserved	DPWMCKEN	SPI0CKEN	Reserved	Reserved	Reserved	I2C0CKEN
7	6	5	4	3	2	1	0
TMR1CKEN	TMR0CKEN	RTCCKEN	WDTCKEN	Reserved	Reserved	Reserved	Reserved

Table 5-33 APB Device Clock Enable Control Register (CLK_APBCLK0, address 0x5000_0208) Bit Description.

Bits	Description	
[30]	ANACKEN	Analog Block Clock Enable Control 0=Disable 1=Enable
[29]	I2S0CKEN	I2S Clock Enable Control 0=Disable 1=Enable
[28]	ADCCKEN	Audio Analog-Digital-Converter (ADC) Clock Enable Control 0=Disable 1=Enable
[26]	SBRAMCKEN	Standby RAM Clock Enable Control 0=Disable 1=Enable
[22]	ACMPCKEN	Analog Comparator Clock Enable Control 0=Disable 1=Enable

[20]	PWM0CH01CKEN	PWM Block Clock Enable Control 0=Disable 1=Enable
[19]	CRCCKEN	Cyclic Redundancy Check Block Clock Enable Control 0=Disable 1=Enable
[18]	BFALCKEN	Biquad Filter And Automatic Level Control Block Clock Enable Control 0=Disable 1=Enable
[16]	UARTCKEN	UART0 Clock Enable Control 0=Disable 1=Enable
[13]	DPWMCKEN	Differential PWM Speaker Driver Clock Enable Control 0=Disable 1=Enable
[12]	SPIOCKEN	SPI0 Clock Enable Control 0=Disable 1=Enable
[8]	I2C0CKEN	I2C0 Clock Enable Control 0=Disable 1=Enable
[7]	TMR1CKEN	Timer1 Clock Enable Control 0=Disable 1=Enable
[6]	TMR0CKEN	Timer0 Clock Enable Control 0=Disable 1=Enable
[5]	RTCCKEN	Real-Time-Clock APB Interface Clock Control 0=Disable 1=Enable
[4]	WDTCKEN	Watchdog Clock Enable Control 0=Disable 1=Enable

DPD State Register (CLK_DPDSTATE)

The Deep Power Down State register is a user settable register that is preserved during Deep Power Down (DPD). Software can use this register to store a single byte during a DPD event. The DPDSTSRD register reads back the current state of the CLK_DPDSTATE register. To write to this register, set desired value in the DPDSTSWR register, this value will be latched in to the CLK_DPDSTATE register on next DPD event.

Register	Offset	R/W	Description	Reset Value
CLK_DPDSTATE	CLK_BA + 0x0C	R/W	Deep Power Down State Register	0x0000_XX00

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			DPDS	TSRD					
7	6	5	4	3	2	1	0		
	DPDSTSWR								

Table 5-34 DPD State Register (CLK_DPDSTATE, address 0x5000_020C) Bit Description.

Bits	Description				
[15:8]	DPDSTSRD	DPD State Read Back Read back of CLK_DPDSTATE register. This register was preserved from last DPD event .			
[7:0]	DPDSTSWR	DPD State Write To set the CLK_DPDSTATE register, write value to this register. Data is latched on next DPD event.			

Clock Source Select Control Register 0 (CLK_CLKSEL0)

Register	Offset	R/W	Description	Reset Value
CLK_CLKSEL0	CLK_BA + 0x10	R/W	Clock Source Select Control Register 0	0x0000_0038

7	6	5	4	3	2	1	0
Reserved	HIRCFSEL	STCLKSEL			HCLKSEL		

Table 5-35 Clock Source Select Register 0 (CLK_CLKSEL0, address 0x5000_0210) Bit Description.

Bits	Description	
		OSC48M Frequency Select
[6]	HIRCFSEL	Determines which trim setting to use for OSC48M internal oscillator. Oscillator is factory trimmed within 1% to:
		0= 49.152MHz (Default)
		1= 32.768MHz
		MCU Cortex_M0 SysTick Clock Source Select
		These bits are protected, to write to bits first perform the unlock sequence (<u>see</u> <u>Protected Register Lock Key Register (SYS_REGLCTL)</u>)
	STCLKSEL	000 aaa clock source from 16 kHz internal clock
[5:3]		001 aaa clock source from external 32kHz crystal clock
[5.5]		010 aaa clock source from 16 kHz internal oscillator divided by 2
		011 aaa clock source from OSC49M internal oscillator divided by 2
		1xx aaa clock source from HCLK / 2 (Default)
		Note that to use STCLKSEL as source of SysTic timer the CLKSRC bit of SYST_CSR must be set to 0.
		HCLK Clock Source Select
		Ensure that related clock sources (pre-select and new-select) are enabled before updating register.
[2:0]	HCLKSEL	These bits are protected, to write to bits first perform the unlock sequence (see <u>Protected Register Lock Key Register (SYS_REGLCTL)</u>)
[2.0]	HOLNOLL	000 aaa clock source from internal OSC48M oscillator.
		001 aaa clock source from external 32kHz crystal clock
		010 aaa clock source from internal 16 kHz oscillator clock
		Others aaa reserved

Clock Source Select Control Register 1 (CLK_CLKSEL1)

Clock multiplexors are a glitch free design to ensure smooth transitions between asynchronous clock sources. As such, both the current clock source and the target clock source must be enabled for switching to occur. Beware when switching from a low speed clock to a high speed clock that low speed clock remains on for at least one period before disabling.

Register	Offset	R/W	Description	Reset Value
CLK_CLKSEL1	CLK_BA + 0x14	R/W	Clock Source Select Control Register 1	0x3300_771F

31	30	29	28	27	26	25	24
Rese	Reserved PWM0CH01CKSEL			Reserved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
Reserved		TMR1SEL		Reserved	TMR0SEL		
7 6 5 4 3 2 1 0						0	
Reserved			DPWMCKSEL			WDT	SEL

Table 5-36 Clock Source Select Register 1 (CLK_CLKSEL1, address 0x5000_0214) Bit Description.

Bits	Description	
		PWM0 And PWM1 Clock Source Select
		PWM0 and PWM1 uses the same clock source, and prescaler
[29:28]	PWM0CH01CKSEL	00 = clock source from internal 16 kHz oscillator
[23.20]	FWWOCHUTCKSEE	01 = clock source from external 32kHz crystal clock
		10 = clock source from HCLK
		11 = clock source from internal OSC48M oscillator clock
		TIMER1 Clock Source Select
	TMR1SEL	000 aaa clock source from internal 16 kHz oscillator
[14.12]		001 aaa clock source from external 32kHz crystal clock
[14:12]		010 aaa clock source from HCLK
		011 aaa clock source from external pin (GPIOA[15])
		1xx aaa clock source from internal OSC48M oscillator clock
		TIMER0 Clock Source Select
		000 aaa clock source from internal 16 kHz oscillator
[10:8]	TMR0SEL	001 aaa clock source from external 32kHz crystal clock
[10.0]		010 aaa clock source from HCLK
		011 aaa clock source from external pin (GPIOA[14])
		1xx aaa clock source from internal OSC48M oscillator clock

[4]	DPWMCKSEL	Differential Speaker Driver PWM Clock Source Select 0 = OSC48M clock 1 = 2x OSC48M clock
[1:0]	WDTSEL	WDT CLK Clock Source Select 00 = clock source from internal OSC48M oscillator clock 01 = clock source from external 32kHz crystal clock 10 = clock source from HCLK/2048 clock 11 = clock source from internal 16 kHz oscillator clock

Clock Divider Register (CLK_CLKDIV0)					
Register	Offset	R/W	Description	Reset Value	
CLK_CLKDIV0	CLK_BA + 0x18	R/W	Clock Divider Number Register	0x0000_0000	

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	ADCDIV							
15	14	13	12	11	10	9	8	
	Reserved				UAR	TDIV		
7	6	5	4	3	2	1	0	
	Reserved				HCL	KDIV		

Table 5-37 Clock Divider Register (CLK_CLKDIV0, address 0x5000_0218) Bit Description.

Bits	Description	
[23:16]	ADCDIV	ADC Clock Divide Number From ADC Clock Source The ADC clock frequency aaa (ADC clock source frequency) / (ADCDIV + 1)
[11:8]	UARTDIV	UART Clock Divide Number From UART Clock Source The UART clock frequency aaa (UART clock source frequency) / (UARTDIV + 1)
[3:0]	HCLKDIV	HCLK Clock Divide Number From HCLK Clock Source The HCLK clock frequency aaa (HCLK clock source frequency) / (HCLKDIV + 1)

Clock Source Select Control Register 2 (CLK_CLKSEL2)

Before changing clock source, ensure that related clock sources (pre-select and new-select) are enabled.

Register	Offset	R/W	Description	Reset Value
CLK_CLKSEL2	CLK_BA + 0x1C	R/W	Clock Source Select Control Register 2	0xFFFF_FFFX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					1250	SEL

Table 5-38 Clock Source Select Control Register 2 (CLK_CLKSEL2, address 0x5000_021C) Bit Description.

Bits	Description				
[31:2]	Reserved	Reserved			
		I2S Clock Source Select			
		00 = clock source from internal 16 kHz oscillator			
[1:0]	I2S0SEL	01 = clock source from external 32kHz crystal clock			
		10 = clock source from HCLK			
		11 = clock source from internal OSC48M oscillator clock			

Sleep Clock Enable Control Register (CLK_SLEEPCTL)

These register bits are used to enable/disable clocks during sleep mode. It works in conjunction with CLK_AHBCLK and CLK_APBCLK0 clock register to determine whether a clock source remains active during CPU Sleep mode. For a clock to be active in Sleep mode, the appropriate clock must be enabled in the CLK_AHBCLK or CLK_APBCLK0 register and the bit must also be enabled in the CLK_SLEEPCTL register. In other words, to disable a clock in Sleep mode, write '0' to the appropriate bit in CLK_SLEEPCTL.

Register	Offset	R/W	Description	Reset Value
CLK_SLEEPCTL	CLK_BA + 0x20	R/W	Sleep Clock Source Select Register	0xFFFF_FFFF

Table 5-39 Sleep Clock Enable Control Register (CLK_SLEEPCTL, address 0x5000_0220). Bit Description.

31	30	29	28	27	26	25	24
Reserved	ANACKEN	I2S0CKEN	ADCCKEN	Reserved	SBRAMCKEN	Reserved	Reserved
23	22	21	20	19	18	17	16
Reserved	ACMPCKEN	Reserved	PWM0CH01CKE N	CRCCKEN	BFALCKEN	Reserved	UARTCKEN
15	14	13	12	11	10	9	8
Reserved	Reserved	DPWMCKEN	SPI0CKEN	Reserved	Reserved	Reserved	I2C0CKEN
7	6	5	4	3	2	1	0
TMR1CKEN	TMR0CKEN	RTCCKEN	WDTCKEN	Reserved	ISPCKEN	PDMACKEN	HCLKEN

Bits	Description	
[30]	ANACKEN	Analog Block Sleep Clock Enable Control 0=Disable 1=Enable
[29]	I2S0CKEN	I2S Sleep Clock Enable Control 0=Disable 1=Enable
[28]	ADCCKEN	Audio Analog-Digital-Converter (ADC) Sleep Clock Enable Control 0=Disable 1=Enable
[26]	SBRAMCKEN	Standby RAM Sleep Clock Enable Control 0=Disable 1=Enable
[22]	ACMPCKEN	Analog Comparator Sleep Clock Enable Control 0=Disable 1=Enable

		PWM Block Sleep Clock Enable Control
[20]	PWM0CH01CKEN	0=Disable
		1=Enable
[40]	CROCKEN	Cyclic Redundancy Check Sleep Block Clock Enable Control
[19]	CRCCKEN	0=Disable
		1=Enable
		Biquad filter/ALC block Sleep Clock Enable Control
[18]	BFALCKEN	0=Disable
		1=Enable
		UART0 Sleep Clock Enable Control
[16]	UARTCKEN	0=Disable
		1=Enable
		Differential PWM Speaker Driver Sleep Clock Enable Control
[13]	DPWMCKEN	0=Disable
		1=Enable
		SPI0 Sleep Clock Enable Control
[4:0]	SPIOCKEN	0=Disable
[12]	SPIUCKEIN	
		1=Enable
		I2C0 Sleep Clock Enable Control
[8]	I2C0CKEN	0=Disable
		1=Enable
		Timer1 Sleep Clock Enable Control
[7]	TMR1CKEN	0=Disable
		1=Enable
		Timer0 Sleep Clock Enable Control
[6]	TMR0CKEN	0=Disable
		1=Enable
		Real-Time- Sleep Clock APB Interface Clock Control
[5]	RTCCKEN	0=Disable
		1=Enable
		Watchdog Sleep Clock Enable Control
[4]	WDTCKEN	0=Disable
[-]		1=Enable
		Flash ISP Controller Sleep Clock Enable Control
[2]	ISPCKEN	0=Disable
		1=Enable

		PDMA Controller Sleep Clock Enable Control			
[1]	PDMACKEN	0=Disable			
		1=Enable			
	HCLKEN	CPU Clock Sleep Enable (HCLK)			
[0]		Must be left as '1' for normal operation.			
[0]		0=Disable			
		1=Enable			
Register Offset R/W Description	Reset Value				
--	------------------				
CLK_PWRSTSF CLK_BA + 0x24 R/W Power State Flag Regis	ster 0x0000_0000				

7	6	5	4	3	2	1	0
		Reserved	SPDF	STOPF	DSF		

Table 5-40 Power State Flag Register (CLK_PWRSTSF, address 0x5000_0224) Bit Description.

Bits	Description	
[2]	SPDF	Powered Down Flag This flag is set if core logic was powered down to Standby (SPD). Write '1' to clear flag.
[1]	STOPF	Stop Flag This flag is set if core logic was stopped but not powered down. Write '1' to clear flag.
[0]	DSF	Deep Sleep Flag This flag is set if core logic was placed in Deep Sleep mode. Write '1' to clear flag.

Debug Power Down Register (CLK_DBGPD)

Register	Offset	R/W	Description	Reset Value
CLK_DBGPD	CLK_BA + 0x28	R/W	Debug Port Power Down Disable Register	0x0000_00XX

Table 5-41 Debug Power Down Register (CLK_DBGPD, address 0x5000_0228) Bit Description.

7	6	5	4	3	2	1	0
ICEDATST	ICECLKST		Reserved				

Bits	Description	
[7]	ICEDATST	ICE_DAT Pin State Read Only. Current state of ICE_DAT pin.
[6]	ICECLKST	ICE_CLK Pin State Read Only. Current state of ICE_CLK pin.
[0]	DISPDREQ	Disable Power Down 0 = Enable power down requests. 1 = Disable power down requests.

5.4 General Purpose I/O

UVOTON

5.4.1 Overview and Features

Up to 24 General Purpose I/O pins are available on the ISD9160. These are shared peripheral special function pins under control of the alternate configuration registers. These 24 pins are arranged in 2 ports named with GPIOA, and GPIOB. GPIOA has sixteen pins and GPIOB has eight. Each one of the 24 pins is independent and has corresponding register bits to control the pin mode function and data.

The I/O type of each GPIO pin can be independently configured as an input, output, open-drain or in a quasi-bidirectional mode. Upon chip reset, all GPIO pins are configured in quasi-bidirectional mode and port data register resets high.

When device is in deep power down (DPD) mode, all GPIO pins become high impedance.

GPIO can generate interrupt signals to the core as either level sensitive or edge sensitive inputs. Edge sensitive inputs can also be de-bounced.

In quasi-bidirectional mode, each GPIO pin has a weak pull-up resistor which is approximately $110K\Omega \sim 300K\Omega$ for V_{DD} from 5.0V to 2.4V.

Each pin can generate and interrupt exception to the Cortex M0 core. GPIOB[0] and GPIOB[1] can generate interrupts to system interrupt number IRQ2 and IRQ3 respectively (see Table 5-15). All other GPIO generate and exception to interrupt number IRQ4.

5.4.2 GPIO I/O Modes

The I/O mode of each GPIO pin is controlled by the register Px_MODE. (*x=A or B*). Each pin has two bits of control giving four possible states:

5.4.2.1 Input Mode

For $Px_MODE.MODEn = 00b$ the GPIOx port [n] pin is in Input Mode. The GPIO pin is in a tri-state (high impedance) condition without output drive capability. The Px_PIN value reflects the status of the corresponding port pins.

5.4.2.2 Output Mode

For $Px_MODE.MODEn = 01b$ the GPIOx port [n] pin is in Output Mode. The GPIO pin supports a digital output function with current source/sink capability. The bit value in the corresponding bit [n] of Px_DOUT is driven to the pin.

Figure 5-6 Output Mode: Push-Pull Output

5.4.2.3 Open-Drain Mode

For $Px_MODE.MODE n = 10b$ the GPIOx port [n] pin is in Open-Drain mode. The GPIO pin supports a digital output function but only with sink current capability, an additional pull-up resister is needed for defining a high state. If the bit value in the corresponding bit [n] of Px_DOUT is "0", pin is driven low. If the bit value in the corresponding bit [n] of Px_DOUT is "1", the pin state is defined by the external load on the pin.

Figure 5-7 Open-Drain Output

5.4.2.4 Quasi-bidirectional Mode Explanation

For $Px_MODE.MODEn = 11b$ the GPIOx port [n] pin is in Quasi-bidirectional mode and the I/O pin supports digital output and input function where the source current is only between 30-200uA. Before input function is performed the corresponding bit in Px_DOUT must be set to 1. The quasi-bidirectional output is common on the 80C51 and most of its derivatives. If the bit value in the corresponding bit [n] of Px_DOUT is "0", the pin will drive a "low" output to the pin. If the bit value in the corresponding bit [n] of Px_DOUT is "1", the pin will check the pin value. If pin value is high, no action is taken. If pin state is low, then pin will drive a strong high for 2 clock cycles. After this the pin has an internal pull-up resistor connected. Note that the source current capability in quasi-bidirectional mode is approximately 200uA to 30uA for VDD form 5.0V to 2.4V.

Figure 5-8 Quasi-bidirectional GPIO Mode

5.4.3 GPIO Control Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
GPIO Base Addre	ess:			
GPIO_BA = 0x50	000_4000			
PA_MODE	GPIO_BA+0x000	R/W	GPIO Port A Pin I/O Mode Control	0xFFFF_FFFF
PA_DINOFF	GPIO_BA+0x004	R/W	GPIO Port A Pin Digital Input Disable	0x0000_0000
PA_DOUT	GPIO_BA+0x008	R/W	GPIO Port A Data Output Value	0x0000_FFFF
PA_DATMSK	GPIO_BA+0x00C	R/W	GPIO Port A Data Output Write Mask	0xXXXX_0000
PA_PIN	GPIO_BA+0x010	R	GPIO Port A Pin Value	0x0000_XXXX
PA_DBEN	GPIO_BA+0x014	R/W	GPIO Port A De-bounce Enable	0xXXXX_0000
PA_INTTYPE	GPIO_BA+0x018	R/W	GPIO Port A Interrupt Mode Control	0xXXXX_0000
PA_INTEN	GPIO_BA+0x01C	R/W	GPIO Port A Interrupt Enable	0x0000_0000
PA_INTSRC	GPIO_BA+0x020	R/W	GPIO Port A Interrupt Trigger Source Indicator	0x0000_0000
PB_MODE	GPIO_BA+0x040	R/W	GPIO Port B Pin I/O Mode Control	0xFFFF_FFF
PB_DINOFF	GPIO_BA+0x044	R/W	GPIO Port B Pin Digital Input Disable	0x0000_0000
PB_DOUT	GPIO_BA+0x048	R/W	GPIO Port B Data Output Value	0x0000_XXFF
PB_DATMSK	GPIO_BA+0x04C	R/W	GPIO Port B Data Output Write Mask	0xXXXX_0000
PB_PIN	GPIO_BA+0x050	R	GPIO Port B Pin Value	0x0000_XXXX
PB_DBEN	GPIO_BA+0x054	R/W	GPIO Port B De-bounce Enable	0xXXXX_0000
PB_INTTYPE	GPIO_BA+0x058	R/W	GPIO Port B Interrupt Mode Control	0xXXXX_0000
PB_INTEN	GPIO_BA+0x05C	R/W	GPIO Port B Interrupt Enable	0x0000_0000
PB_INTSRC	GPIO_BA+0x060	R/W	GPIO Port B Interrupt Trigger Source Indicator	0x0000_0000
GPIO_DBCTL	GPIO_BA+0x180	R/W	Interrupt De-bounce Control	0x0000_0020

5.4.4 GPIO Control Register Description

nuvoTon

GPIO Port [A/B] I/O Mode Control (Px_MODE)

Register	Offset	R/W	Description	Reset Value
PA_MODE	GPIO_BA+0x000	R/W	GPIO Port A Pin I/O Mode Control	0xFFFF_FFFF
PB_MODE	GPIO_BA+0x040	R/W	GPIO Port B Pin I/O Mode Control	0xFFFF_FFFF

Table 5-42 GPIO Mode Control Register

31	30	29	28	27	26	25	24
MOE	MODE15 MODE14		MODE13		MODE12		
23	22	21	20	19	18	17	16
MOE	DE11	MOD	DE10	MODE9		MODE8	
15	14	13	12	11	10	9	8
MO	DE7	MO	DE6	MODE5		MODE4	
7	6	5	4	3	2	1	0
MO	MODE3 MODE2		MODE1		MODE0		

Bits	Description				
	GPIOx I/O Pin[n] Mode Control				
		Determine each I/O type of GPIOx pins.			
[2n+1 :2n]	- MODE <i>n</i>	00 = GPIO port [n] pin is in INPUT mode.			
n=0,115		01 = GPIO port [n] pin is in OUTPUT mode.			
		10 = GPIO port [n] pin is in Open-Drain mode.			
		11 = GPIO port [n] pin is in Quasi-bidirectional mode.			

<u>GPIO I</u>	GPIO Port [A/B] Input Disable (Px_DINOFF)						
Register Offset R/W			Description	Reset Value			
PA_DINOFF	GPIO_BA+0x004	R/W	GPIO Port A Pin Digital Input Disable	0x0000_0000			
PB_DINOFF	GPIO_BA+0x044	R/W	GPIO Port B Pin Digital Input Disable	0x0000_0000			

Table 5-43 GPIO Input Disable Register

31	30	29	28	27	26	25	24			
	DINOFF[31:24]									
23	22	21	20	19	18	17	16			
	DINOFF[23:16]									
15	14	13	12	11	10	9	8			
			Rese	rved						
7	6	5	4	3	2	1	0			
	Reserved									

Bits	Description	
[n] n=16,1731	DINOFF	 GPIOx Pin[n] OFF Digital Input Path Enable 0 = Enable IO digital input path (Default) 1 = Disable IO digital input path (low leakage mode)
[15:0]	Reserved	Reserved

nuvoTon **ISD9160 Technical Reference Manual**

GPIO Port [A/B] Data Output Value (Px_DOUT)							
Register	Register Offset R/W Description R						
PA_DOUT	GPIO_BA+0x008	R/W	GPIO Port A Data Output Value	0x0000_FFFF			
PB_DOUT	GPIO_BA+0x048	R/W	GPIO Port B Data Output Value	0x0000_XXFF			

Table 5-44 GPIO Data Output Register (Px_DOUT)

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			DOUT	[15:8]						
7	6	5	4	3	2	1	0			
	DOUT[7:0]									

Bits	Description	
		GPIOx Pin[n] Output Value
[<i>n</i>]	[n] DOUT	Each of these bits controls the status of a GPIO pin when the GPIO pin is configured as output, open-drain or quasi-bidirectional mode.
n=0,115		0 = GPIO port [A/B] Pin[<i>n</i>] will drive Low if the corresponding output mode bit is set.
	1 = GPIO port [A/B] Pin[n] will drive High if the corresponding output mode bit is set.	

Register	Offset	R/W	Description	Reset Value				
PA_DATMSK	GPIO_BA+0x00C	R/W	GPIO Port A Data Output Write Mask	0xXXXX_0000				
PB_DATMSK	GPIO_BA+0x04C	R/W	GPIO Port B Data Output Write Mask	0xXXXX_0000				

GPIO Port [A/B] Data Output Write Mask (Px_DATMSK)

Table 5-45 GPIO Data Output Write Mask Register (Px_DATMSK)

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
	DATMSK[15:8]									
7	6	5	4	3	2	1	0			
	DATMSK[7:0]									

Bits	Description	
		Port [A/B] Data Output Write Mask
[<i>n</i>]	DATMSK	These bits are used to protect the corresponding register of Px_DOUT bit[<i>n</i>]. When set the DATMSK bit[<i>n</i>] to "1", the corresponding DOUT <i>n</i> bit is write-protected.
n=0,115		0 = The corresponding Px_DOUT[<i>n</i>] bit can be updated
		1 = The corresponding Px_DOUT[<i>n</i>] bit is read only

GPIO Port [A/B] Pin Value (Px_PIN)							
Register	Offset	R/W	Description	Reset Value			
PA_PIN	GPIO_BA+0x010	R	GPIO Port A Pin Value	0x0000_XXXX			
PB_PIN	GPIO_BA+0x050	R	GPIO Port B Pin Value	0x0000_XXXX			

Table 5-46 GPIO PIN Value Register (Px_PIN)

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
	PIN[15:8]									
7	6	5	4	3	2	1	0			
	PIN[7:0]									

Bits	Description	
[n] n=0,115	PIN	Port [A/B] Pin Values The value read from each of these bit reflects the actual status of the respective GPIO pin

GPIO Port [A/B] De-bounce Enable (Px_DBEN)							
Register Offset R/W Description Rese							
PA_DBEN	GPIO_BA+0x014	R/W	GPIO Port A De-bounce Enable	0xXXXX_0000			
PB_DBEN	GPIO_BA+0x054	R/W	GPIO Port B De-bounce Enable	0xXXXX_0000			

Table 5-47 GPIO Debounce Enable Register (Px_DBEN)

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	DBEN[15:8]									
7	6	5	4	3	2	1	0			
	DBEN[7:0]									

Bits	Description	
[<i>n</i>] n=0,115	DBEN	Port [A/B] Input Signal De-bounce Enable DBEN[n]used to enable the de-bounce function for each corresponding bit. For an edge triggered interrupt to be generated, input signal must be valid for two consecutive de-bounce periods. The de-bounce time is controlled by the GPIO_DBCTL register. The DBEN[n] is used for "edge-trigger" interrupt only; it is ignored for "level trigger" interrupt
		0 = The bit[<i>n</i>] de-bounce function is disabled1 = The bit[<i>n</i>] de-bounce function is enabled

GFIO								
Register	er Offset R/W Description R							
PA_INTTYPE	GPIO_BA+0x018	R/W	GPIO Port A Interrupt Mode Control	0xXXXX_0000				
PB_INTTYPE	GPIO_BA+0x058	R/W	GPIO Port B Interrupt Mode Control	0xXXXX_0000				

GPIO Port [A/B] Interrupt Mode Control (Px_INTTYPE)

Table 5-48 GPIO Interrupt Mode Control (Px_INTTYPE)

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	TYPE[15:8]									
7	6	5	4	3	2	1	0			
	TYPE[7:0]									

Bits	Description	
		Port [A/B] Edge Or Level Detection Interrupt Control
[<i>n</i>]	TYPE	TYPE[<i>n</i>] used to control whether the interrupt mode is level triggered or edge triggered. If the interrupt mode is edge triggered, edge de-bounce is controlled by the DBEN register. If the interrupt mode is level triggered, the input source is sampled each clock to generate an interrupt.
n=0,115		0 = Edge triggered interrupt
		1 = Level triggered interrupt
		If level triggered interrupt is selected, then only one level can be selected in the Px_INTEN register. If both levels are set no interrupt will occur.

GPIO Port [A/B] Interrupt Enable Control (PX_INTEN)						
Register	Offset R/W Description R					
PA_INTEN	GPIO_BA+0x01C	R/W	GPIO Port A Interrupt Enable	0x0000_0000		
PB_INTEN	GPIO_BA+0x05C	R/W	GPIO Port B Interrupt Enable	0x0000_0000		

GPIO Port [A/B] Interrupt Enable Control (Px_INTEN)

Table 5-49 GPIO Interrupt Enable Control Register (Px_INTEN)

31	30	29	28	27	26	25	24			
	RHIEN[15:8]									
23	22	21	20	19	18	17	16			
	RHIEN[7:0]									
15	14	13	12	11	10	9	8			
FLIEN[15:8]										
7	6	5	4	3	2	1	0			
	FLIEN[7:0]									

Bits	Description				
		Port [A/B] Interrupt Enable by Input Rising Edge or Input Level High			
		RHIEN[n] is used to enable the rising/high interrupt for each of the corresponding GPIO pins. It also enables the pin wakeup function.			
[n . 16]		If the interrupt is configured in level trigger mode, a level "high" will generate an interrupt.			
n=0,115	[n+16] n=0,115	If the interrupt is configured in edge trigger mode, a state change from "low-to-high" will generate an interrupt.			
		GPB.0 and GPB.1 trigger individual IRQ vectors (IRQ2/IRQ3) while remaining GPIO trigger a single interrupt vector IRQ4.			
		0 = Disable GPIOx[n] for level-high or low-to-high interrupt.			
		1 = Enable GPIOx[n] for level-high or low-to-high interrupt			
		Port [A/B] Interrupt Enable by Input Falling Edge or Input Level Low			
		FLIEN[n] is used to enable the falling/low interrupt for each of the corresponding GPIO pins. It also enables the pin wakeup function.			
[2]		If the interrupt is configured in level trigger mode, a level "low" will generate an interrupt.			
[n] n=0,115	FLIEN	If the interrupt is configured in edge trigger mode, a state change from "high-to-low" will generate an interrupt.			
		GPB.0 and GPB.1 trigger individual IRQ vectors (IRQ2/IRQ3) while remaining GPIO trigger a single interrupt vector IRQ4.			
		0 = Disable GPIOx[n] for low-level or high-to-low interrupt			
		1 = Enable GPIOx[n] for low-level or high-to-low interrupt			

nuvoton **ISD9160 Technical Reference Manual**

GPIO	GPIO Port [A/B] Interrupt Trigger Source (Px_INTSRC)							
Register	Register Offset R/W Description R							
PA_INTSRC	GPIO_BA+0x020	R/W	GPIO Port A Interrupt Trigger Source Indicator	0x0000_0000				
PB_INTSRC	GPIO_BA+0x060	R/W	GPIO Port B Interrupt Trigger Source Indicator	0x0000_0000				

----- - - -....

Table 5-50 GPIO Interrupt Trigger Source Register (Px_INTSRC)

15	14	13	12	11	10	9	8	
INTSRC[15:8]								
7	6	5	4	3	2	1	0	
INTSRC[7:0]								

Bits	Description				
		Port [A/B] Interrupt Trigger Source Indicator			
		Read :			
[2]		1 aaa Indicates GPIOx[n] generated an interrupt			
[n]	INTSRC	0 aaa No interrupt from GPIOx[n]			
n=0,115		Write :			
		1 aaa Clear the corresponding pending interrupt.			
		0 aaa No action			

Interrupt De-bounce Control (GPIO_DBCTL)

Register	Offset	R/W	Description	Reset Value
GPIO_DBCTL	GPIO_BA+0x180	R/W	Interrupt De-bounce Control	0x0000_0020

Table 5-51 GPIO Interrupt De-bounce Control Register (GPIO_DBCTL)

7	6	5	4	3	2	1	0
Reserved		ICLKON	DBCLKSRC		DBCL	KSEL	

Bits	Description	Description					
		Interrupt Clock On Mode					
[5]	ICLKON	Set this bit "0" will gate the clock to the interrupt generation circuit if the GPIOx[n] interrupt is disabled.					
		0 = disable the clock if the GPIOx[n] interrupt is disabled					
		1 = Interrupt generation clock always active.					
		De-bounce Counter Clock Source Select					
[4]	DBCLKSRC	0 = De-bounce counter clock source is HCLK					
		1 = De-bounce counter clock source is the internal 16 kHz clock					
		De-bounce Sampling Cycle Selection.					
[3:0]	DBCLKSEL	For edge level interrupt GPIO state is sampled every 2 ^(DBCLKSEL) de-bounce clocks. For example if DBCLKSRC aaa 6, then interrupt is sampled every 2 ⁶ aaa 64 de-bounce clocks. If DBCLKSRC is 16KHz oscillator this would be a 64ms de-bounce.					

5.5 Brownout Detection and Temperature Alarm

nuvoton

The ISD9160 is equipped with a Brown-Out voltage detector and Over Temperature Alarm. The Brown-Out detector features a configurable trigger level and can be configured by flash to be active upon reset. The Brown-Out detector also has a power saving mode where detection can be set up to be active for a configurable on and off time.

TALARM and BOD operation require that the OSC16K low power oscillator is enabled ($CLK_PWRCTL.LIRCDPDEN = 0$).

The over temperature alarm is designed to protect the chip from dangerously high internal temperatures, generally associated with excessive load (or short circuit) on the speaker driver. The temperature alarm can generate an interrupt to which the CPU can respond and shut down the speaker driver. It is recommended that users implement this function due to the drive strength of the speaker driver has the capability of damaging the chip.

5.5.1 Brownout and Temperature Alarm Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
BOD Base Address:							
BODTALM_BA = 0x4008_4000							
BODTALM_BODSEL	BODTALM_BA+0x00	R/W	Brown Out Detector Select Register	0x0000_0000			
BODTALM_BODCTL	BODTALM_BA+0x04	R/W	Brown Out Detector Enable Register	0x0000_00XX			
BODTALM_TALMSEL	BODTALM_BA+0x08	R/W	Temperature Alarm Select Register	0x0000_0000			
BODTALM_TALMCTL	BODTALM_BA+0x0C	R/W	Temperature Alarm Enable Register	0x0000_00XX			
BODTALM_BODDTMR	BODTALM_BA+0x10	R/W	Brown Out Detector Timer Register	0x0003_03E3			

Brown-Out Detector Select Register (BODTALM_BODSEL)

Register	Offset	R/W	Description	Reset Value
BODTALM_BODSEL	BODTALM_BA+0x00	R/W	Brown Out Detector Select Register	0x0000_0000

Table 5-52 Brownout Detector Select Register (BODTALM_BODSEL, address 0x4008_4000)

7	6	5	4	3	2	1	0
	Rese	erved		BODHYS		BODVL	

Bits	Description						
[31:4]	Reserved	Reserved					
[3]	BODHYS	BOD Hysteresis 0= Hysteresis Disabled. 1= Enable Hysteresis of BOD detection.					
[2:0]	BODVL	BOD Voltage Level 111b aaa 4.6V 110b aaa 3.0V 101b aaa 2.8V 100b aaa 2.625V 011b aaa 2.5V 010b aaa 2.4V 001b aaa 2.2V 000b aaa 2.1V					

Brown-Out Detector Enable Register (BODTALM_BODCTL)

This register is initialized by user flash configuration bit config0[23] (see <u>Section 6.7</u>). If config0[23]=1, then reset value of BODEN is 0x7. The effect of this is to generate a NMI interrupt (default NMI interrupt is BOD interrupt) if BOD circuit detects a voltage below 2.1V. The NMI ISR can be defined by the user to respond to this low voltage level.

Register	Offset	R/W	Description	Reset Value
BODTALM_BODCTL	BODTALM_BA+0x04	R/W	Brown Out Detector Enable Register	0x0000_00XX

Table 5-53 Detector Enable Register (BODTALM_BODCTL, address 0x4008_4004)

7	6	5	4	3	2	1	0
Reserved		BODOUT	BODIF	BODINTEN	BODEN		

Bits	Description	
[31:5]	Reserved	Reserved
[4]	BODOUT	Output of BOD Detection Block This signal can be monitored to determine the current state of the BOD comparator. Read '1' implies that VCC is less than BODVL.
[3]	BODIF	Current Status Of Interrupt Latched whenever a BOD event occurs and BODINTEN aaa 1. Write '1' to clear.
[2]	BODINTEN	BOD Interrupt Enable0= Disable BOD Interrupt.1= Enable BOD Interrupt.
[1:0]	BODEN	 BOD Enable 1xb aaa Enable continuous BOD detection. 01b aaa Enable time multiplexed BOD detection. See BODTALM_BODDTMR register. 00b aaa Disable BOD Detection.

Detection Time Multiplex Register (BODTALM_BODDTMR)

The BOD detector can be set up to take periodic samples of the supply voltage to minimize power consumption. The circuit can be configured and used in Standby Power Down (SPD) mode and can wake up the device if a BOD is event detected. The detection timer uses the OSC16K oscillator as time base so this oscillator must be active for timer operation. When active the BOD circuit requires ~165uA. With default timer settings, average current reduces to 500nA 165uA*DURTON/(DURTON+DURTOFF).

Register	Offset	R/W	Description	Reset Value
BODTALM_BODDTMR	BODTALM_BA+0x10	R/W	Brown Out Detector Timer Register	0x0003_03E3

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Rese	erved		DURTON[3:0]						
15	14	13	12	11	10	9	8			
	DURTOFF[15:8]									
7	6	5	4	3	2	1	0			
	DURTOFF[7:0]									

Table 5-54 Detection Time Multiplex Register (BODTALM_BODDTMR, address 0x4008_4010)

Bits	Description	Description					
[31:20]	Reserved	Reserved					
[19:16]	DURTON	Time BOD Detector Is Active (DURTON+1) * 100us. Minimum value is 1. (default is 400us)					
[15:0]	DURTOFF	Time BOD Detector Is Off (DURTOFF+1)*100us . Minimum value is 7. (default is 99.6ms)					

Temperature Alarm Select Register (BODTALM_TALMSEL)

Register	Offset	R/W	Description	Reset Value
BODTALM_TALMSEL	BODTALM_BA+0x08	R/W	Temperature Alarm Select Register	0x0000_0000

Table 5-55 Temperature Alarm Select Register (BODTALM_TALMSEL, address 0x4008_4008)

7	6	5	4	3	2	1	0
	Reserved				TAL	MVL	

Bits	Description				
[31:4]	Reserved	Reserved			
	[3:0] TALMVL	Temperature Alarm Sense Level			
		0000:105C			
[2:0]		0001:115C			
[3.0]		0010:125C			
		0100:135C			
		1000:145C			

Temperature Alarm Enable Register (BODTALM_TALMCTL)

Register	Offset	R/W	Description	Reset Value
BODTALM_TALMCTL	BODTALM_BA+0x0C	R/W	Temperature Alarm Enable Register	0x0000_00XX

Table 5-56 Temperature Alarm Enable Register (BODTALM_TALMCTL, address 0x4008_400C)

7	6	5	4	3	2	1	0
Reserved				TALMIF	TALMIEN	TALMOUT	TALMEN

Bits	Description	
[31:4]	Reserved	Reserved
[3]	TALMIF	Current status of interrupt Latched whenever a Temperature Sense event occurs and IE aaa 1. Write '1' to clear.
[2]	TALMIEN	TALARM Interrupt Enable 0 = Disable TALARM Interrupt1 = Enable TALARM Interrupt
[1]	TALMOUT	Output of TALARM Block Can be polled to determine whether TALARM active (be 1).
[0]	TALMEN	TALARM Enable0 = Disable TALARM Detection1 = Enable TALARM Detection

5.6 I2C Serial Interface Controller (Master/Slave)

5.6.1 Introduction

I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between devices. The I2C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously. Serial, 8-bit oriented, bi-directional data transfers can be made up 1.0 Mbps.

Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a byteby-byte basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit with the MSB being transmitted first. An acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to Figure 5-9 for more detail I2C BUS Timing.

Figure 5-9 I2C Bus Timing

The device's on-chip I2C logic provides the serial interface that meets the I2C bus standard mode specification. The I2C port handles byte transfers autonomously. To enable this port, the bit ENS1 in I2C_CTL should be set to '1'. The I2C H/W interfaces to the I2C bus via two pins: I2C_SDA (which can be configured as GPIOA[10], GPIOB[3] or GPIOA[3], serial data line) and I2C_SCL (which can be configured as GPIOA[11], GPIOB[2] or GPIOA[1], serial clock line). See **Error! Reference source not found.** and **Error! Reference source not found.** for alternate GPIO pin functions. Pull up resistor is needed for these pins for I2C operation as these are open drain pins.

The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to the bus. The main features of the bus are:

• Master/Slave up to 1Mbit/s

UVOTON

- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer
- Built-in a 14-bit time-out counter will request the I2C interrupt if the I2C bus hangs up and timerout counter overflows.
- External pull-up are needed for high output
- Programmable clocks allow versatile rate control
- Supports 7-bit addressing mode
- I2C-bus controllers support multiple address recognition (Four slave address with mask option)

5.6.1.1 $l^2 C$ Protocol

Normally, a standard communication consists of four parts:

- 1) START or Repeated START signal generation
- 2) Slave address transfer
- 3) Data transfer
- 4) STOP signal generation

ISD9160 Technical Reference Manual

Figure 5-10 I2C Protocol

5.6.1.2 Data transfer on the I2C-bus

UVOTON

A master-transmitter always begins by addressing a slave receiver with a 7-bit address. For a transaction where the master-transmitter is sending data to the slave, the transfer direction is not changed, master is always transmitting and slave acknowledges the data, see Figure 5-11.

Figure 5-11 Master Transmits Data to Slave

For a master to read data from a slave, master addresses slave with the R/W bit set to '1', immediately after the first byte (address) is acknowledged by the slave the transfer direction is changed and slave sends data to the master and master acknowledges the data transfer.

S SLAVE ADDRESS R/W A	DATA A DATA A P
'1'(read)	data transfer (n bytes + acknowledge)

5.6.1.3 START or Repeated START signal

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and SDA lines are high), a master can initiate a transfer by sending a START signal. A START signal, usually referred to as the S-bit, is defined as a HIGH to LOW transition on the SDA line while SCL is HIGH. The START signal denotes the beginning of a new data transfer.

A Repeated START (Sr) is a START signal without first generating a STOP signal. The master uses this method to communicate with another slave or the same slave in a different transfer direction (e.g. from writing to a device to reading from a device) without releasing the bus.

STOP signal

The master can terminate the communication by generating a STOP signal. A STOP signal, usually referred to as the P-bit, is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH.

ISD9160 Technical Reference Manual

Figure 5-13 START and STOP condition

5.6.1.4 Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the slave address. This is a 7-bits calling address followed by a RW bit. The RW bit signals the slave the data transfer direction. No two slaves in the system can have the same address. Only the slave with an address that matches the one transmitted by the master will respond by returning an acknowledge bit by pulling the SDA low at the 9th SCL clock cycle.

5.6.1.5 Data Transfer

UVOTON

Once successful slave addressing has been achieved, the data transfer can proceed on a byte-bybyte basis in the direction specified by the RW bit sent by the master. Each transferred byte is followed by an acknowledge bit on the 9th SCL clock cycle. If the slave signals a Not Acknowledge (NACK), the master can generate a STOP signal to abort the data transfer or generate a Repeated START signal and start a new transfer cycle.

If the master, as the receiving device, does Not Acknowledge (NACK) the slave, the slave releases the SDA line for the master to generate a STOP or Repeated START signal.

Figure 5-14 Bit Transfer on the I2C bus

ISD9160 Technical Reference Manual

Figure 5-15 Acknowledge on the I2C bus

5.6.2 I2C Protocol Registers

The CPU interfaces to the SIO port through the following thirteen special function registers: $I2C_CTL$ (control register), $I2C_STATUS$ (status register), $I2C_DAT$ (data register), ADDRn (address registers, n=0~3), ADRMn (address mask registers, n=0~3), $I2C_CLKDIV$ (clock rate register) and $I2C_TOCTL$ (Time-out counter register). Bits 31~ bit 8 of these I2C special function registers are reserved. These bits do not have any functions and are all zero if read back.

When I2C port is enabled by setting I2CEN (I2C_CTL[6]) to high, the internal states will be controlled by I2C_CTL and I2C logic hardware. Once a new status code is generated and stored in I2C_STATUS, the I2C Interrupt Flag bit SI (I2C_CTL[3]) will be set automatically. If the Enable Interrupt bit EI (I2C_CTL[7]) is set high at this time, the I2C interrupt will be generated. The bit field I2C_STATUS[7:3] stores the internal state code, the lowest 3 bits of I2C_STATUS are always zero and the contents are stable until SI is cleared by software. The base address of the I2C peripheral on the ISD9160 is 0x4002_0000.

5.6.2.1 Address Registers (ADDR)

I2C port is equipped with four slave address registers ADDRn (n=0~3). The contents of the register are irrelevant when I2C is in master mode. In the slave mode, the bit field ADDRn[7:1] must be loaded with the MCU's own slave address. The I2C hardware will react if the contents of ADDR are matched with the received slave address.

The I2C ports support the "General Call" function. If the GC bit (ADDRn[0]) is set the I2C port hardware will respond to General Call address (00H). Clear GC bit to disable general call function.

When GC bit is set, the I2C is in Slave mode, it can be received the general call address by 00H after Master send general call address to I2C bus, then it will follow status of GC mode. If it is in master mode, the AA bit (I2C_CTL[2], Assert Acknowledge control bit) must be cleared when it will send general call address of 00H to I2C bus.

I2C-bus controllers support multiple address recognition with four address mask registers I2ADRMn (n=0-3). When the bit in the address mask register is set to one, it means the received corresponding address bit is don't-care. If the bit is set to zero, that means the received corresponding register bit should be exact the same as address register.

5.6.2.2 Data Register (I2C_DAT)

This register contains a byte of serial data to be transmitted or a byte which has just been received. The CPU can read from or write to this 8-bit (I2C_DAT[7:0]) directly addressable SFR while it is not in the process of shifting a byte. This occurs when SIO is in a defined state and the serial interrupt flag (SI) is set. Data in I2C_DAT[7:0] remains stable as long as SI bit is set. While data is being shifted out, data on the bus is simultaneously being shifted in; I2C_DAT[7:0] always contains the last data byte present on the bus. Thus, in the event of arbitration lost, the transition from master transmitter to slave receiver is made with the correct data in I2C_DAT[7:0].

I2C_DAT[7:0] and the acknowledge bit form a 9-bit shift register, the acknowledge bit is controlled by the SIO hardware and cannot be accessed by the CPU. Serial data is shifted through the acknowledge bit into I2C_DAT[7:0] on the rising edges of serial clock pulses on the SCL line. When a byte has been shifted into I2C_DAT[7:0], the serial data is available in I2C_DAT[7:0], and the acknowledge bit (ACK or NACK) is returned by the control logic during the ninth clock pulse. Serial data is shifted out from I2C_DAT[7:0] on the falling edges of SCL clock pulses, and is shifted into I2C_DAT[7:0] on the falling edges.

Figure 5-16 I2C Data Shift Direction

5.6.2.3 Control Register (I2C_CTL)

The CPU can read from and write to this 8-bit field of I2C_CTL[7:0]. Two bits are affected by hardware: the SI bit is set when the I2C hardware requests a serial interrupt, and the STO bit is cleared when a STOP condition is present on the bus. The STO bit is also cleared when ENS1 = "0".

INTEN Enable Interrupt.

UVOTON

- I2CEN Set to enable I2C serial function block. When ENS=1 the I2C serial function is enabled.
- STA I2C START Control Bit. Setting STA to logic 1 enters master mode, the I2C hardware sends a START or repeat START condition to bus when the bus is free.
- STO 2C STOP Control Bit. In master mode, setting STO transmits a STOP condition to the bus. The I2C hardware will check the bus condition and if a STOP condition is detected this flag will be cleared by hardware. In a slave mode, setting STO resets I2C hardware to the defined "not addressed" slave mode. This means it is NO LONGER in the slave receiver mode to receive data from the master transmit device.
- SI I2C Interrupt Flag. When a new SIO state is present in the I2C_STATUS register, the SI flag is set by hardware, and if bit INTEN (I2C_CTL[7]) is set, the I2C interrupt is requested. SI must be cleared by software. Clear SI is by writing one to this bit.
- AA Assert Acknowledge Control Bit. When AA=1 prior to address or data received, an acknowledged (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line when:
 - 1.) A slave is acknowledging the address sent from master,
 - 2.) A receiver device is acknowledging the data sent by a transmitter.

When AA=0 prior to address or data received, a Not acknowledged (high level to SDA) will be returned during the acknowledge clock pulse on the SCL line.

5.6.2.4 Status Register (I2C_STATUS)

I2C_STATUS[7:0] is an 8-bit read-only register. The three least significant bits are always 0. The bit field I2C_STATUS[7:3] contains the status code. There are 26 possible status codes. When I2C_STATUS[7:0] contains F8H, no serial interrupt is requested. All other I2C_STATUS[7:3] values correspond to defined SIO states. When each of these states is entered, a status interrupt is requested (SI = 1). A valid status code is present in I2C_STATUS[7:3] one machine cycle after SI is set by hardware and is still present one machine cycle after SI has been reset by software.

In addition, state 00H stands for a Bus Error. A Bus Error occurs when a START or STOP condition is present at an illegal position in the format frame. Examples of illegal positions are during the serial transfer of an address byte, a data byte or an acknowledge bit. To recover I2C from bus error, STO should be set and SI should be clear to enter not addressed slave mode. Then clear STO to release bus and to wait new communication. I2C bus cannot recognize stop condition during this action when bus error occurs.

5.6.2.5 I2C Clock Baud Rate Bits (I2C_CLKDIV)

The data baud rate of I2C is determined by I2C_CLKDIV[7:0] register when SIO is in a master mode. It is not important when SIO is in a slave mode. In the slave modes, SIO will automatically synchronize

with any clock frequency up to 400 kHz from master I2C device.

Data Baud Rate of I2C = PCLK /(4x(I2C_CLKDIV[7:0]+1)). If PCLK=16MHz, the I2C_CLKDIV[7:0] = 40 (28H), data baud rate of I2C = 16MHz/(4x(40 + 1)) = 97.5Kbits/sec.

5.6.2.6 The I2C Time-out Counter Register (I2C_TOCTL)

There is a 14-bit time-out counter which can be configured to deal with an I2C bus hang-up. If the time-out counter is enabled, the counter starts up-counting until it overflows (TIF=1) and generates I2C interrupt to CPU or stops counting by clearing ENTI to 0. When time-out counter is enabled, setting flag SI to high will reset counter. Counter will re-start after SI is cleared. If the I2C bus hangs up, counter will overflow and generate a CPU interrupt. Refer to Figure 5-17 for the 14-bit time-out counter. User can clear TIF by writing one to this bit.

Figure 5-17: I2C Time-out Count Block Diagram

5.6.3 Register Mapping

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
I2C Base Address:		ł		
I2C_BA = 0x4002_	0000			
I2C_CTL	I2C_BA+0x00	R/W	I2C Control Register	0x0000_0000
I2C_ADDR0	I2C_BA+0x04	R/W	I2C Slave address Register0	0x0000_0000
I2C_DAT	I2C_BA+0x08	R/W	I2C DATA Register	0x0000_0000
I2C_STATUS	I2C_BA+0x0C	R	I2C Status Register	0x0000_0000
I2C_CLKDIV	I2C_BA+0x10	R/W	I2C clock divided Register	0x0000_0000
I2C_TOCTL	I2C_BA+0x14	R/W	I2C Time out control Register	0x0000_0000
I2C_ADDR1	I2C_BA+0x18	R/W	I2C Slave address Register1	0x0000_0000
I2C_ADDR2	I2C_BA+0x1C	R/W	I2C Slave address Register2	0x0000_0000
I2C_ADDR3	I2C_BA+0x20	R/W	I2C Slave address Register3	0x0000_0000
I2C_ADDRMSK0	I2C_BA+0x24	R/W	I2C Slave address Mask Register0	0x0000_0000
I2C_ADDRMSK1	I2C_BA+0x28	R/W	I2C Slave address Mask Register1	0x0000_0000
I2C_ADDRMSK2	I2C_BA+0x2C	R/W	I2C Slave address Mask Register2	0x0000_0000
I2C_ADDRMSK3	I2C_BA+0x30	R/W	I2C Slave address Mask Register3	0x0000_0000

5.6.4 Register Description

nuvoTon

I2C CONTROL REGISTER (I2C_CTL)

Register	Offset	R/W	Description	Reset Value
I2C_CTL	I2C_BA+0x00	R/W	I2C Control Register	0x0000_0000

7	6	5	4	3	2	1	0
INTEN	I2CEN	STA	STO	SI	AA	Reserved	Reserved

Bits	Description			
		Enable Interrupt		
[7]	INTEN	0 = Disable interrupt.		
		1 = Enable interrupt CPU.		
		I2C Controller Enable Bit		
[6]	I2CEN	0 = Disable		
[0]		1 = Enable		
		Set to enable I2C serial function block.		
		I2C START Control Bit		
[5]	STA	Setting STA to logic 1 will enter master mode, the I2C hardware sends a START or repeat START condition to bus when the bus is free.		
		I2C STOP Control Bit		
[4]	ѕто	In master mode, set STO to transmit a STOP condition to bus. I2C hardware will check the bus condition, when a STOP condition is detected this bit will be cleared by hardware automatically. In slave mode, setting STO resets I2C hardware to the defined "not addressed" slave mode. This means it is NO LONGER in the slave receiver mode able receive data from the master transmit device.		
		I2C Interrupt Flag		
[3]	SI	When a new SIO state is present in the I2C_STATUS register, the SI flag is set by hardware, and if bit EI (I2C_CTL[7]) is set, the I2C interrupt is requested. SI must be cleared by software. Clear SI is by writing one to this bit.		
		Assert Acknowledge Control Bit		
		When AA=1 prior to address or data received, an acknowledge (ACK - low level to SDA) will be returned during the acknowledge clock pulse on the SCL line when:		
[2]	AA	1. A slave is acknowledging the address sent from master,		
		2. The receiver devices are acknowledging the data sent by transmitter.		
		When AA aaa 0 prior to address or data received, a Not acknowledged (high level to SDA) will be returned during the acknowledge clock pulse on the SCL line.		

I2C DATA REGISTER (I2C_DAT)						
Register	Offset	R/W	Description	Reset Value		
I2C_DAT	I2C_BA+0x08	R/W	I2C DATA Register	0x0000_0000		

7	6	5	4	3	2	1	0	
DAT [7:0]								

Bits	Description	
		I2C Data Register
[7:0]	DAT	During master or slave transmit mode, data to be transmitted is written to this register. During master or slave receive mode, data that has been received may be read from this register.

I2C STATUS REGISTER (I2C_STATUS)						
Register	Offset	R/W	Description	Reset Value		
I2C_STATUS	I2C_BA+0x0C	R	I2C Status Register	0x0000_0000		

7	6	5	4	3	2	1	0	
STATUS[7:0]								

Bits	Description			
		I2C Status Register		
		The status register of I2C:		
[7:0]	STATUS	The three least significant bits are always 0. The five most significant bits contain the status code. There are 26 possible status codes. When STATUS contains F8H, no serial interrupt is requested. All other STATUS values correspond to defined I2C states. When each of these states is entered, a status interrupt is requested (SI aaa 1). A valid status code is present in STATUS one PCLK cycle after SI is set by hardware and is still present one PCLK cycle after SI has been reset by software. In addition, states 00H stands for a Bus Error. A Bus Error occurs when a START or STOP condition is present at an illegal position in the frame. Example of illegal position are during the serial transfer of an address byte, a data byte or an acknowledge bit.		

I2C BAUD RATE CONTROL REGISTER (I2C_CLKDIV)							
Register Offset R/W			Description	Reset Value			
I2C_CLKDIV	I2C_BA+0x10	R/W	I2C clock divided Register	0x0000_0000			

7	6	5	4	3	2	1	0	
DIVIDER[7:0]								

Bits	Description	
[7:0]	DIVIDER	I2C Clock Divided Register
		The I2C clock rate bits: Data Baud Rate of I2C aaa PCLK /(4x(CLK+1)).

I2C TIME-OUT COUNTER REGISTER (I2C_TOCTL)						
Register	Reset Value					
I2C_TOCTL	I2C_BA+0x14	R/W	I2C Time out control Register	0x0000_0000		

7	6	5	4	3	2	1	0
Reserved					TOCEN	TOCDIV4	TOIF

Bits	Description	
[2]	TOCEN	Time-out Counter Control Bit 0 = Disable 1 = Enable When enabled, the 14 bit time-out counter will start counting when SI is clear. Setting flag SI to high will reset counter and re-start up counting after SI is cleared.
[1]	TOCDIV4	Time-Out Counter Input Clock Divide By 4 0 = Disable 1 = Enable When enabled, the time-out clock is PCLK/4.
[0]	TOIF	Time-Out Flag0 = No time-out.1 = Time-out flag is set by H/W. It can interrupt CPU. Write 1 to clear

I2C SLAVE ADDRESS REGISTER (I2C_ADDRx)

Register	Offset	R/W	Description	Reset Value
I2C_ADDR0	I2C_BA+0x04	R/W	I2C Slave address Register0	0x0000_0000
I2C_ADDR1	I2C_BA+0x18	R/W	I2C Slave address Register1	0x0000_0000
I2C_ADDR2	I2C_BA+0x1C	R/W	I2C Slave address Register2	0x0000_0000
I2C_ADDR3	I2C_BA+0x20	R/W	I2C Slave address Register3	0x0000_0000

7	6	5	4	3	2	1	0
ADDR[7:1]							

Bits	Description		
		I2C Address Register	
[7:1]	ADDR	The content of this register is irrelevant when I2C is in master mode. In the slave mode, the seven most significant bits must be loaded with the MCU's own address. The I2C hardware will react if any of the addresses are matched.	
		General Call Function	
[0]	GC	0 = Disable General Call Function.	
		1 = Enable General Call Function.	

I2C SLAVE ADDRESS MASK REGISTER (I2C_ADDRMSKx)

Register	Offset	R/W	Description	Reset Value
I2C_ADDRMSK0	I2C_BA+0x24	R/W	I2C Slave address Mask Register0	0x0000_0000
I2C_ADDRMSK1	I2C_BA+0x28	R/W	I2C Slave address Mask Register1	0x0000_0000
I2C_ADDRMSK2	I2C_BA+0x2C	R/W	I2C Slave address Mask Register2	0x0000_0000
I2C_ADDRMSK3	I2C_BA+0x30	R/W	I2C Slave address Mask Register3	0x0000_0000

7	6	5	4	3	2	1	0
ADDRMSKx[7:1]						Reserved	

Bits	Description		
[n] n=1,27	ADDRMSK	 I2C Address Mask register 0 = Mask disable. 1 = Mask enable (the received corresponding address bit is don't care.) 	
		I2C bus controllers support multiple-address recognition with four address mask registers. Bits in this field mask the I2C_ADDRx registers masking bits from the address comparison.	
5.6.5 Modes of Operation

UVOTON

The on-chip I2C ports support five operation modes, Master transmitter, Master receiver, Slave transmitter, Slave receiver, and GC call.

In a given application, I2C port may operate as a master or as a slave. In the slave mode, the I2C port hardware looks for its own slave address and the general call address. If one of these addresses is detected, and if the slave is willing to receive or transmit data from/to master (by setting the AA bit), an acknowledge pulse will be transmitted out on the 9th clock. An interrupt is requested on both master and slave devices if interrupt is enabled. When the microcontroller wishes to become the bus master, the hardware waits until the bus is free before the master mode is entered so that a possible slave action is not interrupted. If bus arbitration is lost in the master mode, I2C port switches to the slave mode immediately and can detect its own slave address in the same serial transfer.

5.6.5.1 Master Transmitter Mode

Serial data output through SDA while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the data direction bit. In this case the data direction bit (R/W) will be logic 0, and it is represented by "W" in the flow diagrams. Thus the first byte transmitted is SLA+W. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

5.6.5.2 Master Receiver Mode

In this case the data direction bit (R/W) will be logic 1, and it is represented by "R" in the flow diagrams. Thus the first byte transmitted is SLA+R. Serial data is received via SDA while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are output to indicate the beginning and end of a serial transfer.

5.6.5.3 Slave Receiver Mode

Serial data and the serial clock are received through SDA and SCL. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit.

5.6.5.4 Slave Transmitter Mode

The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit will indicate that the transfer direction is reversed. Serial data is transmitted via SDA while the serial clock is input through SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer.

5.6.6 Data Transfer Flow in Five Operating Modes

The five operating modes are: Master/Transmitter, Master/Receiver, Slave/Transmitter, Slave/Receiver and GC Call. Bits STA, STO and AA in I2C_CTL register will determine the next state of the SIO hardware after SI flag is cleared. Upon completion of the new action, a new status code will be updated and the SI flag will be set. If the I2C interrupt control bit INTEN (I2C_CTL[7]) is set, appropriate action or software branch of the new status code can be performed in the Interrupt service routine.

Data transfers in each mode are shown in the following figures.

*** Legend for the following five figures:

UVOTON

Figure 5-18 Legend for the following four figures

Figure 5-19 Master Transmitter Mode

Figure 5-20 Master Receiver Mode

Figure 5-21 Slave Transmitter Mode

Figure 5-22 Slave Receiver Mode

ISD9160 Technical Reference Manual

Figure 5-23 GC Mode

5.7 PWM Generator and Capture Timer

5.7.1 Introduction

UVOTON

The ISD9160 has a PWM Generator which can be configured as 2 independent PWM outputs, PWM0~PWM1, or as a complementary PWM pair, (PWM0, PWM1) with a programmable dead-zone generator. The PWM Generator has an 8-bit prescaler, a clock divider providing 5 divided frequencies (1, 1/2, 1/4, 1/8, 1/16), two PWM Timers including two clock selectors, two 16-bit PWM down-counters for PWM period control, two 16-bit comparators for PWM duty control and one dead-zone generator. The PWM Generator provides PWM interrupt flags which are set by hardware when the corresponding PWM period down counter reaches zero. Each PWM interrupt source, with its corresponding enable bit, can generate a PWM interrupt request to the CPU. The PWM generator can be configured in one-shot mode to produce only one PWM cycle signal or continuous mode to output a periodic PWM waveform.

When PWM_CTL.DTEN01 is set, PWM0 and PWM1 perform complementary paired PWM function; the paired PWM timing, period, duty and dead-time are determined by PWM0 timer and Dead-zone generator 0. Refer to Figure 5-25 for the architecture of PWM Timers.

To prevent PWM driving glitches to an output pin, the 16-bit period down-counter and 16-bit comparator are implemented with a double buffer. When user writes data to the counter/comparator registers, the updated value will not be load into the 16-bit down-counter/comparator until the down-counter reaches zero.

When the 16-bit period down-counter reaches zero, the interrupt request is generated. If PWM timer is configured in continuous mode, when the down counter reaches zero, it is reloaded with PWM Counter Register (PWM_PERIODx) automatically and begins decrementing again. If the PWM timer is configured in one-shot mode, the down counter will stop and generate a single interrupt request when it reaches zero.

The value of PWM counter comparator is used for pulse width modulation. The counter control logic inverts the output level when down-counter value matches the value of compare register.

The alternate function of the PWM-timer is as a digital input capture timer. If Capture function is enabled the PWM output pin is switched as a capture input pin. The Capture0 and PWM0 share one timer which is included in PWM0; and the Capture1 and PWM1 share PWM1 timer. User must setup the PWM-timer before enabling the Capture feature. After the capture feature is enabled, the count is latched to the Capture Rising Latch Register (PWM_RCAPDATx) when input channel has a rising transition and latched to Capture Falling Latch Register (PWM_FCAPDATx) when input channel has a falling transition. Capture channel 0 interrupt is programmable by setting PWM_CAPCTL01.CRLIEN0 (Rising latch Interrupt enable) and PWM_CAPCTL01.CFLIEN0 (Falling latch Interrupt enable) to determine the condition of interrupt occurrence. Capture channel 1 has the same feature by setting PWM_CAPCTL01.CRLIEN1and PWM_CAPCTL01.CFLIEN1. Whenever Capture issues interrupt, the PWM counter will also be reloaded.

5.7.2 Features

nuvoton

5.7.2.1 *PWM function features:*

- PWM Generator, incorporating an 8-bit pre-scaler, clock divider, two PWM-timers (down counters), a dead-zone generator and two PWM outputs.
- Up to 2 PWM channels or a paired PWM channel.
- 16 bits resolution.
- PWM Interrupt request synchronous with PWM period.
- Single-shot or Continuous mode PWM.
- Dead-Zone generator.

5.7.2.2 Capture Function Features:

- Timing control logic shared with PWM Generators.
- 2 Capture input channels shared with 2 PWM output channels.
- Each channel supports a rising latch register (RCAPDAT), a falling latch register (FCAPDAT) and Capture interrupt flag (CAPIFx)

5.7.3 PWM Generator Architecture

ηυνοτοη

The following figures illustrate the architecture of the PWM.

Figure 5-24 PWM Generator Clock Source Control

Figure 5-25 PWM Generator Architecture Diagram

5.7.4 PWM-Timer Operation

The PWM period and duty control are configured by the PWM down-counter register (PWM_PERIODx) and PWM comparator register (PWM_CMPDATx). Formulas for calculating the pulse width modulation are shown below and demonstrated in Figure 5-26. Note that the corresponding GPIO pins must be configured as the alternate function before PWM function is enabled.

- PWM frequency = PWM01_CLK/(prescale+1)*(clock divider)/(PERIOD+1);
- Duty cycle = (CMP+1)/(PERIOD+1).
- CMP >= PERIOD: PWM output is always high.

- CMP < PERIOD: PWM low width= (PERIOD-CMP) unit¹; PWM high width = (CMP+1) unit.
- CMP = 0: PWM low width = (PERIOD) unit; PWM high width = 1 unit

Note: 1. Unit = one PWM clock cycle.

Figure 5-26 PWM Generation Timing

The procedure to operate the PWM generator is shown in Figure 5-27. First initialize the PWM settings. At the same time ensure that GPIO are configured to PWM function. Next step is to enable PWM channel. After this, if PERIOD or CMP register is written by software, it is double buffered until the next counter reload, at which time the registers are updated to new values.

Figure 5-27 PWM-Timer Operation Timing

5.7.5 PWM Double Buffering, Auto-reload and One-shot Operation

The ISD9160 PWM Timers are double buffered, the reload value is updated at the start of next period without affecting current timer operation. The PWM counter reset value can be written into PWM_PERIODx and current PWM counter value can be read from PWM_CNTx.

The bit CNTMODEx in PWM Control Register (PWM_CTL) determines whether PWMx operates in auto-reload or one-shot mode. If CNTMODEx is set to one, the auto-reload operation loads PERIODx to PWM counter when PWM counter reaches zero. If PERIODx is set to zero, PWM counter will halt when PWM counter counts to zero. If CNTMODEx is set as zero, counter will stop immediately.

Figure 5-28 PWM Double Buffering.

5.7.6 Modulate Duty Cycle

The double buffering allows CMP to be written at any point in current cycle. The loaded value will take effect from next cycle. This is demonstrated in Figure 5-29.

Figure 5-29 PWM Controller Duty Cycle Modulation (PERIOD = 150).

5.7.7 Dead-Zone Generator

The ISD9160 PWM generator includes a Dead Zone generator. This is used to ensure neither PWM output is active simultaneously for power device protection. The function generates a programmable time gap between rising PWM outputs. The user can program PWM_CLKPSC.DTCNT01 to determine the Dead Zone interval. The Dead Zone generator behavior is demonstrated in Figure 5-30.

Figure 5-30 Paired-PWM Output with Dead Zone Generation Operation

5.7.8 Capture Timer Operation

Instead of using the PWM generator to output a modulated signal, it can be configured as a capture timer to measure a modulated input. Capture channel 0 and PWM0 share one timer and Capture channel 1 and PWM1 share another timer. The capture timer latches PWM-counter to RCAPDAT when input channel has a rising transition and latches PWM-counter to FCAPDAT when input channel has a falling transition. Capture channel 0 interrupt is programmable by setting PWM_CAPCTL01[1] (Rising latch Interrupt enable) and PWM_CAPCTL01[2] (Falling latch Interrupt enable) to decide the condition of interrupt occurrence. Capture channel 1 has the same feature by setting PWM_CAPCTL01[17] and PWM_CAPCTL01[18]. Whenever the Capture module issues a capture interrupt, the corresponding PWM counter will be reloaded with PERIODx at this moment. Note that the corresponding GPIO pins must be configured as their alternate function before Capture function is enabled.

Figure 5-31 Capture Operation Timing

Figure 5-31 demonstrates the case where PERIOD = 8:

- 1. The PWM counter will be reloaded with PERIODx=8 when a capture interrupt flag (CAPIFx) is set by a transition on the capture input.
- 2. The channel low pulse width is given by (PERIOD RCAPDAT).
- 3. The channel high pulse width is given by (PERIOD FCAPDAT).

5.7.9 PWM-Timer Interrupt Architecture

nuvoton

There are two PWM interrupts, PWM0_INT, PWM1_INT, which are multiplexed into PWM_IRQ. PWM 0 and Capture 0 share one interrupt, PWM1 and Capture 1 share the same interrupt. Figure 5-32 demonstrates the architecture of PWM-Timer interrupts.

Figure 5-32 PWM-Timer Interrupt Architecture Diagram

5.7.10 PWM-Timer Initialization Procedure

The following procedure is recommended for starting a PWM generator.

- 1. Setup clock selector (PWM_CLKDIV)
- 2. Setup prescaler (PWM_CLKPSC)

3. Setup inverter on/off, dead zone generator on/off, auto-reload/one-shot mode and Stop PWM-timer (PWM_CTL)

- 4. Setup comparator register (PWM_CMPDATx) to set PWM duty cycle.
- 5. Setup PWM down-counter register (PWM_PERIODx) to set PWM period.
- 6. Setup interrupt enable register (PWM_INTEN)
- 7. Setup PWM output enable (PWM_POEN)
- 8. Setup the corresponding GPIO pins to PWM function (SYS_GPA_MFP)
- 9. Enable PWM timer start (Set CNTENx = 1 in PWM_CTL)

5.7.11 PWM-Timer Stop Procedure

Method 1:

Set 16-bit down counter (PERIOD) as 0, and monitor CNT (current value of 16-bit down-counter). When CNT reaches to 0, disable PWM-Timer (CNTENx in PWM_CTL). *(Recommended)*

Method 2:

Set 16-bit down counter (PERIOD) as 0. When interrupt request occurs, disable PWM-Timer (CNTENx in PWM_CTL). (*Recommended*)

Method 3:

Disable PWM-Timer directly (CNTENx in PWM_CTL). (Not recommended)

5.7.12 Capture Start Procedure

nuvoTon

- 1. Setup clock selector (PWM_CLKDIV)
- 2. Setup prescaler (PWM_CLKPSC)
- 3. Setup channel enable, rising/falling interrupt enable and input signal inverter on/off (PWM_CAPCTL01)
- 4. Setup PWM down-counter (PWM_PERIODx)
- 5. Set Capture Input Enable Register (PWM_CAPINEN)
- 6. Setup the corresponding GPIO pins to PWM function (SYS_GPA_MFP)
- 7. Enable PWM timer start running (Set CNTENx = 1 in PWM_CTL)

5.7.13 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Offset	R/W	Description	Reset Value
PWMA Base Addro	ess:			
PWM_BA = 0x4004	4_0000			
PWM_CLKPSC	PWM_BA+0x000	R/W	PWM Prescaler Register	0x0000_0000
PWM_CLKDIV	PWM_BA+0x004	R/W	PWM Clock Select Register	0x0000_0000
PWM_CTL	PWM_BA+0x008	R/W	PWM Control Register	0x0000_0000
PWM_PERIOD0	PWM_BA+0x00C	R/W	PWM Counter Register 0	0x0000_0000
PWM_CMPDAT0	PWM_BA+0x010	R/W	PWM Comparator Register 0	0x0000_0000
PWM_CNT0	PWM_BA+0x014	R	PWM Data Register 0	0x0000_0000
PWM_PERIOD1	PWM_BA+0x018	R/W	PWM Counter Register 1	0x0000_0000
PWM_CMPDAT1	PWM_BA+0x01C	R/W	PWM Comparator Register 1	0x0000_0000
PWM_CNT1	PWM_BA+0x020	R	PWM Data Register 1	0x0000_0000
PWM_INTEN	PWM_BA+0x040	R/W	PWM Interrupt Enable Register	0x0000_0000
PWM_INTSTS	PWM_BA+0x044	R/W	PWM Interrupt Flag Register	0x0000_0000
PWM_CAPCTL01	PWM_BA+0x050	R/W	Capture Control Register 0	0x0000_0000
PWM_RCAPDAT0	PWM_BA+0x058	R	Capture Rising Latch Register (Channel 0)	0x0000_0000
PWM_FCAPDAT0	PWM_BA+0x05C	R	Capture Falling Latch Register (Channel 0)	0x0000_0000
PWM_RCAPDAT1	PWM_BA+0x060	R	Capture Rising Latch Register (Channel 1)	0x0000_0000
PWM_FCAPDAT1	PWM_BA+0x064	R	Capture Falling Latch Register (Channel 1)	0x0000_0000
PWM_CAPINEN	PWM_BA+0x078	R/W	Capture Input Enable Register	0x0000_0000
PWM_POEN	PWM_BA+0x07C	R/W	PWM Output Enable Register for PWM0~PWM1	0x0000_0000

5.7.14 Register Description

nuvoTon

PWM Pre-Scale Register (PWM_CLKPSC)

Register	Offset	R/W	Description	Reset Value
PWM_CLKPSC	PWM_BA+0x000	R/W	PWM Prescaler Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	DTCNT01									
15	14	13	12	11	10	9	8			
Reserved										
7	6	5	4	3	2	1	0			
	CLKPSC01									

Table 5-57 PWM Pre-Scaler Register (PWM_CLKPSC, address 0x4004_0000).

Bits	Description	Description				
[31:24]	Reserved	Reserved				
[23:16]	DTCNT01	Dead Zone Interval Register For Pair Of PWM0 And PWM1 These 8 bits determine dead zone length. The unit time of dead zone length is that from clock selector 0.				
[15:8]	Reserved	Reserved				
[7:0]	CLKPSC01	Clock Pre-scaler Clock input is divided by (CLKPSC01 + 1). If CLKPSC01 aaa 0, then the pre-scaler output clock will be stopped. This implies PWM counter 0 and 1 will also be stopped.				

PWM Clock Select Register (PWM_CLKDIV)					
Register	Offset	R/W	Description	Reset Value	
PWM_CLKDIV	PWM_BA+0x004	R/W	PWM Clock Select Register	0x0000_0000	

7	6	5	4	3	2	1	0
Reserved	CLKDIV1			Reserved		CLKDIV0	

Table 5-58 PWM Clock Select Register (PWM_CLKDIV, address 0x4004_0004).

Bits	Description							
[31:7]	Reserved	Reserved	Reserved					
		Timer 1 Clock Source Selection						
		Value	:	Input clock divided by				
		0	:	2				
[6:4]	CLKDIV1	1	:	4				
		2	:	8				
		3	:	16				
		4	:	1				
[2:0]	CLKDIV0	Timer 0 Clock Source Selection (Table is as CLKDIV1)						

PWM Control Register (PWM_CTL)						
Register	Offset	Offset R/W Description				
PWM_CTL	PWM_BA+0x008	R/W	PWM Control Register	0x0000_0000		

15	14	13	12	11	10	9	
	Rese	erved	CNTMODE1	PINV1	Reserved		
7	6	5	4	3	2	1	

DTEN01

Reserved

Table 5-59 PWM Control Register (PWM_CTL, address 0x4004_008).

CNTMODE0

PINV0

Reserved

Bits	Description	
		PWM-Timer 1 Auto-reload/One-Shot Mode
		0 = One-Shot Mode
[11]	CNTMODE1	1 = Auto-load Mode
		Note: A rising transition of this bit will cause PWM_PERIOD1 and PWM_CMPDAT1 to be cleared.
		PWM-Timer 1 Output Inverter ON/OFF
[10]	PINV1	0 = Inverter OFF
		1 = Inverter ON
		PWM-Timer 1 Enable/Disable Start Run
[8]	CNTEN1	0 = Stop PWM-Timer 1
		1 = Enable PWM-Timer 1 Start/Run
		Dead-Zone 0 Generator Enable/Disable
		0 = Disable
[4]	DTEN01	1 = Enable
		Note: When Dead-Zone Generator is enabled, the pair of PWM0 and PWM1 become a complementary pair.
		PWM-Timer 0 Auto-reload/One-Shot Mode
		0 = One-Shot Mode
[3]	CH0MOD	1 = Auto-reload Mode
		Note: A rising transition of this bit will cause PWM_PERIOD0 and PWM_CMPDAT0 to be cleared.
		PWM-Timer 0 Output Inverter ON/OFF
[2]	CHOINV	0 = Inverter OFF
		1 = Inverter ON

8 CNTEN1 0

CNTEN0

		PWM-Timer 0 Enable/Disable Start Run
[0]	CNTEN0	0 = Stop PWM-Timer 0 Running
		1 = Enable PWM-Timer 0 Start/Run

PWM	PWM Counter Register 1-0 (PWM_PERIODx)							
Register	Offset	R/W	Description	Reset Value				
PWM_PERIOD0	PWM_PERIOD0 PWM_BA+0x00C R/W		PWM Counter Register 0	0x0000_0000				
PWM_PERIOD1 PWM_BA+0x018 RA		R/W	PWM Counter Register 1	0x0000_0000				

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	PERIOD [15:8]						
7	6	5	4	3	2	1	0
	PERIOD [7:0]						

Table 5-60 PWM Counter Register (PWM_PERIODx, address 0x4004_00C+C*x).

Bits	Description	
[15:0]	PERIOD	PWM Counter/Timer Reload Value PERIOD determines the PWM period. PWM frequency aaa PWM01_CLK/(prescale+1)*(clock divider)/(PERIOD+1); Duty ratio aaa (CMP+1)/(PERIOD+1). CMP > aaa PERIOD: PWM output is always high. CMP < PERIOD: PWM low width aaa (PERIOD-CMP) unit; PWM high width aaa (CMP+1) unit. CMP aaa 0: PWM low width aaa (PERIOD) unit; PWM high width aaa 1 unit (Unit aaa one PWM clock cycle) Note: Any write to PERIOD will take effect in next PWM cycle.

Register	Offset	R/W	Description	Reset Value	
PWM_CMPDAT0	PWM_BA+0x010	R/W	PWM Comparator Register 0	0x0000_0000	
PWM_CMPDAT1	PWM_BA+0x01C	R/W	PWM Comparator Register 1	0x0000_0000	

PWM Comparator Register (PWM_CMPDATx)

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	CMP[15:8]							
7	6	5	4	3	2	1	0	
	CMP[7:0]							

Table 5-61 PWM Comparator Register (PWM_CMPDATx, address 0x4004_0010 + C*x).

Bits	Description	
		PWM Comparator Register
		CMP determines the PWM duty cycle.
	PWM frequency aaa PWM01_CLK/(prescale+1)*(clock divider)/(PERIOD+1);	
		Duty Cycle aaa (CMP+1)/(PERIOD+1).
[15:0]	СМР	CMP > aaa PERIOD: PWM output is always high.
		CMP < PERIOD: PWM low width aaa (PERIOD-CMP) unit; PWM high width aaa (CMP+1) unit.
		CMP aaa 0: PWM low width aaa (PERIOD) unit; PWM high width aaa 1 unit
		(Unit aaa one PWM clock cycle) Note: Any write to CMP will take effect in next PWM cycle.

	rwm Data Register 1-0 (rwm_CNTX)					
Register	Offset	R/W	Description	Reset Value		
PWM_CNT0	PWM_BA+0x014	R	PWM Data Register 0	0x0000_0000		
PWM_CNT1	PWM_BA+0x020	R	PWM Data Register 1	0x0000_0000		

PWM Data	Register 1-0	(PWM_	CNTx)

15	14	13	12	11	10	9	8
CNT[15:8]							
7	6	5	4	3	2	1	0
CNT[7:0]							

Table 5-62 PWM Data Register (PWM_CNTx, address 0x4004_0014 + C*x).

Bits	Description	
[15:0] CNT	CNT	PWM Data Register
		Reports the current value of the 16-bit down counter.

PWM Interrupt Enable Register (PWM_INTEN)					
Register	Offset	R/W	Description	Reset Value	
PWM_INTEN	PWM_BA+0x040	R/W	PWM Interrupt Enable Register	0x0000_0000	
	•				

7	6	5	4	3	2	1	0
	Reserved						PIEN0

Table 5-63 PWM Interrupt Enable Register (PWM_INTEN, address 0x4004_0040).

Bits	Description		
		PWM Timer 1 Interrupt Enable	
[1]	PIEN1	0 = Disable	
		1 = Enable	
		PWM Timer 0 Interrupt Enable	
[0]	PIEN0	0 = Disable	
		1 = Enable	

PWM Interrupt Flag Register (PWM_INTSTS)						
Register	Offset	R/W	Description	Reset Value		
PWM_INTSTS	PWM_BA+0x044	R/W	PWM Interrupt Flag Register	0x0000_0000		

7	6	5	4	3	2	1	0
	Reserved						PIF0

Table 5-64 PWM Interrupt Flag Register (PWM_INTSTS, address 0x4004_0044).

Bits	Description	
[1]	PIF1	PWM Timer 1 Interrupt Flag Flag is set by hardware when PWM1 down counter reaches zero, software can clear this bit by writing '1' to it.
[0]	PIF0	PWM Timer 0 Interrupt Flag Flag is set by hardware when PWM0 down counter reaches zero, software can clear this bit by writing '1' to it.

Note: User can clear each interrupt flag by writing a one to corresponding bit in PWM_INTSTS.

Capture Control Register (PWM_CAPCTL01)						
Register	Offset	R/W	Description	Reset Value		
PWM_CAPCTL01	PWM_BA+0x050	R/W	Capture Control Register 0	0x0000_0000		

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
CFLIF1	CRLIF1	Reserved	CAPIF1	CAPEN1	CFLIEN1	CRLIEN1	CAPINV1		
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
CFLIF0	CRLIF0	Reserved	CAPIF0	CAPEN0	CFLIEN0	CRLIEN0	CAPINV0		

Table 5-65 Capture Control Register (PWM_CAPCTL01, address 0x4004_0050).

Bits	Description	
		PWM_FCAPDAT1 Latched Indicator Bit
[23] CFLIF1		When input channel 1 has a falling transition, PWM_FCAPDAT1 was latched with the value of PWM down-counter and this bit is set by hardware, software can clear this bit by writing a zero to it.
		PWM_RCAPDAT1 Latched Indicator Bit
[22]	CRLIF1	When input channel 1 has a rising transition, PWM_RCAPDAT1 was latched with the value of PWM down-counter and this bit is set by hardware, software can clear this bit by writing a zero to it.
		Capture1 Interrupt Indication Flag
[20] CAPIF1	CAPIF1	If channel 1 rising latch interrupt is enabled (CRLIEN1 aaa 1), a rising transition at input channel 1 will result in CAPIF1 to high; Similarly, a falling transition will cause CAPIF1 to be set high if channel 1 falling latch interrupt is enabled (CFLIEN1 aaa 1). This flag is cleared by software writing a '1' to it.
		Capture Channel 1 Transition Enable/Disable
		0 = Disable capture function on channel 1
[19]	CAPEN1	1 = Enable capture function on channel 1.
		When enabled, Capture function latches the PMW-counter to RCAPDAT (Rising latch) and FCAPDAT (Falling latch) registers on input edge transition.
		When disabled, Capture function is inactive as is interrupt.
		Channel 1 Falling Latch Interrupt Enable
[18]	CFLIEN1	0 = Disable falling edge latch interrupt
[10]		1 = Enable falling edge latch interrupt.
		When enabled, capture block generates an interrupt on falling edge of input.

		Channel 1 Rising Latch Interrupt Enable		
[17]	CRLIEN1	0 = Disable rising edge latch interrupt		
		1 = Enable rising edge latch interrupt.		
		When enabled, capture block generates an interrupt on rising edge of input.		
		Channel 1 Inverter ON/OFF		
[16]	CAPINV1	0 = Inverter OFF		
		1 = Inverter ON. Reverse the input signal from GPIO before Capture timer		
		PWM_FCAPDAT0 Latched Indicator Bit		
[7]	CFLIF0	When input channel 0 has a falling transition, PWM_FCAPDAT0 was latched with the value of PWM down-counter and this bit is set by hardware, software can clear this bit by writing a zero to it.		
		PWM_RCAPDAT0 Latched Indicator Bit		
[6]	CRLIF0	When input channel 0 has a rising transition, PWM_RCAPDAT0 was latched with the value of PWM down-counter and this bit is set by hardware, software can clear this bit by writing a zero to it.		
		Capture0 Interrupt Indication Flag		
[4]	CAPIF0	If channel 0 rising latch interrupt is enabled (CRLIEN0 aaa 1), a rising transition at input channel 0 will result in CAPIF0 to high; Similarly, a falling transition will cause CAPIF0 to be set high if channel 0 falling latch interrupt is enabled (CFLIEN0 aaa 1). This flag is cleared by software writing a '1' to it.		
		Capture Channel 0 transition Enable/Disable		
		0 = Disable capture function on channel 0		
[3]	CAPEN0	1 = Enable capture function on channel 0.		
		When enabled, Capture function latches the PMW-counter to RCAPDAT (Rising latch) and FCAPDAT (Falling latch) registers on input edge transition.		
		When disabled, Capture function is inactive as is interrupt.		
		Channel 0 Falling Latch Interrupt Enable ON/OFF		
[2]	CFLIEN0	0 = Disable falling latch interrupt		
[2]	GFLIENU	1 = Enable falling latch interrupt.		
		When enabled, capture block generates an interrupt on falling edge of input.		
		Channel 0 Rising Latch Interrupt Enable ON/OFF		
[1]	CRLIENO	0 = Disable rising latch interrupt		
[']	GREIENU	1 = Enable rising latch interrupt.		
		When enabled, capture block generates an interrupt on rising edge of input.		
		Channel 0 Inverter ON/OFF		
[0]	CAPINV0	0 = Inverter OFF		
		1 = Inverter ON. Reverse the input signal from GPIO before Capture timer		

Capture Rising Latch Register1-0 (PWM_RCAPDATx)						
Register Offset R/W Description		Description	Reset Value			
PWM_RCAPDAT0	PWM_BA+0x058	R	Capture Rising Latch Register (Channel 0)	0x0000_0000		
PWM_RCAPDAT1	PWM_BA+0x060	R	Capture Rising Latch Register (Channel 1)	0x0000_0000		

15	14	13	12	11	10	9	8
RCAPDAT[15:8]							
7	6	5	4	3	2	1	0
RCAPDAT[7:0]							

Table 5-66 Capture Rising Latch Register (PWM_RCAPDATx, address 0x4004_0058 +C*x).

Bits	Description	
[15:0]	RCAPDAT	Capture Rising Latch Register In Capture mode, this register is latched with the value of the PWM counter on a rising edge of the input signal.

Capture Falling Latch Register1-0 (PWM_FCAPDATx)						
Register Offset F		R/W	Description	Reset Value		
PWM_FCAPDAT0	PWM_BA+0x05C	R	Capture Falling Latch Register (Channel 0)	0x0000_0000		
PWM_FCAPDAT1	PWM_BA+0x064	R	Capture Falling Latch Register (Channel 1)	0x0000_0000		

15	14	13	12	11	10	9	8
FCAPDAT[15:8]							
7	6	5	4	3	2	1	0
FCAPDAT[7:0]							

Table 5-67 Capture Falling Latch Register (PWM_FCAPDATx, address 0x4004_005C + C*x).

Bits	Description		
[15:0]	FCAPDAT	Capture Falling Latch Register In Capture mode, this register is latched with the value of the PWM counter on a falling edge of the input signal.	

Capture Input Enable Register (PWM_CAPINEN)						
Register	Offset	R/W	Description	Reset Value		
PWM_CAPINEN	PWM_BA+0x078	R/W	Capture Input Enable Register	0x0000_0000		

7	6	5	4	3	2	1	0
	Reserved						EN[1:0]

Table 5-68 Capture Input Enable Register (PWM_CAPINEN, address 0x4004_0078).

Bits	Description		
		Capture Input Enable Register 0 : OFF (PA[13:12] pin input disconnected from Capture block) 1 : ON (PA[13:12] pin, if in PWM alternative function, will be configured as an input	
[1:0]	CAPINEN	and fed to capture function) CAPINEN[1:0]	
		Bit 10 Bit x1 : Capture channel 0 is from PA [12] Bit 1x : Capture channel 1 is from PA [13]	

PWM Output Enable Register (PWM_POEN)						
Register	Offset	R/W	Description	Reset Value		
PWM_POEN	PWM_BA+0x07C	R/W	PWM Output Enable Register for PWM0~PWM1	0x0000_0000		

7	6	5	4	3	2	1	0
	Reserved						POEN0

Table 5-69 PWM Output Enable (PWM_POEN, address 0x4004_007C).

Bits	Description		
	POEN1	PWM1 Output Enable Register	
		0 = Disable PWM1 output to pin.	
[1]		1 = Enable PWM1 output to pin.	
		Note: The corresponding GPIO pin also must be switched to PWM function (refer to SYS_GPA_MFP Error! Reference source not found.)	
	POEN0	PWM0 Output Enable Register	
		0 = Disable PWM0 output to pin.	
[0]		1 = Enable PWM0 output to pin.	
		Note: The corresponding GPIO pin also must be switched to PWM function (refer to SYS_GPA_MFP Error! Reference source not found.)	

5.8 Real Time Clock (RTC)

5.8.1 Overview

nuvoton

Real Time Clock (RTC) unit provides real time clock, calendar and alarm functions. The clock source of the RTC is an external 32.768 kHz crystal connected at pins XI32K and XO32K or from an external 32.768 kHz oscillator output fed to pin XI32K. The RTC unit provides the time (second, minute, hour) in Time Load Register (RTC_TIME) as well as calendar (day, month, year) in Calendar Load Register (RTC_CAL). The data is expressed in BCD (Binary Coded Decimal) format. The unit offers an alarm function whereby the user can preset the alarm time in the Time Alarm Register (RTC_TALM) and alarm calendar in Calendar Alarm Register (RTC_CALM).

The RTC unit supports periodic Time-Tick and Alarm-Match interrupts. The periodic interrupt has 8 period options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second which are selected by RTC_TICK.TICKSEL. When RTC counter in RTC_TIME and RTC_CAL is equal to alarm setting registers RTC_TALM and RTC_CALM, the alarm interrupt flag (RTC_INTSTS.AIF) is set and the alarm interrupt is requested if the alarm interrupt is enabled (RTC_INTEN.ALMIEN=1). The RTC Time Tick and Alarm Match can wake the CPU from sleep mode or Standby Power-Down (SPD) mode if the Wakeup CPU function is enabled (RTC_TICK.TWKEN).

5.8.2 RTC Features

- Consists of a time counter (second, minute, hour) and calendar counter (day, month, year).
- Alarm register (second, minute, hour, day, month, year).
- 12-hour or 24-hour mode is selectable.
- Automatic leap year compensation.
- Day of week counter.
- Frequency compensate register (FCR).
- All time and calendar registers are expressed in BCD code.
- Support periodic time tick interrupt with 8 period options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second.
- Support RTC Time-Tick and Alarm-Match interrupt
- Support CPU wakeup from sleep or standby power-down mode.

5.8.3 RTC Block Diagram

NUVOTON

Figure 5-33 RTC Block Diagram

5.8.4 RTC Function Description

5.8.4.1 Access to RTC register

Due to clock frequency difference between RTC clock and system clock, when the user writes new data to any one of the RTC registers, the register will not be updated until 2 RTC clock periods later (60us). The programmer should take this into consideration for determining access sequence between RTC_CLKFMT, RTC_TALM and RTC_TIME.

In addition, the RTC block does not check whether written data is out of bounds for a valid BCD time or calendar load. RTC does not check validity of RTC_WEEKDAY and RTC_CAL write either.

5.8.4.2 RTC Initiation

When RTC block is powered on, programmer must write 0xA5EB1357 to RTC_INIT register to reset all logic. RTC_INIT acts as a hardware reset circuit. Once RTC_INIT has been set to 0xA5EB1357, internal reset operation begins. When reset operation is finished, RTC_INIT[0] is set by hardware and RTC is ready for operation.

5.8.4.3 RTC Read/Write Enable

Register RTC_RWEN[15:0] serves as the RTC read/write password to protect RTC registers. RTC_RWEN[15:0] have to be set to 0xA965 to enable access. Once set, it will take effect 512 RTC clocks later (about 15ms). Programmer can read RTC enabled status flag in RTC_RWEN.RWENF to check whether RTC is access enabled. Access is automatically cleared after 200ms.

5.8.4.4 Frequency Compensation

The RTC Frequency Compensation Register (RTC_FREQADJ) allows software to configure digital compensation to the 32768Hz clock input. The RTC_FREQADJ allows compensation of a clock input in the range from 32761Hz to 32776Hz. If desired, RTC clock can be measured during manufacture from a GPIO pin and compensation value calculated and stored in flash memory for retrieval when the product is first powered on. Following are compensation examples for a higher or lower measured frequency clock input.

Example 1:

Frequency counter measurement : 32773.65Hz (> 32768 Hz) Integer part: 32773 = 0x8005RTC_FREQADJ. INTEGER = (32773 - 32761) = 12 = 0x0CFractional part: $0.65 \times 60 = 39 = 0x27$ RTC_FREQADJ. FRACTION = 0x27

Example 2

Frequency counter measurement : 32765.27Hz (< 32768 Hz)

Integer part: 32765 = 0x7ffd

 $RTC_FREQADJ.INTEGER = (32765 - 32761) = 4 = 0x04$

Fractional part: 0.27 x 60 = 16.2 = 0x10

RTC_FREQADJ.FRACTION = 0x10

5.8.4.5 Time and Calendar counter

RTC_TIME and RTC_CAL are used to load the time and calendar. RTC_TALM and RTC_CALM are used to set the alarm. They are all represented by a BCD format, see register descriptions for digit assignments.

5.8.4.6 12/24 hour Time Scale Selection

RTC can be selected to report time in either a 12 or 24hour time scale. If 12 hour mode is selected then AM/PM indication is provided by the hour digit being >=2, see register description <u>Table 5-76</u> for

details. The 12/24 hour time scale selection depends on RTC_CLKFMT bit 0.

5.8.4.7 Day of the week counter

The RTC unit provides day of week in Day of the Week Register (RTC_WEEKDAY). The value is defined from 0 to 6 to represent Sunday to Saturday respectively.

5.8.4.8 Periodic Time Tick Interrupt

The periodic interrupt has 8 period option 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second which are selected by RTC_TICK.TICKSEL. When periodic time tick interrupt is enabled by setting RTC_INTEN.TICKIEN to 1, the Periodic Time Tick Interrupt is requested as selected by RTC_TICK register.

5.8.4.9 Alarm Time Interrupt

When RTC counter in RTC_TIME and RTC_CAL is equal to alarm setting in RTC_TALM and RTC_CALM the alarm interrupt flag (RTC_INTSTS.AIF) is set. If alarm interrupt is enabled (RTC_INTEN.ALMIEN=1) the alarm interrupt is also requested.

5.8.4.10 Additional Notes

- 1. RTC_TALM, RTC_CALM, RTC_TIME and RTC_CAL registers are all BCD counter.
- 2. Programmer has to make sure that values loaded are reasonable. For example, some invalid RTC_CAL values would be 201a (year), 13 (month), 00 (day).
- 3. Reset state :

Register	Reset State
RTC_RWEN	0
RTC_CAL	05/1/1 (year/month/day)
RTC_TIME	00:00:00 (hour : minute : second)
RTC_CALM	00/00/00 (year/month/day)
RTC_TALM	00:00:00 (hour : minute : second)
RTC_CLKFMT	1 (24 hr. mode)
RTC_WEEKDAY	6 (Saturday)
RTC_INTEN	0
RTC_INTSTS	0
RTC_LEAPYEAR	0
RTC_TICK	0

4. In RTC_TIME and RTC_TALM, only 2 BCD digits are used to express "year". It is assumed that 2 BCD digits of xY denote 20xY, but not 19xY or 21xY.
5.8.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Offset	R/W	Description	Reset Value
RTC Base Address	5:			
RTC_BA = 0x4000_	_8000			
RTC_INIT	RTC_BA+0x000	R/W	RTC Initialization Register	0x0000_0000
RTC_RWEN	RTC_BA+0x004	R/W	RTC Access Enable Register	0x0000_0000
RTC_FREQADJ	RTC_BA+0x008	R/W	RTC Frequency Compensation Register	0x0000_0700
RTC_TIME	RTC_BA+0x00C	R/W	Time Load Register	0x0000_0000
RTC_CAL	RTC_BA+0x010	R/W	Calendar Load Register	0x0005_0101
RTC_CLKFMT	RTC_BA+0x014	R/W	Time Scale Selection Register	0x0000_0001
RTC_WEEKDAY	RTC_BA+0x018	R/W	Day of the Week Register	0x0000_0006
RTC_TALM	RTC_BA+0x01C	R/W	Time Alarm Register	0x0000_0000
RTC_CALM	RTC_BA+0x020	R/W	Calendar Alarm Register	0x0000_0000
RTC_LEAPYEAR	RTC_BA+0x024	R	Leap year Indicator Register	0x0000_0000
RTC_INTEN	RTC_BA+0x028	R/W	RTC Interrupt Enable Register	0x0000_0000
RTC_INTSTS	RTC_BA+0x02C	R/W	RTC Interrupt Indicator Register	0x0000_0000
RTC_TICK	RTC_BA+0x030	R/W	RTC Time Tick Register	0x0000_0000

5.8.6 Register Description

nuvoTon

RTC Initiation Register (RTC_INIT)

Register	Offset	R/W	Description	Reset Value
RTC_INIT	RTC_BA+0x000	R/W	RTC Initialization Register	0x0000_0000

31	30	29	28	27	26	25	24		
	INIT								
23	22	21	20	19	18	17	16		
init init									
15	14	13	12	11	10	9	8		
	INIT								
7	6	5	4	3	2	1	0		
	INIT								

Table 5-70 RTC Initialization Register (RTC_INIT, address 0x4000_8000).

Bits	Description				
[31:1] INIT		RTC Initialization			
		After a power-on reset (POR) RTC block should be initialized by writing 0xA5EB1357 to INIT. This will force a hardware reset then release all logic and counters.			
		RTC Active Status (Read only)			
[0]	ATVSTS	0: RTC is in reset state			
		1: RTC is in normal active state.			

Register	Offset	R/W	Description	Reset Value
RTC_RWEN	RTC_BA+0x004	R/W	RTC Access Enable Register	0x0000_0000

RTC Access Enable Register (RTC_RWEN)

23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
	RWEN							
7	6	5	4	3	2	1	0	
	RWEN							

Table 5-71 RTC Access Enable Register (RTC_RWEN, address 0x4000_8004).

Bits	Description	Description						
EIIS	RWENF	RTC Register Access Enable Flag (Read only) 1 = RTC register read/write enable. 0 = RTC register read/write disable This bit will be set after RWEN[15:0] register is set to 0xA965, it will clear automatically in 512 RTC clock cycles or RWEN[15:0] aaa 0xA965. The effect of RTC_RWEN.RWENF on access to each register is given Table 5-72. Table 5-72 RTC_RWEN.RWENF Register Access Effect. Register : RWENF aaa 1 : RWENF aaa 0 RTC_INIT : R/W : R/W RTC_FREQADJ : R/W : - RTC_CAL : R/W : R RTC_UVEEKDAY : R/W : R RTC_TALM : R/W : R RTC_TALM : R/W : - RTC_LEAPYEAR : R RTC_INTEN : R/W : R/W RTC_INTEN : R/W : R/W RTC_INTEN : R/W : R/W						
[15:0]	RWEN	RTC Register Access Enable Password (Write only) 0xA965 aaa Enable RTC access Others aaa Disable RTC access						

RTC Frequency Compensation Register (RTC_FREQADJ)
--	---

Register	Offset	R/W	Description	Reset Value
RTC_FREQADJ	RTC_BA+0x008	R/W	RTC Frequency Compensation Register	0x0000_0700

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved				INTE	GER				
7	6	5	4	3	2	1	0			
Reserved FRACTION										

Table 5-73 RTC Frequency Compensation Register (RTC_FREQADJ, address 0x4000_8008).

Bits	Description				
[11:8]	INTEGER	Integer Part Register should contain the value (INT(F _{actual}) – 32761) Ex: Integer part of detected value aaa 32772, RTC_FREQADJ.INTEGER aaa 32772-32761 aaa 11 (1011b) The range between 32761 and 32776			
[5:0]	FRACTION	Fractional Part Formula aaa (fraction part of detected value) x 60 Refer to 5.8.4.4 for the examples.			

Note: This register can be read back after the RTC enable is active.

RTC Time Load Register (RTC_TIME)

This register is Read Only until access enable password is written to **RTC_RWEN** register. The register returns the current time.

Register	Offset	R/W	Description	Reset Value
RTC_TIME	RTC_BA+0x00C	R/W	Time Load Register	0x0000_0000

23	22	21	20	19	18	17	16
Reserved TENHR			HR				
15	14	13	12	11	10	9	8
Reserved	Reserved TENMIN			MIN			
7	6	5	4	3	2	1	0
Reserved	TENSEC				SI	EC	

Table 5-74 RTC Time Load Register (RTC_TIME, address 0x4000_800C).

Bits	Description			
[21:20]	TENHR	10 Hour Time Digit (0~3)		
[19:16]	HR	1 Hour Time Digit (0~9)		
[14:12]	TENMIN	10 Min Time Digit (0~5)		
[11:8]	MIN	1 Min Time Digit (0~9)		
[6:4]	TENSEC	10 Sec Time Digit (0~5)		
[3:0]	SEC	1 Sec Time Digit (0~9)		

Note:

1. RTC_TIME is a BCD counter and RTC will not check loaded data for validity.

2. Valid range is listed in the parenthesis.

RTC Calendar Load Register (RTC_CAL)

This register is Read Only until access enable password is written to **RTC_RWEN** register. The register returns the current date.

Register	Offset	R/W	Description	Reset Value
RTC_CAL	RTC_BA+0x010	R/W	Calendar Load Register	0x0005_0101

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	TENYEAR				YEAR				
15	14	13	12	11	10	9	8		
	Reserved		TENMON	MON					
7	6	5	4	3	2	1	0		
Reserved TENDAY			DAY		D	AY			

Table 5-75 RTC Calendar Load Register (RTC_CAL, address 0x4000_80010).

Bits	Description	Description			
[23:20]	TENYEAR	10-Year Calendar Digit (0~9)			
[19:16]	YEAR	1-Year Calendar Digit (0~9)			
[12]	TENMON	10-Month Calendar Digit (0~1)			
[11:8]	MON	1-Month Calendar Digit (0~9)			
[5:4]	TENDAY	10-Day Calendar Digit (0~3)			
[3:0]	DAY	1-Day Calendar Digit (0~9)			

RTC Time Scale Selection Register (RTC_CLKFMT)					
Register	Offset	R/W	Description	Reset Value	
RTC_CLKFMT	RTC_BA+0x014	R/W	Time Scale Selection Register	0x0000_0001	

Table 5-76 RTC Time Scale Selection Register (RTC_CLKFMT, address 0x4000_8014).

7	6	5	4	3	2	1	0
Reserved							

Bits	Description	
		24-Hour / 12-Hour Mode Selection
		Determines whether RTC_TIME and RTC_TALM are in 24-hour mode or 12-hour mode
		1 = select 24-hour time scale
		0 = select 12-hour time scale with AM and PM indication
	-	
[0]	24HEN	The range of 24-hour time scale is between 0 and 23.
		12-hour time scale:
		01(AM01), 02(AM02), 03(AM03), 04(AM04), 05(AM05), 06(AM06)
		07(AM07), 08(AM08), 09(AM09), 10(AM10), 11(AM11), 12(AM12)
		21(PM01), 22(PM02), 23(PM03), 24(PM04), 25(PM05), 26(PM06)
		27(PM07), 28(PM08), 29(PM09), 30(PM10), 31(PM11), 32(PM12)

RTC Day of the Week Register (RTC_WEEKDAY)						
Register Offset R/W Description Reset V						
RTC_WEEKDAY	RTC_BA+0x018	R/W	Day of the Week Register	0x0000_0006		

7	6	5	4	3	2	1	0
		Reserved		WEEKDAY			

Table 5-77 RTC Day of Week Register (RTC_WEEKDAY, address 0x4000_8018).

Bits	Description		
		Day of the Week Register	
[2:0]	WEEKDAY	0 (Sunday), 1 (Monday), 2 (Tuesday), 3 (Wednesday)	
		4 (Thursday), 5 (Friday), 6 (Saturday)	

RTC Time Alarm Register (RTC_TALM)						
Register	Offset	R/W	Description	Reset Value		
RTC_TALM	RTC_BA+0x01C	R/W	Time Alarm Register	0x0000_0000		

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Rese	Reserved TENHR			HR				
15	14	13	12	11	10	9	8	
Reserved	Reserved TENMIN			MIN				
7	6 5 4			3	2	1	0	
Reserved	Reserved TENSEC				SE	C		

Table 5-78 RTC Time Alarm Register (RTC_TALM, address 0x4000_801C).

Bits	Description	Description			
[21:20]	TENHR	10 Hour Time Digit of Alarm Setting (0~3)			
[19:16]	HR	1 Hour Time Digit of Alarm Setting (0~9)			
[14:12]	TENMIN	10 Min Time Digit of Alarm Setting (0~5)			
[11:8]	MIN	1 Min Time Digit of Alarm Setting (0~9)			
[6:4]	TENSEC	10 Sec Time Digit of Alarm Setting (0~5)			
[3:0]	SEC	1 Sec Time Digit of Alarm Setting (0~9)			

Note:

1. RTC_TALM is a BCD digit counter and RTC will not check validity of loaded data. Valid range is listed in the parenthesis.

2. This register can be read back after the RTC unit is active.

NUVOTON ISD9160 Technical Reference Manual

RTC Calendar Alarm Register (RTC_CALM)					
Register Offset R/W Description Reset					
RTC_CALM	RTC_BA+0x020	R/W	Calendar Alarm Register	0x0000_0000	

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	TENYEAR				YEAR				
15	14	13	12	11	10	9	8		
	Reserved TENMON			MON					
7	6	5	4	3	2	1	0		
Reserved TENDAY			DAY		D	AY			

Table 5-79 RTC Calendar Alarm Register (RTC_CALM, address 0x4000_8020).

Bits	Description	Description				
[23:20]	TENYEAR	10-Year Calendar Digit of Alarm Setting (0~9)				
[19:16]	YEAR	1-Year Calendar Digit of Alarm Setting (0~9)				
[12]	TENMON	10-Month Calendar Digit of Alarm Setting (0~1)				
[11:8]	MON	1-Month Calendar Digit of Alarm Setting (0~9)				
[5:4]	TENDAY	10-Day Calendar Digit of Alarm Setting (0~3)				
[3:0]	DAY	1-Day Calendar Digit of Alarm Setting (0~9)				

Note:

1. RTC_TIME is a BCD digit counter and RTC will not check validity loaded data, valid range is listed in the parenthesis.

2. This register can be read back after the RTC unit is active.

RTC Leap year Indication Register (RTC_LEAPYEAR)						
Register Offset R/W Description Reset V						
RTC_LEAPYEAR	RTC_BA+0x024	R	Leap year Indicator Register	0x0000_0000		

7	6	5	4	3	2	1	0	
	Reserved							

Table 5-80 RTC Leap Year Indicator Register (RTC_LEAPYEAR, address 0x4000_8024).

Bits	Description	
[0]	LEAPYEAR	Leap Year Indication Register (read only) 0 = Current year is not a leap year 1 = Current year is leap year

NUVOTON ISD9160 Technical Reference Manual

RTC Interrupt Enable Register (RTC_INTEN)							
Register	Offset	R/W	Description	Reset Value			
RTC_INTEN	RTC_BA+0x028	R/W	RTC Interrupt Enable Register	0x0000_0000			

7	6	5	4	3	2	1	0
	Reserved						ALMIEN

Table 5-81 RTC Interrupt Enable Register (RTC_INTEN, address 0x4000_8028).

Bits	Description	Description			
[1]	TICKIEN	Time-Tick Interrupt and Wakeup-by-Tick Enable0 = RTC Time-Tick Interrupt is disabled.1 = RTC Time-Tick Interrupt is enabled.			
[0]	ALMIEN	Alarm Interrupt Enable 0 = RTC Alarm Interrupt is disabled 1 = RTC Alarm Interrupt is enabled			

RTC Interrupt Indication Register (RTC_INTSTS)						
Register Offset R/W Description Res						
RTC_INTSTS	RTC_BA+0x02C	R/W	RTC Interrupt Indicator Register	0x0000_0000		
	·	•				

7	6	5	4	3	2	1	0
	Reserved						ALMIF

Table 5-82 RTC Interrupt Indication Register (RTC_INTSTS, address 0x4000_802C).

Bits	Description	
		RTC Time-Tick Interrupt Flag
[1]	TICKIF	When RTC Time-Tick Interrupt is enabled (RTC_INTEN.TICKIEN=1), RTC unit will set TIF high at the rate selected by RTC_TICK[2:0]. This bit cleared/acknowledged by writing 1 to it.
		0= Indicates no Time-Tick Interrupt condition.
		1= Indicates RTC Time-Tick Interrupt generated.
		RTC Alarm Interrupt Flag
[0]	ALMIF	When RTC Alarm Interrupt is enabled (RTC_INTEN.ALMIEN=1), RTC unit will set AIF to high once the RTC real time counters RTC_TIME and RTC_CAL reach the alarm setting time registers RTC_TALM and RTC_CALM. This bit cleared/acknowledged by writing 1 to it.
		0= Indicates no Alarm Interrupt condition.
		1= Indicates RTC Alarm Interrupt generated.

RTC Time-Tick Register (RTC_TICK)				
Register	Offset	R/W	Description	Reset Value
RTC_TICK	RTC_BA+0x030	R/W	RTC Time Tick Register	0x0000_0000

7	6	5	4	3	2	1	0
Reserved			TWKEN		TICKSEL		

Table 5-83 RTC Time-Tick Register (RTC_TICK, address 0x4000_8030).

Bits	Description	Description		
		RTC Timer Wakeup CPU Function Enable Bit		
[3]	TWKEN	If TWKEN is set before CPU is in power-down mode, when a RTC Time-Tick or Alarm Match occurs, CPU will wake up.		
		0= Disable Wakeup CPU function.		
		1= Enable the Wakeup function.		
		Time Tick Register		
[2:0]	TICKSEL	The RTC time tick period for Periodic Time-Tick Interrupt request.		
	TICKSEL	Time Tick (second) : 1 / (2^TICKSEL)		
		Note: This register can be read back after the RTC is active.		

5.9 Serial Peripheral Interface (SPI) Controller

5.9.1 Overview

ηυνοτοη

The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol which operates in full duplex mode. Devices communicate in master/slave mode with 4-wire bi-directional interface. The ISD9160 contains an SPI controller performing a serial-to-parallel conversion of data received from an external device, and a parallel-to-serial conversion of data transmitted to an external device. The SPI controller can be set as a master with up to 2 slave select (SSB) address lines to access two slave devices; it also can be set as a slave controlled by an off-chip master device.

5.9.2 Features

- Supports master or slave mode operation.
- Supports one or two channels of serial data.
- Configurable word length of up to 32 bits. Up to two words can be transmitted per a transaction, giving a maximum of 64 bits for each data transaction.
- Provide burst mode operation.
- MSB or LSB first transfer.
- 2 device/slave select lines in master mode, single device/slave select line in slave mode.
- Byte or word Sleep Suspend Mode .
- Support dual FIFO mode.
- PDMA access support.

5.9.3 SPI Block Diagram

Figure 5-34 SPI Block Diagram

5.9.4 SPI Function Descriptions

Master/Slave Mode

This SPI controller can be configured as in master or slave mode by setting the SLAVE bit (SPI_CTL.SLAVE). In master mode the ISD9160 generates SCLK and SSB signals to access one or more slave devices. In slave mode the ISD9160 monitors SCLK and SSB signals to respond to data transactions from an off-chip master. The signal directions are summarized in the application block diagrams of Figure 5-35 and Figure 5-36.

Figure 5-35 SPI Master Mode Application Block Diagram

Figure 5-36 SPI Slave Mode Application Block Diagram

Slave Select

nuvoTon

In master mode, the SPI controller can address up to two off-chip slave devices through the slave select output pins SPI_SSB0 and SPI_SSB1. Only one slave can be addressed at any one time. If more slave address lines are required, GPIO pins can be manually configured to provide additional SSB lines. In slave mode, the off-chip master device drives the slave select signal SPI_SSB0 to address the SPI controller. The slave select signal can be programmed to be active low or active high via the SPI_SSCTL.SSACTPOL bit. In addition the SPI_SSCTL.LVTRGEN bit defines whether the slave select signals are level triggered or edge triggered. The selection of trigger condition depends on what type of peripheral slave/master device is connected.

Automatic Slave Select

In master mode, if the bit SPI_SSCTL.AUTOSS is set, the slave select signals will be generated automatically and output to SPI_SSB0 and SPI_SSB1 pins according to registers SPI_SSCTL.SS[0] and SPI_SSCTL.SS[1]. In this mode, SPI controller will assert SSB when transaction is triggered and de-assert when data transfer is finished. If the SPI_SSCTL.AUTOSS bit is cleared, the slave select output signals are asserted and de-asserted by manual setting and clearing the related bits in the SPI_SSCTL.SS[1:0] register. The active level of the slave select output signals is specified by the SPI_SSCTL. SSACTPOL bit.

Serial Clock

In master mode, writing a divisor into the SPI_CLKDIV.DIVIDER0 register will program the output frequency of serial clock to the SPI_SCLK output port. In slave mode, the off-chip master device drives the serial clock through the SPI_SCLK.

Clock Polarity

The SPI_CTL.CLKPOL bit defines the serial clock idle state in master mode. If CLKPOL = 1, the output SPI_SCLK is high in idle state. If CLKPOL=0, it is low in idle state.

Transmit/Receive Bit Length

The bit length of a transfer word is defined in SPI_CTL.DWIDTH bit field. It is set to define the length of a transfer word and can be up to 32 bits in length. DWIDTH=0x0 enables 32bit word length.

Burst Mode

The SPI controller has a burst mode controlled by the SPI_CTL.TXCNT field. If set to 0x01, SPI controller will burst two transactions from the SPI_TX0 and SPI_TX1 registers as shown in the waveform below:

Figure 5-37 Two Transactions in One Transfer (Burst Mode)

LSB First

nuvoTon

The SPI_CTL.LSB bit defines the **bit** order of data transmission. If LSB=0 then MSB of transfer word is sent first in time. If LSB=1 then LSB of transfer word is sent first in time.

Transmit Edge

The SPI_CTL.TXNEG bit determines whether transmit data is changed on the positive or negative edge of the SPI_SCLK serial clock. If TXNEG=0 then transmitted data will change state on the rising edge of SPI_SCLK. If TXNEG=1 then transmitted data will change state on the falling edge of SPI_SCLK.

Receive Edge

The SPI_CTL.RXNET bit determines whether data is received at either the negative edge or positive edge of serial clock SPI_SCLK. If RXNET=1 then data is clocked in on the falling edge of SPI_SCLK. If RXNET=0 data is clocked in on the rising edge of SPI_SCLK. Note that RXNET should be the inverse of TXNEG for standard SPI operation.

Word Sleep Suspend

The bit field SPI_CTL.SUSPITV provides a configurable suspend interval of SUSPITV+2 serial clock periods between successive word transfers in master mode. The suspend interval is from the last falling clock edge of the preceding transfer word to the first rising clock edge of the following transfer word if CLKPOL = 0. If CLKPOL = 1, the interval is from the rising clock edge of the preceding transfer word to the falling clock edge of the following transfer word. The default value of SUSPITV is 0x0 (2 serial clock cycles). Word Sleep only occurs when TXCNT=1. For TXCNT=0, this parameter will determine a Byte Sleep condition if the BYTEITV bit is set.

Figure 5-38 Word Sleep Suspend Mode

Byte Endian

APB access to the SPI controller is via the 32bit wide TX and RX registers. When the transfer is set as MSB first (SPI_CTL.LSB = 0) and the SPI_CTL.REORDER bit is set, the data stored in the TX buffer and RX buffer will be rearranged such that the least significant **physical byte** is processed first. For DWIDTH =0 (32 bits transfer), the sequence of transmitted/received data will be BYTE0, BYTE1, BYTE2, and then BYTE3. If DWIDTH is set to 24-bits, the sequence will be BYTE0, BYTE1, and BYTE2. The rule of 16-bits mode is the same as above, see Figure 5-39.

Figure 5-39 Byte Re-Ordering Transfer

Byte ordering can be a confusing issue when converting from arrays of data processed by the CPU for transmission out the SPI port. The CortexM0 stores data in a little endian format; that is the LSB of a multi-byte word or half-word are stored first in memory. Consider how the CortexM0 stores the following arrays in memory:

- 1. unsigned char ucSPI_DATA[]={0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
- 2. unsigned int uiSPI_DATA[]={0x01020304, 0x05060708};

Figure 5-40 Byte Order in Memory

It can be seen from Figure 5-40 that byte order for an array of bytes is different than that of an array of Release Date: Mar 30, 2016 words. Now consider if this data were to be sent to the SPI port; the user could:

UVOTON

- 1. Set DWIDTH=8 and send data byte-by-byte SPI_TX0 = ucSPI_DATA[i++]
- 2. Set DWIDTH=32 and send word-by-word SPI_TX0 = uiSPI_DATA[i++]

Both of these would result in the byte stream {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08} being sent.

It would be common that a byte array of data is constructed but user, for efficiency, wishes to transfer data to SPI via word transfers. Consider the situation of Figure 5-41 where a int pointer points to the byte data array.

	unsigned char ucSPI_DATA[]={0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}; unsigned int					
	RAM Address	RAM	Content	S		
	0x20000014	Byte0	Byte1	Byte2	Byte3	
	0x20000010	Byte0	Byte1	Byte2	Byte3	
	0x200000c	0x08	0x07	0x06	0x05	
	0x2000008	0x04	0x03	0x02	0x01	
	0x20000004	0x05	0x06	0x07	0x08	
uiSPI_DATA[]→	ucSPI_DATA[]→ 0x20000000	0x01	0x02	0x03	0x04	
	APB Data Bus	[7:0]	[15:8]	[23:16]	[31:24]	

Figure 5-41 Byte Order in Memory

Now if we set DWIDTH=32 and sent word-by-word SPI_TX0 = $uiSPI_DATA[i++]$, the order transmitted would be {0x04, 0x03, 0x02, 0x01, 0x08, 0x07, 0x06, 0x05}. However if we set REORDER=1, we would reverse this order to the desired stream: {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}.

Byte Sleep Suspend

In master mode, if SPI_CTL.BYTEITV is set to 1, the hardware will insert a suspend interval of SPI_CTL.SUSPITV+2 serial clock periods between two successive bytes in a transfer word. Note that the byte suspend function is only valid for 32bit word transfers, that is DWIDTH=0x00.

Figure 5-42 Byte Suspend Mode

Interrupt

The SPI controller can generate a CPU interrupt when data transfer is finished. When a transfer request triggered by BUSY is finished, the interrupt flag (SPI_CTL.UNITIF) will be set by hardware. If the SPI interrupt is enabled (SPI_CTL.UNITIEN) this will also generate a CPU interrupt. To clear the interrupt event flag, software must write a '1' to it.

FIFO Mode

The SPI controller supports a dual buffer mode when SPI_CTL.FIFOEN is set as 1. In normal mode, software can only update the transmitted data when the current transmission is done. In FIFO mode, the next transmitted data can be written into the SPI_TX buffer at any time when in master mode or the BUSY bit is set in slave mode. This data will load into the transmit buffer when the current transmission done.

After the FIFO bit is set, transmission is repeated automatically when the transmitted data is updated in time and it will continue until this bit is cleared. When cleared, the transmission will finish when the current transmission done. The user can also read the received data at any time before the next transmission is complete, wherein the receive buffer will be updated with new received data. If transmit data isn't updated before the current transmission is done, the transaction will stop. The transmission will resume automatically when transmit data is written into this buffer again.

Before the FIFO bit is set, the user can write first data into SPI_TX buffer. Setting FIFO active will load the first data into the current transmission buffer. A subsequent write to SPI_TX will load the TX FIFO which will be loaded into the transmission buffer after the 1st transmission is done.

This function is also supported in slave mode. The BUSY must be set as 1 before the external serial clock input and it will keep going until the FIFO is cleared.

The delay period between two transmissions is programmable. It is the same as the suspend interval on SUSPITV parameter.

Two Channel Mode

The SPI controller supports a two channel mode where data can be sent and received on alternate MOSI1 and MISO1 lines concurrently with data on MOSI0 and MISO0. The data for this second channel is the SPI_RX1 and SPI_TX1 buffers. Mode is enabled by setting the SPI_CTL.TWOBIT bit. This mode is only available when TXCNT=0.

Figure 5-43 Two Bits Transfer Mode

Variable Serial Clock Frequency

In master mode 16 bit transfers, the output of serial clock can be programmed as variable frequency pattern if the Variable Clock Enable bit SPI_CTL.VARCLKEN is enabled. The frequency pattern format is defined in SPI_VARCLK register. If the bit content of VARCLK is '0' the output period for that bit is determined by setting of SPI_CLKDIV.DIVIDER0, if the bit content of VARCLK is '1', the output period for that bit is determined by the SPI_CLKDIV.DIVIDER1 register. The following figure shows the timing relationships of serial clock (SCLK), to the VARCLK, the DIVIDER0 and the DIVIDER1 registers. A two-bit combination in the VARCLK defines one clock cycle. The bit field VARCLK[31:30] defines the first clock cycle of SCLK. The bit field VARCLK[29:28] defines the second clock cycle of SCLK and so on. The clock source selections are defined in SPI_VARCLK and must be set 1 cycle before the next clock option. For example, if there are 5 CLK1 cycle in SPICLK, the SPI_VARCLK shall set 9 '0' in the MSB of SPI_VARCLK. The 10th shall be set as '1' in order to switch the next clock source is CLK2. Note that when VARCLKEN bit is set, the setting of DWIDTH must be programmed as 0x10 (16 bits mode only).

Figure 5-44 Variable Serial Clock Frequency

5.9.5 SPI Timing Diagram

In master/slave mode, the device address/slave select (SPI_SSB0/1) signal can be configured as active low or active high by the SPI_SSCTL.SSACTPOL bit. In slave mode, the SPI_SSCTL.LVTRGEN will determine whether the slave select signal is treated as a level triggered or edge triggered signal.

The serial clock phase and polarity is controlled by CLKPOL, RXNET and TXNEG bits. The bit length of a transfer word is configured by the DWIDTH parameter. Whether data transmission is MSB first or LSB first is controlled by the SPI_CTL.LSB bit. Four examples of SPI timing diagrams for master/slave operations and the related settings are shown as below.

ISD9160 Technical Reference Manual

nuvoton

Figure 5-45 SPI Timing in Master Mode

Figure 5-46 SPI Timing in Master Mode (Alternate Phase of SPICLK)

ISD9160 Technical Reference Manual

nuvoton

Figure 5-47 SPI Timing in Slave Mode

Figure 5-48 SPI Timing in Slave Mode (Alternate Phase of SPICLK)

5.9.6 SPI Configuration Examples

nuvoton

- Example 1, SPI controller is set as a master to access an off-chip slave device with following specifications:
 - Data bit latched on positive edge of serial clock
 - Data bit driven on negative edge of serial clock
 - Data be transferred from MSB first
 - SCLK low in idle state
 - Only one byte data be transmitted/received in a transfer
 - Slave select signal is active low
 - SCLK frequency is 10MHz

To configure the SPI interface to the above specifications perform the following steps:

- 1) Write a divisor into the SPI_CLKDIV register to determine the output frequency of serial clock. Driver function DrvSPI_SetClock(0,10000000,0) can be used to achieve this.
- Configure the SPI_SSCTL register to address device. For example to manually address, set SPI-SPI_SSCTL.AUTOSS=0, SPI_SSCTL.SS_LVL=0 for active low SS. When software wishes to address device it will set SPI_SSCTL.SS=1 to output an active SS on SPI_SSB0 pin.
- 3) Configure the SPI_CTL register. Set SPI_CTL.SLAVE=0 for master mode, set SPI_CTL.CLKPOL=0 for SCLK polarity normally low, set SPI_CTL.TXNEG=1 so that data changes on falling edge of SCLK, set SPI_CTL.RXNET=0 so that data is latched into device on positive edge of SCLK, set SPI_CTL.DWIDTH=8 and SPI_CTL.TXCNT=0 for a single byte transfer and finally set SPI_CTL.LSB=0 for MSB first transfer.
- 4) If manually selecting slave device set SPI_SSCTL.SS=1.
- 5) To transmit one byte of data, write data to SPI_TX0 register. If only doing a receive, write a dummy byte to SPI_TX0 register.
- 6) Enable the SPI_CTL.BUSY bit to start the data transfer over the SPI interface.

-- Wait for SPI transfer to finish. Can be interrupt driven (if the interrupt enable SPI_CTL.UNITIEN bit is set) or by polling the BUSY bit which will be cleared to 0 by hardware automatically at end of transmission. --

- 7) Read out the received one byte data from SPI_RX0
- 8) Go to 5) to continue another data transfer or set SPI_SSCTL.SS=0 to deactivate the off-chip slave devices.
- Example 2, SPI controller is set as a slave device that controlled by an off-chip master device with the following characteristics:
 - Data bit latched on positive edge of serial clock
 - Data bit driven on negative edge of serial clock
 - Data be transferred from LSB first
 - SCLK high in idle state
 - Only one byte data be transmitted/received in a transfer

• Slave select signal is active high level trigger

UVOTON

To configure the SPI interface to the above specifications perform the following steps:

- 1) Configure the SPI_SSCTL register. SPI_SSCTL.SSACTPOL=1 for active high slave select, SPI_SSCTL.LVTRGEN=1 for level sensitive trigger.
- 2) Configure the SPI_CTL register. Set SPI_CTL.SLAVE=1 for slave mode, set SPI_CTL.CLKPOL=1 for SCLK polarity idle high, set SPI_CTL.TXNEG=1 so that data changes on falling edge of SCLK, set SPI_CTL.RXNET=0 so that data is latched into device on positive edge of SCLK, set SPI_CTL.DWIDTH=8 and SPI_CTL.TXCNT=0 for a single byte transfer and finally set SPI_CTL.LSB=1 for LSB first transfer.
- 3) If SPI slave is to transmit one byte of data to the off-chip master device, write first byte to SPI_TX0 register. If no data to be transmitted write a dummy byte.
- 4) Enable the BUSY bit to wait for the slave select trigger input and serial clock input from the offchip master device to start the data transfer at the SPI interface.

---- Wait for SPI transfer to finish. Can be interrupt driven (if the interrupt enable SPI_CTL.UNITIEN bit is set) or by polling the BUSY bit which will be cleared to 0 by hardware automatically at end of transmission. --

- 5) Read out the received data from SPI_RX0 register.
- 6) Go to 3) to continue another data transfer or disable the BUSY bit to stop data transfer.

5.9.7 SPI Serial Interface Control Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
SPI0 Base Address	SPI0 Base Address:					
SPI0_BA = 0x4003_0000						
SPI_CTL	SPI0_BA + 0x00	R/W	Control and Status Register	0x0000_0004		
SPI_CLKDIV	SPI0_BA + 0x04	R/W	Clock Divider Register (Master Only)	0x0000_0000		
SPI_SSCTL	SPI0_BA + 0x08	R/W	Slave Select Register	0x0000_0000		
SPI_RX0	SPI0_BA + 0x10	R	Data Receive Register 0	0x0000_0000		
SPI_RX1	SPI0_BA + 0x14	R	Data Receive Register 1	0x0000_0000		
SPI_TX0	SPI0_BA + 0x20	W	Data Transmit Register 0	0x0000_0000		
SPI_TX1	SPI0_BA + 0x24	W	Data Transmit Register 1	0x0000_0000		
SPI_VARCLK	SPI0_BA + 0x34	R/W	Variable Clock Pattern Register	0x007F_FF87		
SPI_PDMACTL	SPI0_BA + 0x38	R/W	SPI DMA Control Register	0x0000_0000		

NOTE 1: When software programs SPI_CTL, the BUSY bit should be written last.

5.9.8 SPI Control Register Description

nuvoton

SPI Control and Status Register (SPI_CTL)

Register	Offset	R/W	Description	Reset Value
SPI_CTL	SPI0_BA + 0x00	R/W	Control and Status Register	0x0000_0004

31	30	29	28	27	26	25	24
Reserved			PDMASSEN	TXFULL	TXEMPTY	RXFULL	RXEMPTY
23	22	21	20	19	18	17	16
VARCLKEN	TWOBIT	FIFOEN	REORDER	BYTEITV	SLAVE	UNITIEN	UNITIF
15	14	13	12	11	10	9	8
	SUSPITV				LSB	TXN	IUM
7	6	5	4	3	2	1	0
	DWIDTH				TXNEG	RXNET	GOBUSY

Table 5-84 SPI Control and Status Register (SPI_CTL, address 0x4003_0000)

Bits	Description	
[31:28]	Reserved	Reserved
[28]	PDMASSEN	Enable DMA Automatic SS function When enabled, interface will automatically generate a SS signal for an entire PDMA access transaction.
[27]	TXFULL	TransmitFIFO Full Status0 = The transmit data FIFO is not full.1 = The transmit data FIFO is full.
[26]	ТХЕМРТҮ	Transmit FIFO Empty Status 0 = The transmit data FIFO is not empty. 1 = The transmit data FIFO is empty.
[25]	RXFULL	Receive FIFO Full Status0 = The receive data FIFO is not full.1 = The receive data FIFO is full.
[24]	RXEMPTY	Receive FIFO Empty Status0 = The receive data FIFO is not empty.1 = The receive data FIFO is empty.

[23] VARCLKEN DIVIDER0. 1 = SCLK output frequency is variable. The output frequency is determined by th value of SPL VARCLK, DIVIDER0, and DIVIDER1. Note that when enabled, the setting of DWIDTH must be programmed as 0x10 (16 bit mode) [22] TWOBIT [22] TWOBIT Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) [21] TWOBIT Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) [22] TWOBIT Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) Image: the setting of DWIDTH must be programmed as 0x10 (16 bit mode) Image: the setting of DWIDTH must be programmed as 0x00 Image: the setting of DWIDTH must be programmed as 0x00 Image: the setting of DWIDTH			
[23] VARCLKEN DIVIDER0. 1 = SCLK output frequency is variable. The output frequency is determined by th value of SPL_VARCLK, DIVIDER0, and DIVIDER1. Note that when enabled, the setting of DWIDTH must be programmed as 0x10 (16 bit value of SPL_VARCLK, DIVIDER0, and DIVIDER1. [22] TWOBIT Image: the setting of DWIDTH must be programmed as 0x10 (16 bit value of SPL_VARCLK, DIVIDER0, and DIVIDER1. [21] TWOBIT Image: the setting of DWIDTH must be programmed as 0x10 (16 bit value of SPL_VARCLK, DIVIDER0, and DIVIDER1. [21] TWOBIT Image: the setting of DWIDTH must be programmed as 0x10 (16 bit value of SPL_VARCLK, DIVIDER0, and DIVIDER1. Image: the setting of DWIDTH must be programmed as 0x10 (16 bit value of SPL_VARCLK, DIVIDER0, and DIVIDER1. Image: the setting of DWIDTH must be programmed as 0x10 (16 bit value of SPL_VARCLK, DIVIDER0, and DIVIDER1. Image: the setting of DWIDTH must be programmed as 0x10 (16 bit value of SPL_VARCLK, DIVIDER0, and DIVIDER1. [21] FIFO Mode [21] FIFO Mode [21] FIFO Mode [22] REORDER Byte Endian Reorder Function This function changes the order of bytes sent/received to be least significant physics byte first. [18] SLAVE Insert Sleep Interval Between Bytes This function is only valid for 32bit transfers (DWIDTH asa 0). If set then a pause of (SUSPITV+2) SCLK cycles is inserted between each byte			Variable Clock Enable (Master Only)
111 Intervent Status If a Status		VARCLKEN	0 = The serial clock output frequency is fixed and determined only by the value of DIVIDER0.
[22] Two Bits Transfer Mode 0 = Disable two-bit transfer mode. 1 = Enable two-bit transfer mode. 1 = Enable two-bit transfer mode. Note that when enabled in master mode, MOSIO data comes from SPLTXO an MOSI1 data from SPLTX1. Likewise SPL RXO receives bit stream from MISO0 an SPL RX1 from MISO1. Note that when enabled, the setting of TXCNT must b programmed as 0x00 [21] FIFO Mode 0 = No FIFO present on transmit and receive buffer. 1 = Enable FIFO on transmit and receive buffer. [20] REORDER Byte Endian Reorder Function This function changes the order of bytes sent/received to be least significant physics byte first. [19] BYTEITV Insert Sleep Interval Between Bytes This function is only valid for 32bit transfers (DWIDTH aaa 0). If set then a pause of (SUSPTIV+2) SCLK cycles is inserted between each byte transmitted. [18] SLAVE 0 = Master mode. 1 = Enable 0 = Disable SPI Interrupt. 1 = Enable SPI Interrupt. 1 = Enable SPI Interrupt to CPU. [16] UNITIF 0 = Indicates the transfer is not finished yet. 1 = Indicates that transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. [15:12] SUSPITV	[23]		1 = SCLK output frequency is variable. The output frequency is determined by the value of SPI_VARCLK, DIVIDER0, and DIVIDER1.
[22] TWOBIT 0 = Disable two-bit transfer mode. 1 = Enable two-bit transfer mode. 1 = Enable two-bit transfer mode. Note that when enabled in master mode, MOSIO data comes from SPI_TXO an SPI_RX1 from MISO1. Note that when enabled, the setting of TXCNT must by programmed as 0x00 [21] FIFOEN [21] FIFOEN [20] REORDER Byte Endian Reorder Function This function changes the order of bytes sent/received to be least significant physical byte first. [19] BYTEITV Insert Sleep Interval Between Bytes [18] SLAVE O = Master mode. [17] UNITIEN O = Disable SPI Interrupt. 1 = Enable SPI Interrupt. 1 = Indicates that the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. Suspend Interval (Master Only) These four bits provide configurable suspend interval between two successiv transaction is a transfer. The suspend interval i			Note that when enabled, the setting of DWIDTH must be programmed as 0x10 (16 bits mode)
[22] TWOBIT 1 = Enable two-bit transfer mode. Note that when enabled in master mode, MOSI0 data comes from SPL_TX0 an MOSI1 data from SPL_TX1 intervies SPL_RX0 receives bit stream from MISO0 an SPL_RX1 from MISO1. Note that when enabled, the setting of TXCNT must b programmed as 0x00 [21] FIFOEN FIFO Mode 0 = No FIFO present on transmit and receive buffer. 1 = Enable FIFO on transmit and receive buffer. [20] REORDER Byte Endian Reorder Function [19] BYTEITV Insert Sleep Interval Between Bytes [19] BYTEITV Insert Sleep Interval Between Bytes [18] SLAVE 0 = Master mode. [17] UNITIEN 0 = Disable SPI Interrupt. [16] UNITIF 0 = Indicates the transfer is not finished yet. [16] UNITIF 0 = Indicates the transfer is not finished yet. [16] SUSPITV Suspend Interval (Master Only) These four bits provide configurable suspend interval is from the last fallin clock edge of the successiv transmiter is not finished yet. [16] UNITIF Suspend Interval (Master Only) These four bits provide configurable suspend interval is from the last fallin clock edge of the successiv transmiction to the first insing clock edge of the successiv transmit clock edge of the successiv transaction is no transfer exc			Two Bits Transfer Mode
[22] TWOBIT Note that when enabled in master mode, MOSI0 data comes from SPI_TX0 an MOSI1 data from SPI_TX1. Likewise SPI_RX0 receives bit stream from MISO0 an SPI_RX1 from MISO1. Note that when enabled, the setting of TXCNT must b programmed as 0x00 [21] FIFOEN FIFO Mode 0 = No FIFO present on transmit and receive buffer. [20] REORDER Byte Endian Reorder Function This function changes the order of bytes sent/received to be least significant physical byte first. Insert Sleep Interval Between Bytes [19] BYTEITV Insert Sleep Interval Between Bytes [18] SLAVE Insert Sleep Interval Between Bytes [17] UNITIEN 0 = Master mode. [17] UNITIEN 0 = Master mode. [16] Interrupt Enable 0 = Indicates the transfer is not finished yet. [16] UNITIF 0 = Indicates the transfer is not finished yet. [16] SUSPITV Suspend Interval (Master Only) These four bits provide configurable suspend interval between two successive transmiter is not the finishing clock edge of the successive transmiter of CLVPL as a 1, the interval is from the last fallin clock edge of the current transfer. The suspend interval is from the last fallin clock edge of the current transfer is out on the first insig clock edge of the successive transmitter except as determined by RENDERDERG [16] SUS			0 = Disable two-bit transfer mode.
Note that when enabled in master mode, MOSIC data comes from SPI_TX0 and MOSIT data from SPI_TX0 and SPI_RX1 from MISO1. Note that when enabled, the setting of TXCNT must b programmed as 0x00 [21] FIFOEN FIFO Mode [20] REORDER Byte Endlan Reorder Function [19] BYTEITV Byte Endlan Reorder Function [19] BYTEITV Insert Sleep Interval Between Bytes [18] SLAVE Insert Sleep Interval Between Bytes [18] SLAVE Master Slave Mode Control [17] UNITIEN 0 = Disable SPI Interval Envelop. [16] UNITIF Interrupt Enable [16] UNITIF 0 = Indicates the transfer is not finished yet. [16] SUSPITV Interrupt Flag [15:12] SUSPITV Suspend Interval (Master Only) These four bit is cleared by writing 1 to itself. Suspend Interval (Master Only) These four bit is cleared by writing 1 to itself. Suspend Interval is from the last fallin clock edge of the successiv transfer except as determined by REORDERG transfer except as determined by REORDERG transfer transfer is not finished yet.	[22]	TWOBIT	1 = Enable two-bit transfer mode.
[21] FIFOEN 0 = No FIFO present on transmit and receive buffer. 1 = Enable FIFO on transmit and receive buffer. 1 = Enable FIFO on transmit and receive buffer. [20] REORDER Byte Endian Reorder Function [19] BYTEITV This function changes the order of bytes sent/received to be least significant physical byte first. [19] BYTEITV Insert Sleep Interval Between Bytes [18] SLAVE Insert Sleep Interval Between Bytes [18] SLAVE Master Slave Mode Control [17] UNITIEN 0 = Master mode. [17] UNITIEN 0 = Disable SPI Interrupt. [16] UNITIF 0 = Indicates the transfer is not finished yet. [16] UNITIF 0 = Indicates the transfer is not finished yet. [17] SUSPITV Suspend Interval (Master Only) These four bits provide configurable suspend interval between two successiv transmit/receive transactions in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transmit/receive transaction in CLKPOL aaa 0. If CLKPOL aaa 0. Hor NTX Ta aa OU edge to the filling clock edge. The default value is 0x0. When TXCNT aaa OU edge to the fulling field has on effect on transfer excel as determined by RECRDERER setting. The suspend interval as determined by RECRDERER <th>[22]</th> <th></th> <td>Note that when enabled in master mode, MOSI0 data comes from SPI_TX0 and MOSI1 data from SPI_TX1. Likewise SPI_RX0 receives bit stream from MISO0 and SPI_RX1 from MISO1. Note that when enabled, the setting of TXCNT must be programmed as 0x00</td>	[22]		Note that when enabled in master mode, MOSI0 data comes from SPI_TX0 and MOSI1 data from SPI_TX1. Likewise SPI_RX0 receives bit stream from MISO0 and SPI_RX1 from MISO1. Note that when enabled, the setting of TXCNT must be programmed as 0x00
[20] REORDER 1 = Enable FIFO on transmit and receive buffer. [20] REORDER Byte Endian Reorder Function This function changes the order of bytes sent/received to be least significant physics byte first. [19] BYTEITV Insert Steep Interval Between Bytes This function is only valid for 32bit transfers (DWIDTH aaa 0). If set then a pause of (SUSPITV+2) SCLK cycles is inserted between each byte transmitted. [18] SLAVE Master Slave Mode Control 0 = Master mode. 1 = Slave mode. 1 = Slave mode. [17] UNITIEN Interrupt Enable 0 = Disable SPI Interrupt to CPU. 1 = Enable SPI Interrupt to CPU. [16] UNITIF Interrupt Flag 0 = Indicates the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. [15:12] SUSPITV Suspend Interval (Master Only) These four bits provide configurable suspend interval is from the last fallin clock edge of the current transaction in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising clock edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 00 setting this field has no effect on transfer care as determined by REORDER[G setting. The suspend interval is determined by REORDER[S			FIFO Mode
[20] REORDER Byte Endian Reorder Function This function changes the order of bytes sent/received to be least significant physics byte first. [19] BYTEITV Insert Sleep Interval Between Bytes This function is only valid for 32bit transfers (DWIDTH aaa 0). If set then a pause of (SUSPITV+2) SCLK cycles is inserted between each byte transmitted. [18] SLAVE Master Slave Mode Control 0 = Master mode. 1 = Slave mode. [17] UNITIEN Interrupt Enable 0 = Disable SPI Interrupt. 1 = Enable SPI Interrupt to CPU. [16] UNITIF Interrupt Flag 0 = Indicates the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. [15:12] SUSPITV Suspend Interval (Master Only) These four bits provide configurable suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the current transaction to the first rising clock edge of the current transaction to the first rising clock edge of the current transaction to the first rising clock edge of the falling clock edge of the current transaction to the first rising clock edge of the falling clock edge of the current transaction to the first rising clock edge of the current transaction to the first rising clock edge of the current transaction to the first rising clock edge of the current transaction to the first rising clock edge of the current transaction to the first rising clock edge of the current transaction to the first rising clock edge of the current transaction to the first rising clock edge of the current transaction to the first rising clock edge of the	[21]	FIFOEN	
[20] REORDER This function changes the order of bytes sent/received to be least significant physical byte first. [19] BYTEITV Insert Sleep Interval Between Bytes [19] BYTEITV Insert Sleep Interval Between Bytes [18] SLAVE Master Slave Mode Control [18] SLAVE 0 = Master mode. [17] UNITIEN Interrupt Enable [17] UNITIEN 0 = Disable SPI Interrupt. 1 = Enable SPI Interrupt to CPU. 1 = Enable SPI Interrupt to CPU. [16] UNITIF 0 = Indicates the transfer is not finished yet. [16] UNITIF Suspend Interval (Master Only) [15:12] SUSPITV Suspend Interval (Master Only) These four bits provide configurable suspend interval between two successiv transmit/receive transaction to the first rising clock edge of the successiv transmit/receive transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0, the following equation:			1 = Enable FIFO on transmit and receive buffer.
[19] BYTEITV Insert Sleep Interval Between Bytes [19] BYTEITV Insert Sleep Interval Between Bytes [18] SLAVE O = Master Slave Mode Control [18] SLAVE 0 = Master mode. 1 = Slave mode. 1 = Slave mode. [17] UNITIEN 0 = Disable SPI Interrupt. 1 = Enable SPI Interrupt to CPU. 1 = Enable SPI Interrupt to CPU. [16] UNITIF 0 = Indicates the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. [15:12] SUSPITV Suspend Interval (Master Only) These four bits provide configurable suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the last fallin clock edge of the falling clock edge. The default value is 0x0. When TXCNT aaa 0x0 setting this field has no effect on transfer except as determined by REORDERE(Setting. The suspend interval is determined by REORDERE)			Byte Endian Reorder Function
[19] BYTEITV This function is only valid for 32bit transfers (DWIDTH aaa 0). If set then a pause of (SUSPITV+2) SCLK cycles is inserted between each byte transmitted. [18] SLAVE Master Slave Mode Control [18] SLAVE 0 = Master mode. 1 = Slave mode. 1 = Slave mode. [17] UNITIEN 0 = Disable SPI Interrupt. 1 = Enable SPI Interrupt to CPU. Interrupt Flag 0 = Indicates the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. Suspend Interval (Master Only) These four bits provide configurable suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the last follin clock edge of the falling clock edge. The default value is 0X0. When TXCNT aaa 000 setting this field has no effect on transfer except as determined by REORDER[0]	[20]	REORDER	This function changes the order of bytes sent/received to be least significant physical byte first.
[18] SLAVE Master Slave Mode Control [18] SLAVE 0 = Master mode. 1 = Slave mode. 1 = Slave mode. [17] UNITIEN 0 = Disable SPI Interrupt. 1 = Enable SPI Interrupt to CPU. Interrupt Flag 0 = Indicates the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. [16] UNITIF Suspend Interval (Master Only) These four bits provide configurable suspend interval is from the last falling clock edge of the successiv transaction to the first rising clock edge of the successiv transaction is of CLKPOL aaa 1, the interval is from the last falling clock edge of the falling clock edge. The default value is 0X0. When TXCNT aaa 000 setting this field has no effect on transfer except as determined by REORDER[C setting. The suspend interval is determined according to the following equation:			Insert Sleep Interval Between Bytes
[18] SLAVE 0 = Master mode. 1 = Slave mode. [17] UNITIEN Interrupt Enable 0 = Disable SPI Interrupt. 1 = Enable SPI Interrupt to CPU. [16] UNITIF Interrupt Flag 0 = Indicates the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. [15:12] SUSPITV Suspend Interval (Master Only) These four bits provide configurable suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transmit/receive transactions in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transmit/receive transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising cloc edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 000 setting this field has no effect on transfer except as determined by REORDER[0 setting. The suspend interval is determined according to the following equation:	[19]	BYTEITV	This function is only valid for 32bit transfers (DWIDTH aaa 0). If set then a pause of (SUSPITV+2) SCLK cycles is inserted between each byte transmitted.
[17] UNITIEN Interrupt Enable [17] UNITIEN 0 = Disable SPI Interrupt. 1 = Enable SPI Interrupt to CPU. 1 = Enable SPI Interrupt to CPU. [16] UNITIF Interrupt Flag 0 = Indicates the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. Suspend Interval (Master Only) These four bits provide configurable suspend interval between two successiv transmit/receive transactions in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock dege of the successiv transmit/receive transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising clock edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 00 setting this field has no effect on transfer except as determined by REORDER[0 setting. The suspend interval is determined according to the following equation:			Master Slave Mode Control
[17] UNITIEN Interrupt Enable 0 = Disable SPI Interrupt. 1 = Enable SPI Interrupt to CPU. [16] UNITIF Interrupt Flag 0 = Indicates the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. [15:12] SUSPITV Suspend Interval (Master Only) These four bits provide configurable suspend interval between two successiv transmit/receive transactions in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising cloc edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 00t setting this field has no effect on transfer except as determined by REORDER[0 setting. The suspend interval is determined according to the following equation:	[18]	SLAVE	0 = Master mode.
[17] UNITIEN 0 = Disable SPI Interrupt. 1 = Enable SPI Interrupt to CPU. 1 = Enable SPI Interrupt to CPU. [16] UNITIF Interrupt Flag 0 = Indicates the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. Suspend Interval (Master Only) These four bits provide configurable suspend interval between two successiv transmit/receive transactions in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising cloce edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 00t setting this field has no effect on transfer except as determined by REORDER[C setting. The suspend interval is determined according to the following equation:			1 = Slave mode.
[16] UNITIF Interrupt Flag 0 = Indicates the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. Suspend Interval (Master Only) These four bits provide configurable suspend interval between two successiv transmit/receive transactions in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising clock edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 00t setting this field has no effect on transfer except as determined by REORDER[0 setting. The suspend interval is determined according to the following equation:			Interrupt Enable
[16] UNITIF Interrupt Flag 0 = Indicates the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. NOTE: This bit is cleared by writing 1 to itself. [15:12] SUSPITV Suspend Interval (Master Only) These four bits provide configurable suspend interval between two successiv transmit/receive transactions in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising cloce edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 00t setting this field has no effect on transfer except as determined by REORDER[0]	[17]	UNITIEN	0 = Disable SPI Interrupt.
[16]UNITIF0 = Indicates the transfer is not finished yet. 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself.[15:12]SUSPITVSuspend Interval (Master Only) These four bits provide configurable suspend interval between two successiv transmit/receive transactions in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising clock edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 00t setting this field has no effect on transfer except as determined by REORDER[C setting. The suspend interval is determined according to the following equation:			1 = Enable SPI Interrupt to CPU.
[16] UNITIF 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. [15:12] SUSPITV Suspend Interval (Master Only) These four bits provide configurable suspend interval between two successiv transmit/receive transactions in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising clock edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 00t setting this field has no effect on transfer except as determined by REORDER[C]			Interrupt Flag
[15:12] SUSPITV 1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled. NOTE: This bit is cleared by writing 1 to itself. [15:12] SUSPITV Suspend Interval (Master Only) These four bits provide configurable suspend interval between two successiv transmit/receive transactions in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising clock edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 00t setting this field has no effect on transfer except as determined by REORDER[C]	14.01		0 = Indicates the transfer is not finished yet.
[15:12]SUSPITVSuspend Interval (Master Only) These four bits provide configurable suspend interval between two successiv transmit/receive transactions in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising clock edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 00t setting this field has no effect on transfer except as determined by REORDER[C setting. The suspend interval is determined according to the following equation:	[16]	UNITIF	1 = Indicates that the transfer is complete. Interrupt is generated to CPU if enabled.
[15:12] SUSPITV These four bits provide configurable suspend interval between two successive transmit/receive transactions in a transfer. The suspend interval is from the last falling clock edge of the current transaction to the first rising clock edge of the successive transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising clock edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 00th setting this field has no effect on transfer except as determined by REORDER[(Clock edge. The suspend interval is form the following equation:			NOTE: This bit is cleared by writing 1 to itself.
[15:12]SUSPITVtransmit/receive transactions in a transfer. The suspend interval is from the last fallin clock edge of the current transaction to the first rising clock edge of the successiv transaction if CLKPOL aaa 0. If CLKPOL aaa 1, the interval is from the rising clock edge to the falling clock edge. The default value is 0x0. When TXCNT aaa 00t setting this field has no effect on transfer except as determined by REORDER[C setting. The suspend interval is determined according to the following equation:			Suspend Interval (Master Only)
(SUSPITV[3:0] + 2) * period of SCLK	[15:12]	SUSPITV	

		Clock Polarity
[11]	CLKPOL	0 = SCLK idle low.
		1 = SCLK idle high.
		LSB First
[10]	LSB	0 = The MSB is transmitted/received first (which bit in SPI_TX0/1 and SPI_RX0/1 register that is depends on the DWIDTH field).
		1 = The LSB is sent first on the line (bit 0 of SPI_TX0/1), and the first bit received from the line will be put in the LSB position in the Rx register (bit 0 of SPI_RX0/1).
		Transmit/Receive Word Numbers
		This field specifies how many transmit/receive word numbers should be executed in one transfer.
[9:8]	TXNUM	00 = Only one transmit/receive word will be executed in one transfer.
		01 = Two successive transmit/receive word will be executed in one transfer.
		10 = Reserved.
		11 = Reserved.
		Transmit Bit Length
		This field specifies how many bits are transmitted in one transmit/receive. Up to 32 bits can be transmitted.
	DWIDTH	DWIDTH aaa 0x01 1 bit
[7:3]	DWIDTH	DWIDTH aaa 0x02 2 bits
		DWIDTH aaa 0x1f 31 bits
		DWIDTH aaa 0x00 32 bits
		Transmit At Negative Edge
[2]	TXNEG	0 = The transmitted data output signal is changed at the rising edge of SCLK.
		1 = The transmitted data output signal is changed at the falling edge of SCLK.
		Receive At Negative Edge
[1]	RXNET	0 = The received data input signal is latched at the rising edge of SCLK.
		1 = The received data input signal is latched at the falling edge of SCLK.
		Go and Busy Status
		0 = Writing 0 to this bit has no effect.
[0]	GOBUSY	1 = Writing 1 to this bit starts the transfer. This bit remains set during the transfer and is automatically cleared after transfer finished.
		NOTE: All registers should be set before writing 1 to this BUSY bit. When a transfer is in progress, writing to any register of the SPI master/slave core has no effect.

SPI Divider Register (SPI_CLKDIV)					
Register	Offset	R/W	Description	Reset Value	
SPI_CLKDIV	SPI0_BA + 0x04	R/W	Clock Divider Register (Master Only)	0x0000_0000	

31	30	29	28	27	26	25	24
	DIVIDER1[15:8]						
23	22	21	20	19	18	17	16
	DIVIDER1[7:0]						
15	14	13	12	11	10	9	8
	DIVIDER0[15:8]						
7	6	5	4	3	2	1	0
	DIVIDER0[7:0]						

Table 5-85 SPI Clock Divider Register (SPI_CLKDIV, address 0x4003_0004)

Bits	Description	
		Clock Divider 2 Register (master only)
[31:16]	DIVIDER1	The value in this field is the 2 nd frequency divider of the system clock, PCLK, to generate the serial clock on the output SCLK. The desired frequency is obtained according to the following equation:
		Fsclk aaa Fpclk / ((DIVIDER1+1) * 2)
		Clock Divider Register (master only)
		The value in this field is the frequency division of the system clock, PCLK, to generate the serial clock on the output SCLK. The desired frequency is obtained according to the following equation:
[15:0]	DIVIDER0	Fsclk aaa Fpclk / ((DIVIDER0+1) * 2)
		In slave mode, the period of SPI clock driven by a master shall satisfy
		Fsclk < aaa (Fpclk / 5)
		In other words, the maximum frequency of SCLK clock is one fifth of the SPI peripheral clock.

SPI Slave Select Register (SPI_SSCTL)				
Register	Offset	R/W	Description	Reset Value
SPI_SSCTL	SPI0_BA + 0x08	R/W	Slave Select Register	0x0000_0000

7	6	5	4	3	2	1	0
Rese	Reserved		LVTRGEN	AUTOSS	SSACTPOL	SS[[1:0]

Table 5-86 SPI Slave Select Register (SPI_SSCTL, address 0x4003_0008)

Bits	Description	
[31:6]	Reserved	Reserved
		Level Trigger Flag
		When the LVTRGEN bit is set in slave mode, this bit can be read to indicate the received bit number is met the requirement or not.
[5]	LVTRGSTS	0=One of the received number and the received bit length doesn't meet the requirement in one transfer.
		1=The received number and received bits met the requirement which defines in TXCNT and DWIDTH among one transfer.
		Note: This bit is READ only
		Slave Select Level Trigger (Slave only)
[4]	LVTRGEN	0= The input slave select signal is edge-trigger. This is the default value.
		1= The slave select signal will be level-trigger. It depends on SSACTPOL to decide the signal is active low or active high.
	AUTOSS	Automatic Slave Select (Master only)
		0 = If this bit is cleared, slave select signals are asserted and de-asserted by setting and clearing related bits in SPI_SSCTL[1:0] register.
[3]		1 = If this bit is set, SPISSx0/1 signals are generated automatically. It means that device/slave select signal, which is set in SPI_SSCTL[1:0] register is asserted by the SPI controller when transmit/receive is started by setting BUSY, and is de-asserted after each transmit/receive is finished.
		Slave Select Active Level
[0]	SCACTROL	It defines the active level of device/slave select signal (SPISSx0/1).
[2]	SSACTPOL	0 = The slave select signal SPISSx0/1 is active at low-level/falling-edge.
		1 = The slave select signal SPISSx0/1 is active at high-level/rising-edge.
		Slave Select Register (Master only)
[1:0]	SS	If AUTOSS bit is cleared, writing 1 to any bit location of this field sets the proper SPISSx0/1 line to an active state and writing 0 sets the line back to inactive state.
		If AUTOSS bit is set, writing 1 to any bit location of this field will select appropriate SPISSx0/1 line to be automatically driven to active state for the duration of the transmit/receive, and will be driven to inactive state for the rest of the time. (The active level of SPISSx0/1 is specified in SSACTPOL).
		Note: SPISSx0 is always defined as device/slave select input signal in slave mode.

SPI Data Receive Register (RX)

Register	Offset	R/W	Description	Reset Value
SPI_RX0	SPI0_BA + 0x10	R	Data Receive Register 0	0x0000_0000
SPI_RX1	SPI0_BA + 0x14	R	Data Receive Register 1	0x0000_0000

Table 5-87 SPI Data Receive Register (SPI_RX0/SPI_RX1, address 0x4003_0010/0x4003_0014)

Bits	Description				
		Data Receive Register			
[31:0]	RX	The Data Receive Registers hold the value of received data of the last executed transfer. Valid bits depend on the transmit bit length field in the SPI_CTL register. For example, if DWIDTH is set to 0x08 and TXCNT is set to 0x0, bit Rx0[7:0] holds the received data.			
		NOTE: The Data Receive Registers are read only registers.			

SPI Data Transmit Register (TX)

Register	Offset	R/W	Description	Reset Value
SPI_TX0	SPI0_BA + 0x20	W	Data Transmit Register 0	0x0000_0000
SPI_TX1	SPI0_BA + 0x24	W	Data Transmit Register 1	0x0000_0000

Table 5-88 SPI Data Transmit Register (SPI_TX0/SPI_TX1, address 0x4003_0020/0x4003_0024)

Bits	Description			
[31:0]	тх	Data Transmit Register The Data Transmit Registers hold the data to be transmitted in the next transfer. Valid bits depend on the transmit bit length field in the SPI_CTL register. For example, if DWIDTH is set to 0x08 and the TXCNT is set to 0x0, the bit TX0[7:0] will be transmitted in next transfer. If DWIDTH is set to 0x00 and TXCNT is set to 0x1, the core will perform two 32-bit transmit/receive successive using the same setting (the order is TX0[31:0], TX1[31:0]).		
SPI Variable Clock Pattern Flag Register (SPI_VARCLK)

Register	Offset	R/W	Description	Reset Value
SPI_VARCLK	SPI0_BA + 0x34	R/W	Variable Clock Pattern Register	0x007F_FF87

Table 5-89 SPI Variable Clock Pattern Register (SPI_VARCLK, address 0x4003_0034)

Bits	Description	
		Variable Clock Pattern
[31:0]	VARCLK	The value in this field is the frequency pattern of the SPI clock. If the bit field of VARCLK is '0', the output frequency of SCLK is given by the value of DIVIDER0. If the bit field of VARCLK is '1', the output frequency of SCLK is given by the value of DIVIDER1. Refer to register DIVIDER0.
		Refer to Variable Serial Clock Frequency paragraph for detailed description.
		Note: Used for CLKPOL = 0 only, 16 bit transmission.

Register Offset R/W Description Reset	
	Value
SPI_PDMACTL SPI0_BA + 0x38 R/W SPI DMA Control Register 0x0000	_0000

7	6	5	4	3	2	1	0
	Reserved						TXPDMAEN

Table 5-90 SPI DMA Control Register (SPI_PDMACTL, address 0x4003_0038)

Bits	Description	
[1]	RXPDMAEN	Receive DMA Start Set this bit to 1 will start the receive DMA process. SPI module will issue request to DMA module automatically.
[0]	TXPDMAEN	Transmit DMA Start Set this bit to 1 will start the transmit DMA process. SPI module will issue request to DMA module automatically. If using DMA mode to transfer data, remember not to set BUSY bit of SPI_CTL register. The DMA controller inside SPI module will set it automatically whenever necessary.

5.10 Timer Controller

nuvoton

5.10.1 General Timer Controller

The ISD9160 provides two general 24bit timer modules, TIMER0 and TIMER1. They allow the user to implement event counting or provide timing control for applications. The timer can perform functions such as frequency measurement, event counting, interval measurement, clock generation and delay timing. The timer can generates an interrupt signal upon timeout and provide the current value of count during operation.

5.10.2 Features

- Independent clock source for each channel (TMR0_CLK, TMR1_CLK).
- Time out period = (Period of timer clock input) * (8-bit prescale + 1) * (24-bit CMPDAT)
- Maximum count cycle time = (1 / TMR_CLK) * (2^8) * (2^24).
- Internal 24-bit up counter is readable through TIMERx_CNT (Timer Data Register).

5.10.3 Timer Controller Block Diagram

Each channel is equipped with an 8-bit pre-scale counter, a 24-bit up-counter, a 24-bit compare register and an interrupt request signal. Refer to Figure 5-49 for the timer controller block diagram. There are five options of clock source for each channel, Figure 5-50 illustrate the clock source control function.

Figure 5-49 Timer Controller Block Diagram

Figure 5-50 Clock Source of Timer Controller

5.10.4 Timer Controller Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
TMR Base Address	:						
TMRn_BA=0x4001_	TMRn_BA=0x4001_0000+(0x20*n)						
n=0,1							
TIMERx_CTL	TMRn_BA+0x00	R/W	Timer Control and Status Register	0x0000_0005			
TIMERx_CMP	TMRn_BA+0x04	R/W	Timer Compare Register	0x0000_0000			
TIMERx_INTSTS	TMRn_BA+0x08	R/W	Timer Interrupt Status Register	0x0000_0000			
TIMERx_CNT	TMRn_BA+0x0C	R/W	Timer Data Register	0x0000_0000			

Timer Control Register (TIMERx_CTL)						
Register Offset R/W Description Reset V						
TIMERx_CTL	TMRn_BA+0x00	R/W	Timer Control and Status Register	0x0000_0005		

31	30	29	28	27	26	25	24		
Reserved	CNTEN	INTEN	OPMODE[1:0]		RSTCNT	ACTSTS	Reserved		
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
			Rese	erved					
7	7 6 5 4 3 2 1								
	PSC[7:0]								

Table 5-91 Timer Control and Status Register (TIMERx_CTL, address 0x4001_0000 + x *0x20).

Bits	Description	
[31]	Reserved	Reserved
[30]	CNTEN	Counter Enable Bit 0 = Stops/Suspends counting 1 = Starts counting Note1: Setting CNTEN aaa 1 enables 24-bit counter. It continues count from last value. Note2: This bit is auto-cleared by hardware in one-shot mode (OPMODE aaa 00b) when the timer interrupt is generated (INTEN aaa 1b).
[29]	INTEN	Interrupt Enable Bit 0 = Disable TIMER Interrupt. 1 = Enable TIMER Interrupt. If timer interrupt is enabled, the timer asserts its interrupt signal when the count is equal to TIMERx_CMP.
[28:27]	OPMODE	 Timer Operating Mode 0 = The timer is operating in the one-shot mode. The associated interrupt signal is generated once (if INTEN is enabled) and CNTEN is automatically cleared by hardware. 1 = The timer is operating in the periodic mode. The associated interrupt signal is generated periodically (if INTEN is enabled). 2 = Reserved. 3 = The timer is operating in continuous counting mode. The associated interrupt signal is generated when CNT = CMPDAT (if INTEN is enabled); however, the 24-bit up-counter counts continuously without reset.

[26]	RSTCNT	Counter Reset Bit Set this bit will reset the timer counter, prescale and also force CNTEN to 0. 0 = No effect. 1 = Reset Timer's prescale counter, internal 24-bit up-counter and CNTEN bit.
[25]	ACTSTS	Timer Active Status Bit (Read only)This bit indicates the counter status of timer.0 = Timer is not active.1 = Timer is active.
[24:17]	Reserved	Reserved
[16]	CNTDATEN	 Data Latch Enable When CNTDATEN is set, TIMERx_CNT (Timer Data Register) will be updated continuously with the 24-bit up-counter value as the timer is counting. 1 = Timer Data Register update enable. 0 = Timer Data Register update disable.
[15:8]	Reserved	Reserved
[7:0]	PSC	Pre-scale Counter Clock input is divided by PSC+1 before it is fed to the counter. If PSC aaa 0, then there is no scaling.

Timer Compare Register (TIMERx_CMP)						
Register Offset R/W Description Reset V						
TIMERx_CMP	TMRn_BA+0x04	R/W	Timer Compare Register	0x0000_0000		

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	CMPDAT[23:16]								
15	14	13	12	11	10	9	8		
			CMPDA	T [15:8]					
7	6	5	4	3	2	1	0		
		-	CMPD	AT[7:0]					

Table 5-92 Timer Compare Register (TIMERx_CMP, address 0x4001_0004 + x * 0x20)

Bits	Description	
		Timer Comparison Value
[24:0] CMPDAT	CMPDAT is a 24-bit comparison register. When the 24-bit up-counter is enabled and its value is equal to CMPDAT value, a Timer Interrupt is requested if the timer interrupt is enabled with TIMERx_CTL.INTEN aaa 1. The CMPDAT value defines the timer cycle time.	
	Time out period aaa (Period of timer clock input) * (8-bit PSC + 1) * (24-bit CMPDAT)	
	NOTE1: Never set CMPDAT to 0x000 or 0x001. Timer will not function correctly.	
		NOTE2: Regardless of CNTEN state, whenever a new value is written to this register, TIMER will restart counting using this new value and abort previous count.

Timer Interrupt Status Register (TIMERx_INTSTS)						
Register Offset R/W Description Reset						
TIMERx_INTSTS	TMRn_BA+0x08	R/W	Timer Interrupt Status Register	0x0000_0000		

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
Reserved										
7	6	5	4	3	2	1	0			
Reserved							TIF			

Table 5-93 Timer Interrupt Status Register (TIMERx_INTSTS, address 0x4001_0008 + x * 0x20)

Bits	Description	Description			
[31:1]	Reserved	Reserved			
[0]	TIF	Timer Interrupt FlagThis bit indicates the interrupt status of Timer.TIF bit is set by hardware when the 24-bit counter matches the timer comparison value (CMPDAT). It is cleared by writing 1.			

Timer Data Register (TIMERx_CNT)						
Register Offset R/W Description				Reset Value		
TIMERx_CNT	TMRn_BA+0x0C	R/W	Timer Data Register	0x0000_0000		

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	CNT[23:16]									
15	14	13	12	11	10	9	8			
	CNT[15:8]									
7	6	5	4	3	2	1	0			
	CNT[7:0]									

Table 5-94 Timer Data Register (TIMERx_CNT, address 0x4001_000C + x *0x20).

Bits	Description		
[31:24]	Reserved	Reserved	
[23:0]	CNT	Timer Data Register When TIMERx_CTL.CNTDATEN is set to 1, the internal 24-bit timer up-counter value will be latched into CNT. User can read this register for the up-counter value.	

5.11 Watchdog Timer

UVOTON

The purpose of Watchdog Timer is to perform a system reset if software is not responding as designed. This prevents system from hanging for an infinite period of time. The watchdog timer includes a 18-bit free running counter with programmable time-out intervals.

Setting WDTEN enables the watchdog timer and the WDT counter starts counting up. When the counter reaches the selected time-out interval, Watchdog timer interrupt flag IF will be set immediately to request a WDT interrupt if the watchdog timer interrupt enable bit INTEN is set, in the meantime, a specified delay time follows the time-out event. User must set RSTCNT (Watchdog timer reset) high to reset the 18-bit WDT counter to prevent Watchdog timer reset before the delay time expires. RSTCNT bit is auto cleared by hardware after WDT counter is reset. There are eight time-out intervals with specific delay time which are selected by Watchdog timer interval select bits TOUTSEL. If the WDT counter has not been cleared after the specific delay time expires, the watchdog timer will set Watchdog Timer Reset Flag (RSTF) high and reset CPU. This reset will last 64 WDT clocks then CPU restarts executing program from reset vector (0x0000 0000). RSTF will not be cleared by Watchdog reset. User may poll WTFR by software to recognize the reset source.

If the application uses any sleep modes (calling wfi or wfe instructions), the watchdog reset may not fully reset the M0 core due to parts of the core being un-clocked. In this case application should detect the RSTF in boot sequence and perform a Deep Power Down (DPD) to ensure complete reset. See the Timer driver sample code for example.

TOUTSEL	Interrupt Timeout	Watchdog Reset Timeout	RSTCNT Timeout Interval (WDT_CLK=49.152 MHz)	RSTCNT Timeout Interval (WDT_CLK=32kHz)
000	2 ⁴ WDT_CLK	(2 ⁴ + 1024) WDT_CLK	21.2 us	31.7 ms
001	2 ⁶ WDT_CLK	(2 ⁶ + 1024) WDT_CLK	22.1 us	33.2 ms
010	2 ⁸ WDT_CLK	(2 ⁸ + 1024) WDT_CLK	26.0 us	39 ms
011	2 ¹⁰ WDT_CLK	(2 ¹⁰ + 1024) WDT_CLK	41.7 us	64 ms
100	2 ¹² WDT_CLK	(2 ¹² + 1024) WDT_CLK	104.2 us	160 ms
101	2 ¹⁴ WDT_CLK	(2 ¹⁴ + 1024) WDT_CLK	354.2 us	544 ms
110	2 ¹⁶ WDT_CLK	(2 ¹⁶ + 1024) WDT_CLK	1.4 ms	2080 ms
111	2 ¹⁸ WDT_CLK	(2 ¹⁸ + 1024) WDT_CLK	5.4 ms	8224 ms

Table 5-95	Watchdog	Timeout	Interval	Selection
	valoridog	innoout	micrivar	0010011011

Figure 5-51 Watchdog Timer Clock Control

nuvoTon

Figure 5-52 Watchdog Timer Block Diagram

5.11.1 Watchdog Timer Control Registers Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Reset Value			
	WDT Base Address: WDT_BA = 0x4000_4000					
WDT_CTL	WDT_BA+0x00	R/W	Watchdog Timer Control Register	0x0000_0700		

Watchdog Timer Control Register (WDT_CTL)

This is a protected register, to write to register, first issue the unlock sequence (see Protected Register Lock Key Register (SYS REGLCTL)). Only flag bits, IF and RSTF are unprotected and can be write-cleared at any time.

Register	Offset	R/W	Description	Reset Value
WDT_CTL	WDT_BA+0x00	R/W	Watchdog Timer Control Register	0x0000_0700

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
		Reserved				TOUTSEL			
7	6	5	4	3	2	1	0		
WDTEN	INTEN	Rese	erved	IF	RSTF	RSTEN	RSTCNT		

Bits	Description	Description					
[31:11]	Reserved	Reserved					
		Watchdog Timer Interval Select					
		These three bits select the timeout interval for the Watchdog timer, a watchdog reset will occur 1024 clock cycles later if WDG not reset. The timeout is given by:					
[10:8]	TOUTSEL	Interrupt Timeout aaa 2^(2xWTIS+4) x WDT_CLK					
		Reset Timeout aaa (2^(2xWTIS+4) +1024) x WDT_CLK					
		Where WDT_CLK is the period of the Watchdog Timer clock source.					
		Watchdog Timer Enable					
[7]	[7] WDTEN	0 = Disable the Watchdog timer (This action will reset the internal counter)					
		1 = Enable the Watchdog timer					
		Watchdog Timer Interrupt Enable					
[6]	INTEN	0 = Disable the Watchdog timer interrupt					
		1 = Enable the Watchdog timer interrupt					
		Watchdog Timer Interrupt Flag					
[3]	IF	If the Watchdog timer interrupt is enabled, then the hardware will set this bit to indicate that the Watchdog timer interrupt has occurred. If the Watchdog timer interrupt is not enabled, then this bit indicates that a timeout period has elapsed.					
[3]	"	0 = Watchdog timer interrupt has not occurred.					
		1 = Watchdog timer interrupt has occurred.					
		NOTE: This bit is cleared by writing 1 to this bit.					

		Watchdog Timer Reset Flag
[2]	RSTF	When the Watchdog timer initiates a reset, the hardware will set this bit. This flag can be read by software to determine the source of reset. Software is responsible to clear it manually by writing 1 to it. If RSTEN is disabled, then the Watchdog timer has no effect on this bit.
-1		0 = Watchdog timer reset has not occurred.
		1= Watchdog timer reset has occurred.
		NOTE: This bit is cleared by writing 1 to this bit.
		Watchdog Timer Reset Enable
[1]	RSTEN	Setting this bit will enable the Watchdog timer reset function.
[,]	NOTEN	0 = Disable Watchdog timer reset function
		1= Enable Watchdog timer reset function
		Clear Watchdog Timer
		Set this bit will clear the Watchdog timer.
[0]	RSTCNT	0 = Writing 0 to this bit has no effect
		1 = Reset the contents of the Watchdog timer
		NOTE: This bit will auto clear after few clock cycle

5.12 UART Interface Controller

The ISD9160 includes a Universal Asynchronous Receiver/Transmitter (UART). The UART supports high speed operation and flow control functions as well as protocols for Serial Infrared (IrDA) and Local interconnect Network (LIN).

5.12.1 Overview

nuvoton

The Universal Asynchronous Receiver/Transmitter (UART) performs a serial-to-parallel conversion on data received from the peripheral, and a parallel-to-serial conversion on data transmitted from the CPU. The UART controller also supports LIN (Local Interconnect Network) master mode function and IrDA SIR (Serial Infrared) function. The UART channel supports seven types of interrupts including transmitter FIFO empty interrupt (THERINT), receiver threshold level interrupt (RDAINT), line status interrupt (overrun error or parity error or framing error or break interrupt) (RLSINT), time out interrupt (RXTOINT), MODEM status interrupt (MODEMINT), Buffer error interrupt (BUFERRINT) and LIN receiver break field detected interrupt.

The UART has a 8-byte transmit FIFO (TX_FIFO) and a 8-byte receive FIFO (RX_FIFO) that reduces the number of interrupts presented to the CPU. The CPU can read the status of the UART at any time during the operation. The reported status information includes the type and condition of the transfer operations being performed by the UART, as well as 4 error conditions (parity error, overrun error, framing error and break interrupt) that can occur while receiving data. The UART includes a programmable baud rate generator that is capable of dividing master clock input by divisors to produce the baud rate clock. The baud rate equation is Baud Rate = UART_CLK / M * [BRD + 2], where M and BRD are defined in Baud Rate Divider Register (BAUD). Table 5-96 lists the equations under various conditions.

The UART controller supports auto-flow control function that uses two active-low signals, CTS (clearto-send) and RTS (request-to-send), to control the flow of data transfer between the UART and external devices (e.g. Modem). When auto-flow is enabled, the UART will not receive data until the UART asserts /RTS to external device. When the number of bytes in the Rx FIFO equals the value of UART_FIFO.RTSTRGLV, the RTS is de-asserted. The UART sends data out when UART controller detects CTS is asserted from external device. If CTS is not detected the UART controller will not send data out.

The UART controller also provides Serial IrDA (SIR, Serial Infrared) function (UART_FUNCSEL. IRDAEN =1 to enable IrDA function). The SIR specification defines a short-range infrared asynchronous serial transmission mode with one start bit, 8 data bits, and 1 stop bit. The maximum data rate is 115.2 Kbps (half duplex). The IrDA SIR block contains an IrDA SIR Protocol encoder/decoder. The IrDA SIR protocol is half-duplex only. So it cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 10ms transfer delay between transmission and reception. This delay must be implemented by software.

The alternate function of UART controller is LIN (Local Interconnect Network) function. The LIN mode is selected by setting the UART_FUNCSEL.LINEN bit. In LIN mode, one start bit, 8-bit data format with 1-bit stop bit are generated in accordance with the LIN standard.

Mode	BAUDM1	BAUDM0	EDIVM1[3:0]	BRD[15:0]	Baud rate equation
0	0	0	В	А	UART_CLK / [16 * (A+2)]
1	1	0	В	А	UART_CLK / [(B+1) * (A+2)] , B ≥ 8
2	1	1	Don't care	А	UART_CLK / (A+2), A ≥ 3

Table 5-96 UART Baud Rate Equation

-					0			
	System clock = 49.152MHz							
Baud rate	Mode0	%err	Mode1	%err	Mode2	%err		
921600	х		A=4,B=8	1.2	A=51	-0.6		
460800	x		A=10,B=8	1.2	A=104	0.3		
230400	x		A=22,B=8 A=7,B=11	1.2 1.2	A=211	-0.2		
115200	A=25	1.2	A=37,B=10 A=31,B=12	0.5 0.5	A=425	0.1		
57600	A=51	-0.6	A=59,B=13 A=93,B=8	0.1 0.2	A=851	0.0		
38400	A=78	0.0	A=126,B=9 A=78,B=15	0.0 0.0	A=1278	0.0		
19200	A=158	0.0	A=254,B=9 A=158,B=15	0.0 0.0	A=2558	0.0		
9600	A=318	0.0	A=510,B=9 A=318,B=15	0.0 0.0	A=5118	0.0		
4800	A=638	0.0	A=1022,B=9 A=638,B=15	0.0 0.0	A=10238	0.0		

Table 5-97 UART Baud Rate Setting Table

5.12.2 Features of UART controller

- UART supports 8 byte FIFO for receive and transmit data payloads.
- PDMA access support.

nuvoTon

- Auto flow control function (/CTS, /RTS) supported.
- Programmable baud-rate generator.
- Fully programmable serial-interface characteristics:
 - 5-, 6-, 7-, or 8-bit character.
 - Even, odd, or no-parity bit generation and detection.
 - 1-, 1&1/2, or 2-stop bit generation.
 - Baud rate generation.
 - False start bit detection.
- IrDA SIR Function.
- LIN master mode.

5.12.3 Block Diagram

ηυνοτοη

The UART clock control and block diagram are shown as following.

Figure 5-53 UART Clock Control Diagram

Figure 5-54 UART Block Diagram

TX_FIFO

The transmitter is buffered with an 8 byte FIFO to reduce the number of interrupts presented to the CPU.

RX_FIFO

The receiver is buffered with an 8 byte FIFO (plus three error bits per byte) to reduce the number of interrupts presented to the CPU.

TX shift Register

Shifts the transmit data out serially

RX shift Register

Shifts the receive data in serially

Modem Control Register

This register controls the interface to the MODEM or data set (or a peripheral device emulating a MODEM).

Baud Rate Generator

Divides the UART0_CLK clock by the divisor to get the desired baud rate clock. Refer to <u>Table 5-96</u> for the baud rate equation.

Control and Status Register

This is a register set, including the FIFO control registers (UART_FIFO), FIFO status registers (UART_FIFOSTS), and line control register (UART_LINE) for transmitter and receiver. The time out control register (UART_TOUT) identifies the condition of time out interrupt. This register set also includes the interrupt enable register (UART_INTEN) and interrupt status register (UART_INTSTS) to enable or disable the responding interrupt and to identify the occurrence of the responding interrupt. There are six types of interrupts, transmitter FIFO empty interrupt(THERINT), receiver threshold level reaching interrupt (RDAINT), line status interrupt (overrun error or parity error or framing error or break interrupt) (RLSINT), time out interrupt (RXTOINT), MODEM status interrupt (MODEMINT) and Buffer error interrupt (BUFERRINT).

Figure 5-55 demonstrates the auto-flow control block diagram.

Figure 5-55 Auto Flow Control Block Diagram

5.12.4 IrDA Mode

nuvoTon

The UART supports IrDA SIR (Serial Infrared) Transmit Encoder and Receive Decoder. IrDA mode is selected by setting the UART_FUNCSEL.IRDAEN bit.

When in IrDA mode, the UART_BAUD.BAUDM1 register must be zero and baud rate is given by:

Baud Rate = UART_CLK / (16 * BRD), where BRD is Baud Rate Divider in the UART_BAUD.BRD register.

Figure 5-56 IrDA Block Diagram

5.12.4.1 IrDA SIR Transmit Encoder

The IrDA SIR Transmit Encoder modulates Non-Return-to Zero (NRZ) transmission bit stream from UART serial output. The IrDA SIR physical layer specifies use of Return-to-Zero, Inverted (RZI) modulation scheme which represents logic 0 as an infrared light pulse. The modulated output pulse stream is transmitted to an external output driver and infrared LED (Light Emitting Diode). In normal mode, the transmitted pulse width is specified as 3/16 the period of the baud rate.

5.12.4.2 IrDA SIR Receive Decoder

The IrDA SIR Receive Decoder demodulates the return-to-zero bit stream from the input detector and outputs the NRZ serial bit stream to the UART received data input. The IR_SIN decoder input is normally high in the idle state. Because of this, UART_IRDA.RXINV should be set 1 by default). A start bit is detected when the IR_SIN decoder input is LOW.

5.12.4.3 IrDA SIR Operation

The IrDA SIR Encoder/decoder provides functionality which converts between UART data stream and half duplex serial SIR interface. Figure 5-57 shows the IrDA encoder/decoder waveform:

nuvoTon

ISD9160 Technical Reference Manual

Figure 5-57 IrDA Tx/Rx Timing Diagram

5.12.5 LIN (Local Interconnection Network) mode

The UART supports a Local Interconnection Network (LIN) function. LIN mode is selected by setting the UART_FUNCSEL.LINEN bit. In LIN mode, each byte field is initiated by a start bit with value zero (dominant), followed by 8 data bits (LSB is first) and ended by 1 stop bit with value one (recessive) in accordance with the LIN standard (<u>http://www.lin-subbus.org/</u>).

Figure 5-58 Structure of LIN Frame

The program flow of LIN Bus Transmit transfer (Tx) is shown as following

- 1. Set the UART_FUNCSEL.LINEN bit to enable LIN Bus mode.
- 2. Set UART_ALTCTL.BRKFL to choose break field length. The break field length is BRKFL+2.
- 3. Fill 0x55 to UART_DAT to request synch field transmission.
- 4. Request Identifier Field transmission by writing the protected identifier value to UART_DAT
- 5. Set the UART_ALTCTL.LINTX_EN bit to start transmission (When break filed operation is finished, LINTX_EN will be cleared automatically).
- 6. When the STOP bit of the last byte UART_DAT has been sent to bus, hardware will set flag UART_FIFOSTS.TXEMPTYF to 1.
- 7. Fill N bytes data and Checksum to UART_DAT then repeat step 5 and 6 to transmit the data.

The program flow of LIN Bus Receiver transfer (Rx) is show as following

- 1. Set the UART_FUNCSEL.LINEN bit to enable LIN Bus mode.
- 2. Set the UART_ALTCTL.LINRX_EN bit register to enable LIN Rx mode.
- 3. Wait for the flag UART_INTSTS.LINIF to indicate Rx received Break field or not.
- 4. Wait for the flag UART_INTSTS.RDAIF read back the UART_DAT register.

5.12.6 UART Interface Control Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
UART0 Base Address:							
UART0_BA = 0x4005_	_0000						
UART_DAT	UART0_BA + 0x00	R/W	UART0 Receive/Transfer FIFO Register.	Undefined			
UART_INTEN	UART0_BA + 0x04	R/W	UART0 Interrupt Enable Register.	0x0000_0000			
UART_FIFO	UART0_BA + 0x08	R/W	UART0 FIFO Control Register.	0x0000_0000			
UART_LINE	UART0_BA + 0x0C	R/W	UART0 Line Control Register.	0x0000_0000			
UART_MODEM	UART0_BA + 0x10	R/W	UART0 Modem Control Register.	0x0000_0000			
UART_MODEMSTS	UART0_BA + 0x14	R/W	UART0 Modem Status Register.	0x0000_0000			
UART_FIFOSTS	UART0_BA + 0x18	R/W	UART0 FIFO Status Register.	0x1040_4000			
UART_INTSTS	UART0_BA + 0x1C	R/W	UART0 Interrupt Status Register.	0x0000_0002			
UART_TOUT	UART0_BA + 0x20	R/W	UART0 Time Out Register	0x0000_0000			
UART_BAUD	UART0_BA + 0x24	R/W	UART0 Baud Rate Divisor Register	0x0F00_0000			
UART_IRDA	UART0_BA + 0x28	R/W	UART0 IrDA Control Register.	0x0000_0040			
UART_ALTCTL	UART0_BA + 0x2C	R/W	UART0 LIN Control Register.	0x0000_0000			
UART_FUNCSEL	UART0_BA + 0x30	R/W	UART0 Function Select Register.	0x0000_0000			

5.12.7 UART Interface Control Register Description

Receive FIFO Data Register (UART_DAT)

Register	Offset	R/W	Description	Reset Value
UART_DAT	UART0_BA + 0x00	R/W	UART0 Receive/Transfer FIFO Register.	Undefined

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
			Rese	rved			
7	6	5	4	3	2	1	0
	DAT						

Table 5-98 UART Receive FIFO Data Register (UART_DAT, address 0x4005_0000)

Bits	Description	
[7:0]	DAT	Receive FIFO Register Reading this register will return data from the receive data FIFO. By reading this register, the UART will return the 8-bit data received from Rx pin (LSB first).

Interrupt Enable Register (UART_INTEN)						
Register	Offset	R/W	Description	Reset Value		
UART_INTEN	UART0_BA + 0x04	R/W	UART0 Interrupt Enable Register.	0x0000_0000		

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
DMARXEN	DMATXEN	ATOCTSEN	ATORTSEN	TOCNTEN	Reser	ved	LINIEN
7	6	5	4	3	2	1	0
Rese	erved	BUFERRIEN	RXTOIEN	MODEMIEN	RLSIEN	THREIEN	RDAIEN

Table 5-99 UART Interrupt Enable Register (UART_INTEN, address 0x4005_0004)

Bits	Description	
[31:16]	Reserved	Reserved
[15]	DMARXEN	Receive DMA Enable If enabled, the UART will request DMA service when data is available in receive FIFO.
[14]	DMATXEN	Transmit DMA Enable If enabled, the UART will request DMA service when space is available in transmit FIFO.
[13]	ATOCTSEN	CTS Auto Flow Control Enable 0 = Disable CTS auto flow control. 1 = Enable. When CTS auto-flow is enabled, the UART will send data to external device when CTS input is asserted (UART will not send data to device until CTS is asserted).
[12]	ATORTSEN	RTS Auto Flow Control Enable 0 = Disable RTS auto flow control. 1 = Enable. When RTS auto-flow is enabled, if the number of bytes in the Rx FIFO equals UART_FIFO.RTSTRGLV, the UART will de-assert the RTS signal.
[11]	TOCNTEN	Time-Out Counter Enable0 = Disable Time-out counter.1 = Enable.
[10:9]	Reserved	Reserved

[8]	LINIEN	LIN RX Break Field Detected Interrupt Enable 0 = Mask off Lin bus Rx break field interrupt. 1 = Enable Lin bus Rx break field interrupt.
[7:6]	Reserved	Reserved
[5]	BUFERRIEN	Buffer Error Interrupt Enable 0 = Mask off BUFERRINT 1 = Enable IBUFERRINT
[4]	RXTOIEN	Receive Time out Interrupt Enable 0 = Mask off RXTOINT 1 = Enable RXTOINT
[3]	MODEMIEN	Modem Status Interrupt Enable 0 = Mask off MODEMINT 1 = Enable MODEMINT
[2]	RLSIEN	Receive Line Status Interrupt Enable 0 = Mask off RLSINT 1 = Enable RLSINT
[1]	THREIEN	Transmit FIFO Register Empty Interrupt Enable 0 = Mask off THERINT 1 = Enable THERINT
[0]	RDAIEN	Receive Data Available Interrupt Enable.0 = Mask off RDAINT1 = Enable RDAINT

FIFO Control Register (UART_FIFO)					
Register	Offset	R/W	Description	Reset Value	
UART_FIFO	UART0_BA + 0x08	R/W	UART0 FIFO Control Register.	0x0000_0000	

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Rese	erved		RTSTRGLV			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	RFITL				TXRST	RXRST	Reserved

Table 5-100 UART FIFO Control Register (UART_FIFO, address 0x4005_0008)

Bits	Description							
[31:20]	Reserved	Reserved	Reserved					
		RTS Trig	ger Level	for Auto-flow Control				
		Sets the F	IFO trigg	er level when auto-flow control will de-assert RTS (request-to-send).				
[19:16]	RTSTRGLV	Value	:	Trigger Level (Bytes)				
[19.10]	RISIRGLV	0	:	1				
		1	:	4				
		2	:	8				
		Receive	FIFO Inte	errupt (RDAINT) Trigger Level				
		When the number of bytes in the receive FIFO equals the RFITL then the RDAIF will be set and, if enabled, an RDAINT interrupt will generated.						
[7:4]	RFITL	Value	:	INTR_RDA Trigger Level (Bytes)				
		0	:	1				
		1	:	4				
		2	:	8				
[3]	Reserved			Reserved				
		Transmit	FIFO Re	set				
			When TXRST is set, all the bytes in the transmit FIFO are cleared and transmit internal state machine is reset.					
[2]	TXRST	0 = Writing	0 = Writing 0 to this bit has no effect.					
		1 = Writing	g 1 to this	bit will reset the transmitting internal state machine and pointers.				
		Note: This	s bit will a	uto-clear after 3 UART engine clock cycles.				

		Receive FIFO Reset
		When RXRST is set, all the bytes in the receive FIFO are cleared and receive internal state machine is reset.
[1]	[1] RXRST	0 = Writing 0 to this bit has no effect.
		1 = Writing 1 to this bit will reset the receiving internal state machine and pointers.
		Note: This bit will auto-clear after 3 UART engine clock cycles.
[0]	Reserved	Reserved

Line Control Register (UART_LINE)						
Register	Offset	R/W	Description	Reset Value		
UART_LINE	UART0_BA + 0x0C	R/W	UART0 Line Control Register.	0x0000_0000		

7	6	5	4	3	2	1	0
Reserved	ВСВ	SPE	EPE	PBE	NSB	w	LS

Table 5-101 UART Line Control Register (UART_LINE, address 0x4005_000C)

Bits	Description	
[31:7]	Reserved	Reserved
		Break Control Bit
[6]	[6] BCB	When this bit is set to logic 1, the serial data output (Tx) is forced to the 'Space' state (logic 0). Normal condition is serial data output is 'Mark' state. This bit acts only on Tx and has no effect on the transmitter logic.
		Stick Parity Enable
[5]	SPE	0 = Disable stick parity
		1 = When bits PBE and SPE are set 'Stick Parity' is enabled. If EPE=0 the parity bit is transmitted and checked as always set, if EPE=1, the parity bit is transmitted and checked as always cleared.
		Even Parity Enable
[4]	EPE	0 = Odd number of logic 1's are transmitted or checked in the data word and parity bits.
["		1 = Even number of logic 1's are transmitted or checked in the data word and parity bits.
		This bit has effect only when PBE (parity bit enable) is set.
		Parity Bit Enable
[3]	PBE	0 = Parity bit is not generated (transmit data) or checked (receive data) during transfer.
		1 = Parity bit is generated or checked between the "last data word bit" and "stop bit" of the serial data.
		Number of STOP bits
[2]	NSB	0= One "STOP bit" is generated after the transmitted data
r_1		1= Two "STOP bits" are generated when 6-, 7- and 8-bit word length is selected; One and a half "STOP bits" are generated in the transmitted data when 5-bit word length is selected;
[4.0]	WI S	Word Length Select
[1:0]	WLS	0 (5bits), 1(6bits), 2(7bits), 3(8bits)

MODEM Control Register (UART_MODEM)					
Register	Offset	R/W	Description	Reset Value	
UART_MODEM	UART0_BA + 0x10	R/W	UART0 Modem Control Register.	0x0000_0000	

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Reso	Reserved RTSSTS		Reserved			RTSACTLV	Reserved
7	6	5	4	3	2	1	0
	Reserved			Rese	erved	RTS	Reserved

Table 5-102 UART Modem Control Register (UART_MODEM, address 0x4005_0010)

Bits	Description	
[31:14]	Reserved	Reserved
[13]	RTSSTS	RTS Pin State (read only) This bit is the pin status of RTS.
[12:10]	Reserved	Reserved
[9]	RTSACTLV	Request-to-Send (RTS) Active Trigger Level This bit can change the RTS trigger level. 0= RTS is active low level. 1= RTS is active high level
[8:5]	Reserved	Reserved
[4]	LBMEN	Loopback Mode Enable 0=Disable 1=Enable
[3:2]	Reserved	Reserved
[1]	RTS	RTS (Request-To-Send) SignalIf UART_INTEN.ATORTSEN aaa 0, this bit controls whether RTS pin is active or not.0 = Drive RTS inactive (aaa ~RTSACTLV).1 = Drive RTS active (aaa RTSACTLV).

Modem Status Register (UART_MODEMSTS) Register Offset R/W Description Reset Value UART_MODEMSTS UART0_BA + 0x14 R/W UART0 Modem Status Register. 0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Reserved				CTSACTLV	
7	6	5	4	3	2	1	0	
Reserved			CTSSTS	Reserved			CTSDETF	

Table 5-103 UART Modem Status Register (UART_MODEMSTS, address 0x4005_0014)

Bits	Description	
[31:9]	Reserved	Reserved
[8]	CTSACTLV	Clear-to-Send (CTS) Active Trigger LevelThis bit can change the CTS trigger level.0= CTS is active low level.1= CTS is active high level
[7:5]	Reserved	Reserved
[4]	CTSSTS	CTS Pin Status (read only) This bit is the pin status of CTS.
[3:1]	Reserved	Reserved
[0]	CTSDETF	Detect CTS State Change Flag This bit is set whenever CTS input has state change. It will generate Modem interrupt to CPU when UART_INTEN.MODEMIEN aaa 1 NOTE: This bit is cleared by writing 1 to itself.

FIFO S	FIFO Status Register (UART_FIFOSTS)					
Register	Offset	R/W	Description	Reset Value		
UART_FIFOSTS	UART0_BA + 0x18	R/W	UART0 FIFO Status Register.	0x1040_4000		

31	30	29	28	27	26	25	24
Reserved			TXEMPTYF	Reserved			TXOVIF
23	22	21	20	19	18	17	16
TXFULL	TXEMPTY	TXPTR					
15	14	13	12	11	10	9	8
RXFULL	RXEMPTY	RXPTR					
7	6	5	4	3	2	1	0
Reserved	BIF	FEF PEF Reserved R)			RXOVIF		

Table 5-104 UART FIFO Status Register (UART_FIFOSTS, address 0x4005_0018)

Bits	Description				
[31:29]	Reserved	Reserved			
[28]	TXEMPTYF	 Transmitter Empty (Read Only) Bit is set by hardware when Tx FIFO is empty and the STOP bit of the last byte has been transmitted. Bit is cleared automatically when Tx FIFO is not empty or the last byte transmission has not completed. NOTE: This bit is read only. 			
[27:25]	Reserved	Reserved			
[24]	TXOVIF	Tx Overflow Error Interrupt Flag If the Tx FIFO (UART_DAT) is full, an additional write to UART_DAT will cause an overflow condition and set this bit to logic 1. It will also generate a BUFERRIF event and interrupt if enabled.NOTE: This bit is cleared by writing 1 to itself.			
[23]	TXFULL	Transmit FIFO Full (Read Only) This bit indicates whether the Tx FIFO is full or not. This bit is set when Tx FIFO is full; otherwise it is cleared by hardware. TXFULL=0 indicates there is room to write more data to Tx FIFO.			
[22]	ТХЕМРТҮ	Transmit FIFO Empty (Read Only) This bit indicates whether the Tx FIFO is empty or not. When the last byte of Tx FIFO has been transferred to Transmitter Shift Register, hardware sets this bit high. It will be cleared after writing data to FIFO (Tx FIFO not empty).			

[21:16]	TXPTR	Tx FIFO Pointer (Read Only)This field returns the Tx FIFO buffer pointer. When CPU writes a byte into the TxFIFO, TXPTR is incremented. When a byte from Tx FIFO is transferred to theTransmit Shift Register, TXPTR is decremented.
[15]	RXFULL	Receive FIFO Full (Read Only) This bit indicates whether the Rx FIFO is full or not. This bit is set when Rx FIFO is full; otherwise it is cleared by hardware.
[14]	RXEMPTY	Receive FIFO Empty (Read Only) This bit indicates whether the Rx FIFO is empty or not. When the last byte of Rx FIFO has been read by CPU, hardware sets this bit high. It will be cleared when UART receives any new data.
[13:8]	RXPTR	Rx FIFO pointer (Read Only)This field returns the Rx FIFO buffer pointer. It is the number of bytes available for read in the Rx FIFO. When UART receives one byte from external device, RXPTR is incremented. When one byte of Rx FIFO is read by CPU, RXPTR is decremented.
[7]	Reserved	Reserved
[6]	BIF	Break Interrupt Flag This bit is set to a logic 1 whenever the receive data input (Rx) is held in the "space" state (logic 0) for longer than a full word transmission time (that is, the total time of start bit + data bits + parity + stop bits). It is reset whenever the CPU writes 1 to this bit.
[5]	FEF	Framing Error Flag This bit is set to logic 1 whenever the received character does not have a valid "stop bit" (that is, the stop bit following the last data bit or parity bit is detected as a logic 0), and is reset whenever the CPU writes 1 to this bit.
[4]	PEF	Parity Error Flag This bit is set to logic 1 whenever the received character does not have a valid "parity bit", and is reset whenever the CPU writes 1 to this bit.
[3:1]	Reserved	Reserved
[0]	RXOVIF	Rx Overflow Error Interrupt FlagIf the Rx FIFO (UART_DAT) is full, and an additional byte is received by the UART, an overflow condition will occur and set this bit to logic 1. It will also generate a BUFERRIF event and interrupt if enabled.NOTE: This bit is cleared by writing 1 to itself.

Interrupt Status Register (UART_INTSTS)					
Register	Offset	R/W	Description	Reset Value	
UART_INTSTS	UART0_BA + 0x1C	R/W	UART0 Interrupt Status Register.	0x0000_0002	

31	30	29	28	27	26	25	24
DLININT	Reserved	DBERRINT	DRXTOINT	DMODEMI	DRLSINT	Rese	erved
23	22	21	20	19	18	17	16
DLINIF	Reserved	DBERRIF	DRXTOIF	DMODEMIF	DRLSIF	Rese	erved
15	14	13	12	11	10	9	8
LININT	Reserved	BUF_ERR _INT	RXTOINT	MODEMINT	RLSINT	THERINT	RDAINT
7	6	5	4	3	2	1	0
LINIF	Reserved	BUFERRIF	RXTOIF	MODENIF	RLSIF	THREIF	RDAIF

Table 5-105 UART Interrupt Status Register (UART_INTSTS, address 0x4005_001C)

Bits	Description	
[31]	DLININT	DMA MODE LIN Bus Rx Break Field Detected Interrupt Indicator to Interrupt Controller
		Logical AND of UART_INTEN.DMARXEN or UART_INTEN.DMATXEN and DLINIF.
[30]	RESERVED	RESERVED
		DMA MODE Buffer Error Interrupt Indicator to Interrupt Controller
[29]	DBERRINT	Logical AND of UART_INTEN.DMARXEN or UART_INTEN.DMATXEN and DBERRIF.
		DMA MODE Time Out Interrupt Indicator to Interrupt Controller
[28]	DRXTOINT	Logical AND of UART_INTEN.DMARXEN or UART_INTEN.DMATXEN and DRXTOIF.
		DMA MODE MODEM Status Interrupt Indicator to Interrupt
[27]	DMODEMI	Logical AND of UART_INTEN.DMARXEN or UART_INTEN.DMATXEN and DMODENIF.
[26]	DRLSINT	DMA MODE Receive Line Status Interrupt Indicator to Interrupt Controller
[20]		Logical AND of UART_INTEN.DMARXEN or UART_INTEN.DMATXEN and DRLSIF.
[25]	RESERVED	RESERVED
[24]	RESERVED	RESERVED
		DMA MODE LIN Bus Rx Break Field Detected Flag
[23]	DLINIF	This bit is set when LIN controller detects a break field. This bit is cleared by writing a 1.
[22]	RESERVED	RESERVED

	DMA MODE Buffer Error Interrupt Flag (Read Only)			
DBERRIF	This bit is set when either the Tx or Rx FIFO overflows (UART_FIFOSTS.TXOVIF or UART_FIFOSTS.RXOVIF is set). When BUFERRIF is set, the serial transfer may be corrupted. If UART_INTEN.BUFERRIEN is enabled a CPU interrupt request will be generated.			
	NOTE: This bit is cleared when both UART_FIFOSTS.TXOVIF and UART_FIFOSTS.RXOVIF are cleared.			
	DMA MODE Time Out Interrupt Flag (Read Only)			
DRXTOIF	This bit is set when the Rx FIFO is not empty and no activity occurs in the Rx FIFO and the time out counter equal to TOIC. If UART_INTEN.TOUT_IEN is enabled a CPU interrupt request will be generated.			
	NOTE: This bit is read only and user can read FIFO to clear it.			
	DMA MODE MODEM Interrupt Flag (Read Only)			
DMODEMIF	This bit is set when the CTS pin has changed state (UART_MODEMSTS.CTSDETF=1). If UART_INTEN.MODEMIEN is enabled, a CPU interrupt request will be generated.			
	NOTE: This bit is read only and reset when bit UART_MODEMSTS.CTSDETF is cleared by a write 1.			
	DMA MODE Receive Line Status Interrupt Flag (Read Only)			
DRLSIF	This bit is set when the Rx receive data has a parity, framing or break error (at least one of, UART_FIFOSTS.BIF, UART_FIFOSTS.FEF and UART_FIFOSTS.PEF, is set). If UART_INTEN.RLSIEN is enabled, the RLS interrupt will be generated.			
	NOTE: This bit is read only and reset to 0 when all bits of BIF, FEF and PEF are cleared.			
RESERVED	RESERVED			
	LIN Bus Rx Break Field Detected Interrupt Indicator to Interrupt Controller			
	Logical AND of UART_INTEN.LINIEN and LINIF.			
Reserved	Reserved			
BUFERRINT	Buffer Error Interrupt Indicator to Interrupt Controller			
BOILERRIN	Logical AND of UART_INTEN.BUFERRIEN and BUFERRIF.			
RXTOINT	Time Out Interrupt Indicator to Interrupt Controller			
	Logical AND of UART_INTEN.RXTOIEN and RXTOIF.			
MODEMINT	MODEM Status Interrupt Indicator to Interrupt			
	Logical AND of UART_INTEN.MODEMIEN and MODENIF.			
RLSINT	Receive Line Status Interrupt Indicator to Interrupt Controller			
	Logical AND of UART_INTEN.RLSIEN and RLSIF.			
THERINT	Transmit Holding Register Empty Interrupt Indicator to Interrupt Controller			
Logical AND of UART_INTEN.THREIEN and THREIF.				
1	Receive Data Available Interrupt Indicator to Interrupt Controller Logical AND of UART_INTEN.RDAIEN and RDAIF.			
	DRXTOIF DMODEMIF DMODEMIF DRLSIF RESERVED LININT Reserved BUFERRINT RXTOINT RXTOINT MODEMINT RLSINT			
[7]	LINIF	LIN Bus Rx Break Field Detected Flag This bit is set when LIN controller detects a break field. This bit is cleared by writing a 1.		
-----	----------	---		
[6]	Reserved	Reserved		
		Buffer Error Interrupt Flag (Read Only)		
[5]	BUFERRIF	This bit is set when either the Tx or Rx FIFO overflows (UART_FIFOSTS.TXOVIF or UART_FIFOSTS.RXOVIF is set). When BUFERRIF is set, the serial transfer may be corrupted. If UART_INTEN.BUFERRIEN is enabled a CPU interrupt request will be generated. NOTE: This bit is cleared when both UART_FIFOSTS.TXOVIF and		
		UART_FIFOSTS.RXOVIF are cleared.		
		Time Out Interrupt Flag (Read Only)		
[4]	RXTOIF	This bit is set when the Rx FIFO is not empty and no activity occurs in the Rx FIFO and the time out counter equal to TOIC. If UART_INTEN.TOUT_IEN is enabled a CPU interrupt request will be generated.		
		NOTE: This bit is read only and user can read FIFO to clear it.		
		MODEM Interrupt Flag (Read Only)		
[3]	MODENIF	This bit is set when the CTS pin has changed state (UART_MODEMSTS.CTSDETF=1). If UART_INTEN.MODEMIEN is enabled, a CPU interrupt request will be generated.		
		NOTE: This bit is read only and reset when bit UART_MODEMSTS.CTSDETF is cleared by a write 1.		
		Receive Line Status Interrupt Flag (Read Only)		
[2]	RLSIF	This bit is set when the Rx receive data has a parity, framing or break error (at least one of, UART_FIFOSTS.BIF, UART_FIFOSTS.FEF and UART_FIFOSTS.PEF, is set). If UART_INTEN.RLSIEN is enabled, the RLS interrupt will be generated.		
		NOTE: This bit is read only and reset to 0 when all bits of BIF, FEF and PEF are cleared.		
		Transmit Holding Register Empty Interrupt Flag (Read Only)		
[1]	THREIF	This bit is set when the last data of Tx FIFO is transferred to Transmitter Shift Register. If UART_INTEN.THREIEN is enabled, the THRE interrupt will be generated.		
		NOTE: This bit is read only and it will be cleared when writing data into the Tx FIFO.		
		Receive Data Available Interrupt Flag (Read Only)		
[0]	RDAIF	When the number of bytes in the Rx FIFO equals UART_FIFO.RFITL then the RDAIF will be set. If UART_INTEN.RDAIEN is enabled, the RDA interrupt will be generated.		
		NOTE: This bit is read only and it will be cleared when the number of unread bytes of Rx FIFO drops below the threshold level (RFITL).		

When the DMA controller is used to transmit or receive data to the UART, an alternate set of flags and interrupt indicators are generated. These are equivalent to the normal mode set above and are summarized in Table 5-106.

UART Interrupt Source	Interrupt Enable Bit	Interrupt Indicator to Interrupt Controller	Interrupt Flag	Flag Cleared by
LIN RX Break Field Detected interrupt	LINIEN	DLININT	DLINIF	Write '1' to LINIF
Buffer Error Interrupt BUFERRINT	BUFERRIEN	DBERRINT	DMA_BUFERRIF = (TXOVIF or RXOVIF)	Write '1' to TXOVIF/ RXOVIF
Rx Timeout Interrupt RXTOINT	RXTOIEN	DRXTOINT	DRXTOIF	Read data FIFO
Modem Status Interrupt MODEMINT	MODEMIEN	DMODEMI	DMODEMIF = (CTSDETF)	Write '1' to CTSDETF
Receive Line Status Interrupt RLSINT	RLSIEN	DRLSINT	DRLSIF = (BIF or FEF or PEF)	Write '1' to BIF/FEF/PEF

Table 5-106 UART	Interrupt Sources	and Flags	Table In	DMA Mode
	micinapi obaroco	unu nugo		Divin V Iviouo

UART Interrupt Source	Interrupt Enable Bit	Interrupt Indicator to Interrupt Controller	Interrupt Flag	Flag Cleared by
LIN RX Break Field Detected interrupt	LINIEN	LININT	LINIF	Write '1' to LINIF
Buffer Error Interrupt BUFERRINT	•		BUFERRIF = (TXOVIF or RXOVIF)	Write '1' to TXOVIF/ RXOVIF
Rx Timeout Interrupt RXTOINT	RXTOIEN	RXTOINT	RXTOIF	Read data FIFO
Modem Status Interrupt MODEMINT	MODEMIEN	MODEMINT	MODENIF = (CTSDETF)	Write '1' to CTSDETF
Receive Line Status Interrupt RLSINT	RLSIEN	RLSINT	RLSIF = (BIF or FEF or PEF)	Write '1' to BIF/FEF/PEF
Transmit Holding Register Empty Interrupt THERINT	THREIEN	THERINT	THREIF	Write data FIFO
Receive Data Available Interrupt RDAINT	RDAIEN	RDAINT	RDAIF	Read data FIFO

Toble 5 107 110 DT	Interrupt Sources	ond Elago Toble	h Roffword Mode
		אטע בומעג דמטונ	e In Software Mode

nuvoTon

Time Out Register (UART_TOUT)					
Register	Offset	R/W	Description	Reset Value	
UART_TOUT	UART0_BA + 0x20	R/W	UART0 Time Out Register	0x0000_0000	

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	6 5 4 3 2 1 0					
Reserved	тою						

Table 5-108 UART Time Out Register (UART_TOUT, address 0x4005_0020)

Bits	Description			
[31:7]	Reserved	Reserved		
[6:0]	тоіс	Time Out Interrupt Comparator The time out counter resets and starts counting whenever the Rx FIFO receives a new data word. Once the content of time out counter (TOUT_CNT) is equal to that of time out interrupt comparator (TOIC), a receiver time out interrupt (RXTOINT) is generated if UART_INTEN.RXTOIEN is set. A new incoming data word or RX FIFO empty clears RXTOIF. The period of the time out counter is the baud rate.		

Baud Rate Divider Register (UART_BAUD)

Register	Offset	R/W	Description	Reset Value
UART_BAUD	UART0_BA + 0x24	R/W	UART0 Baud Rate Divisor Register	0x0F00_0000

The baud rate generator takes the UART master clock UART_CLK and divides it to produce the baud rate (bit rate) clock. The divider has two division stages controlled by BRD and EDIVM1 fields. These are configured in three modes depending on the selections of BAUDM1 and BAUDM0. These modes and the baud rate equations for them are described in Table 5-110.

31	30	29	28	27	26	25	24	
Rese	erved	BAUDM1	M1 BAUDM0 EDIVM1					
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	BRD[15:0]							
7 6 5 4 3 2 1 0							0	
BRD[7:0]								

Table 5-109 UART Baud Rate Divider Register (UART_BAUD, address 0x4005_0024)

Bits	Description				
[31:30]	Reserved	Reserved			
		Divider X Enable			
		The baud rate equation is: Baud Rate aaa UART_CLK / [M * (BRD + 2)] ; The default value of M is 16.			
[29]	BAUDM1	0 = Disable divider X (M aaa 16)			
		1 = Enable divider X (M aaa EDIVM1+1, with EDIVM1 \ge 8).			
		Refer to Table 5-110 for more information.			
		NOTE: When in IrDA mode, this bit must disabled.			
		Divider X equal 1			
[20]	BAUDMO	0: M aaa EDIVM1+1, with restriction EDIVM1 \geq 8.			
[28]	BAUDINIU	1: M aaa 1, with restriction BRD[15:0] \geq 3.			
		Refer to Table 5-110 for more information.			
[07.04]		Divider X			
[27:24]	EDIVM1	The baud rate divider M aaa EDIVM1+1.			
[23:16]	Reserved	Reserved			
[45.0]	888	Baud Rate Divider			
[15:0]	BRD	Refer to Table 5-110 for more information.			

Mode	BAUDM1	BAUDM0	EDIVM1[3:0]	BRD[15:0]	Baud rate equation
0	0	0	В	А	UART_CLK / [16 * (A+2)]
1	1	0	В	А	UART_CLK / [(B+1) * (A+2)] , requires $B \ge 8$
2	1	1	Don't care	А	UART_CLK / (A+2), requires $A \ge 3$

Table 5-110 Baud Rate Equations.

Register	Offset	R/W	Description	Reset Value				
UART_IRDA	UART0_BA + 0x28	R/W	UART0 IrDA Control Register.	0x0000_0040				

IrDA Control Register (UART_IRDA)

7	6	5	4	3	2	1	0
Reserved	RXINV	TXINV	Reserved		LOOPBACK	TXEN	Reserved

Table 5-111 UART IrDA Control Register (UART_IRDA, address 0x4005_0028)

Bits	Description	
[31:7]	Reserved	Reserved
[6]	RXINV	Receive Inversion Enable 0= No inversion 1= Invert Rx input signal
[5]	TXINV	Transmit inversion enable 0= No inversion 1= Invert Tx output signal
[4:3]	Reserved	Reserved
[2]	LOOPBACK	IrDA Loopback Test Mode Loopback Tx to Rx.
[1]	TXEN	Transmit/Receive Selection 0=Enable IrDA receiver. 1= Enable IrDA transmitter.
[0]	Reserved	Reserved

UART LIN Network Control Register (UART_ALTCTL)							
Register Offset		R/W	Description	Reset Value			
UART_ALTCTL	UART0_BA + 0x2C	R/W	UART0 LIN Control Register.	0x0000_0000			

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3 2 1 0						
LINTXEN	LINRXEN	Rese	erved	BRKFL						

Table 5-112 UART LIN Network Control Register (UART_ALTCTL, address 0x4005_002C)

Bits	Description	
[31:8]	Reserved	Reserved
		LIN TX Break Mode Enable
		0 = Disable LIN Tx Break Mode.
[7]	LINTXEN	1 = Enable LIN Tx Break Mode.
		NOTE: When Tx break field transfer operation finished, this bit will be cleared automatically.
		LIN RX Enable
[6]	LINRXEN	0 = Disable LIN Rx mode.
		1 = Enable LIN Rx mode.
		UART LIN Break Field Length Count
[3:0]	BRKFL	This field indicates a 4-bit LIN Tx break field count.
		NOTE: This break field length is BRKFL + 2

or the model of th							
Register	Offset	R/W	Description	Reset Value			
UART_FUNCSEL	UART0_BA + 0x30	R/W	UART0 Function Select Register.	0x0000_0000			

UART Function Select Register (UART_FUNCSEL)

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
			Rese	erved							
15	14	13	12	11	10	9	8				
			Rese	erved							
7	6	5	4	3	2	1	0				
Reserved							LINEN				

Table 5-113 UART Function Select Register (UART_FUNCSEL, address 0x4005_0030)

Bits	Description					
[31:2]	Reserved	Reserved				
[1]	IRDAEN	Enable IrDA Function 0 = UART Function. 1 = Enable IrDA Function.				
[0]	LINEN	 Enable LIN Function 0 = UART Function. 1 = Enable LIN Function. Note that IrDA and LIN functions are mutually exclusive: both cannot be active at same time. 				

5.13 I2S Audio PCM Controller

5.13.1 Overview

nuvoton

The I2S controller is a peripheral for serial transmission and reception of audio PCM (Pulse-Code Modulated) signals across a 4-wire bus. The bus consists of a bit clock (I2S_BCLK) a frame synchronization clock (I2S_FS) and serial data in (I2S_SDI) and out (I2S_SDO) lines. This peripheral allows communication with an external audio CODEC or DSP. The peripheral is capable of mono or stereo audio transmission with 8-32bit word sizes. Audio data is buffered in 8 word deep FIFO buffers and has DMA capability.

5.13.2 Features

- I2S can operate as either master or slave
- Master clock generation for slave device synchronization.
- Capable of handling 8, 16, 24 and 32 bit word sizes.
- Mono and stereo audio data supported.
- I2S and MSB justified data format supported.
- 8 word FIFO data buffers for transmit and receive.
- Generates interrupt requests when buffer levels crosses programmable boundary.
- Two DMA requests, one for transmit and one for receive.

5.13.3 I2S Block Diagram

NUVOTON

Figure 5-59 I2S Clock Control Diagram

Figure 5-60 I2S Controller Block Diagram

5.13.4 I2S Operation

ηυνοτοη

Figure 5-61 I2S Bus Timing Diagram (Format =0)

Figure 5-62 MSB Justified Timing Diagram (Format=1)

5.13.5 FIFO operation

,									
	Mono 8-bit data mode)							-
	N+3 7 0	N+2 7 0	7	N+1	0	7	N	0	
	Stereo 8-bit data mod		·		<u> </u>				I
	LEFT+1	RIGHT+1		LEFT			RIGHT		
	7 0	7 0	7		0	7		0]
	Mono 16-bit data mod		T						1
	N+	+10	15		N			0	
	Stereo 16-bit data mo	de							
	LE 15	FT 0	15		RIGI	ΗТ		0	
	Mono 24-bit data mod								I
				N					
		23		••				0]
	Stereo 24-bit data mo	de T							1
		23		LEFT				0	N
		1		RIGHT					N+1
		23		RIGHT				0	N+1
	Mono 32-bit data mod	le							_
	31		N					0	
	Stereo 32-bit data mo	de							I
			EFT						N
	31							0	
	31	RI	GHT					0	N+1
	31]

Figure 5-63 FIFO contents for various I2S modes

5.13.6 I2S Control Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
I2S Base Address:								
I2S_BA = 0x400A_0	0000							
I2S_CTL	I2S_BA + 0x00	R/W	I2S Control Register	0x0000_0000				
I2S_CLKDIV	I2S_BA + 0x04	R/W	I2S Clock Divider Register	0x0000_0000				
I2S_IEN	I2S_BA + 0x08	R/W	I2S Interrupt Enable Register	0x0000_0000				
I2S_STATUS	I2S_BA + 0x0C	R/W	I2S Status Register	0x0014_1000				
I2S_TX	I2S_BA + 0x10	W	I2S Transmit FIFO Register	0x0000_0000				
I2S_RX	I2S_BA + 0x14	R	I2S Receive FIFO Register	0x0000_0000				

5.13.7 I2S Control Register Description

Register Offset R		R/W	Description	Reset Value				
I2S_CTL	I2S_BA + 0x00	R/W	I2S Control Register	0x0000_0000				

I2S Control Register (I2S_CTL)

ηυνοτοη

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
Reserved	Reserved	RXPDMAEN	TXPDMAEN	RXCLR	TXCLR	LZCEN	RZCEN	
15	14	13	12	11	10	9	8	
MCLKEN	MCLKEN RXTH				ТХТН		SLAVE	
7	6	5	4	3	2	1	0	
FORMAT	MONO	MONO WDWIDTH			RXEN	TXEN	I2SEN	

Table 5-114 I2S Control Register (I2S_CTL, address 0x400A_0000)

Bits	Description	
[31:22]	Reserved	Reserved
		Enable Receive DMA When RX DMA is enabled, I2S requests DMA to transfer data from receive FIFO to
[21]	RXPDMAEN	SRAM if FIFO is not empty. 0 = Disable RX DMA
		1 = Enable RX DMA
[20]	TXPDMAEN	Enable Transmit DMA When TX DMA is enables, I2S request DMA to transfer data from SRAM to transmit FIFO if FIFO is not full. 0 = Disable TX DMA 1 = Enable TX DMA
[19]	RXCLR	Clear Receive FIFO Write 1 to clear receiving FIFO, internal pointer is reset to FIFO start point, and RXTH returns to zero and receive FIFO becomes empty. This bit is cleared by hardware automatically when clear operation complete.
[18]	TXCLR	Clear Transmit FIFO Write 1 to clear transmitting FIFO, internal pointer is reset to FIFO start point, and TXTH returns to zero and transmit FIFO becomes empty. Data in transmit FIFO is not changed. This bit is cleared by hardware automatically when clear operation complete.

		Left Channel Zero Cross Detect Enable
[17]	LZCEN	If this bit is set to 1, when left channel data sign bit changes, or data bits are all zero, the LZCIF flag in I2S_STATUS register will be set to 1.
		0 = Disable left channel zero cross detect
		1 = Enable left channel zero cross detect
		Right Channel Zero Cross Detect Enable
[16]	RZCEN	If this bit is set to 1, when right channel data sign bit changes, or data bits are all zero, the RZCIF flag in I2S_STATUS register will be set to 1.
		0 = Disable right channel zero cross detect
		1 = Enable right channel zero cross detect
		Master Clock Enable
[15]	MCLKEN	The ISD91xx can generate a master clock signal to an external audio CODEC to synchronize the audio devices. If audio devices are not synchronous, then data will be periodically corrupted. Software needs to implement a way to drop/repeat or interpolate samples in a jitter buffer if devices are not synchronized. The master clock frequency is determined by the I2S_CLKDIV.MCLKDIV register.
		0 = Disable master clock
		1 = Enable master clock
		Receive FIFO Threshold Level
[14:12]	RXTH	When received data word(s) in buffer is equal or higher than threshold level then RXTHI flag is set.
		Threshold = RXTH+1 words of data in receive FIFO.
		Transmit FIFO Threshold Level
[11:9]	тхтн	If remaining data words in transmit FIFO less than or equal to the threshold level then TXTHI flag is set.
		Threshold = TXTH words remaining in transmit FIFO
		Slave Mode
[8]	SLAVE	I2S can operate as a master or slave. For master mode, I2S_BCLK and I2S_FS pins are outputs and send bit clock and frame sync from ISD91xx. In slave mode, I2S_BCLK and I2S_FS pins are inputs and bit clock and frame sync are received from external audio device.
		0 = Master mode
		1 = Slave mode
		Data format
·1	FORMAT	0 = I2S data format
[7]	FORMAT	1 = MSB justified data format
		See Figure 5-61 and Figure 5-62 for timing differences.
		Monaural data
[6]	MONO	This parameter sets whether mono or stereo data is processed. See Figure 5-63 for details of how data is formatted in transmit and receive FIFO.
[0]		0 = Data is stereo format
		1 = Data is monaural format
	1	

[5:4]	WDWIDTH	Word Width This parameter sets the word width of audio data. See Figure 5-63 for details of how data is formatted in transmit and receive FIFO. 00 = data is 8 bit 01 = data is 16 bit 10 = data is 24 bit 11 = data is 32 bit
[3]	MUTE	Transmit Mute Enable 0 = Transmit data is shifted from FIFO 1= Transmit channel zero
[2]	RXEN	Receive Enable0 = Disable data receive1 = Enable data receive
[1]	TXEN	Transmit Enable 0 = Disable data transmit 1 = Enable data transmit
[0]	I2SEN	Enable I2S Controller 0 = Disable 1 = Enable

I2S Clock Divider (I2S_CLKDIV)					
fset F	R/W	Description	Reset Value		
S_BA + 0x04 F	R/W	I2S Clock Divider Register	0x0000_0000		
-					

15	14	13	12	11	10	9	8	
	BCLKDIV							
7	6	5	4	3	2	1	0	
Reserved					MCLKDIV			

Table 5-115 I2S Clock Divider Register (I2S_CLKDIV, address 0x400A_0004)

Bits	Description	
[31:16]	Reserved	Reserved
[15:8]	BCLKDIV	 Bit Clock Divider If I2S operates in master mode, bit clock is provided by ISD91xx. Software can program these bits to generate bit clock frequency for the desired sample rate. For sample rate Fs, the desired bit clock frequency is: F(BCLK) aaa Fs x Word_width_in_bytes x 16 For example if Fs aaa 16kHz, and word width is 2-bytes (16bit) then desired bit clock frequency is 512kHz. The bit clock frequency is given by: F(BCLK) aaa F(I2S_CLK) / 2x(BCLKDIV+1) Or, BCLKDIV aaa F(I2S_CLK) / (2 x F(BCLK)) -1 So if F(I2S_CLK) aaa HCLK aaa 49.152MHz , desired F(BCLK) aaa 512kHz then BCLKDIV aaa 47
[7:3]	Reserved	Reserved
[2:0]	MCLKDIV	Master Clock Divider ISD9160 can generate a master clock to synchronously drive an external audio device. If MCLKDIV is set to 0, MCLK is the same as I2S_CLK clock input, otherwise MCLK frequency is given by: F(MCLK) aaa F(I2S_CLK) / (2xMCLKDIV) Or, MCLKDIV aaa F(I2S_CLK) / (2 x F(MCLK)) If the desired MCLK frequency is 254Fs and Fs aaa 16kHz then MCLKDIV aaa 6

NUVOTON ISD9160 Technical Reference Manual

I2S Interrupt Enable Register (I2S_IEN)					
Register	Offset	R/W	Description	Reset Value	
I2S_IEN	I2S_BA + 0x08	R/W	I2S Interrupt Enable Register	0x0000_0000	

15	14	13	12	11	10	9	8
	Reserved			RZCIEN	TXTHIEN	TXOVIEN	TXUDIEN
7	7 6 5			3	2	1	0
Reserved					RXTHIEN	RXOVIEN	RXUDIEN

Table 5-116 I2S Interrupt Enable Register (I2S_IEN, address 0x400A_0008)

Bits	Description	
[12]	LZCIEN	Left Channel Zero Cross Interrupt Enable Interrupt will occur if this bit is set to 1 and left channel has zero cross event 0 = Disable interrupt 1 = Enable interrupt
[11]	RZCIEN	Right Channel Zero Cross Interrupt EnableInterrupt will occur if this bit is set to 1 and right channel has zero cross event0 = Disable interrupt1 = Enable interrupt
[10]	TXTHIEN	Transmit FIFO Threshold Level Interrupt Enable Interrupt occurs if this bit is set to 1 and data words in transmit FIFO is less than TXTH[2:0]. 0 = Disable interrupt 1 = Enable interrupt
[9]	TXOVIEN	Transmit FIFO Overflow Interrupt Enable Interrupt occurs if this bit is set to 1 and transmit FIFO overflow flag is set to 1 0 = Disable interrupt 1 = Enable interrupt
[8]	TXUDIEN	Transmit FIFO Underflow Interrupt Enable Interrupt occur if this bit is set to 1 and transmit FIFO underflow flag is set to 1. 0 = Disable interrupt 1 = Enable interrupt
[2]	RXTHIEN	Receive FIFO Threshold Level Interrupt Interrupt occurs if this bit is set to 1 and data words in receive FIFO is greater than or equal to RXTH[2:0]. 0 = Disable interrupt 1 = Enable interrupt

[1]	RXOVIEN	Receive FIFO Overflow Interrupt Enable 0 = Disable interrupt 1 = Enable interrupt
[0]	RXUDIEN	Receive FIFO Underflow Interrupt Enable If software read receive FIFO when it is empty then RXUDIF flag in I2SSTATUS register is set to 1. 0 = Disable interrupt 1 = Enable interrupt

I2S Status Register (I2S_STATUS)					
Register	Offset	R/W	Description	Reset Value	
I2S_STATUS	I2S_BA + 0x0C	R/W	I2S Status Register	0x0014_1000	

31	30	29	28	27	26	25	24
TXCNT				RXCNT			
23	22	21	20	19	18	17	16
LZCIF	RZCIF	TXBUSY	TXEMPTY	TXFULL	TXTHIF	TXOVIF	TXUDIF
15	14	13	12	11	10	9	8
Reserved		RXEMPTY	RXFULL	RXTHIF	RXOVIF	RXUDIF	
7	6	5	4	3	2	1	0
Reserved				RIGHT	TXIF	RXIF	I2SIF

Table 5-117 I2S Status Register (I2S_STATUS, address 0x400A_000C)

Bits	Description	
[31:28]	TXCNT	Transmit FIFO level (Read Only) TXCNT = number of words in transmit FIFO.
[27:24]	RXCNT	Receive FIFO level (Read Only) RXCNT = number of words in receive FIFO.
[23]	LZCIF	Left channel zero cross flag (write '1' to clear, or clear LZCEN) 0 = No zero cross detected. 1 = Left channel zero cross is detected
[22]	RZCIF	Right channel zero cross flag (write '1' to clear, or clear RZCEN)0 = No zero cross1 = Right channel zero cross is detected
[21]	TXBUSY	 Transmit Busy (Read Only) This bit is cleared when all data in transmit FIFO and Tx shift register is shifted out. It is set when first data is loaded to Tx shift register. 0 = Transmit shift register is empty 1 = Transmit shift register is busy
[20]	ТХЕМРТҮ	Transmit FIFO Empty (Read Only) This is set when transmit FIFO is empty. 0 = Not empty 1 = Empty

[19]	TXFULL	Transmit FIFO Full (Read Only) This bit is set when transmit FIFO is full. 0 = Not full. 1 = Full.
[18]	TXTHIF	 Transmit FIFO Threshold Flag (Read Only) When data word(s) in transmit FIFO is less than or equal to the threshold value set in TXTH[2:0] the TXTHIF bit becomes to 1. It remains set until transmit FIFO level is greater than TXTH[2:0]. Cleared by writing to I2S_TX register until threshold exceeded. 0 = Data word(s) in FIFO is greater than threshold level 1 = Data word(s) in FIFO is less than or equal to threshold level
[17]	TXOVIF	Transmit FIFO Overflow Flag (Write '1' to clear)This flag is set if data is written to transmit FIFO when it is full.0 = No overflow1 = Overflow
[16]	TXUDIF	Transmit FIFO underflow flag (Write '1' to clear) This flag is set if I2S controller requests data when transmit FIFO is empty. 0 = No underflow 1 = Underflow
[15:13]	Reserved	Reserved
[12]	RXEMPTY	Receive FIFO empty (Read Only)This is set when receive FIFO is empty.0 = Not empty1 = Empty
[11]	RXFULL	Receive FIFO full (Read Only) This bit is set when receive FIFO is full. 0 = Not full. 1 = Full.
[10]	RXTHIF	Receive FIFO Threshold Flag (Read Only) When data word(s) in receive FIFO is greater than or equal to threshold value set in RXTH[2:0] the RXTHIF bit becomes to 1. It remains set until receive FIFO level is less than RXTH[2:0]. It is cleared by reading I2S_RX until threshold satisfied. 0 = Data word(s) in FIFO is less than threshold level 1 = Data word(s) in FIFO is greater than or equal to threshold level
[9]	RXOVIF	Receive FIFO Overflow Flag (Write '1' to clear) This flag is set if I2S controller writes to receive FIFO when it is full. Audio data is lost. 0 = No overflow 1 = Overflow

[8]	RXUDIF	 Receive FIFO Underflow Flag (Write '1' to clear) This flag is set if attempt is made to read receive FIFO while it is empty. 0 = No underflow 1 = Underflow
[7:4]	Reserved	Reserved
[3]	RIGHT	Right Channel Active (Read Only)This bit indicates current data being transmitted/received belongs to right channel0 = Left channel1 = Right channel
[2]	TXIF	 I2S Transmit Interrupt (Read Only) This indicates that there is an active transmit interrupt source. This could be TXOVIF, TXUDIF, TXTHIF, LZCIF or RZCIF if corresponding interrupt enable bits are active. To clear interrupt the corresponding source(s) must be cleared. 0 = No transmit interrupt 1 = Transmit interrupt occurred.
[1]	RXIF	 I2S Receive Interrupt (Read Only) This indicates that there is an active receive interrupt source. This could be RXOVIF, RXUDIF or RXTHIF if corresponding interrupt enable bits are active. To clear interrupt the corresponding source(s) must be cleared. 0 = No receive interrupt 1 = Receive interrupt occurred
[0]	I2SIF	I2S Interrupt (Read Only)This bit is set if any enabled I2S interrupt is active.0 = No I2S interrupt1 = I2S interrupt active

I2S Transmit FIFO (I2S_TX)					
Register	Offset	R/W	Description	Reset Value	
I2S_TX	I2S_BA + 0x10	W	I2S Transmit FIFO Register	0x0000_0000	

Table 5-118 I2S Transmit FIFO Register (I2S_TX, address 0x400A_0010)

Bits	Description	
[31:0]	тх	Transmit FIFO Register (Write Only) A write to this register pushes data onto the transmit FIFO. The transmit FIFO is eight words deep. The number of words currently in the FIFO can be determined by reading I2S_STATUS.TXCNT.

I2S Receive FIFO (I2S_RX)					
Register	Offset	R/W	Description	Reset Value	
I2S_RX	I2S_BA + 0x14	R	I2S Receive FIFO Register	0x0000_0000	

Table 5-119 I2S Receive FIFO Register (I2S_RX, address 0x400A_0014)

Bits	Description	
[31:0]	RX	Receive FIFO Register (Read Only) A read of this register will pop data from the receive FIFO. The receive FIFO is eight words deep. The number of words currently in the FIFO can be determined by reading I2S_STATUS.RXCNT.

5.14 Cyclic Redundancy Check (CRC) Controller

5.14.1 Overview and Features

The ISD9160 contains a hardware CRC Generator for checking validity of data streams. The CRC function supported is CRC-16-CCITT ($x^{16} + x^{12} + x^5 + 1$). The hardware CRC allows very fast CRC calculation without utilizing any CPU cycles.

The CRC Controller takes input of even sized packets (2, 4, 8 etc.) of up to 512 bytes long and produces a 16bit CRC output. Input to the CRC Controller is via word access of 4 bytes (32 bits) at a time. This word is configurable to either MSB first or LSB first format

5.14.2 Operation

nuvoton

The procedure to use the CRC Generator is as follows:

- Write to CRC_CTL.MODE register to determine data format. A write to this register initializes the packet counter.
- Write to CRC_CTL.PKTLEN register to set the packet length (up to 512 bytes, even sizes only, e.g. 2,4,8). A write to this register resets the CRC value to 0xFFFF.
- A read of CRC_CHECKSUM will return 0xFFFF
- Send data to CRC Generator (CRC_DAT) one (32bit) word at a time. CRC Generator extracts bytes from the word in the order specified by the CRC_CTL.MODE control bit.
- Current CRC result is available from CRC_CHECKSUM register four clock cycles after input word written, including intermediate results. The CRC Generator will stop processing data after CRC_CTL.PKTLEN+1 bytes are sent.

5.14.3 Example

The following is an example of using CRC Generation and Checking with a packet length of 4 bytes. If the following code was executed:

CRC_CTL.PKTLEN = 3; // Initialize the CRC Generator for a 4 byte packet.

CRC_DAT = 0x2dcf4633; // Note data is sent MSB first in this mode.

Data In	CRC
initial	Oxffff
0x2D	0x143f
0xCF	0x4516
0x46	0x2663
0x33	0x2194

Internally the CRC generator would perform the following CRC calculations:

The CRC result is 0x2194 after the byte sequence 0x2D, 0xCF, 0x46, 0x33 is processed by the generator.

The 2 byte result can be appended to the original data for checking as shown in the following table.

CRC_CTL.PKTLEN = 5; // Initialize the CRC Generator for a 6 byte packet.

CRC_DAT = 0x2dcf4633; // Note data is sent MSB first in this mode.

CRC_DAT = 0x21940000; // Note data is sent MSB first in this mode.

Data In	CRC
initial	Oxfff
0x2D	0x143f
0xCF	0x4516
0x46	0x2663
0x33	0x2194
0x21	0x9400
0x94	0x0000

After parsing the 4 bytes data + 2 bytes of CRC result through the CRC Generator, the final result should be 0 which indicates correct data has been transferred.

5.14.4 CRC Controller Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
CRC Base Address	CRC Base Address:						
CRC_BA = 0x4009_	CRC_BA = 0x4009_0000						
CRC_CTL	CRC_BA+0x00	R/W	CRC Enable Control Register	0x0000_0000			
CRC_DAT	CRC_BA+0x04	R/W	CRC Input Register	0x0000_0000			
CRC_CHECKSUM	CRC_BA+0x08	R	CRC Output Register	0x0000_FFFF			

5.14.5 CRC Control Register Description

CRC Enable Control

Register	Offset	R/W	Description	Reset Value
CRC_CTL	CRC_BA+0x00	R/W	CRC Enable Control Register	0x0000_0000

Table 5-120 CRC Enable Control Register

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	21 20 19 18				16			
Reserved										
15	14	13	12	11	10	9	8			
Reserved										
7	6	5	4	3	2	1	0			
	PKTLEN[7:0]									

Bits	Description	
		CRC LSB mode
		Determines whether CRC Generator processes input words (32bit/4Bytes) LSB (least significant byte) first or MSB (most significant byte) first.
		0 = CRC input is MSB first (default).
[16]	MODE	1 = CRC input is LSB first.
		For example if MODE aaa 1, and 0x01020304 is written to CRC_DAT, bytes will be processed in order 0x04, 0x03, 0x02, 0x01. If MODE aaa 0, then order would be 0x01, 0x02, 0x3, 0x04.
		Writing any value to this register will flush all previous calculations and restart a new CRC calculation.
		CRC Packet Length
[8:0]	PKTLEN	Indicates number of bytes of CRC input to process. CRC calculation will stop once input number of bytes aaa PKTLEN+1. Maximum packet size is 512 bytes, for PKTLEN aaa 511.
		Writing any value to this register will flush all previous calculations and restart a new CRC calculation.

nuvoTon

CRC Input							
Register	Offset	R/W	Description	Reset Value			
CRC_DAT	CRC_BA+0x04	R/W	CRC Input Register	0x0000_0000			

Table 5-121 CRC Input Register

31	30	29	28	27	26	25	24				
	DATA[31:24]										
23	22	21	20	19	18	17	16				
	DATA[23:16]										
15	14	13	12	11	10	9	8				
	DATA[15:8]										
7 6 5 4 3 2 1 0							0				
	DATA[7:0]										

Bits	Description	Description						
		CRC Input						
		The string of bytes to perform CRC calculation on.						
		When MODE aaa 0, CRC performs calculation byte by byte in the order DATA[31:24], DATA[23:16], DATA[15:8], DATA[7:0].						
[31:0]	DATA	When MODE aaa 1, CRC performs calculation byte by byte in the order DATA[7:0], DATA[15:8], DATA[23:16], DATA[31:24].						
		If number of input bytes exceeds CRC Packet Length (CRC_CTL[8:0]+1), any additional input bytes will be ignored.						
		The CRC generator takes four clock cycles to process the CRC input. Software must ensure that at least four clock cycles occur between writes of CRC_DAT. Compiled assembly language can be examined to ensure this requirement is met.						

nuvoTon

CRC Output							
Register	Offset	R/W	Description	Reset Value			
CRC_CHECKSUM	CRC_BA+0x08	R	CRC Output Register	0x0000_FFFF			

Table 5-122 CRC Output Register

31	30	29	28	27	26	25	24				
Reserved											
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
			CHECKS	UM[15:8]							
7	6	5	4	3	2	1	0				
	CHECKSUM[7:0]										

Bits	Description	
[15:0]	CHECKSUM	CRC Output The result of CRC computation. The result is valid four clock cycles after last CRC_DAT input data is written to CRC generator.

5.15 PDMA Controller

nuvoTon

5.15.1 Overview

The ISD9160 incorporates a Peripheral Direct Memory Access (PDMA) controller that transfers data between SRAM and APB devices. The PDMA has four channels of DMA PDMA CH0~CH3). PDMA transfers are unidirectional and can be Peripheral-to-SRAM, SRAM-to-Peripheral or SRAM-to-SRAM.

The peripherals available for PDMA transfer are SPI, UART, I2S, ADC and DPWM.

PDMA operation is controlled for each channel by configuring a source and destination address and specifying a number of bytes to transfer. Source and destination addresses can be fixed, automatically increment or wrap around a circular buffer. When PDMA operation is complete, controller can be configured to provide CPU with an interrupt.

5.15.2 Features

- Provides access to SPI, UART, I2S, ADC and DPWM peripherals.
- AMBA AHB master/slave interface, transfers can occur concurrently with CPU access to flash memory.
- PDMA source and destination addressing modes allow fixed, incrementing, and wrap-around addressing.

5.15.3 Block Diagram

Figure 5-64 PDMA Controller Block Diagram

5.15.4 Function Description

The PDMA controller has four channels of DMA, each channel can be configured to one of the following transfer types: Peripheral-to-SRAM SRAM-to-Peripheral or SRAM-to-SRAM. The SRAM and the AHB-APB bus bridge each have an AHB bus arbiter that allows AHB bus access to occur either from the CPU or the PDMA controller. The PDMA controller requests bus transfers over the AHB bus from one address into a single word buffer within the PDMA controller then writes this buffer to another address over the AHB bus. Peripherals with PDMA capability generate control signals to the PDMA block requesting service when they need data (Rx request) or have data to transfer (Tx request). The PDMA control registers reside in address space on the AHB bus.

Transfer completion can be determined by polling of status registers or by generation of PDMA interrupt to CPU. A transfer is set up as a specified number of bytes from a source address to a destination address. Both source and destination address can be configured as a fixed address, an incrementing address or a wrap-around buffer address.

The general procedure to operate a DMA channel is as follows:

- Enable PDMA channel *n* clock by setting PDMA_GLOCTL.CHCKEN
- Enable PDMA channel *n* by setting PDMA_DSCTn_CTL.CHEN
- Set source address in PDMA_DSCTn_ENDSA
- Set destination address in PDMA_DSCTn_ENDDA
- Set the transfer count in PDMA_TXBCCHn
- Set transfer mode and address increment mode in PDMA_DSCTn_CTL
- Route peripheral PDMA request signal to channel *n* in service selection register.
- Trigger transfer PDMA_DSCTn_CTL.TXEN

If the source or destination address is not in wraparound mode, the PDMA will continue the transfer until PDMA_CURBCCHn decrements to zero (CURBC is initialized to PDMA_TXBCCHn, in wraparound mode, CURBC will reload and continue until CHEN is disabled). If an error occurs during the PDMA operation, the channel stops until software clears the error condition and sets the PDMA_DSCTn_CTL.SWRST bit to reset the PDMA channel. After reset the CHEN and TXEN bits would need to be set to start a new operation.

5.15.5 PDMA Controller Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register Offs	et	R/W	Description F	leset Value
PDMA Base Address:			· · · ·	
PDMA_BA = 0x5000_80	00+(0x100*x)			
PDMA_DSCT0_CTL	PDMA_BA+0x00	R/W	PDMA Control Register of Channel 0	0x0000_0000
PDMA_DSCT0_ENDSA	PDMA_BA+0x04	R/W	PDMA Transfer Source Address Register of Channel 0	0x0000_0000
PDMA_DSCT0_ENDDA	PDMA_BA+0x08	R/W	PDMA Transfer Destination Address Register of Channel 0	
PDMA_TXBCCH0	PDMA_BA+0x0C	R/W	PDMA Transfer Byte Count Register of Channel 0	0x0000_0000
PDMA_INLBPCH0	PDMA_BA+0x10	R		0xXXXX_XX00
PDMA_CURSACH0	PDMA_BA+0x14	R	PDMA Current Source Address Register of Channel 0	
PDMA_CURDACH0	PDMA_BA+0x18	R	PDMA Current Destination Address Register of Channel 0	0x0000_0000
PDMA_CURBCCH0	PDMA_BA+0x1C	R	PDMA Current Byte Count Register of Channel 0	0x0000_0000
PDMA_INTENCH0	PDMA_BA+0x20	R/W	PDMA Interrupt Enable Control Register of Channel 0	0x0000_0001
PDMA_CH0IF	PDMA_BA+0x24	R/W	PDMA Interrupt Status Register of Channel 0	0x0000_0000
PDMA_DSCT1_CTL	PDMA_BA+0x100	R/W	PDMA Control Register of Channel 1	0x0000_0000
PDMA_DSCT1_ENDSA	PDMA_BA+0x104	R/W	PDMA Transfer Source Address Register of Channel 1	0x0000_0000
PDMA_DSCT1_ENDDA	PDMA_BA+0x108	R/W	PDMA Transfer Destination Address Register of Channel 1	0x0000_0000
PDMA_TXBCCH1	PDMA_BA+0x10C	R/W	PDMA Transfer Byte Count Register of Channel 1	0x0000_0000
PDMA_INLBPCH1	PDMA_BA+0x110	R		0xXXXX_XX00
PDMA_CURSACH1	PDMA_BA+0x114	R	PDMA Current Source Address Register of Channel 1	
PDMA_CURDACH1	PDMA_BA+0x118	R	PDMA Current Destination Address Register of Channel 1	0x0000_0000
PDMA_CURBCCH1	PDMA_BA+0x11C	R	PDMA Current Byte Count Register of Channel 1	0x0000_0000
PDMA_INTENCH1	PDMA_BA+0x120	R/W	PDMA Interrupt Enable Control Register of Channel 1	0x0000_0001
PDMA_CH1IF	PDMA_BA+0x124	R/W	PDMA Interrupt Status Register of Channel 1	0x0000_0000
PDMA_DSCT2_CTL	PDMA_BA+0x200	R/W	PDMA Control Register of Channel 2	0x0000_0000

nuvoTon

ISD9160 Technical Reference Manual

PDMA_DSCT2_ENDSA	PDMA_BA+0x204	R/W	PDMA Transfer Source Address Register of Channel 2	0x0000_0000
PDMA_DSCT2_ENDDA	PDMA_BA+0x208	R/W	PDMA Transfer Destination Address Register of Channel 2	0x0000_0000
PDMA_TXBCCH2	PDMA_BA+0x20C	R/W	PDMA Transfer Byte Count Register of Channel 2	0x0000_0000
PDMA_INLBPCH2	PDMA_BA+0x210	R	PDMA Internal Buffer Pointer Register of Channel 2	0xXXXX_XX00
PDMA_CURSACH2	PDMA_BA+0x214	R	PDMA Current Source Address Register of Channel 2	0x0000_0000
PDMA_CURDACH2	PDMA_BA+0x218	R	PDMA Current Destination Address Register of Channel 2	0x0000_0000
PDMA_CURBCCH2	PDMA_BA+0x21C	R	PDMA Current Byte Count Register of Channel 2	0x0000_0000
PDMA_INTENCH2	PDMA_BA+0x220	R/W	PDMA Interrupt Enable Control Register of Channel 2	0x0000_0001
PDMA_CH2IF	PDMA_BA+0x224	R/W	PDMA Interrupt Status Register of Channel 2	0x0000_0000
PDMA_DSCT3_CTL	PDMA_BA+0x300	R/W	PDMA Control Register of Channel 3	0x0000_0000
PDMA_DSCT3_ENDSA	PDMA_BA+0x304	R/W	PDMA Transfer Source Address Register of Channel 3	0x0000_0000
PDMA_DSCT3_ENDDA	PDMA_BA+0x308	R/W	PDMA Transfer Destination Address Register of Channel 3	0x0000_0000
PDMA_TXBCCH3	PDMA_BA+0x30C	R/W	PDMA Transfer Byte Count Register of Channel 3	0x0000_0000
PDMA_INLBPCH3	PDMA_BA+0x310	R	PDMA Internal Buffer Pointer Register of Channel 3	0xXXXX_XX00
PDMA_CURSACH3	PDMA_BA+0x314	R	PDMA Current Source Address Register of Channel 3	0x0000_0000
PDMA_CURDACH3	PDMA_BA+0x318	R	PDMA Current Destination Address Register of Channel 3	0x0000_0000
PDMA_CURBCCH3	PDMA_BA+0x31C	R	PDMA Current Byte Count Register of Channel 3	0x0000_0000
PDMA_INTENCH3	PDMA_BA+0x320	R/W	PDMA Interrupt Enable Control Register of Channel 3	0x0000_0001
PDMA_CH3IF	PDMA_BA+0x324	R/W	PDMA Interrupt Status Register of Channel 3	0x0000_0000
PDMA_GLOCTL	PDMA_BA+0xF00	R/W	PDMA Global Control Register	0x0000_0000
PDMA_SVCSEL	PDMA_BA+0xF04	R/W	PDMA Service Selection Control Register	0xFFFF_FFF
PDMA_GLOBALIF	PDMA_BA+0xF0C	R	PDMA Global Interrupt Status Register	0x0000_0000
PDMA_GLOBALIF	PDMA_BA+0xF0C	R	PDMA Global Interrupt Status Register	0x0000_0000

5.15.6 PDMA Control Register Description

PDMA Control TXENI and Status Register (PDMA_DSCTn_CTL)(n=0~3)

Register	Offset	R/W	Description	Reset Value
PDMA_DSCT0_CTL	PDMA_BA+0x00	R/W	PDMA Control Register of Channel 0	0x0000_0000
PDMA_DSCT1_CTL	PDMA_BA+0x100	R/W	PDMA Control Register of Channel 1	0x0000_0000
PDMA_DSCT2_CTL	PDMA_BA+0x200	R/W	PDMA Control Register of Channel 2	0x0000_0000
PDMA_DSCT3_CTL	PDMA_BA+0x300	R/W	PDMA Control Register of Channel 3	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
TXEN	Rese	erved	тwi	DTH Reserved						
15	14	13	12	11	10	9	8			
	WAIN	ITSEL		Reserved						
7	6	5	4	3	2	1	0			
DASEL SASEL			MOD	ESEL	SWRST	CHEN				

Table 5-123 PDMA Control and Status Register (PDMA_DSCTn_CTL, address 0x5000_8000 + *n* * 0x100)

Bits	Description	
[23]	TXEN	Trigger Enable – Start a PDMA operation
		0 = Write: no effect. Read: Idle/Finished.
		1 = Enable PDMA data read or write transfer.
		Note: When PDMA transfer completed, this bit will be cleared automatically.
		If a bus error occurs, all PDMA transfer will be stopped. Software must reset PDMA channel, and then trigger again.
[20:19]	TWIDTH	Peripheral Transfer Width Select
		This parameter determines the data width to be transferred each PDMA transfer operation.
		00 = One word (32 bits) is transferred for every PDMA operation.
		01 = One byte (8 bits) is transferred for every PDMA operation.
		10 = One half-word (16 bits) is transferred for every PDMA operation.
		11 = Reserved.
		Note: This field is meaningful only when MODESEL is IP to Memory mode (APB-to- Memory) or Memory to IP mode (Memory-to-APB).

[7:6] DASEL 0 = Transfer Destination Address is incremented. 01 = Reserved. 01 = Reserved. 10 = Transfer Destination Address is fixed (Used when data transferred from multiple addresses to a single destination such as peripheral FIFO input). 11 = Transfer Destination Address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero. the PDMA_CURDACHN (Current Destination Address) and PDMA_CURBCCHn (Eyter Count) registers automatically and PDMA_CURBCCHN registers will be reloaded from the PDMA_DSCTn_ENDDA (Destination Address) and PDMA_TXBCCHN (Byte Count) registers automatically and PDMA_Will start another transfer. Cycle continues until software sets PDMACKEN-O. When PDMACKEN is disabled, the PDMA unsfer transfer determines the behavior of the current source address. [5:4] SASEL Source Address Select This parameter determines the behavior of the current source address register with each PDMA transfer. It can either be fixed, incremented or wrapped. 00 = Transfer Source address is incremented. 01 = Reserved. [5:4] SASEL 10 = Transfer Source address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURBCCHn (Current Source Address) and PDMA_CURBCCHn (Byte Count) equals zero. The PDMA_CURBCCHn (Current Source Address) and PDMA_CURBCCHn (SURBCCHN is disabled, the PDMA_CURBCCHn (Current Source Address) and PDMA_CURBCCHn is disabled, the PDMA_CURBCCHn (Source Source address. [5:4] MODESEL P			Wren Interrupt Colort
[15:12] WAINTSEL xxx1: If this bit is set, and wraparound mode is in operation a Wrap Interrupt can be generated when each PDMA transfer is wrapped. For example If BYTECHT area 32 then an interrupt could be generated wink sets and an PDMA wraps around. X1X1: Both half and winterrupts generated. Image: the set of t	[15:12]	WAINTSEL	x1xx: If this bit is set, and wraparound mode is in operation a Wrap Interrupt can be generated when half each PDMA transfer is complete. For example if BYTECNT aaa 32 then an interrupt
[7:6] Destination Address Select This parameter determines the behavior of the current destination address register with each PDMA transfer. It can either be fixed, incremented or wrapped. 00 = Transfer Destination Address is incremented. 01 = Reserved. [7:6] DASEL 10 = Transfer Destination Address is tixed (Used when data transferred from multiple addresses to a single destination such as peripheral FIC input). 11 = Transfer Destination Address is wrapped. When PDMA_CURBCCHn (Current Destination Address) and PDMA_TXBCCH. (Byte Count) registers automatically and PDMA_CURBCCKI (Byte Count) registers automatically and PDMA_TXBCCH. (5:4) SASEL Source Address Select This parameter determines the behavior of the current source address register with each PDMA_TXBCCH. (Byte Count) registers automatically and PDMA transfer. It can either be fixed, incremented or wrapped. (0 = Transfer Source address is incremented. 01 = Reserved. (1 = Transfer Source address is fixed 11 = Transfer Source address is fixed (2:4) SASEL 10 = Transfer Source address is wrapped. When PDMA_CURBCCHn (Current Byte Count) regulas zero, the PDMA_TXBCCH. (Byte Count) registers automatically and PDMA_CURBCCHn (Byte Count) registers automatically and PDMA_CURBCCH (Byte Count)			when each PDMA transfer is wrapped. For example if BYTECNT aaa 32 then an interrupt could
[7:6] DASEL This parameter determines the behavior of the current destination address register with each PDMA transfer. It can either be fixed, incremented or wrapped. [7:6] DASEL 10 = Transfer Destination Address is incremented. 11 = Reserved. 10 = Transfer Destination Address is fixed (Used when data transferred from multiple addresses to a single destination such as peripheral FIPO input). 11 = Transfer Destination Address is wrapped. When PDMA_CURBCCHn (Current Destination Address) and PDMA_CURBCCHn (Byte Court) registers automatically and PDMA will start another transfer. Cycle continues ontil software sets PDMACKEN.o. When PDMA Will start another transfer. Cycle continues until software sets PDMACKEN.o. When PDMA transfer. It can either be fixed, incremented or wrapped. [5:4] SASEL Source Address Select This parameter determines the behavior of the current source address register with each PDMA transfer. It can either be fixed, incremented or wrapped. [5:4] SASEL 10 = Transfer Source address is incremented. [5:4] SASEL 10 = Transfer Source address is incremented. [5:4] SASEL 10 = Transfer Source address is incremented. [5:4] SASEL 10 = Transfer Source address is incremented. [5:4] SASEL 10 = Transfer Source address is incremented. [5:4] SASEL 10 = Transfer Source address is incremented. [5:4] <td>x1x1: Both half and w interrupts generated.</td>			x1x1: Both half and w interrupts generated.
[7:6] DASEL with each PDMA transfer. It can either be fixed, incremented or wrapped. 00 = Transfer Destination Address is incremented. 01 = Reserved. 10 = Transfer Destination Address is fixed (Used when data transferred from multiple addresses to a single destination such as peripheral FIFO input). 11 = Transfer Destination Address is wrapped. When PDMA_DCURBCCHn (Current Byte Count) equals zero. the PDMA_UCURBCCHn (Qurrent Destination Address) and PDMA_URBCCHN (Surrent Destination Address) and PDMA_URBCCHN (Surrent Destination Address). (Destination Address) and PDMA_TXBCCHn (Byte Count) registers automatically and PDMA_URBCCHN is disabled, the PDMA USACKEN-O. When PDMACKEN-O. When PDMACKEN-O. When PDMACKEN-O. When PDMACKEN-O. When PDMACKEN's disabled, the PDMA user sets PDMACKEN-O. When PDMACKEN's disabled, the PDMA user sets PDMACKEN's disabled. This parameter determines the behavior of the current source address. Source Address Select This parameter determines the behavior of the current source address register with each PDMA transfer. It can either be fixed, incremented or wrapped. (1) = Transfer Source address is incremented. 01 = Reserved. 10 = Transfer Source address is incremented. 01 = Reserved. 11 = Transfer Source address is incremented. 01 = Reserved. 12 = Transfer Source address is incremented. 01 = Reserved. 13 = Transfer Source address is incremented. 01 = Reserved. 14 = Transfer Source address is incremented. 01 = Reserved. 10 = Trans		DASEL	Destination Address Select
[7:6] DASEL 01 = Reserved. 10 = Transfer Destination Address is fixed (Used when data transferred from multiple addresses to a single destination such as peripheral FIFO input). 11 = Transfer Destination Address is wrapped. When PDMA_CURBCCHn (Current Destination Address) and PDMA_CURBCCHin (Current Destination Address) and PDMA_CURBCCHin (Byte Count) registers automatically and PDMA (Destination Address) and PDMA_TXBCCHn (Byte Count) registers automatically and PDMA will start another transfer. Cycle continues until software sets PDMACKEN.o. When PDMACKEN is disabled, the PDMA will complete the active transfer but the remaining data in the SBUF will not be transferred to the destination address. [5:4] SASEL Source Address Select This parameter determines the behavior of the current source address register with each PDMA transfer. It can either be fixed, incremented or wrapped. 00 = Transfer Source address is incremented. 01 = Reserved. 10 = Transfer Source address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURBACH (Current Source Address) and PDMA_CURBACH (Source Address) and PDMA_CURBACH (Source Address) and PDMA_CURBACH (Source Address). (5:4] MODESEL DOMESEL Demonstrater transfer transfer determines the behavior of the current source address register with each PDMA_CURBACH (Current Byte Count) equisters automatically and PDMA_CURBACH (Cur			This parameter determines the behavior of the current destination address register with each PDMA transfer. It can either be fixed, incremented or wrapped.
[7:6] DASEL 10 = Transfer Destination Address is fixed (Used when data transferred from multiple addresses to a single destination such as peripheral FIFO input). 11 = Transfer Destination Address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero. the PDMA_CURPACHn (Current Destination Address) and PDMA_CURBCCHn registers will be reloaded from the PDMA_DST_ENDDA (Destination Address) and PDMA_Will Start another transfer. Cycle continues until software sets PDMACKEN=0. When PDMACKEN is disabled, the PDMA_Will complete the active transfer but the remaining data in the SBUF will not be transferred to the destination address. Source Address Select This parameter determines the behavior of the current source address register with each PDMA transfer. It can either be fixed, incremented or wrapped. (5:4] SASEL 10 = Transfer Source address is fixed 11 = Transfer Source address is fixed 11 = Transfer Source address is fixed (5:4] SASEL 10 = Transfer Source address is fixed 11 = Transfer Source address is fixed 11 = Transfer Source address is fixed 11 = Transfer Source address is fixed 11 = Transfer Source address is fixed 15:4] SASEL 10 = Transfer Source address is fixed 16 = Transfer Source address is of the DDMA_CURBCCHn (Current Source Address) and PDMA_CURBCCHn (Byte Count) registers automatically and PDMA_CURBCCHn (Byte Count) registers automatically and PDMA_CURBCCHn (Byte Count) registers automatically and PDMA_CURBCCHn is disabled, the PDMA_DECT_LENDSA (Source Address) and PDMA_CURBCCHn is B			00 = Transfer Destination Address is incremented.
[1:6] DASEL addresses to a single destination such as peripheral FIFO input). 11 = Transfer Destination Address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURPACCH (Gurent Destination Address) and PDMA_CURBACCH (Byte Count) registers will be reloaded from the PDMA_CKEN=0. When PDMACKEN=0. 00 = Transfer Source address is incremented. 01 = Reserved. [5:4] SASEL 10 = Transfer Source address is fixed 11 = Transfer Source address is fixed 11 = Transfer Source address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURSACH (Current Source Address) and PDMA_CURBACCH (Byte Count) registers automatically and PDMA_CURBACCH (Byte Count) equals zero, the PDMA_CURSACH (Current Source Address) and PDMA_CURBACCH (Byte Count) equals zero, the PDMA_CURSACH (Current Source Address) and PDMA_CURBACCH (Byte Count) equals zero, the PDMA_CURSACH (Current Source Address) and PDMA_CURBACCH (Byte Count) equals zero, the PDMA_CURSACH (Byte Count) registers automatically and PDMA_CURBACCH (Byte Count) registers automatically and PDMA will start another transfer. Cycle continues until software sets PDMACKEN aaa 0. When PDMA_CURSACH (Byte Count) registers automatically and PDMA will start another transfer. Cycle continues until software			01 = Reserved.
[5:4] SASEL Source Address Select [5:4] SASEL Transfer Source address is incremented. 01 = Transfer Source address is incremented. 01 = Reserved. 02 = MODESEL MODESEL PDMA Mode Select [3:2] MODESEL PDMA Mode Select [1] SWRST Software selects to transfer or the select transfer but the remaining data in the SBUF will not be transferred to the destination address. [5:4] SASEL Source Address Select This parameter determines the behavior of the current source address register with each PDMA transfer. It can either be fixed, incremented or wrapped. 00 = Transfer Source address is incremented. 01 = Reserved. 10 = Transfer Source address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURSACHn (Current Source Address) and PDMA_CURBCCHn registers automatically and PDMA_CURBCCHN registers automatically and PDMA will start another transfer. Cycle continues until software sets PDMACKEN aaa 0. When PDMACKEN is disabled, the PDMA will complete the active transfer but the remaining data in the SBUF will not be transferred to the destination address. [3:2] MODESEL O0 = Memory to Memory mode (SRAM-to-SRAM). 01 = IP to Memory mode (SRAM-to-SRAM). 10 = IP to Memory mode (SRAM-to-SRAM). 10 = IP to Memory mode (SRAM-to-APB). Software Engine Reset <td>[7:6]</td> <td>10 = Transfer Destination Address is fixed (Used when data transferred from multiple addresses to a single destination such as peripheral FIFO input).</td>	[7:6]		10 = Transfer Destination Address is fixed (Used when data transferred from multiple addresses to a single destination such as peripheral FIFO input).
[5:4] SASEL This parameter determines the behavior of the current source address register with each PDMA transfer. It can either be fixed, incremented or wrapped. [5:4] SASEL 00 = Transfer Source address is incremented. 01 = Reserved. 10 = Transfer Source address is fixed 11 = Transfer Source address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURSACHn (Current Source Address) and PDMA_CURBCCHn registers will be reloaded from the PDMA_DSCTn_ENDSA (Source Address) and PDMA_TXBCCHn (Byte Count) registers automatically and PDMA will start another transfer. Cycle continues until software sets PDMACKEN aaa 0. When PDMACKEN is disabled, the PDMA will complete the active transfer but the remaining data in the SBUF will not be transferred to the destination address. [3:2] MODESEL 00 = Memory to Memory mode (SRAM-to-SRAM). 01 = IP to Memory mode (SRAM-to-SRAM). 01 = IP to Memory mode (SRAM-to-APB). [1] SWRST Software Engine Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents			11 = Transfer Destination Address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURDACHn (Current Destination Address) and PDMA_CURBCCHn registers will be reloaded from the PDMA_DSCTn_ENDDA (Destination Address) and PDMA_TXBCCHn (Byte Count) registers automatically and PDMA will start another transfer. Cycle continues until software sets PDMACKEN=0. When PDMACKEN is disabled, the PDMA will complete the active transfer but the remaining data in the SBUF will not be transferred to the destination address.
[5:4] SASEL each PDMA transfer. It can either be fixed, incremented or wrapped. 00 = Transfer Source address is incremented. 01 = Reserved. 10 = Transfer Source address is fixed 11 = Transfer Source address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURSACHn (Current Source Address) and PDMA_CURBCCHn registers will be reloaded from the PDMA_DSCTn_ENDSA (Source Address) and PDMA_TXBCCHn (Byte Count) registers automatically and PDMA will start another transfer. Cycle continues until software sets PDMACKEN aaa 0. When PDMACKEN is disabled, the PDMA will complete the active transfer but the remaining data in the SBUF will not be transferred to the destination address. [3:2] MODESEL PDMA Mode Select [1] SWRST Software Engine Reset 0 = Memory to IP mode (SRAM-to-SRAM). 10 = IP to Memory mode (APB-to-SRAM). 10 = Memory to IP mode (SRAM-to-APB). Software Engine Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents		SASEL	Source Address Select
[5:4] SASEL 01 = Reserved. 10 = Transfer Source address is fixed 11 = Transfer Source address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURSACHn (Current Source Address) and PDMA_CURBCCHn registers will be reloaded from the PDMA_DSCTn_ENDSA (Source Address) and PDMA_TXBCCHn (Byte Count) registers automatically and PDMA will start another transfer. Cycle continues until software sets PDMACKEN aaa 0. When PDMAACKEN is disabled, the PDMA will complete the active transfer but the remaining data in the SBUF will not be transferred to the destination address. [3:2] MODESEL PDMA Mode Select [3:2] MODESEL O1 = Nemory to Memory mode (SRAM-to-SRAM). 01 = IP to Memory mode (SRAM-to-SRAM). 01 = IP to Memory to IP mode (SRAM-to-APB). [1] SWRST Software Engine Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents			This parameter determines the behavior of the current source address register with each PDMA transfer. It can either be fixed, incremented or wrapped.
[5:4] SASEL 10 = Transfer Source address is fixed 11 = Transfer Source address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURSACHn (Current Source Address) and PDMA_CURBCCHn registers will be reloaded from the PDMA_DSCTn_ENDSA (Source Address) and PDMA_TXBCCHn (Byte Count) registers automatically and PDMA will start another transfer. Cycle continues until software sets PDMACKEN aaa 0. When PDMACKEN is disabled, the PDMA will complete the active transfer but the remaining data in the SBUF will not be transferred to the destination address. [3:2] MODESEL PDMA Mode Select [3:2] MODESEL PDMA Mode Select This parameter selects to transfer direction of the PDMA channel. Possible values are: 00 = Memory to Memory mode (SRAM-to-SRAM). 01 = IP to Memory mode (APB-to-SRAM). 10 = Memory to IP mode (SRAM-to-APB). Software Engine Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents 0 = Writing 1 to this bit will reset the internal state machine and pointers. The contents			00 = Transfer Source address is incremented.
[11] SWRST 11 = Transfer Source address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURSACHn (Current Source Address) and PDMA_CURBCCHn registers will be reloaded from the PDMA_DSCTn_ENDSA (Source Address) and PDMA_TXBCCHn (Byte Count) registers automatically and PDMA will start another transfer. Cycle continues until software sets PDMACKEN aaa 0. When PDMACKEN is disabled, the PDMA will complete the active transfer but the remaining data in the SBUF will not be transferred to the destination address. [3:2] MODESEL PDMA Mode Select [1] SWRST This parameter selects to transfer direction of the PDMA channel. Possible values are: 00 = Memory to Memory mode (SRAM-to-SRAM). 01 = IP to Memory mode (APB-to-SRAM). 10 = Memory to IP mode (SRAM-to-APB). [1] SWRST Software Engine Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents			01 = Reserved.
[3:2] MODESEL Count) equals zero, the PDMA_CURSACHn (Current Source Address) and PDMA_CURBCCHn registers will be reloaded from the PDMA_DSCTn_ENDSA (Source Address) and PDMA_TXBCCHn (Byte Count) registers automatically and PDMA will start another transfer. Cycle continues until software sets PDMACKEN aaa 0. When PDMAACKEN is disabled, the PDMA will complete the active transfer but the remaining data in the SBUF will not be transferred to the destination address. PDMA Mode Select This parameter selects to transfer direction of the PDMA channel. Possible values are: 00 = Memory to Memory mode (SRAM-to-SRAM). 01 = IP to Memory mode (APB-to-SRAM). 01 = IP to Memory mode (SRAM-to-APB). Software Engine Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents	[5:4]		10 = Transfer Source address is fixed
[3:2] MODESEL This parameter selects to transfer direction of the PDMA channel. Possible values are: 00 = Memory to Memory mode (SRAM-to-SRAM). 01 = IP to Memory mode (APB-to-SRAM). 10 = Memory to IP mode (SRAM-to-APB). SWRST Software Engine Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents			11 = Transfer Source address is wrapped. When PDMA_CURBCCHn (Current Byte Count) equals zero, the PDMA_CURSACHn (Current Source Address) and PDMA_CURBCCHn registers will be reloaded from the PDMA_DSCTn_ENDSA (Source Address) and PDMA_TXBCCHn (Byte Count) registers automatically and PDMA will start another transfer. Cycle continues until software sets PDMACKEN aaa 0. When PDMACKEN is disabled, the PDMA will complete the active transfer but the remaining data in the SBUF will not be transferred to the destination address.
[3:2] MODESEL 00 = Memory to Memory mode (SRAM-to-SRAM). 01 = IP to Memory mode (APB-to-SRAM). 10 = Memory to IP mode (SRAM-to-APB). [1] SWRST Software Engine Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents	[3:2]	MODESEL	PDMA Mode Select
01 = IP to Memory mode (APB-to-SRAM). 10 = Memory to IP mode (SRAM-to-APB). Software Engine Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents			This parameter selects to transfer direction of the PDMA channel. Possible values are:
10 = Memory to IP mode (SRAM-to-APB). [1] Software Engine Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents			00 = Memory to Memory mode (SRAM-to-SRAM).
Swrst Software Engine Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents			01 = IP to Memory mode (APB-to-SRAM).
[1] SWRST 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents			10 = Memory to IP mode (SRAM-to-APB).
[1] SWRST 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents	[1]	SWRST	Software Engine Reset
1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents			0 = Writing 0 to this bit has no effect.
cycles.			1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents of the control register will not be cleared. This bit will auto clear after a few clock cycles.
nuvoTon

		PDMA Channel Enable
[0]	CHEN	Setting this bit to 1 enables PDMA's operation. If this bit is cleared, PDMA will ignore all PDMA request and force Bus Master into IDLE state.
		Note: SWRST will clear this bit.

Register Offset R/W Description				
PDMA_DSCT0_ENDSA	PDMA_BA+0x04	R/W	PDMA Transfer Source Address Register of Channel 0	0x0000_0000
PDMA_DSCT1_ENDSA	PDMA_BA+0x104	R/W	PDMA Transfer Source Address Register of Channel 1	0x0000_0000
PDMA_DSCT2_ENDSA	PDMA_BA+0x204	R/W	PDMA Transfer Source Address Register of Channel 2	0x0000_0000
PDMA_DSCT3_ENDSA	PDMA_BA+0x304	R/W	PDMA Transfer Source Address Register of Channel 3	0x0000_0000

PDMA Transfer Source Address Register (PDMA_DSCTn_ENDSA)(n=0~3)

Table 5-124 PDMA Source Address Register (PDMA_DSCTn_ENDSA, address 0x5000_8004 + *n**0x100)

Bits	Description	
		PDMA Transfer Source Address Register
[31:0]	ENDSA	This register holds the initial Source Address of PDMA transfer.
		Note: The source address must be word aligned.

PDMA Transfer Destination Address Register (PDMA_DSCTn_ENDDA)(n=0~3)

nuvoton

Register	Offset	R/W	Description	Reset Value
PDMA_DSCT0_ENDDA	PDMA_BA+0x08	R/W	PDMA Transfer Destination Address Register of Channel 0	0x0000_0000
PDMA_DSCT1_ENDDA	PDMA_BA+0x108	R/W	PDMA Transfer Destination Address Register of Channel 1	0x0000_0000
PDMA_DSCT2_ENDDA	PDMA_BA+0x208	R/W	PDMA Transfer Destination Address Register of Channel 2	0x0000_0000
PDMA_DSCT3_ENDDA	PDMA_BA+0x308	R/W	PDMA Transfer Destination Address Register of Channel 3	0x0000_0000

Table 5-125 PDMA Destination Address Register (PDMA_DSCTn_ENDDA, address 0x5000_8008 + n*0x100)

Bits	Description	
		PDMA Transfer Destination Address Register
[31:0]	ENDDA	This register holds the initial Destination Address of PDMA transfer.
		Note: The destination address must be word aligned.

PDMA Transfer Byte Count Register (PDMA_TXBCCHn)(n=0~3)

Register	Offset	R/W	Description	Reset Value
PDMA_TXBCCH0	PDMA_BA+0x0C	R/W	PDMA Transfer Byte Count Register of Channel 0	0x0000_0000
PDMA_TXBCCH1	PDMA_BA+0x10C	R/W	PDMA Transfer Byte Count Register of Channel 1	0x0000_0000
PDMA_TXBCCH2	PDMA_BA+0x20C	R/W	PDMA Transfer Byte Count Register of Channel 2	0x0000_0000
PDMA_TXBCCH3	PDMA_BA+0x30C	R/W	PDMA Transfer Byte Count Register of Channel 3	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			BYTEC	NT [15:8]						
7	6	5	4	3	2	1	0			
	BYTECNT [7:0]									

Table 5-126 PDMA Transfer Byte Count Register (PDMA_TXBCCHn, address 0x5000_800C + *n**0x100)

Bits	Description				
[31:24]	Reserved	eserved Reserved			
		PDMA Transfer Byte Count Register			
[15:0] BYTECNT	BYTECNT	This register controls the transfer byte count of PDMA. Maximum value is 0xFFFF.			
		Note: When in memory-to-memory (PDMA_DSCTn_CTL.MODESEL aaa 00b) mode, the transfer byte count must be word aligned, that is multiples of 4bytes.			

PDMA Internal Buffer Pointer Register (PDMA_INLBPCHn)(n=0~3)

Register	Offset	R/W	Description	Reset Value
PDMA_INLBPCH0	PDMA_BA+0x10	R	PDMA Internal Buffer Pointer Register of Channel 0	0xXXXX_XX00
PDMA_INLBPCH1	PDMA_BA+0x110	R	PDMA Internal Buffer Pointer Register of Channel 1	0xXXXX_XX00
PDMA_INLBPCH2	PDMA_BA+0x210	R	PDMA Internal Buffer Pointer Register of Channel 2	0xXXXX_XX00
PDMA_INLBPCH3	PDMA_BA+0x310	R	PDMA Internal Buffer Pointer Register of Channel 3	0xXXXX_XX00

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
Reserved				BUF	PTR					

Table 5-127 PDMA Internal Buffer Point Register (PDMA_INLBPCHn, address 0x5000_8010 + *n**0x100)

Bits	Description			
[31:4]	Reserved	Reserved		
[3:0]	BUFPTR	PDMA Internal Buffer Pointer Register (Read Only) A PDMA transaction consists of two stages, a read from the source address and a write to the destination address. Internally this data is buffered in a 32bit register. If transaction width between the read and write transactions are different, this register tracks which byte/half-word of the internal buffer is being processed by the current transaction.		

PDMA Current Source Address Register (PDMA_CURSACHn) (n=0~3)

Register	Offset	R/W	Description	Reset Value
PDMA_CURSACH0	PDMA_BA+0x14	R	PDMA Current Source Address Register of Channel 0	0x0000_0000
PDMA_CURSACH1	PDMA_BA+0x114	R	PDMA Current Source Address Register of Channel 1	0x0000_0000
PDMA_CURSACH2	PDMA_BA+0x214	R	PDMA Current Source Address Register of Channel 2	0x0000_0000
PDMA_CURSACH3	PDMA_BA+0x314	R	PDMA Current Source Address Register of Channel 3	0x0000_0000

Table 5-128 PDMA Current Source Address Register (PDMA_CURSACHn, address 0x5000_8014 + n*0x100)

Bits	Description	
		PDMA Current Source Address Register (Read Only)
[31:0]	CURSA	This register returns the source address from which the PDMA transfer is occurring. This register is loaded from PDMA_DSCTn_ENDSA when PDMA is triggered or when a wraparound occurs.

PDMA Current Destination Address Register (PDMA_CURDACHn) (n=0~3)

Register	Offset	R/W	Description	Reset Value
PDMA_CURDACH0	PDMA_BA+0x18	R	PDMA Current Destination Address Register of Channel 0	0x0000_0000
PDMA_CURDACH1	PDMA_BA+0x118	R	PDMA Current Destination Address Register of Channel 1	0x0000_0000
PDMA_CURDACH2	PDMA_BA+0x218	R	PDMA Current Destination Address Register of Channel 2	0x0000_0000
PDMA_CURDACH3	PDMA_BA+0x318	R	PDMA Current Destination Address Register of Channel 3	0x0000_0000

Table 5-129 PDMA Current Destination Address Register (PDMA_CURDACHn, address0x5000_8018 + n*0x100)

Bits	Description		
		PDMA Current Destination Address Register (Read Only)	
[31:0]	CURDA	This register returns the destination address to which the PDMA transfer is occurring. This register is loaded from PDMA_DSCTn_ENDDA when PDMA is triggered or when a wraparound occurs.	

PDMA Current Byte Count Register (PDMA_CURBCCHn) (n=0~3)

Register	Offset	R/W	Description	Reset Value
PDMA_CURBCCH0	PDMA_BA+0x1C	R	PDMA Current Byte Count Register of Channel 0	0x0000_0000
PDMA_CURBCCH1	PDMA_BA+0x11C	R	PDMA Current Byte Count Register of Channel 1	0x0000_0000
PDMA_CURBCCH2	PDMA_BA+0x21C	R	PDMA Current Byte Count Register of Channel 2	0x0000_0000
PDMA_CURBCCH3	PDMA_BA+0x31C	R	PDMA Current Byte Count Register of Channel 3	0x0000_0000

Table 5-130 PDMA Current Byte Count Register (PDMA_CURBCCHn, address 0x5000_801C + *n**0x100)

Bits	Description		
[31:16]	Reserved	Reserved	
[15:0]	CURBC	PDMA Current Byte Count Register (Read Only) This field indicates the current remaining byte count of PDMA transfer. This register is initialized with PDMA_TXBCCHn register when PDMA is triggered or when a wraparound occurs	

PDMA Interrupt Enable Control Register (PDMA_INTENCHn) (n=0~3)

Register	Offset	R/W	Description	Reset Value
PDMA_INTENCH0	PDMA_BA+0x20	R/W	PDMA Interrupt Enable Control Register of Channel 0	0x0000_0001
PDMA_INTENCH1	PDMA_BA+0x120	R/W	PDMA Interrupt Enable Control Register of Channel 1	0x0000_0001
PDMA_INTENCH2	PDMA_BA+0x220	R/W	PDMA Interrupt Enable Control Register of Channel 2	0x0000_0001
PDMA_INTENCH3	PDMA_BA+0x320	R/W	PDMA Interrupt Enable Control Register of Channel 3	0x0000_0001

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved					TXOKIEN	TXABTIEN

Table 5-131 PDMA Interrupt Enable Control Register (PDMA_INTENCHn, address 0x5000_8020 + *n**0x100)

Bits	Description		
[31:3]	Reserved	Reserved	
[2]	WAINTEN	 Wraparound Interrupt Enable If enabled, and channel source or destination address is in wraparound mode, the PDMA controller will generate a WRAP interrupt to the CPU according to the setting of PDMA_DSCTn_CTL.WAINTSEL. This can be interrupts when the transaction has finished and has wrapped around and/or when the transaction is half way in progress. This allows the efficient implementation of circular buffers for DMA. 0 = Disable Wraparound PDMA interrupt generation. 1 = Enable Wraparound interrupt generation. 	
[1]	TXOKIEN	 PDMA Transfer Done Interrupt Enable If enabled, the PDMA controller will generate and interrupt to the CPU when the requested PDMA transfer is complete. 0 = Disable PDMA transfer done interrupt generation. 1 = Enable PDMA transfer done interrupt generation. 	

		PDMA Read/Write Target Abort Interrupt Enable
[0]	TXABTIEN	If enabled, the PDMA controller will generate and interrupt to the CPU whenever a PDMA transaction is aborted due to an error. If a transfer is aborted, PDMA channel must be reset to resume DMA operation.
		0 = Disable PDMA transfer target abort interrupt generation.
		1 = Enable PDMA transfer target abort interrupt generation.

PDMA Interrupt Status Register (PDMA_CHnIF) (n=0~3)

Register	Offset	R/W	Description	Reset Value
PDMA_CH0IF	PDMA_BA+0x24	R/W	PDMA Interrupt Status Register of Channel 0	0x0000_0000
PDMA_CH1IF	PDMA_BA+0x124	R/W	PDMA Interrupt Status Register of Channel 1	0x0000_0000
PDMA_CH2IF	PDMA_BA+0x224	R/W	PDMA Interrupt Status Register of Channel 2	0x0000_0000
PDMA_CH3IF	PDMA_BA+0x324	R/W	PDMA Interrupt Status Register of Channel 3	0x0000_0000

31	30	29	28	27	26	25	24
INTSTS				Reserved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Rese	erved			W	AIF	
7	6	5	4	3	2	1	0
	Reserved					TXOKIF	TXABTIF

Table 5-132 PDMA Interrupt Enable Status Register (PDMA_CHnIF, address 0x5000_8024 +

*n**0x100)

Bits	Description	
[31]	INTSTS	Interrupt Pin Status (Read Only) This bit is the Interrupt pin status of PDMA channel.
[30:12]	Reserved	Reserved
[11:8]	WAIF	 Wrap Around Transfer Byte Count Interrupt Flag These flags are set whenever the conditions for a wraparound interrupt (complete or half complete) are met. They are cleared by writing one to the bits. 0001 aaa Current transfer finished flag (CURBC aaaaaa 0). 0100 aaa Current transfer half complete flag (CURBC aaaaaa BYTECNT/2).
[1]	TXOKIF	 Block Transfer Done Interrupt Flag This bit indicates that PDMA block transfer complete interrupt has been generated. It is cleared by writing 1 to the bit. 0 = Transfer ongoing or Idle. 1 = Transfer Complete.

		PDMA Read/Write Target Abort Interrupt Flag
[0]	TXABTIF	This flag indicates a Target Abort interrupt condition has occurred. This condition can happen if attempt is made to read/write from invalid or non-existent memory space. It occurs when PDMA controller receives a bus error from AHB master. Upon occurrence PDMA will stop transfer and go to idle state. To resume, software must reset PDMA channel and initiate transfer again.
		0 = No bus ERROR response received.
		1 = Bus ERROR response received.
		NOTE: This bit is cleared by writing 1 to itself.

Register	Offset	R/W	Description	Reset Value			
PDMA_GLOCTL	PDMA_BA+0xF00	R/W	PDMA Global Control Register	0x0000_0000			

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Rese	erved			СНС	KEN			
7	6	5	4	3	2	1	0		
Reserved							SWRST		

Table 5-133 PDMA Global Control Register (PDMA_GLOCTL, address 0x5000_8F00)

Bits	Description	
[31:17]	Reserved	Reserved
[11:8]	CHCKEN	PDMA Controller Channel Clock Enable Control To enable clock for channel n CHCKEN[n] must be set. CHCKEN[n] aaa 1: Enable Channel n clock CHCKEN[n] aaa 0: Disable Channel n clock
[7:1]	Reserved	Reserved
[0]	SWRST	 PDMA Software Reset 0 = Writing 0 to this bit has no effect. 1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents of control register will not be cleared. This bit will auto clear after several clock cycles. Note: This bit can reset all channels (global reset).

PDMA Global Control Register (PDMA_GLOCTL)

PDMA Service Selection Control Register (PDMA_SVCSEL)

Register	Offset	R/W	Description	Reset Value
PDMA_SVCSEL	PDMA_BA+0xF04	R/W	PDMA Service Selection Control Register	0xFFFF_FFFF

PDMA peripherals have transmit and/or receive request signals to control dataflow during PDMA transfers. These signals must be connected to the PDMA channel assigned by software for use with that peripheral. For instance if PDMA Channel 3 is to be used to transfer data from memory to DPWM peripheral, then DPWMTXSEL should be set to 3. This will route the DPWM transmit request signal to PDMA channel 3, whenever DPWM has space in FIFO it will request transmission of data from PDMA. When not used the selection should be set to 0xFF.

31	30	29	28	27	26	25	24	
	I2ST	KSEL		I2SRXSEL				
23	22	21	20	19	18	17	16	
	UART	XSEL		UARTRXSEL				
15	14	13	12	11	10	9	8	
	DPWMTXSEL				ADCRXSEL			
7	6	5	4	3	2	1	0	
	SPIT	XSEL			SPIR	XSEL		

Table 5-134 PDMA Service Selection Control Register (PDMA_SVCSEL, address 0x5000_8F04)

Bits	Description					
		PDMA I2S Transmit Selection				
[31:28]	I2STXSEL	This field defines which PDMA channel is connected to I2S peripheral transmit (PDMA destination) request.				
		PDMA I2S Receive Selection				
[27:24] I2SRXSEL		This field defines which PDMA channel is connected to I2S peripheral receive (PDMA source) request.				
		PDMA UART0 Transmit Selection				
[23:20]	UARTXSEL	This field defines which PDMA channel is connected to UART0 peripheral transmit (PDMA destination) request.				
		PDMA UART0 Receive Selection				
[19:16] UARTRXSEL		This field defines which PDMA channel is connected to UART0 peripheral receive (PDMA source) request.				
		PDMA DPWM Transmit Selection				
[15:12]	DPWMTXSEL	This field defines which PDMA channel is connected to DPWM peripheral transmit (PDMA destination) request.				

[11:8]	ADCRXSEL	PDMA ADC Receive Selection This field defines which PDMA channel is connected to ADC peripheral receive (PDMA source) request.
[7:4]	SPITXSEL	PDMA SPI0 Transmit Selection This field defines which PDMA channel is connected to SPI0 peripheral transmit (PDMA destination) request.
[3:0]	SPIRXSEL	PDMA SPI0 Receive Selection This field defines which PDMA channel is connected to SPI0 peripheral receive (PDMA source) request.

PDMA Global Interrupt Status Register (PDMA_GLOBALIF)

Register	Offset	R/W	Description	Reset Value
PDMA_GLOBALIF	PDMA_BA+0xF0C	R	PDMA Global Interrupt Status Register	0x0000_0000

Table 5-135 PDMA Global Interrupt Status Register (PDMA_GLOBALIF, address 0x5000_8F0C)

Bits	Description					
[3:0]	GLOBALIF	Interrupt Pin Status (Read Only)				
		GLOBALIF[<i>n</i>] is the interrupt status of PDMA channel <i>n</i> .				

6 FLASH MEMORY CONTROLLER (FMC)

6.1 Overview

nuvoTon

The ISD9160 is available with 141K bytes of on-chip embedded Flash EEPROM for application program and data flash memory. The memory can be updated through procedures for In-Circuit Programming (ICP) through the ARM Serial-Wire Debug (SWD) port or via In-System Programming (ISP) functions under software control. In-System Programming (ISP) functions enable user to update program memory when chip is soldered onto PCB.

Main flash memory is divided into two partitions: Application Program ROM (APROM) and Data flash (DATAF). In addition there are two other partitions, a 4K Byte Boot Loader ROM (LDROM), and Configuration ROM (CONFIG).

Upon chip power-on, the Cortex-M0 CPU fetches code from APROM or LDROM determined by a boot select configuration in CONFIG.

The boundary between APROM and user DATA Flash can be configured to any sector address boundary. Erasable sector size is 1K Byte. This boundary is also specified in the CONFIG memory.

LDROM is a fixed 4K Byte in size, but if not required can be incorporated into the APROM address space of the 141K Byte device for a total device memory of 145K Byte.

6.2 Features

- AHB interface compatible
- Runs up to 50 MHz with zero wait-state for continuous address read access
- 141KB application program memory (APROM)
- 4KB in system programming (ISP) boot loader program memory (LDROM)
- Configurable data flash with 1k Bytes sector erase unit
- Programmable data flash start address.
- In System Program (ISP) capability to update on chip Flash EEPROM

6.3 Flash Memory Controller Block Diagram

nuvoTon

The flash memory controller consist of AHB slave interface, ISP control logic, writer interface and flash macro interface timing control logic. The block diagram of flash memory controller is shown as following:

Figure 6-1 Flash Memory Control Block Diagram

6.4 Flash Memory Organization

UVOTON

The ISD9160 flash memory consists of Application Program (APROM) memory (141KB), data flash (DATAF), ISP boot loader (LDROM) program memory (4KB), user configuration (CONFIG). User configuration block provides 2 words that control system configuration, like flash security lock, boot select, brown out voltage level and data flash base address. An additional 504Bytes are available in CONFIG memory for the user to store custom configuration data. The first two CONFIG words are loaded from CONFIG memory at power-on into device control registers to initialize certain chip functions. The data flash start address (FMC_DFBA) is defined in CONFIG memory and determines the relative size of the APROM and DATAF partitions.

Block Name	Size	Start Address	End Address
APROM	141 KB	0x0000_0000	0x0002_33FF (141KB)
			OR
			DFBADR-1 if DFEN!=0
DATAF	User Configurable	DFBADR	0x0002_33FF (141KB)
LDROM	4 KB	0x0010_0000	0x0010_0FFF
CONFIG	512B	0x0030_0000	0x0030_01FF

The Flash memory organization is shown as below:

Figure 6-2 Flash Memory Organization

6.5 Boot Selection

The ISD9160 provides an in-system programming (ISP) feature to enable user to update the application program memory when the chip is mounted on a PCB. A dedicated 4KB boot loader program memory is used to store ISP firmware. The user customizes this firmware to implement a protocol specific to their system to download updated application code. This firmware could utilize device peripherals such as UART, SPI or I2C to fetch new application code. The memory area from which the ISD9160 boots is controlled by the CBS bit in Config0 register.

6.6 Data Flash (DATAF)

The ISD9160 provides a data flash partition for user to store non-volatile data such as audio recordings. It accessed through ISP procedures via the Flash Memory Controller (FMC). The size of each erasable sector is 1Kbyte and minimum write size is one word (4Bytes). An erase operation resets all memory in sector to value 0xFF. A write operation can only change a '1' bit to a '0' bit. If a subset of the sector needs to be changed, the entire 1KB sector must be copied to another page or into SRAM in advance as entire sector must be erased before modification. Data flash and application program memory share the same memory space. If DFENB bit in Config0 is enabled ('0'), the data flash base address is defined by FMC_DFBA and application program memory size is (X-N)KB and data flash size is N KB, where X is the total device memory size (141KB) and N is number of Kbytes (sectors) reserved for data flash. In addition, for the 141KB device, the LDROM partition can be disabled and included in APROM/DATAF memory by setting the LDROM_EN configuration bit low allowing a total of 145KB of memory available to APROM/DATAF.

Figure 6-3 Flash Memory Structure

6.7 User Configuration (CONFIG)

nuvoTon

6.7.1 Config0 (ISP Address = 0x0030_0000)

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
CBODEN	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
CBS	-	-	-	-	LDROMEN	LOCK	DFEN

Table 6-2 User Configuration Register 0 (Config0, address 0x0030_0000 accessible through ISP only)

Config0	Address = 0x003	Address = 0x0030_0000					
Bits	Description						
[31:23]	Reserved	Reserved					
[23]	CBODEN	Brown Out Detector Enable					
		If set to '1' the Brown Out Detector (BOD) will be enabled after power up. It will be configured at lowest voltage (2.1V) and if brown out condition detected will trigger the NMI interrupt to processor.					
		0=Disable brown out detect after power on					
		1= Enable					
[22:8]	Reserved	Reserved					
[7]	CBS	Configuration Boot Selection					
		0 = Chip will boot from LDROM,					
		1 = Chip will boot from APROM					
[6:3]	Reserved	Reserved					
[2]	LDROMEN	LDROM Control Bit					
		0=disable					
		1= enable					
[1]	LOCK	Security Lock					
		0 = Flash data is locked,					
		1 = Flash data is not locked.					
		When flash data is locked, only device ID, Config0 and Config1 can be read by ICP through serial debug interface. Other data is locked as 0xFFFFFFFF. Once locked no SWD debugging is possible. ISP can read data anywhere regardless of LOCK bit value.					

[0)]	DFENB	Data Flash Enable Bar
			When data flash is enabled, flash memory is partitioned between APROM and DATAF memory depending on the setting of data flash base address in Config1 register. If set to '0' then no DATAF partition exists.
			0 = Enable data flash
			1 = Disable data flash

6.7.2 Config1 (Address = 0x0030_0004)

nuvoton

Table 6-3 User Configuration Register 1 (Config1, address 0x0030_0004 accessible through ISP only)

Config1	Address = 0x0030_0004						
Bits	Description	Description					
[31:20]	Reserved	Reserved It is mandatory to program 0x00 to these Reserved bits					
[19:0]	DFBADR	Data Flash Base Address This pointer sets the address for the start of data flash memory. Address must be on a 1KB sector boundary so DFBADR[9:0] must be 0x000.					

6.8 In-System Programming (ISP)

The program and data flash memory support both in hardware In-Circuit Programming (ICP) and firmware based In-System programming (ISP). Hardware ICP programming mode uses the Serial-Wire Debug (SWD) port to program chip. Dedicated ICE Debug hardware or ICP gang-writers are available to reduce programming and manufacturing costs. For firmware updates in the field, the ISD9160 provides an ISP mode allowing a device to be reprogrammed under software control.

ISP is performed without removing the device from the system. Various interfaces enable LDROM firmware to fetch new program code from an external source. A common method to perform ISP would be via a UART controlled by firmware in LDROM. In this scenario, a PC could transfer new APROM code through a serial port. The LDROM firmware receives it and re-programs APROM through ISP commands. An alternative might be to fetch new firmware from an attached SD-Card via the SPI interface.

6.8.1 ISP Procedure

The ISD9160 will boot from APROM or LDROM from a power-on reset as defined by user configuration bit CBS. If user desires to update application program in APROM, the FMC_ISPCTL.BS can be set to '1' and a software reset issued. This will cause the chip to boot from LDROM. An example flow diagram of the ISP sequence is shown in Figure 6-5.

The FMC_ISPCTL register is a protected register, user must first follow the unlock sequence (<u>see</u> <u>Protected Register Lock Key Register (SYS_REGLCTL</u>)</u>) to gain access. This procedure is to protect the flash memory from unintentional access.

To enable ISP functionality software must first ensure the ISP clock (CLK_AHBCLK.ISPCKEN) is present then set the FMC_ISPCTL.ISPEN bit.

Several error conditions are checked after software writes the ISPTRIG register. If an error condition occurs, ISP operation is not started and the ISP fail flag (FMC_ISPCTL.ISPFF) will be set instead. The ISPFF flag will remain set until it is cleared by software. Subsequent ISP procedure can be started even if ISPFF is set. It is recommended that software check ISPFF bit and clear it after each ISP operation if set.

When ISPTRIG register is set, the CoretxM0 CPU will wait for ISP operation to finish, during this period; peripherals operate as usual. If any interrupt requests occur, CPU will not service them until ISP operation finishes. As the ISP functions affect the operation of the flash memory M0 instruction pipeline should be flushed with an ISB (Instruction Synchronization Barrier) instruction after the ISP is triggered.

Figure 6-4 ISP Operation Timing

Figure 6-5 Boot Sequence and ISP Procedure

The ISP command set is shown in Table 6-4. Three registers determine the action of a command: FMC_ISPCMD is the command register and accepts commands for reading ID registers and read/write/erase of flash memory. The FMC_ISPADDR is the address register where the flash memory address for access is written. FMC_ISPDAT is the data register that input data is written to and return data read from. An ISP command is executed by setting FMC_ISPCMD, FMC_ISPDAT and FMC_ISPADDR then writing to the trigger register ISPTRIG.

There is an ISP command to read the device ID register. This register returns a code that reports the memory configuration of the ISD9160 part as given in Table 6-5.

ISP Mode	FMC_ISPCMD	FMC_ISPADDR			FMC_ISPDAT
	CMD[5:0]	A21	A20	A[19:0]	D[31:0]
Standby	0x3x	х	х	x	х
Read Company ID	0x0B	х	х	x	Returns 0x0000_00DA
Read Device ID	0x0C	х	х	0x00000	0x1D00_01nn. See Table 6-5
FLASH Page Erase	0x22	0	A[20]	A[19:0]	x
FLASH Program	0x21	0	A[20]	A[19:0]	Data input
FLASH Read	0x00	0	A[20]	A[19:0]	Data output
CONFIG Page Erase	0x22	1	1	A[19:0]	x
CONFIG Program	0x21	1	1	A[19:0]	Data input
CONFIG Read	0x00	1	1	A[19:0]	Data output

Table 6-4 ISP Command Set

Table 6-5 Device ID Memory Size

DID[7:4]	Flash Size (KB)	DID[3:0]	RAM Size (KB)
8	145	3	12

6.9 Flash Control Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
FMC Base Address	FMC Base Address:							
FMC_BA=0x5000_0	FMC_BA=0x5000_C000							
FMC_ISPCTL	FMC_BA+0x00	R/W	ISP Control Register	0x0000_0000				
FMC_ISPADDR	FMC_BA+0x04	R/W	ISP Address Register	0x0000_0000				
FMC_ISPDAT	FMC_BA+0x08	R/W	ISP Data Register	0x0000_0000				
FMC_ISPCMD	FMC_BA+0x0C	R/W	ISP Command Register	0x0000_0000				
FMC_ISPTRG	FMC_BA+0x10	R/W	ISP Trigger Control Register	0x0000_0000				
FMC_DFBA	FMC_BA+0x14	R	Data Flash Base Address	0xXXXX_XXX				

6.10 Flash Control Register Description

ISP Control Register (FMC_ISPCTL)

The FMC_ISPCTL register is a protected register, user must first follow the unlock sequence (<u>see</u> <u>Protected Register Lock Key Register (SYS_REGLCTL</u>)) to gain access.

Register	Offset	R/W	Description	Reset Value
FMC_ISPCTL	FMC_BA+0x00	R/W	ISP Control Register	0x0000_0000

7	6	5	4	3	2	1	0
SWRST	ISPFF	LDUEN	CFGUEN	-	-	BS	ISPEN

Table 6-6 ISP Control Register (FMC_ISPCTL, address 0x5000_C000)

Bits	Description	
[7]	SWRST	Software Reset Writing 1 to this bit will initiate a software reset. It is cleared by hardware after reset.
[6]	ISPFF	 ISP Fail Flag This bit is set by hardware when a triggered ISP meets any of the following conditions: (1) APROM writes to itself. (2) LDROM writes to itself. (3) Destination address is illegal, such as over an available range. Write 1 to clear.
[5]	LDUEN	LDROM Update Enable LDROM update enable bit. 0 = LDROM cannot be updated 1 = LDROM can be updated when the MCU runs in APROM.
[4]	CFGUEN	CONFIG Update Enable 0 = Disable 1 = Enable When enabled, ISP functions can access the CONFIG address space and modify device configuration area.
[3:2]	Reserved	Reserved

		Boot Select
		0 = APROM
[1]	BS	1 = LDROM
[1]	63	Modify this bit to select which ROM next boot is to occur. This bit also functions as MCU boot status flag, which can be used to check where MCU booted from. This bit is initialized after power-on reset with the inverse of CBS in Config0; It is not reset for any other reset event.
		ISP Enable
[0]	ISPEN	0 = Disable ISP function
		1 = Enable ISP function

ISP Address Register (FMC_ISPADDR)

nuvoTon

Register	Offset	R/W	Description	Reset Value
FMC_ISPADDR	FMC_BA+0x04	R/W	ISP Address Register	0x0000_0000

Table 6-7 ISP Address Register (FMC_ISPADDR, address 0x5000_C004)

Bits	Description				
		ISP Address Register			
[31:0]	ISPADDR	This is the memory address register that a subsequent ISP command will access. ISP operation are carried out on 32bit words only, consequently ISPARD[1:0] must be 00b for correct ISP operation.			

ISP Data Register (FMC_ISPDAT)

nuvoTon

Register	Offset	R/W	Description	Reset Value
FMC_ISPDAT	FMC_BA+0x08	R/W	ISP Data Register	0x0000_0000

Table 6-8 ISP Data Register (FMC_ISPDAT, address 0x5000_C008)

Bits	Description				
[31:0]	ISPDAT	ISP Data Register Write data to this register before an ISP program operation. Read data from this register after an ISP read operation			

ISP Command (FMC_ISPCMD)

nuvoTon

Register	Offset	R/W	Description	Reset Value
FMC_ISPCMD	FMC_BA+0x0C	R/W	ISP Command Register	0x0000_0000

Table 6-9 ISP Data Register (FMC_ISPCMD, address 0x5000_C00C)

Bits	Description						
[31:6]	Reserved	Reserved					
		ISP Command					
	CMD	Operation Mode : CMD					
		Standby : 0x3X					
[5:0]		Read : 0x00					
[5.0]		Program : 0x21					
		Page Erase : 0x22					
		Read CID : 0x0B					
		Read DID : 0x0C					

ISP Trigger Control Register (FMC_ISPTRG)

nuvoton

The FMC_ISPTRG register is a protected register, user must first follow the unlock sequence (see <u>Protected Register Lock Key Register (SYS_REGLCTL</u>)) to gain access.

Register	Offset	R/W	Description	Reset Value
FMC_ISPTRG	FMC_BA+0x10	R/W	ISP Trigger Control Register	0x0000_0000

Table 6-10 ISP Trigger Control Register (FMC_ISPTRG, address 0x5000_C010)

Bits	Description	Description				
[31:1]	Reserved	Reserved				
		ISP Start Trigger				
	Write 1 to start ISP operation. This will be cleared to 0 by hardware automatically when ISP operation is finished.					
		0 = ISP operation is finished				
[0]	ISPGO	1 = ISP is on going				
	After triggering an ISP function M0 instruction pipeline should be flushed with a ISB instruction to guarantee data integrity.					
	This is a protected register, user must first follow the unlock sequence (<u>see Protected</u> <u>Register Lock Key Register (SYS_REGLCTL)</u>) to gain access.					

NUVOTON ISD9160 Technical Reference Manual

Data Flash Base Address Register (FMC_DFBA)

Register	Offset	R/W	Description	Reset Value
FMC_DFBA	FMC_BA+0x14	R	Data Flash Base Address	0xXXXX_XXXX

Table 6-11 Data Flash Base Address Register (FMC_DFBA, address 0x5000_C014)

Bits	Description				
		Data Flash Base Address			
[31:0]	DFBA	This register reports the data flash starting address. It is a read only register.			
		Data flash size is defined by user's configuration; register content is loaded from Config1 when chip is reset.			

7 ANALOG SIGNAL PATH BLOCKS

This section describes the functional blocks that perform analog signal functions on the ISD9160. This includes the ADC, DPWM Speaker Driver, PGA Gain Amplifier, Automatic Gain Control and a variety of auxiliary analog functional blocks.

7.1 Audio Analog-to-Digital Converter (ADC)

7.1.1 Functional Description

The ISD9160 includes a 2nd Order Delta-Sigma Audio Analog-to-Digital converter providing SNR >85dB and THD >70dB. The converter can run at sampling rates up to 6.144MHz while a configurable decimation filter allows oversampling ratios of 64/128/192 and 384. This provides support for standard audio sampling rates from 8kHz to 48kHz.

7.1.2 Features

- Front-end PGA providing gain range of -12dB 35dB.
- Boost Gain stage of 0dD or 26dB.
- Configurable OSR (Over Sampling Ratio) of 64/128/192/384
- Configurable clock rate through master oscillator integer division.
- Decimation signal can be used directly or passed to biquad filter for further filtering.
- Audio data buffered to 8 word FIFO, accessible via APB and PDMA.

7.1.3 Block Diagram

Figure 7-1 ADC Signal Path Block Diagram

Figure 7-2 ADC Clock Control

7.1.4 Operation

IUVOTON

The ADC is an Audio Delta-Sigma converter that operates by oversampling the analog input at low resolution and decimating the result by an over-sampling ratio to obtain a high resolution output which is pushed into the FIFO. The ultimate data rate is determined by the converter clock frequency SDCLK, and the oversampling ratio.

The data stream generated by the ADC is most conveniently handled by PDMA which can load data into a streaming audio buffer for further processing. Alternatively an interrupt driven approach can be used to monitor the FIFO.

If FIFO is not serviced then oldest data is over-written such that the FIFO always contains the eight most recent samples.

7.1.4.1 Determining Sample Rate

The maximum clock rate of the Delta-Sigma Converter is 6.144MHz. Best performance is gained with clocks rates between 1.024MHz and 4.096MHz. Sample rate is given by the following formula:

 $F_s = HCLK \div CLK_DIV \div OSR$

Tables of common audio sample rates are provided below.

HCLK=49.152MHz	SD_CLK	:	Sample Rate (Hz) for OSR				
ADC CLKDIV		64	128	192	384		
8	6,144,000	96,000	48,000	32,000	16,000		
16	3,072,000	48,000	24,000	16,000	8,000		
24	2,048,000	32,000	16,000	10,667	5,333		
32	1,536,000	24,000	12,000	8,000	4,000		
48	1,024,000	16,000	8,000	5,333	2,667		

Table 7-1 Sample Rates for HCLK=49.152MHz

Table 7-2 Sample Rates for HCLK=32.768MHz

HCLK=32.768MHz	SD_CLK	\$	Sample Rate (Hz) for OSR			
ADC CLKDIV		64	128	192	384	
8	4,096,000	64,000	32,000	21,333	10,667	
16	2,048,000	32,000	16,000	10,667	5,333	
24	1,365,333	21,333	10,667	7,111	3,556	
32	1,024,000	16,000	8,000	5,333	2,667	

HCLK=24.576MHz	SD_CLK	Sample Rate (Hz) for OSR				
ADC CLKDIV		64	128	192	384	
8	3,072,000	48,000	24,000	16,000	8,000	
12	2,048,000	32,000	16,000	10,667	5,333	
16	1,536,000	24,000	12,000	8,000	4,000	
24	1,024,000	16,000	8,000	5,333	2,667	

Table 7-3 Sample Rates for HCLK=24.576MHz

Table 7-4 Sample Rates for HCLK=16.384MHz

HCLK=16.384MHz	SD_CLK	Sample Rate (Hz) for OSR			
ADC CLKDIV		64	128	192	384
4	4,096,000	64,000	32,000	21,333	10,667
8	2,048,000	32,000	16,000	10,667	5,333
16	1,024,000	16,000	8,000	5,333	2,667
24	682,667	10,667	5,333	3,556	1,778
32	512,000	8,000	4,000	2,667	1,333

7.1.4.2 Configuring Analog Path

nuvoton

To operate the ADC the entire analog path from analog input to ADC needs to be configured for correct operation. This involves:

- Selecting and powering up VMID reference.
- Powering up modulator and reference buffers.
- Selecting an input source with the analog MUX.
- Configure sample rate and ADC clock source.

7.1.4.3 Interrupt Sources

The ADC can be configured to generate an interrupt when the data level in the FIFO exceeds a defined threshold. The interrupt condition is only cleared by disabling the interrupt or reading values from the FIFO. In addition two comparators can monitor the ADC FIFO output to generate interrupts when set levels are exceeded.

Figure 7-3 SDADC Controller Interrupt

7.1.4.4 Peripheral DMA Request

nuvoTon

Normal use of the ADC is with PDMA. In this mode ADC requests PDMA service whenever data is in FIFO. PDMA channel will copy this data to a buffer and alert the CPU when buffer is full. In this way an entire buffer of data can be collected without any CPU intervention.

7.1.5 ADC Register Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Offset	R/W	Description	Reset Value			
ADC Base Address	ADC Base Address:						
ADC_BA = 0x400E	_0000						
ADC_DAT	ADC_BA+0x00	R	ADC FIFO Data Out.	0x0000_XXXX			
ADC_CHEN	ADC_BA+0x04	R/W	ADC Enable Register	0x0000_0000			
ADC_CLKDIV	ADC_BA+0x08	R/W	ADC Clock Divider Register	0x0000_0000			
ADC_DCICTL	ADC_BA+0x0C	R/W	ADC Decimation Control Register	0x0000_0000			
ADC_INTCTL	ADC_BA+0x10	R/W	ADC Interrupt Control Register	0x0000_0000			
ADC_PDMACTL	ADC_BA+0x14	R/W	ADC PDMA Control Register	0x0000_0000			
ADC_CMP0	ADC_BA+0x18	R/W	ADC Comparator 0 Control Register	0x0000_0000			
ADC_CMP1	ADC_BA+0x1C	R/W	ADC Comparator 1 Control Register	0x0000_0000			

7.1.6 ADC Register Description

nuvoTon

FIFO Audio Data Register (ADC_DAT)

Register	Offset	R/W	Description	Reset Value
ADC_DAT	ADC_BA+0x00	R	ADC FIFO Data Out.	0x0000_XXXX

Table 7-5 FIFO Audio Data Register (ADC_DAT, address 0x400E_0000)

Bits	Description			
[31:16]	Reserved	Reserved		
[15:0]	RESULT	ADC Audio Data FIFO Read A read of this register will read data from the audio FIFO and increment the read pointer. A read past empty will repeat the last data. Can be used with FIFOINTLV interrupt to determine if valid data is present in FIFO.		

ADC E	ADC Enable Register (ADC_CHEN)					
Register	Offset	R/W	Description	Reset Value		
ADC_CHEN	ADC_BA+0x04	R/W	ADC Enable Register	0x0000_0000		

Table 7-6 ADC Enable Register (ADC_CHEN, address 0x400E_0004)

Bits	Description					
[31:1]	Reserved	eserved Reserved				
		ADC Enable				
[0]	CHEN	0 = Conversion stopped and ADC is reset including FIFO pointers.				
		1 = ADC Conversion enabled.				

ADC Clock Division Register (ADC_CLKDIV)

Register	Offset	R/W	Description	Reset Value
ADC_CLKDIV	ADC_BA+0x08	R/W	ADC Clock Divider Register	0x0000_0000

Table 7-7 ADC Clock Divider Register (ADC_CLKDIV, address 0x400E_0008)

Bits	Description			
[31:8]	Reserved	Reserved		
[7:0] CLKDIV	ADC Clock Divider			
	CLKDIV	This register determines the clock division ration between the incoming ADC_CLK (aaa HCLK by default) and the Delta-Sigma sampling clock of the ADC. This together with the over-sampling ratio (OSR) determines the audio sample rate of the converter. CLKDIV should be set to give a SD_CLK frequency in the range of 1.024-6.144MHz.		
		CLKDIV must be greater than 2.		
		SD_CLK frequency aaa HCLK / CLKDIV		

ADC Decimation Control Register (ADC_DCICTL)

Register	Offset	R/W	Description	Reset Value
ADC_DCICTL	ADC_BA+0x0C	R/W	ADC Decimation Control Register	0x0000_0000

Table 7-8 ADC Decimation Control Register (ADC_DCICTL, address 0x400E_000C)

Bits	Description			
[19:16]	GAIN	CIC Filter Additional Gain This should normally remain default 0. Can be set to non-zero values to provide additional digital gain from the decimation filter. An additional gain is applied to signal		
		of GAIN/2. Decimation Over-Sampling Ratio		
	OVSPLRAT	This term determines the over-sampling ratio of the decimation filter. Valid values are: 0: OVSPLRAT aaa 64		
[3:0]		1: OVSPLRAT aaa 128		
		2: OVSPLRAT aaa 192 3: OVSPLRAT aaa 384		

ADC Interrupt Control Register (ADC_INTCTL)

Register	Offset	R/W	Description	Reset Value
ADC_INTCTL	ADC_BA+0x10	R/W	ADC Interrupt Control Register	0x0000_0000

Table 7-9 ADC Interrupt Control Register (ADC_INTCTL, address 0x400E_0010)

Bits	Description			
[31]	INTEN	Interrupt Enable If set to '1' an interrupt is generated whenever FIFO level exceeds that set in FIFOINTLV.		
[2:0]	FIFOINTLV	FIFO Interrupt Level Determines at what level the ADC FIFO will generate a servicing interrupt to the CPU. Interrupt will be generated when number of words present in ADC FIFO is > FIFOINTLV.		

ADC PDMA Control Register (ADC_PDMACTL)

Register	Offset	R/W	Description	Reset Value
ADC_PDMACTL	ADC_BA+0x14	R/W	ADC PDMA Control Register	0x0000_0000

Table 7-10 ADC PDMA Control Register (ADC_PDMACTL, address 0x400E_0014)

Bits	Description					
[0]	RXDMAEN	Enable ADC PDMA Receive Channel Enable ADC PDMA. If set, then ADC will request PDMA service when data is available.				

Register	Offset	R/W	Description	Reset Value		
ADC_CMP0	ADC_BA+0x18	R/W	ADC Comparator 0 Control Register	0x0000_0000		

A/D Compare Register 0(ADCMPR0)

31	30	29	28	27	26	25	24
	CMPDAT[15:8]						
23	22	21	20	19	18	17	16
	CMPDAT[7:0]						
15	14	13	12	11	10	9	8
	Reserved				CMPI	MCNT	
7	6	5	4	3	2	1	0
CMPFLAG		Rese	erved		CMPCOND	ADCMPIE	CPMEN

Table 7-11 ADC Comparator Control Registers (ADC_CMP0, address 0x400E_0018)

Bits	Description	
[31:16]	CMPDAT	Comparison Data
[51.10]		16 bit value to compare to FIFO output word.
		Compare Match Count
[11:8]	CMPMCNT	When the A/D FIFO result matches the compare condition defined by CMPCOND, the internal match counter will increase by 1. When the internal counter reaches the value to (CMPMCNT +1), the CMPFLAG bit will be set.
		Compare Flag
[7]	CMPFLAG	When the conversion result meets condition in ADCMPR0 this bit is set to 1. It is cleared by writing 1 to self.
		Compare Condition
[2]	CMPCOND	0= Set the compare condition that result is less than CMPDAT
[2]	CIMPCOND	1= Set the compare condition that result is greater or equal to CMPDAT
		Note: When the internal counter reaches the value (CMPMCNT +1), the CMPFLAG bit will be set.
		Compare Interrupt Enable
		0 = Disable compare function interrupt.
[1]	ADCMPIE	1 = Enable compare function interrupt.
		If the compare function is enabled and the compare condition matches the setting of CMPCOND and CMPMCNT, CMPFLAG bit will be asserted, if ADCMPIE is set to 1, a compare interrupt request is generated.
		Compare Enable
[0]	ADCMPEN	0 = Disable compare.
[0]		1 = Enable compare.
		Set this bit to 1 to enable compare CMPDAT with FIFO data output.

Register	Offset	R/W	Description	Reset Value		
ADC_CMP1	ADC_BA+0x1C	R/W	ADC Comparator 1 Control Register	0x0000_0000		

A/D Compare Register 1 (ADCMPR1)

31	30	29	28	27	26	25	24
	CMPDAT[15:8]						
23	22	21	20	19	18	17	16
	CMPDAT[7:0]						
15	14	13	12	11	10	9	8
	Rese	erved			СМР	MCNT	
7	7 6 5 4				2	1	0
CMPFLAG		Rese	erved	•	CMPCOND	ADCMPIE	CPMEN

Table 7-12 ADC Comparator Control Registers (ADC_CMP1, address 0x400E_001C)

Bits	Description	
[31:16]	CMPDAT	Comparison Data
-		16 bit value to compare to FIFO output word.
		Compare Match Count
[11:8]	CMPMCNT	When the A/D FIFO result matches the compare condition defined by CMPCOND, the internal match counter will increase by 1. When the internal counter reaches the value to (CMPMCNT +1), the CMPFLAG bit will be set.
		Compare Flag
[7]	CMPFLAG	When the conversion result meets condition in ADCMPR0 this bit is set to 1. It is cleared by writing 1 to self.
		Compare Condition
[2]	CMPCOND	0= Set the compare condition that result is less than CMPDAT
[2]	CMPCOND	1= Set the compare condition that result is greater or equal to CMPDAT
		Note: When the internal counter reaches the value (CMPMCNT +1), the CMPFLAG bit will be set.
		Compare Interrupt Enable
		0 = Disable compare function interrupt.
[1]	ADCMPIE	1 = Enable compare function interrupt.
		If the compare function is enabled and the compare condition matches the setting of CMPCOND and CMPMCNT, CMPFLAG bit will be asserted, if ADCMPIE is set to 1, a compare interrupt request is generated.
		Compare Enable
[0]	ADCMPEN	0 = Disable compare.
[0]		1 = Enable compare.
		Set this bit to 1 to enable compare CMPDAT with FIFO data output.

7.2 Audio Class D Speaker Driver (DPWM)

7.2.1 Functional Description

nuvoton

The ISD9160 includes a differential Class D (PWM) speaker driver capable of delivering 1W into an 8Ω load at 5V supply voltage. The driver works by up-sampling and modulating a PCM input to differentially drive the SPK+ and SPK- pins. The speaker driver operates from its own independent supply VCCSPK and VSSSPK. This supply should be well decoupled as peak currents from speaker driver are large.

7.2.2 Features

- Differential Bridge-Tied-Load structure to directly drive 8Ω Speaker.
- Power delivery up to 1W @5V into 8Ω.
- Power efficiency of up to 85%.
- Configurable input sample rate.
- 16 Sample FIFO for audio output.
- PDMA data channel for streaming of PCM audio data.

7.2.3 Block Diagram

Figure 7-4 DPWM Block Diagram

7.2.4 Operation

The DPWM block receives audio data by writing 16bit PCM audio to the FIFO. FIFO is accessed through PDMA for ease of streaming. The audio stream is sampled by a zero-order hold and fed to an

up-sampling Cascaded Integrator Comb (CIC) filter with an up-sampling ratio of 64. The signal is then modulated and sent to the driver stage through a non-overlap circuit. Master clock rate of the Delta-Sigma modulator is controlled by DPWM_CLK. This clock is generated by the internal oscillator (OSC48M) and operates at the frequency of OSC48M or 2x the frequency of OSC48M (See CLK_CLKSEL1 register <u>Table 5-36</u>). Ultimate SNR (Signal-to-Noise Ratio) is determined by the time resolution of the master clock.

7.2.4.1 Determining Sample Rate

The sample rate at which the DPWM block consumes audio data is given by:

$F_s = HCLK \div ZOH_DIV \div 64$

Where HCLK is the master CPU clock rate and ZOHDIV is the divider control register. A table of common audio sample rates is provided below.

HCLK (MHz)	ZOHDIV	Sample Rate (Hz)
49.152	24	32,000
49.152	48	16,000
49.152	96	8,000
32.768	16	32,000
32.768	32	16,000
32.768	64	8,000
24.576	12	32,000
24.576	24	16,000
24.576	48	8,000

Table 7-13 DPWM Sample Rates for Various HCLK

7.2.4.2 Configuring Speaker Driver

To operate the speaker driver the following configuration is recommended:

- Enable DPWM clock source (CLK_APBCLK0.DPWMCKEN <u>Table 5-33</u>, CLK_CLKSEL1.DPWMCKSEL <u>Table 5-36</u>).
- Reset DPWM IP block. (SYS_IPRST1.DPWM_RST <u>Table 5-4</u>)
- Select sample rate based on current HCLK frequency.
- Setup PDMA channel to provide data to DPWM.
- Enable PDMA Request.
- Enable Driver.

7.2.4.3 Peripheral DMA Request

Normal use of the DPWM is with PDMA. In this mode DPWM requests PDMA service whenever there is space in FIFO. PDMA channel will copy data from a streaming buffer to the DPWM and alert the CPU when buffer is empty. In this way an entire buffer of data can be sent to DPWM without any CPU intervention.

7.2.5 DPWM Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write.

Register	Offset	R/W	Description	Reset Value
DPWM Base Add	ress:			
DPWM_BA = 0x4	007_0000			
DPWM_CTL	DPWM_BA+0x00	R/W	DPWM Control Register	0x0000_0000
DPWM_STS	DPWM_BA+0x04	R	DPWM FIFO Status Register	0x0000_0002
DPWM_DMACTL	DPWM_BA+0x08	R/W	DPWM PDMA Control Register	0x0000_0000
DPWM_DATA	DPWM_BA+0x0C	W	DPWM FIFO Input	0x0000_0000
DPWM_ZOHDIV	DPWM_BA+0x10	R/W	DPWM Zero Order Hold Division Register	0x0000_0030

7.2.6 DPWM Register Description

nuvoTon

DPWM Control Register (DPWM_CTL)

Register	Offset	R/W	Description	Reset Value
DPWM_CTL	DPWM_BA+0x00	R/W	DPWM Control Register	0x0000_0000

7	6	5	4	3	2	1	0
Reserved	DPWMEN	DITHEREN		DEADTIME	MODUFRQ		

Table 7-14 DPWM Control Register (DPWM_CTL, address 0x4007_0000)

Bits	Description	Description					
		DPWM Enable					
[6]	DPWMEN	0= Disable DPWM, SPK pins are tri-state, CIC filter is reset, FIFO pointers are reset (FIFO data is not reset).					
		1= Enable DPWM, SPK pins are enabled and driven, data is taken from FIFO.					
		DPWM Signal Dither Control					
		To prevent structured noise on PWM output due to DC offsets in the input signal it is possible to add random dither to the PWM signal. These bits control the dither:					
[5:4]	DITHEREN	0 = No dither.					
		1 = +/- 1 bit dither					
		3 = +/-2 bit dither					
		DPWM Driver Deadtime Control					
[3]	DEADTIME	Enabling this bit will insert an additional clock cycle deadtime into the switching of PMOS and NMOS driver transistors.					
		DPWM Modulation Frequency					
		This parameter controls the carrier modulation frequency of the PWM signal as a proportion of DPWM_CLK.					
		MODUFRQ : DPWM_CLK Division : Frequency for DPWM_CLK aaa 98.304MHZ					
		0 : 228 : 431158					
[0-0]	MODUEDO	1 : 156 : 630154					
[2:0]	MODUFRQ	2 : 76 : 1293474					
		3 : 52 : 1890462					
		4 : 780 : 126031					
		5 : 524 : 187603					
		6 : 396 : 248242					
		7 : 268 : 366806					

DPWM FIFO Status Register (DPWM_STS)

Register	Offset	R/W	Description	Reset Value
DPWM_STS	DPWM_BA+0x04	R	DPWM FIFO Status Register	0x0000_0002

Table 7-15 DPWM FIFO Status Register (DPWM_STS, address 0x4007_0004)

Bits	Description			
[1]	EMPTY	FIFO Empty 0= FIFO is not empty 1= FIFO is empty		
[0]	FULL	FIFO Full 0 = FIFO is not full. 1 = FIFO is full.		

DPWM PDMA Control Register (DPWM_DMACTL)

Register	Offset	R/W	Description	Reset Value
DPWM_DMACTL	DPWM_BA+0x08	R/W	DPWM PDMA Control Register	0x0000_0000

Table 7-16 DPWM PDMA Control Register (DPWM_DMACTL, address 0x4007_0008)

Bits	Description				
[31:8]	Reserved -				
[0]	DMAEN	 Enable DPWM DMA Interface 0= Disable PDMA. No requests will be made to PDMA controller. 1= Enable PDMA. Block will request data from PDMA controller whenever FIFO is not empty. 			

DPWM FIFO Input (DPWM_DATA)					
Register	Offset	R/W	Description	Reset Value	
DPWM_DATA	DPWM_BA+0x0C	W	DPWM FIFO Input	0x0000_0000	

Table 7-17 DPWM FIFO Input (DPWM_DATA, address 0x4007_000C)

Bits	Description	
[15:0]	INDATA	DPWM FIFO Audio Data Input A write to this register pushes data onto the DPWM FIFO and increments the write pointer. This is the address that PDMA writes audio data to.

DPWM ZOH Division (DPWM_ZOHDIV)

Register	Offset	R/W	Description	Reset Value
DPWM_ZOHDIV	DPWM_BA+0x10	R/W	DPWM Zero Order Hold Division Register	0x0000_0030

Table 7-18 DPWM Zero Order Hold Division Register (DPWM_ZOHDIV, address 0x4007_0010)

Bits	Description				
		DPWM Zero Order Hold, Down-Sampling Divisor			
[7:0]	[7:0] ZOHDIV	The input sample rate of the DPWM is set by HCLK frequency and the divisor set in this register by the following formula:			
[7.0]		Fs aaa HCLK/ZOHDIV/64			
		Valid range is 1 to 255. Default is 48, which gives a sample rate of 16kHz for a 49.152MHz (default) HCLK.			

7.3 Analog Comparator

7.3.1 Functional Description

ISD9160 contains two analog comparators. The comparator output is a logical one when positive input greater than negative input, otherwise the output is a zero. Each comparator can be configured to cause an interrupt when the comparator output value changes. The block diagram is shown in Figure 7-5.

Note that the analog input port pins must be configured as input type or analog alternate function before Analog Comparator function is enabled.

7.3.2 Features

- Analog input voltage range: 0~5.0V
- Comparator 0 multiplexed to all analog enabled GPIO (GPIOB[7:0]).
- Comparator 0 can compare against VBG or VMID.
- Comparator 1 can compare GPIOB[7] to GPIOB[6] or VBG.
- Single comparator interrupt requested by either comparator.
- Can be used in conjunction with Capacitive Touch Sensing block for capacitive touch sensing.

7.3.3 Block Diagram

Figure 7-5 Analog Comparator Block Diagram

7.3.4 Operational Procedure

Setup Procedure

To use the Analog Comparator block, use the following sequence:

- 1. Configure GPIO for use as analog input by setting type to input.
- 2. Enable the peripheral clock (CLK_APBCLK0.ACMPCKEN)
- 3. Reset the Comparator block (SYS_IPRST1.ACMPRST, Table 5-4)
- 4. If using VMID ensure that VMID block is powered up (Section 7.4.4)
- 5. Select comparison sources with CMPnCR and ACMP_POSSEL.
- 6. Enable comparators and appropriate interrupts with CMPnCR.
- 7. Enables system interrupt if appropriate (e.g. NVIC_EnableIRQ(ACMP_IRQn);)

Interrupt Sources

The comparator generates an output COn (n=0,1) which is reported in ACMP_STATUS register. If CMPnCR.IE bit is set then a state change on the comparator output COn will cause comparator flag CMPFn to go high and the comparator interrupt is requested. Software can write a one to CMPFn to clear flag and interrupt request.

Figure 7-6 Comparator Controller Interrupt Sources

7.3.5 Register Map

R: read only, W: write only, R/W: both read and write

Register	Register Offset F		Description	Reset Value			
ACMP Base Addres	ACMP Base Address:						
ACMP_BA = 0x400	D_0000						
ACMP_CTL0	ACMP_BA+0x00	R/W	Analog Comparator 0 Control Register	0x0000_0000			
ACMP_CTL1	ACMP_BA+0x04	R/W	Analog Comparator 1 Control Register	0x0000_0000			
ACMP_STATUS	ACMP_BA+0x08	R/W	Comparator Status Register	0x0000_00XX			
ACMP_POSSEL	ACMP_BA+0x0C	R/W	Comparator Select Register	0x0000_0000			

7.3.6 Register Description

ηυνοτοη

Comparator 0 Control Register (ACMP_CTL0)

Register	Offset	R/W	Description	Reset Value
ACMP_CTL0	ACMP_BA+0x00	R/W	Analog Comparator 0 Control Register	0x0000_0000

7	6	5	4	3	2	1	0
-	-	-	NEGSEL	-		ACMPIE	ACMPEN

Table 7-19 Comparator 0 Control Register (ACMP_CTL0, address 0x400D_0000).

Bits	Description			
[4]	NEGSEL	Comparator0 Negative Input Select 0 = VBG, Bandgap reference voltage aaa 1.2V 1 = VMID reference voltage aaa VCCA/2		
[1]	ACMPIE	CMP0 Interrupt Enable 0 = Disable CMP0 interrupt function 1 = Enable CMP0 interrupt function		
[0]	ACMPEN	Comparator Enable 0 = Disable 1 = Enable		

Comparator 1 Control Register (ACMP_CTL1)						
Register	Offset	R/W	Description	Reset Value		
ACMP_CTL1	ACMP_BA+0x04	R/W	Analog Comparator 1 Control Register	0x0000_0000		

7	6	5	4	3	2	1	0
-	-	-	NEGSEL	-		ACMPIE	ACMPEN

Table 7-20 Comparator 1 Control Register (ACMP_CTL1, address 0x400D_0004).

Bits	Description	Description				
[4]	NEGSEL	Comparator1 Negative Input Select 0 = GPIOB[7] 1 = VBG, Bandgap reference voltage aaa 1.2V				
[1]	ACMPIE	CMP1 Interrupt Enable 0 = Disable CMP1interrupt function 1 = Enable CMP1 interrupt function				
[0]	ACMPEN	Comparator Enable 0 = Disable 1 = Enable				

CMP Status Register (ACMP_STATUS)						
Register	Offset	R/W	Description	Reset Value		
ACMP_STATUS	ACMP_BA+0x08	R/W	Comparator Status Register	0x0000_00XX		

7	6	5	4	3	2	1	0
	Rese	erved		ACMPO1	ACMPO0	ACMPIF1	ACMPIF0

Table 7-21 CMP Status Register (ACMP_STATUS, address 0x400D_0008).

Bits	Description	
[3]	ACMPO1	Comparator1 Output Synchronized to the APB clock to allow reading by software. Cleared when the comparator is disabled (CMP1EN aaa 0).
[2]	АСМРО0	Comparator0 Output Synchronized to the APB clock to allow reading by software. Cleared when the comparator is disabled (CMP0EN aaa 0).
[1]	ACMPIF1	Compare 1 Flag This bit is set by hardware whenever the comparator output changes state. This bit will cause a hardware interrupt if enabled. This bit is cleared by writing 1 to itself.
[0]	ACMPIF0	Compare 0 Flag This bit is set by hardware whenever the comparator output changes state. This bit will cause a hardware interrupt if enabled. This bit is cleared by writing 1 to itself.

CMP Select Register (ACMP_POSSEL)						
Register Offset R/W Description		Description	Reset Value			
ACMP_POSSEL	ACMP_BA+0x0C	R/W	Comparator Select Register	0x0000_0000		

Table 7-22 CMP Select Register (ACMP_POSSEL, address 0x400D_000C).

Bits	Description	
[2:0]	POSSEL	Comparator0 GPIO Selection GPIOB[POSSEL] is the active analog GPIO input selected to Comparator 0 positive input.

7.4 Analog Functional Blocks

7.4.1 Overview

nuvoton

The ISD9160 contains a variety of analog functional blocks that facilitate audio processing, enable analog GPIO functions (current source, relaxation oscillator, and comparator), adjust and measure internal oscillator and provide voltage regulation. These blocks are controlled by registers in the analog block address space. This section describes these functions and registers.

7.4.2 Features

- VMID reference voltage generation.
- Current source generation for AGPIO (Analog enabled GPIO).
- LDO control for GPIOA[7:0] power domain and external device use.
- Microphone Bias generator.
- Analog Multiplexor.
- Programmable Gain Amplifier (PGA).
- OSC48M Frequency Control.
- Capacitive Touch Sensing Relaxation Oscillator.
- Oscillator Frequency Measurement block.

7.4.3 Register Map

R: read only, W: write only, R/W: read/write

Register	Offset	R/W	Description	Reset Value
ANA Base Addre	ess:	ł		
ANA_BA = 0x400	0000			
ANA_VMID	ANA_BA+0x00	R/W	VMID Reference Control Register	0x0000_0007
ANA_CURCTL0	ANA_BA+0x08	R/W	Current Source Control Register	0x0000_0000
ANA_LDOSEL	ANA_BA+0x20	R/W	LDO Voltage Select Register	0x0000_0000
ANA_LDOPD	ANA_BA+0x24	R/W	LDO Power Down Register	0x0000_0001
ANA_MICBSEL	ANA_BA+0x28	R/W	Microphone Bias Select Register	0x0000_0000
ANA_MICBEN	ANA_BA+0x2C	R/W	Microphone Bias Enable Register	0x0000_0000
ANA_MUXCTL	ANA_BA+0x50	R/W	Analog Multiplexer Control Register	0x0000_0000
ANA_PGACTL	ANA_BA+0x60	R/W	PGA Enable Register	0x0000_0000
ANA_SIGCTL	ANA_BA+0x64	R/W	Signal Path Control Register	0x0000_0000
ANA_PGAGAIN	ANA_BA+0x68	R/W	PGA Gain Select Register	0x0000_0010
ANA_TRIM	ANA_BA+0x84	R/W	Oscillator Trim Register	0x0000_XXXX
ANA_CAPSCTL	ANA_BA+0x8C	R/W	Capacitive Touch Sensing Control Register	0x0000_0000

ANA_CAPSCNT	ANA_BA+0x90	R	Capacitive Touch Sensing Count Register	0x0000_0000
ANA_FQMMCTL	ANA_BA+0x94	R/W	Frequency Measurement Control Register	0x0000_0001
ANA_FQMMCNT	ANA_BA+0x98	R	Frequency Measurement Count Register	0x0000_0000

7.4.4 VMID Reference Voltage Generation

The analog path and blocks require a low noise, mid-rail, Voltage reference for operation, the VMID generation block provides this. Control of this block allows user to power down the block, select its power down condition and control over the reference impedance. The block consists of a switchable resistive divider connected to the device VMID pin. A 4.7μ F capacitor should be placed on this pin and returned to analog ground (VSSA) as shown in Figure 7-7.

Before using the ADC, PGA or other analog blocks, the VMID reference needs to be enabled. A low impedance option allows fast charging of the external noise de-coupling capacitor, while a higher impedance options provides lower power consumption. A pulldown option allows the reference to be discharged when off.

Figure 7-7 VMID Reference Generation

VMID Control Register (ANA_VMID)						
Register Offs	fset F	R/W	Description	Reset Value		
ANA_VMID ANA	IA_BA+0x00 F	R/W	VMID Reference Control Register	0x0000_0007		

7	6	5	4	3	2	1	0
		Reserved	PDHIRES	PDLORES	PULLDOWN		

Table 7-23 VMID Control Register (ANA_VMID, address 0x4008_0000).

Bits	Description	
[2]	PDHIRES	 Power Down High (360kΩ) Resistance Reference 0= Connect the High Resistance reference to VMID. Use this setting for minimum power consumption. 1= The High Resistance reference is disconnected from VMID. Default power down and reset condition.
[1]	PDLORES	 Power Down Low (4.8kΩ) Resistance Reference 0= Connect the Low Resistance reference to VMID. Use this setting for fast power up of VMID. Can be turned off after 50ms to save power. 1= The Low Resistance reference is disconnected from VMID. Default power down and reset condition.
[0]	PULLDOWN	 VMID Pulldown 0= Release VMID pin for reference operation. 1= Pull VMID pin to ground. Default power down and reset condition.

7.4.5 GPIO Current Source Generation

UVOTON

The GPIOB port consists of analog enabled GPIO. One of the features of these pins is the ability to route a current source to the pin. This is useful for a variety of purposes such as providing a current load to a sensor such as a photo-transistor or CDS cell. It can also be used to do capacitive touch sensing in combination with the relaxation oscillator control circuit.

The current generation block consists of a programmable current source controlled by ANA_CURCTL0.VALSEL and individual switches to each of the GPIOB pins as shown in Figure 7-8. Power control for this block is merged with the analog comparator, this block must be enabled to use current source (ACMP_CTL0.ACMPEN=1).

Analog peripheral clock must be enabled before register can be written. At least one of the analog comparators must be enabled to enable current source.

Figure 7-8 GPIOB Current Source Generation

nuvoton **ISD9160 Technical Reference Manual**

Current Source Control Register (ANA_CURCTL0)							
Register Offset		R/W	Description	F	Reset Value		
ANA_CURCTL	D ANA_BA+0	«08 R/W	Current Source C	C	0x0000_0000		
15	14	13	12	11	10	9	8
Reserved							LSEL
7	6	5	4	3	2	1	0

CURSRCEN

Table 7-24 GPIO Current Source Control Register (ANA_CURCTL0, address 0x4008_0008).

Bits	Description	escription							
[31:10]	Reserved	Reserved							
[9:8]	VALSEL	Current Source Value Select master current for source generation 0= 0.5 uA 1= 1 uA 2= 2.5 uA 3= 5 uA							
[7:0]	CURSRCEN	 Enable Current Source to GPIOB[x] Individually enable current source to GPIOB pins. Each GPIOB pin has a separate current source. 0 = Disable 1 = Enable current source to pin GPIOB[x] 							

7.4.6 LDO Power Domain Control

UVOTON

The ISD9160 provides a Low Dropout Regulator (LDO) that provides power to the I/O domain of GPIOA[7:0]. Using this regulator device can operate from a 5V supply rail and generate a 2.4-3.3V regulated supply to operate the GPIOA[7:0] domain and external loads up to 30mA. The supply pin for the LDO is the VCCLDO pin which should be connected to VCCD. If the LDO is not used, both VCCLDO and VD33 should be tied to VCCD. Upon POR or reset the default condition of the LDO is off, meaning supply will be high impedance. Software must configure the LDO before GPIOA[7:0] is usable (unless VD33=VCCD).

Figure 7-9 LDO Power Domain

LDO Voltage Control Register (ANA_LDOSEL)							
Register	Offset	R/W	Description	Reset Value			
ANA_LDOSEL	ANA_BA+0x20	R/W	LDO Voltage Select Register	0x0000_0000			

7	6	5	4	3	2	1	0
	Reserved						DSEL

Table 7-25 LDO Voltage Control Register (ANA_LDOSEL, address 0x4008_0020).

Bits	Description	Description						
[31:2]	Reserved	Reserved						
[1:0]	LDOSEL	Select LDO Output Voltage Note that maximum I/O pad operation speed only specified for voltage >2.4V. 0= 3.0V 1= 1.8V						
		$2 = 2.4 \vee$ $3 = 3.3 \vee$						

LDO Power Down Register (ANA_LDOPD)						
Register	Offset	R/W	Description	Reset Value		
ANA_LDOPD	ANA_BA+0x24	R/W	LDO Power Down Register	0x0000_0001		

7	6	5	4	3	2	1	0
		DISCHAR	PD				

Table 7-26 LDO Power Down Control Register (ANA_LDOPD, address 0x4008_0024).

Bits	Description	
[1]	DISCHAR	Discharge0 = No load on VD331 = Switch discharge resistor to VD33.
[0]	PD	Power Down LDO When powered down no current delivered to VD33. 0= Enable LDO 1= Power Down.

Release Date: Mar 30, 2016 Revision V1.41

7.4.7 Microphone Bias Generator

The ISD9160 provides a microphone bias generator (MICBIAS) for improved recording quality. The MICBIAS can provide a maximum current of 1mA with a -60dB power supply rejection. The MICBIAS output voltage can be configured with ANA_MICBSEL[1:0] to select bias voltages from 50% to 90% of the VCCA supply voltage (see description below). The user should consider the microphone manufacturers specification in deciding on the optimum MICBIAS voltage to use. Generally, a microphone will require a current of 0.1mA to a maximum 0.5mA and a voltage of 1V to 3V across it.

Referring to the application diagram of Figure 7-11, external resistor R_1 and R_2 values are selected to limit the current to a maximum that can be provided by MICBIAS; 1mA. On the ISD9160, the minimum total resistance $(R_1 + R_2)$ is 4Kohms. MICBIAS output voltage should be such that the following condition is met:

$$V_{MICBIAS} > V_S + (R_1 + R_2) \times I_{MIC}$$

UVOTON

where V_s is the desired voltage across the microphone from specification and I_{MIC} is the current through the microphone (0.1-0.5mA)

From Figure 7-11, MIC_IN1 and MIC_IN2 are AC coupled to the ISD9160 MIC+ and MIC- respectively for differential inputs. In single-ended operation, MIC_IN1 should go to MIC- of the ISD9160. C_1 and C_2 are AC coupling capacitors. In single-ended application, R_2 can be removed and R_1 increased to at least 4Kohms. For improved performance, it is recommended to keep R_2 to provide additional rejection from ground noise.

Figure 7-10 MICBIAS Block Diagram

Figure 7-11 MICBIAS Application Diagram

Microphone Bias Select (ANA_MICBSEL)						
Register	Offset	R/W	Description	Reset Value		
ANA_MICBSEL	ANA_BA+0x28	R/W	Microphone Bias Select Register	0x0000_0000		

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
		Reserved	REFSEL	VOL	SEL		

Table 7-27 Microphone Bias Selection Register (ANA_MICBSEL, address 0x4008_0028).

Bits	Description	Description							
[31:3]	Reserved	Reserved							
[2]	REFSEL	Select Reference Source For MICBIAS Generator VMID provides superior noise performance for MICBIAS generation and should be used unless fixed voltage is absolutely necessary, then noise performance can be sacrificed and bandgap voltage used as reference. 0= VMID aaa VCCA/2 is reference source. 1= VBG (bandgap voltage reference) is reference source.							
[1:0]	VOLSEL	Select Microphone Bias Voltage MICBMODE aaa 0 0: 90% VCCA 1: 65% VCCA 2: 75% VCCA 3: 50% VCCA MICBMODE aaa 1 0: 2.4V 1: 1.7V 2: 2.0V 3: 1.3V							
Microphone Bias Enable Register (ANA_MICBEN)									
--	-------------	-----	---------------------------------	-------------	--	--	--	--	
Register	Offset	R/W	Description	Reset Value					
ANA_MICBEN	ANA_BA+0x2C	R/W	Microphone Bias Enable Register	0x0000_0000					

7	6	5	4	3	2	1	0
	Reserved						

Table 7-28 Microphone Bias Enable Register (ANA_MICBEN, address 0x4008_002C)

Bits	Description	
		Enable Microphone Bias Generator
[0]	MICBEN	0 = Powered Down.
		1 = Enabled.

7.4.8 Analog Multiplexer

The ISD9160 provides an analog multiplexer (AMUX) which allows the PGA input to be switched from the dedicated MICP/MICN analog inputs to any of the analog enabled GPIO (GPIOB[7:0]). The negative input of the PGA connects to GPIOB[7:0], while the positive PGA input connects to the odd numbered GPIOB[7:1]. Figure 7-12 shows the multiplexer block diagram and Table 7-29 shows the multiplexer control signals.

Figure 7-12 Analog Multiplexer Block Diagram

Analog Multiplexer Control Register (ANA_MUXCTL)								
Register	Offset	R/W	Description	Reset Value				
ANA_MUXCTL	ANA_BA+0x50	R/W	Analog Multiplexer Control Register	0x0000_0000				

15	14	13	12	11	10	9	8	
Reserved	MUXEN	PGAINSEL	PTATCUR	POSINSEL				
7	6	5	4	3	2	1	0	
NEGINSEL								

Table 7-29 Analog Multiplexer Control Register (ANA_MUXCTL, address 0x4008_0050).

Bits	Description						
[31:15]	Reserved	Reserved					
		Enable The Analog Multiplexer					
[14]] MUXEN	0 = All channels disabled					
	1 = Selection determined by register setting.						
[13]	PGAINSEL Select MICP/MICN To PGA Inputs						
[12]	1 PTATCUR	Select PTAT Current					
ניבן	FIATCOR	I_PTAT, to PGA_INN, negative input to PGA, for temperature measurement.					
		Selects Connection Of GPIOB[7,5,3,1] To PGA_INP, Positive Input Of PGA					
		1000b: GPIOB[7] connected to PGA_INP					
[11:8]	POSINSEL	0100b: GPIOB[5] connected to PGA_INP					
		0010b: GPIOB[3] connected to PGA_INP					
		0001b: GPIOB[1] connected to PGA_INP					
[7:0]	NEGINSEL	Selects Connection Of GPIOB[7:0] To PGA_INN, Negative Input Of PGA					
[1.0]	NEGINGEL	If NEGINSEL[n] aaa 1 then GPIOB[n] is connected to PGA_INN.					

Temperature Sensor Measurement

In addition, the multiplexer can route a PTC (positive temperature coefficient) current, PTAT current, to the ADC to perform temperature measurements. To configure the signal path to do temperature measurement, configure the ADC path as follows:

- 1) Enable the multiplexer, PGA, IPBOOST, and sigma-delta modulator. (See Section 7.4.9, Section 7.1).
- 2) Have the multiplexer select I_PTAT current as input and choose VBG (bandgap voltage) as reference (REFSEL).
- 3) Set the 6-bit ANA_PGAGAIN[5:0] gain value to hex 0x17 and choose 0dB gain setting for IPBOOST gain block.
- 4) The temperature can be inferred by the information given in Table 7-30 and equation below.

T (°C) = 27 + (ADC_VAL-0x42EA)/50. (Equation 7-1)

The settings corresponding to this configuration are:

ANA_SIGCTL=0x1E, ANA_PGACTL=0x07, ANA_MUXCTL=0x5000, ANA_PGAGAIN=0x17

Parameter		Specification (Re	Test Condition		
ralameter	Min.	Тур.	Max.	Unit	
Temperature Sensor Output		0x42EA		Code	At 27° C
Temperature Sensor Delta Coefficient (number of bits per degree ^o C)**		50		LSB/°C	Relative to 27°C

Table 7-30	Temperature	Sensor	Measurement.
	remperature		measurement.

**LSB is the least significant bit of a 16-bit ADC with a defined full-scale RMS input voltage of 0.77V

7.4.9 Programmable Gain Amplifier

The ISD9160 provides a Programmable Gain Amplifier (PGA) as the front-end to the ADC to allow the adjustment of signal path gain. It is used in conjunction with the ALC block to provide automatic level control of incoming audio signals. Figure 7-13 shows the signal path diagram. The PGA provides a gain from -12dB to 35.25dB in increments of 0.75dB steps using a 6-bit control, ANA_PGAGAIN[5:0]. The gain is monotonically increasing with 0x00 for lowest gain (-12dB) and 0x3f for the maximum gain (35.25dB). The signal path is enabled by powering up the gain elements (PUPGA, PUBOOST). The PGA and IP BOOST blocks can be muted with the ANA_SIGCTL register. Input to the PGA can be either differential or single-ended on the PGA_INN input. The Analog MUX controls connection of the signal path to external pins. PGA input impedance varies based on the gain setting. Table 7-31 shows a table of input impedance for different gain setting.

The IP BOOST block can provide 0dB or 26dB of gain to provide a maximum gain of 61dB in the signal path. Front-end anti-alias filtering for the sigma-delta ADC is also provided by PGA/IP-BOOST blocks with an attenuation of -45dB at 6MHz frequency. The signal path defaults to have VCCA/2 as the reference voltage.

Figure 7-13 PGA Signal Path Block Diagram

Figure 7-14 PGA Structure

Gain (dB)	-12	-9	-6	-3	0	3	6	9	12	18	30	35.2
MICN Impedance (kΩ)	75	69	63	55	47	35	31	25	19	11	2.9	1.6
MICP Impedance (kΩ)	94	94	94	94	94	94	94	94	94	94	94	94

Table 7-31 PGA Input Impedance Variation with Gain Setting

PGA Enable Register (ANA_PGACTL)								
Register	Offset	R/W	Description	Reset Value				
ANA_PGACTL	ANA_BA+0x60	R/W	PGA Enable Register	0x0000_0000				

7	6	5	4	3	2	1	0
	Reserved				PUBOOST	PUPGA	REFSEL

Table 7-32 PGA Enable and Control Register (ANA_PGACTL, address 0x4008_0060)

Bits	Description	
[3]	BSTGAIN	Boost Stage Gain Setting 0 = Gain aaa 0dB. 1 = Gain aaa 26dB
[2]	PUBOOST	Power Up Control For Boost Stage Amplifier This amplifier must be powered up for signal path operation. 0 = Power Down. 1 = Power up.
[1]	PUPGA	Power Up Control For PGA AmplifierThis amplifier must be powered up for signal path operation.0 = Power Down.1 = Power up.
[0]	REFSEL	Select Reference For Analog Path Signal path is normally referenced to VMID (VCCA/2). To use an absolute reference this can be set to VBG aaa 1.2V. 0 = Select VMID voltage as analog ground reference. 1 = Select Bandgap voltage as analog ground reference.

Signal Path Control Register (ANA_SIGCTL)					
Register	Offset	R/W	Description	Reset Value	
ANA_SIGCTL	ANA_BA+0x64	R/W	Signal Path Control Register	0x0000_0000	

7	6	5	4	3	2	1	0
Reserved	MUTEBST	MUTEPGA	PUADCOP	PUCURB	PUBUFADC	PUBUFPGA	PUZCDCMP

Table 7-33 Signal Path Mute Control Register (ANA_SIGCTL, address 0x4008_0064)

Bits	Description	
		Boost Stage Mute Control
[6]	MUTEBST	0 = Normal.
		1 = Signal Muted.
		PGA Mute Control
[5]	MUTEPGA	0 = Normal.
		1 = Signal Muted.
		Power Up ADC ΣΔ Modulator
[A]	[4] PUADCOP	This block must be powered up for ADC operation.
[4]		0 = Power down.
		1 = Power up.
		Power Up Control For Current Bias Generation
[3]	PUCURB	This block must be powered up for signal path operation.
[ວ]	PUCURB	0 = Power down.
		1 = Power up.
		Power Up Control For ADC Reference Buffer
[2]	PUBUFADC	This block must be powered up for signal path operation.
[~]	F OBOI ADC	0 = Power down.
		1 = Power up.
		Power Up Control For PGA Reference Buffer
[1]	PUBUFPGA	This block must be powered up for signal path operation.
[1]	FUBULEGA	0 = Power down.
		1 = Power up.
		Power Up And Enable Control For Zero Cross Detect Comparator
[0]	PUZCDCMP	When enabled PGA gain settings will only be updated when ADC input signal crosses zero signal threshold. To operate ZCD the ALC peripheral clock (CLK_APBCLK0.BFALCKEN) must also be enabled and BIQ_CTL.DLCOEFF aaa 1 to allow ZCD clocks to be generated.
		0 = Power down.
		1 = Power up and enable zero cross detection.

PGA GAIN Control Register (ANA_PGAGAIN)				
Register	Offset	R/W	Description	Reset Value
ANA_PGAGAIN	ANA_BA+0x68	R/W	PGA Gain Select Register	0x0000_0010

31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
Rese	erved			GAIN	READ			
7	6	5	4	3	2	1	0	
Reserved			GAINSET					

Table 7-34 PGA Gain Control Register (ANA_PGAGAIN, address 0x4008_0068)

Bits	Description	Description					
[13:8]	GAINREAD	Current PGA Gain Read Only. May be different from GAIN register when AGC is enabled and is controlling the PGA gain.					
[5:0]	GAINSET	Select The PGA Gain Setting From -12dB to 35.25dB in 0.75dB step size. 0x00 is lowest gain setting at -12dB and 0x3F is largest gain at 35.25dB.					

7.4.10 Capacitive Touch Sensing Relaxation Oscillator/Counter

The ISD9160 provides a functional unit that is used with analog GPIO functions to form a relaxation oscillator. The major application of this function is to measure the capacitive load on a GPIO pin. This measurement allows the user to implement a capacitive touch sensing scheme. With appropriate touch sensor design, the capacitance of the sensor will change appreciably in the presence of a finger, and the Capacitive Touch Sensing Relaxation Oscillator can measure this.

This block us used in conjunction with the analog comparator block and current source block to form a relaxation oscillator and counter circuit that can sense capacitance changes. A block diagram of the system is shown in Figure 7-15.

Figure 7-15 Capacitive Touch Sensing Function Block Diagram

7.4.10.1 Functional Description

UVOTON

The principle behind the operation of this block is that a certain capacitance is present on one of the analog enabled GPIO (GPIOB[7:0]). This capacitance consists of a certain parasitic capacitance C_{par} and the capacitor that is to be sensed C_{sense} . The GPIO is configured into the Capacitive Touch Sensing mode by setting SYS_GPB_MFP.GPBn = 2 and enabling a current source to this pin (ANA_CURCTL0.CURSRCEN = 2^n). The Analog Comparator 0 is also setup to compare the voltage at the pin to a reference voltage (ACMP_POSSEL = n, ACMP_CTL0.ACMPEN = 1).

In this configuration the circuit will charge the total capacitance with current ANA_CURCTL0.VALSEL = 0.5μ A- 5μ A. When the voltage reaches the reference voltage (normally set to VBG=1.2V), the Capacitive Touch Sensing block will reset the GPIO pin to 0V. The circuit can be configured to do this 2^CYCLECNT times before generating an interrupt. While the capacitor is charging, a 24bit counter is also enabled such that the total charge time is recorded. After completion of 2^CYCLES_CNT cycles the software can read the ANA_CAPSCNT register to get a value proportional to the total capacitance on the pin. Once this is done, the count can be reset with RSTCNT and a new measurement started either on the same GPIO or selecting a different GPIO.

7.4.10.2 Design Considerations

Selecting parameters for capacitive touch sensing measurement is a trade-off between speed and accuracy/noise immunity. The higher the current source setting, the faster the oscillation but lower the resolution. The higher the cycle count the slower the measurement but the higher the accuracy and noise immunity.

7.4.10.3 Register Descriptions

nuvoTon

Capacitive Touch Sensing Control Register (ANA CAPSCTL)

Register	Offset	R/W	Description	Reset Value
ANA_CAPSCTL	ANA_BA+0x8C	R/W	Capacitive Touch Sensing Control Register	0x0000_0000

31	30	29	28	27	26	25	24
CAPSEN	INTEN	RSTCNT			Reserved		
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			CLł	(DIV			
7	6	5	4	3	2	1	0
Reserved CLKMODE			CYCLECNT			LOW	/TIME

Table 7-35 Capacitive Touch Sensing Control Register (ANA_CAPSCTL, address 0x4008_008C).

Bits	Description	
[31]	CAPSEN	Enable 0 = Disable/Reset block. 1 = Enable Block.
[30]	INTEN	Interrupt Enable 0 = Disable/Reset CAPS_IRQ interrupt. 1 = Enable CAPS_IRQ interrupt.
[29]	RSTCNT	Reset Count 0: Release/Activate ANA_CAPSCNT 1: Set high to reset ANA_CAPSCNT.
[15:8]	CLKDIV	Reference Clock Divider Circuit can be used to generate a reference clock output of SDCLK/2/(CLKDIV+1) instead of a Capacitive Touch Sensing reset signal.
[5]	CLKMODE	Reference Clock Mode0 = Capacitive Touch Sensing Mode.1 = Circuit is in Reference clock generation mode.
[4:2]	CYCLECNT	Number of Relaxation Cycles Peripheral performs 2 ^(CYCLECNT) relaxation cycles before generating interrupt.

		Output Low Time
		Number of PCLK cycles to discharge external capacitor.
[1.0]	LOWTIME	0=1cycle
[1:0]		1=2cycles
		2=8cycles
		3=16cycles

Capacitive Touch Sensing Count Register (ANA_CAPSCNT)

Register	Offset	R/W	Description	Reset Value
ANA_CAPSCNT	ANA_BA+0x90	R	Capacitive Touch Sensing Count Register	0x0000_0000

Table 7-36 Capacitive Touch Sensing Count Register (ANA_CAPSCNT, address 0x4008_0090).

Bits	Description	
[23:0]	CAPSCNT	Counter Read Back Value Of Capacitive Touch Sensing Block

7.4.11 Oscillator Frequency Measurement and Control

The ISD9160 provides a functional unit that can be used to measure PCLK frequency given a reference frequency such as the 32.768kHz crystal or an I2S frame synchronization signal. This is simply a special purpose timer/counter as shown in Figure 7-16.

Figure 7-16 Oscillator Frequency Measurement Block Diagram

The block can be used to trim/measure the internal high frequency oscillator to the reference frequency of the 32.768kHz oscillator or an external reference frequency fed in on the I2S frame sync input. With this the internal clock can be set at arbitrary frequencies, other than those trimmed at manufacturing, or can be periodically trimmed to account for temperature variation. The block can also be used to measure the 16kHz oscillator frequency relative to the internal master oscillator.

An example of use would be to measure the internal oscillator with reference to the 32768Hz crystal. To do this:

CLK_APBCLK0.ANACKEN = 1; /* Turn on analog peripheral clock */

ANA_FQMMCTL.CLKSEL = 1; // Select reference source as 32kHz XTAL input

ANA_FQMMCTL.CYCLESEL = DRVOSC_NUM_CYCLES-1;

ANA_FQMMCTL.FQMMEN = TRUE;

nuvoton

while((ANA_FQMMCTL.MMSTS != 1) && (Timeout++ < 0x100000));

if(Timeout >= 0x100000)

return(E_DRVOSC_MEAS_TIMEOUT);

Freq = ANA_FQMMCNT;

ANA_FQMMCTL.FQMMEN = FALSE;

Freq = Freq*32768 /DRVOSC_NUM_CYCLES;

To adjust the oscillator the user can write to the SYS_IRCTCTL register (see <u>Table 5-11</u>). In addition, to obtain frequencies in between SYS_IRCTCTL trim settings a SUPERFINE function is available. The SUPERFINE function dithers the trim setting between the current setting and FINE trim settings above and below the current setting. An example of how the SUPERFINE trim register can adjust the measured oscillator frequency is shown in the figure below

Figure 7-17 Example SUPERFINE Trim Frequency Adjustment.

Figure 7-18 Typical Oscillator Frequency versus SYS_IRCTCTL Setting.

Oscillator Trim Register (ANA_TRIM)				
Register	Offset	R/W	Description	Reset Value
ANA_TRIM	ANA_BA+0x84	R/W	Oscillator Trim Register	0x0000_XXXX

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	SUPERFINE						
15	14	13	12	11	10	9	8
	COARSE						
7	6	5	4	3	2	1	0
OSCTRIM							

Table 7-37 Oscillator Trim Register (ANA_TRIM, address 0x4008_0084).

Bits	Description	
[23:16]	SUPERFINE	Superfine The superfine trim setting is an 8bit signed integer. It adjusts the master oscillator by dithering the FINE trim setting between the current setting and one setting above (values 1,127) or below (values -1, -128) the current trim setting. Each step effectively moves the frequency 1/128 th of the full FINE trim step size.
[15:8]	COARSE	COARSE Current coarse range setting of the oscillator. Read Only
[7:0]	OSCTRIM	Oscillator Trim Reads current oscillator trim setting. Read Only.

Frequency Measurement Control Register (ANA_FQMMCTL)

Register	Offset	R/W	Description	Reset Value
ANA_FQMMCTL	ANA_BA+0x94	R/W	Frequency Measurement Control Register	0x0000_0001

31	30	29	28	27	26	25	24	
FQMMEN		Reserved						
23	22	21	20	19	18	17	16	
	CYCLESEL							
15	14	13	12	11	10	9	8	
	Reserved							
7	6 5 4 3 2 1 0					0		
Reserved					MMSTS	CLK	SEL	

Table 7-38 Frequency Measurement Control Register (ANA_FQMMCTL, address 0x4008_0094).

Bits	Description	
		FQMMEN
[31]	FQMMEN	0 = Disable/Reset block.
		1 = Start Frequency Measurement.
		Frequency Measurement Cycles
[23:16]	CYCLESEL	Number of reference clock periods plus one to measure target clock (PCLK). For example if reference clock is OSC32K (T is 30.5175us), set CYCLESEL to 7, then measurement period would be 30.5175*(7+1), 244.1us.
		Measurement Done
[2]	MMSTS	0 = Measurement Ongoing.
		1 = Measurement Complete.
		Reference Clock Source
		00b: OSC16K,
[1:0]	CLKSEL	01b: OSC32K (default),
		1xb: I2S_WS – can be GPIOA[4,8,12] according to SYS_GPA_MFP register, configure I2S in SLAVE mode to enable.

Frequency Measurement Count (ANA_FQMMCNT)

Register	Offset	R/W	Description	Reset Value
ANA_FQMMCNT	ANA_BA+0x98	R	Frequency Measurement Count Register	0x0000_0000

Table 7-39 Frequency Measurement Count Register (ANA_FQMMCNT, address 0x4008_0098).

Bits	Description	
[15:0]	FQMMCNT	Frequency Measurement Count When MMSTS aaa 1 and G0 aaa 1, this is number of PCLK periods counted for frequency measurement. The frequency will be PCLK aaa FQMMCNT * Fref /(CYCLESEL+1) Hz Maximum resolution of measurement is Fref /(CYCLESEL+1)*2 Hz

7.5 Automatic Level Control (ALC)

7.5.1 Overview and Features

UVOTON

The ALC seeks to control the PGA gain such that the PGA output maintains a constant envelope. This helps to prevent clipping at the input of the sigma delta ADC while maximizing the full dynamic range of the ADC. The ALC monitors the output of the ADC biquad output when that filter is enabled in the ADC path, or the output of the SINC filter otherwise. The ADC output is fed into a peak detector, which updates the measured peak value whenever the absolute value of the input signal is higher than the current measured peak. The measured peak gradually decays to zero unless a new peak is detected, allowing for an accurate measurement of the signal envelope. Based on a comparison between the measured peak value and the target value, the ALC block adjusts the gain control, which is fed back to the PGA.

Figure 7-19 ALC Block Diagram

The ALC is enabled by setting ALCEN. The ALC shares a clock source with the Biquad filter so CLK_APBCLK0.BFALCKEN must be set to operate ALC. The ALC has two functional modes, which is set by MODESEL.

- Normal mode (MODESEL = LOW)
- Peak Limiter mode (MODESEL = HIGH)

When the ALC is disabled, the input PGA returns to the PGA gain setting held in ANA_PGAGAIN.GAINSET. In order to have a smooth transition when disabling the ALC, the user may prefer to fetch the ALC trained gain setting from ANA_PGAGAIN.GAINREAD and write that value to ANA_PGAGAIN.GAINSET prior to disabling the ALC. An input gain update must be made by writing to GAINSET[5:0]. A digital peak detector monitors the input signal amplitude and compares it to a register defined threshold level TARGETLV[3:0].

The registers listed in the following sections allow configuration of ALC operation with respect to:

• ALC target level

UVOTON

- Gain increment and decrement rates
- Minimum and maximum PGA gain values for ALC operating range
- Hold time before gain increments in response to input signal
- Inhibition of gain increment during noise inputs
- Limiter mode operation

The operating range of the ALC is set by MAXGAIN and MINGAIN bits such that the PGA gain generated by the ALC is constrained to be between the programmed minimum and maximum levels. When the ALC is enabled, the PGA gain setting from PGASEL has no effect.

In Normal mode, the MAXGAIN bits set the maximum level for the PGA but in the Limiter mode MAXGAIN has no effect because the maximum level is set by the initial PGA gain setting upon enabling of the ALC.

7.5.1.1 Normal Mode

Normal mode is selected when MODESEL is set LOW and the ALC is enabled by setting ALCEN HIGH. This block adjusts the PGA gain setting up and down in response to the input level. A peak detector circuit measures the envelope of the input signal and compares it to the target level set by TARGETLV. The ALC increases the gain when the measured envelope is less than (target – 1.5dB) and decreases the gain when the measured envelope is greater than the target. The following waveform illustrates the behavior of the ALC.

Figure 7-21: ALC Normal Mode Operation

7.5.1.2 ALC Hold Time (Normal mode Only)

UVOTON

The hold parameter HOLDTIME configures the time between detection of the input signal envelope being below the target range and the actual gain increase.

Input signals with different characteristics (e.g., voice vs. music) may require different settings for this parameter for optimal performance. Increasing the ALC hold time prevents the ALC from reacting too quickly to brief periods of silence such as those that may appear in music recordings; having a shorter hold time, on the other hand, may be useful in voice applications where a faster reaction time helps to adjust the volume setting for speakers with different volumes. The waveform below shows the operation of the HOLDTIME parameter.

Figure 7-22: ALC Hold Time

7.5.1.3 Peak Limiter Mode

Peak Limiter mode is selected when MODESEL is set to HIGH and the ALC is enabled by setting ALCEN. In limiter mode, the PGA gain is constrained to be less than or equal to the gain setting at the time the limiter mode is enabled. In addition, attack and decay times are faster in limiter mode than in normal mode as indicated by the different lookup tables for these parameters for limiter mode. The following waveform illustrates the behavior of the ALC in Limiter mode in response to changes in various ALC parameters.

Figure 7-23: ALC Limiter Mode Operations

When the input signal exceeds 87.5% of full scale, the ALC block ramps down the PGA gain at the maximum attack rate (ATKSEL=0000) regardless of the mode and attack rate settings until the ADC output level has been reduced below the threshold. This limits ADC clipping if there is a sudden increase in the input signal level.

7.5.1.4 Attack Time

UVOTON

When the absolute value of the ADC output exceeds the level set by the ALC threshold, TARGETLV, attack mode is initiated at a rate controlled by the attack rate register ATKSEL. The peak detector in the ALC block loads the ADC output value when the absolute value of the ADC output exceeds the current measured peak; otherwise, the peak decays towards zero, until a new peak has been identified. This sequence is continuously running. If the peak is ever below the target threshold, then there is no gain decrease at the next attack timer time; if it is ever above the target-1.5dB, then there is no gain increase at the next decay timer time.

7.5.1.5 Decay Times

The decay time DECAYSEL is the time constant used when the gain is increasing. In limiter mode, the time constants are faster than in ALC mode.

7.5.1.6 Noise gate (normal mode only)

A noise gate is used when there is no input signal or the noise level is below the noise gate threshold. The noise gate is enabled by setting NGEN to HIGH. It does not remove noise from the signal. The noise gate threshold NGTHBST is set to a desired level so when there is no signal or a very quiet signal (pause), which is composed mostly of noise, the ALC holds the gain constant instead of amplifying the signal towards the target threshold. The noise gate only operates in conjunction with the ALC (ALCEN HIGH) and ONLY in Normal mode. The noise gate flag is asserted when

(Signal at ADC – PGA gain – MIC Boost gain) < NGTHBST (dB)

Levels at the extremes of the range may cause inappropriate operation, so care should be taken when setting up the function.

Figure 7-24: ALC Operation with Noise Gate disabled

Figure 7-25: ALC Operation with Noise Gate Enabled

7.5.1.7 Zero Crossing

The PGA gain comes from either the ALC block when it is enabled or from the PGA gain register setting when the ALC is disabled. Zero crossing detection may be enabled to cause PGA gain changes to occur only at an input zero crossing. Enabling zero crossing detection limits clicks and pops that may occur if the gain changes while the input signal has a high volume.

There are two zero crossing detection enables:

- Register ZCEN is only relevant when the ALC is enabled.
- Register ANA_SIGCTL.PUZCDCMP is only relevant when the ALC is disabled.

If the zero crossing function is enabled (using either register), the zero cross timeout function may take effect. If the zero crossing flag does not change polarity within 0.25 seconds of a PGA gain update (either via ALC update or PGA gain register update), then the gain will update. This backup system prevents the gain from locking up if the input signal has a small swing and a DC offset that prevents the zero crossing flag from toggling.

7.5.2 ALC Control Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
ALC Base Address	ALC Base Address:					
ALC_BA = 0x400B_	_0048					
ALC_CTL	ALC_BA+0x00	R/W	ALC Control Register	0x0E01_6320		
ALC_STS	ALC_BA+0x04	R	ALC status register	0x0000_0000		
ALC_INTSTS	ALC_BA+0x08	R/W	ALC interrupt register	0x0000_0000		
ALC_INTCTL	ALC_BA+0x0C	R/W	ALC interrupt enable register	0x0000_0000		

7.5.3 ALC Control Register Description

ALC CONTON REgister (ALC_CTL)					
Register	Offset	R/W	Description	Reset Value	
ALC_CTL	ALC_BA+0x00	R/W	ALC Control Register	0x0E01_6320	

ALC Control Register (ALC_CTL)

Table 7-40 ALC Control Register (ALC_CTL, address 0x400B_0048)

31	30	29	28	27	26	25	24
PKLIMEN	PKSEL	NGPKSEL	ALCEN		MAXGAIN		MINGAIN
23	22	21	20	19	18	17	16
MIN	GAIN	ZCEN	ZCEN HOLDTIME			TARGETLV[3]	
15	14	13	12	11	10	9	8
	TARGETLV[2:0]		MODESEL		DECA	YSEL	
7	6	5	4	3	2	1	0
ATKSEL NGEN NGTHBST							

Bits	Description	
[31]	PKLIMEN	 ALC peak limiter enable 0 = enable fast decrement when signal exceeds 87.5% of full scale (default) 1 = disable fast decrement when signal exceeds 87.5% of full scale
[30]	PKSEL	ALC gain peak detector select 0 = use absolute peak value for ALC training (default) 1 = use peak-to-peak value for ALC training
[29]	NGPKSEL	 ALC noise gate peak detector select 0 = use peak-to-peak value for noise gate threshold determination (default) 1 = use absolute peak value for noise gate threshold determination
[28]	ALCEN	ALC select 0 = ALC disabled (default) 1 = ALC enabled
[27:25]	MAXGAIN	ALC Maximum Gain $0 = -6.75 \text{ dB}$ $1 = -0.75 \text{ dB}$ $2 = +5.25 \text{ dB}$ $3 = +11.25 \text{ dB}$ $4 = +17.25 \text{ dB}$ $5 = +23.25 \text{ dB}$ $6 = +29.25 \text{ dB}$ $7 = +35.25 \text{ dB}$

		ALC Minimum Gain			
		0 = -12 dB			
		1 = -6 dB			
		2 = 0 dB			
[24:22]	MINGAIN	3 = 6 dB			
		4 = 12 dB			
		5 = 18 dB			
		6 = 24 dB			
		7 = 30 dB			
		ALC Zero Crossing			
[21]	ZCEN	0 = zero crossing disabled			
		1 = zero crossing enabled			
[20.47]	HOLDTIME	ALC Hold Time			
[20:17]	HOLDTIME	(Value: 0~10). Hold Time aaa (2^HOLDTIME) ms			
		ALC Target Level			
		0 = -28.5 dB			
		1 = -27 dB			
		2 = -25.5 dB			
		3 = -24 dB			
		4 = -22.5 dB			
		5 = -21 dB			
		6 = -19.5 dB			
[16:13]	TARGETLV	7 = -18 dB			
		8 = -16.5 dB			
		9 = -15 dB			
		10 = -13.5 dB			
		11 = -12 dB			
		12 = -10.5 dB			
		13 = -9 dB			
		14 = -7.5 dB			
		15 = -6 dB			
		ALC Mode			
[12]	MODESEL	0 = ALC normal operation mode			
		1 = ALC limiter mode			
		ALC Decay Time			
[11.9]	DECAYSEL	(Value: 0~10)			
[11:8]	DECATOEL	When MODESEL aaa 0, Range: 125us to 128ms			
		When MODESEL aaa 1, Range: 31us to 32ms (time doubles with every step)			

		ALC Attack Time			
		(Value: 0~10)			
[7:4]	ATKSEL	When MODESEL aaa 0, Range: 500us to 512ms			
		When MODESEL aaa 1,Range: 125us to 128ms (Both ALC time doubles with every step)			
		Noise Gate Enable			
[3]	NGEN	0 = Noise gate disabled			
		1 = Noise gate enabled			
		Noise Gate Threshold			
[2:0]	NGTHBST	Boost disabled: Threshold aaa (-81+6xNGTHBST) dB			
		Boost enabled: Threshold aaa (-87+6xNGTHBST) dB			

AL	C Status Regis	ster (ALC_ST	S)						
Register	Offset	R/W	R/W Description				Reset Value		
ALC_STS	ALC_BA+0x	:04 R	ALC status regist	ter			0x0000_0000		
	Table	7-41 ALC Sta	atus Register (Al	_C_STS, addre	ss 0x400B_004	IC)			
31	30	29	28	27	26	25	24		
Reserved									
23	23 22 21 2		20	19	18	17	16		
	Rese	erved		PEAKVAL[8:5]					
15	14	13	12	11	10	9	8		
		PEAKVAL[4:0]				P2PVAL[8:6]			
7	6	5	4	3	2	1	0		
	-	P2P\	/AL[5:0]			NOISEF	CLIPFLAG		

Bits	Description				
[31:19]	Reserved	Reserved			
[18:11]	PEAKVAL	Peak Value 9 MSBs of measured absolute peak value			
[10:2]	P2PVAL	Peak-To-Peak Value 9 MSBs of measured peak-to-peak value			
[1]	NOISEF	Noise Flag Asserted when signal level is detected to be below NGTHBST			
[0]	CLIPFLAG	Clipping Flag Asserted when signal level is detected to be above 87.5% of full scale			

<u>AL</u>	ALC Interrupt Register (ALC_INTSTS)									
Register Offset		R/W	Description	Description						
ALC_INTSTS	ALC_BA+0x	:08 R/W	ALC interrupt reg	ister			0x0000_0000			
Table 7-42 ALC Interrupt Register (ALC_INTSTS, address 0x400B_0050)										
31	30	29	28	28 27 26 25						
	Reserved									
23	23 22 21		20	19	18	17	16			
			Rese	erved						
15 14		13	12	11	10	9	8			
	Reserved									
7	7 6 5 4 3 2 1						0			
			Reserved				INTFLAG			

Bits	Description					
		ALC interrupt flag				
[0]	INTFLAG	This interrupt flag asserts whenever the interrupt is enabled and the PGA gain is updated, either through an ALC change with the ALC enabled or through a PGA gain write with the ALC disabled. Write a 1 to this register to clear.				

AL	ALC Interrupt Enable Register										
Register	Offset R/W Description					Reset Value					
ALC_INTCTL	ALC_BA+0x	OC R/W	ALC interrupt ena	able register			0x0000_0000				
	Table 7-43 ALC Interrupt Enable Register (ALC_INTCTL, address 0x400B_0054)										
31 30 29 28 27 26 25							24				
			Rese	erved			•				
23	22	21	20	19	18	17	16				
			Rese	erved							
15	14	13	12	11	10	9	8				
			Rese	erved							
7	6	5	4	4 3 2 1							
			Reserved				INTEN				

Bits	Description	escription					
		ALC Interrupt Enable					
[0]	INTEN	0 = ALC INT disabled					
		1 = ALC INT enabled					

7.6 Biquad Filter (BIQ)

NOTON

7.6.1 Overview and Features

A coefficient programmable 3-stage Biquad filter (6^{th} -Order IIR filter) is available which can be used on either ADC path or DPWM path to further reduce unwanted noise or filter the signal. Each biquad filter has the transfer function as H(z) and is implemented in Direct Form II Transpose structure as.

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

Upon power on reset or when the BIQ_CTL.DLCOEFF=0 is released, a set of default coefficients b_{n0} , b_{n1} , b_{n2} , a_{n1} , a_{n2} (n = 1,2,3 which is the stage number of the filter) will be written to the coefficient RAM automatically. And these coefficients can be over-written by the processor for different filter specifications.

Note that the fixed point coefficients have the format of 3.16 (19 bits) and are stored in the coefficient RAM under normal operation. It takes 32 internal system clocks for the automatic write to finish when the BIQ_CTL.DLCOEFF bit is released; it is important that the processor has enough delay before start the coefficient programming or enabling biquad (BIQ_CTL.BIQEN). Attempting to program the coefficients before the auto programming is done will result in unsuccessful programming. The default coefficient setting is a low pass filter with 3db cut-off frequency at 7/16 Fs (Sample Rate).

Biquad is released from reset by setting BIQ_CTL.DLCOEFF=1. After 32 clock cycles, processor can setup other Biquad parameters or re-program coefficients before enabling filter.

The BIQ_CTL.PATHSEL register bit determines which path the BIQ is going to use. The default value is 0 which is the microphone ADC path, by setting this bit 1, the BIQ will be used in DPWM path.

The operating Sample Rate of the filter can be setup by the following registers: The default value of $BIQ_CTL.SRDIV$ (sample rate divider) is 3071, when the chip is running at HCLK=49.152Mhz, the operating SR of BIQ can be calculated by equation HCLK/(SRDIV+1) = 16Khz. The processor can change the operating sample rate (SR) by changing the SRDIV register.

If the BIQ is intended to be used in DPWM path, the BIQ can up sample the data rate by programming BIQ_CTL.DPWMPUSR register which has default value at 3. The final BIQ sampling rate for DPWM path is based on both SRDIV and BIQ_CTL.DPWMPUSR registers which is equal to SR* (BIQ_CTL.DPWMPUSR+1). So the default DPWM operating sample rate is 16*(3+1) = 64Khz.

The BIQ filter is in reset state in default. To use the BIQ function, the following sequence is recommended:

- 1. Set BIQ_CTL.DLCOEFF bit. By releasing the reset, the filter controller will download default coefficients automatically to the RAM.
- 2. Turn on the BIQ_CTL.PRGCOEFF bit if intending to change the coefficients. Otherwise skip to next step.
- 3. Setup the BIQ operation sample rate by program DPWMPUSR or SRDIV register bits if necessary.
- 4. Decide the ADC or DPWM path to be used for the BIQ by programming PATHSEL, and turn off PRGCOEFF bit (if it was turned on in step #2).
- 5. Turn on BIQ_CTL.BIQEN. BIQ will start filter function.

7.6.2 BIQ Control Register Map

nuvoTon

7.6.2.1 BIQ filter coefficients registers

Register	Offset	R/W	Description	Reset Value
BIQ Base Address BIQ_BA = 0x400B				
BIQ_COEFF0	BIQ_BA + 0x00	R/W	Coefficient b0 In H(z) Transfer Function (3.16 format) - 1 st stage BIQ Coefficients	0x0000_d010
BIQ_COEFF1	BIQ_BA+0x004	R/W	Coefficient b1 In H(z) Transfer Function (3.16 format) - 1 st stage BIQ Coefficients	0x0001_c020
BIQ_COEFF2	BIQ_BA+0x008	R/W	Coefficient b2 In H(z) Transfer Function (3.16 format) - 1 st stage BIQ Coefficients	0x0001_c020
BIQ_COEFF3	BIQ_BA+0x00c	R/W	Coefficient a1 In H(z) Transfer Function (3.16 format) - 1 st stage BIQ Coefficients	0x0001_ad66
BIQ_COEFF4	BIQ_BA+0x010	R/W	Coefficient a2 In H(z) Transfer Function (3.16 format) - 1 st stage BIQ Coefficients	0x0000_d1dc
BIQ_COEFF5	BIQ_BA + 0x14	R/W	Coefficient b0 In H(z) Transfer Function (3.16 format) - 2 nd stage BIQ Coefficients	0x0000_c1d0
BIQ_COEFF6	BIQ_BA+0x018	R/W	Coefficient b1 In H(z) Transfer Function (3.16 format) - 2 nd stage BIQ Coefficients	0x0001_83a0
BIQ_COEFF7	BIQ_BA+0x01c	R/W	Coefficient b2 In H(z) Transfer Function (3.16 format) - 2 nd stage BIQ Coefficients	0x0000_c1d0
BIQ_COEFF8	BIQ_BA+0x020	R/W	Coefficient a1 In H(z) Transfer Function (3.16 format) - 2 nd stage BIQ Coefficients	0x0001_7445
BIQ_COEFF9	BIQ_BA+0x024	R/W	Coefficient a2 In H(z) Transfer Function (3.16 format) - 2 nd stage BIQ Coefficients	0x0000_92f6
BIQ_COEFF10	BIQ_BA + 0x28	R/W	Coefficient b0 In H(z) Transfer Function (3.16 format) - 3 rd stage BIQ Coefficients	0x0000_b3cc
BIQ_COEFF11	BIQ_BA+0x02c	R/W	Coefficient b1 In H(z) Transfer Function (3.16 format) - 3 rd stage BIQ Coefficients	0x0001_6798
BIQ_COEFF12	BIQ_BA+0x030	R/W	Coefficient b2 In H(z) Transfer Function (3.16 format) - 3 rd stage BIQ Coefficients	0x0000_b3cc
BIQ_COEFF13	BIQ_BA+0x034	R/W	Coefficient a1 In H(z) Transfer Function (3.16 format) - 3 rd stage BIQ Coefficients	0x0001_595d

E	BIQ_COEFF14	BIQ_BA+0x038	R/W	Coefficient a2 In H(z) Transfer Function (3.16 format) - 3 rd stage BIQ Coefficients	0x0000_75d2
E	BIQ_CTL	BIQ_BA+0x040	R/W	BIQ Control Register	0x0BFF_0030

7.6.3 Register Description

BIQ Control Register (BIQ_CTL)

Register	Offset	R/W	Description	Reset Value
BIQ_CTL	BIQ_BA+0x040	R/W	BIQ Control Register	0x0BFF_0030

Table 7-44 BIQ Control Register (BIQ_CTL, address 0x400B_0040)

31	30	29	28	27	26	25	24			
Reserved				SRDIV[12:8]						
23	22	21	20	19	18	17	16			
	SRDIV[7:0]									
15	14	13	12	11	10	9	8			
Reserved										
7	6	5	4	3	2	1	0			
Reserved	Reserved DPWMPUSR				PRGCOEFF	PATHSEL	BIQEN			

Bits	Description	
[28:16]	SRDIV	Sample Rate DividerThis register is used to program the operating sampling rate of the biquad filter. The sample rate is defined asHCLK/(SRDIV+1).Default to 3071 so the sampling rate is 16K when HCLK is 49.152MHz.
[6:4]	DPWMPUSR	DPWM Path Up Sample Rate (From SRDIV Result) This register is only used when PATHSEL is set to 1. The operating sample rate for the biquad filter will be (DPWMPUSR+1)*HCLK/(SRDIV+1). Default value for this register is 3.

[3]	DLCOEFF	Move BIQ Out Of Reset State
		0 = BIQ filter is in reset state.
		1 = When this bit is on, the default coefficients will be downloaded to the coefficient ram automatically in 32 internal system clocks. Processor must delay enough time before changing the coefficients or turn the BIQ on.
[2]	PRGCOEFF	Programming Mode Coefficient Control Bit
		0 = Coefficient RAM is in normal mode.
		1 = coefficient RAM is under programming mode.
		This bit must be turned off when BIQEN in on.
	PATHSEL	AC Path Selection For BIQ
[1]		0 = used in ADC path
		1 = used in DPWM path
[0]	BIQEN	BIQ Filter Start To Run
		0 = BIQ filter is not processing
		1 = BIQ filter is on.

BIQ Coefficient (BIQ_COEFFn)

Register	Offset	R/W	Description	Reset Value
BIQ_COEFF0	BIQ_BA + 0x00	R/W	Coefficient b0 In H(z) Transfer Function (3.16 format) - 1 st stage BIQ Coefficients	0x0000_d010
BIQ_COEFF1	BIQ_BA+0x004	R/W	Coefficient b1 In H(z) Transfer Function (3.16 format) - 1 st stage BIQ Coefficients	0x0001_c020
BIQ_COEFF2	BIQ_BA+0x008	R/W	Coefficient b2 In H(z) Transfer Function (3.16 format) - 1 st stage BIQ Coefficients	0x0001_c020
BIQ_COEFF3	BIQ_BA+0x00c	R/W	Coefficient a1 In H(z) Transfer Function (3.16 format) - 1 st stage BIQ Coefficients	0x0001_ad66
BIQ_COEFF4	BIQ_BA+0x010	R/W	Coefficient a2 In H(z) Transfer Function (3.16 format) - 1 st stage BIQ Coefficients	0x0000_d1dc
BIQ_COEFF5	BIQ_BA + 0x14	R/W	Coefficient b0 In H(z) Transfer Function (3.16 format) - 2 nd stage BIQ Coefficients	0x0000_c1d0
BIQ_COEFF6	BIQ_BA+0x018	R/W	Coefficient b1 In H(z) Transfer Function (3.16 format) - 2 nd stage BIQ Coefficients	0x0001_83a0
BIQ_COEFF7	BIQ_BA+0x01c	R/W	Coefficient b2 In H(z) Transfer Function (3.16 format) - 2 nd stage BIQ Coefficients	0x0000_c1d0
BIQ_COEFF8	BIQ_BA+0x020	R/W	Coefficient a1 In H(z) Transfer Function	0x0001_7445

nuvoTon

ISD9160 Technical Reference Manual

			(3.16 format) - 2 nd stage BIQ Coefficients	
BIQ_COEFF9	BIQ_BA+0x024	R/W	Coefficient a2 In H(z) Transfer Function (3.16 format) - 2 nd stage BIQ Coefficients	0x0000_92f6
BIQ_COEFF10	BIQ_BA + 0x28	R/W	Coefficient b0 In H(z) Transfer Function (3.16 format) - 3 rd stage BIQ Coefficients	0x0000_b3cc
BIQ_COEFF11	BIQ_BA+0x02c	R/W	Coefficient b1 In H(z) Transfer Function (3.16 format) - 3 rd stage BIQ Coefficients	0x0001_6798
BIQ_COEFF12	BIQ_BA+0x030	R/W	Coefficient b2 In H(z) Transfer Function (3.16 format) - 3 rd stage BIQ Coefficients	0x0000_b3cc
BIQ_COEFF13	BIQ_BA+0x034	R/W	Coefficient a1 In H(z) Transfer Function (3.16 format) - 3 rd stage BIQ Coefficients	0x0001_595d
BIQ_COEFF14	BIQ_BA+0x038	R/W	Coefficient a2 In H(z) Transfer Function (3.16 format) - 3 rd stage BIQ Coefficients	0x0000_75d2

Bits	Description	
[31:0]	COEFFDAT	Coefficient Data

8 APPLICATION DIAGRAM

nuvoTon

9 ELECTRICAL CHARACTERISTICS

9.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	MIN	MAX	UNIT
DC Power Supply	VDD-VSS	-0.3	+6.0	V
Input Voltage	VIN	VSS-0.3	VDD+0.3	V
Oscillator Frequency	1/t _{CLCL}	0	40	MHz
Operating Temperature	ТА	-40	+85	°C
Storage Temperature	TST	-55	+150	°C
Maximum Current into VDD		-	120	mA
Maximum Current out of V _{SS}			120	mA
Maximum Current sunk by a I/O pin			35	mA
Maximum Current sourced by a I/O pin			35	mA
Maximum Current sunk by total I/O pins			100	mA
Maximum Current sourced by total I/O pins			100	mA

Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability of the device.

9.2 DC Electrical Characteristics

nuvoTon

(VDD-VSS=3.3V, TA = 25°C, Fosc = 49.152 MHz unless otherwise specified.)

			SPECIFIC	ATION		
PARAMETER	SYM.	MIN.	TYP.	MAX.	UNI T	TEST CONDITIONS
Operation voltage	V_{DD}	2.4		5.5	V	V_{DD} =2.4V ~ 5.5V up to 50 MHz
Power Ground	V _{SS} AV _{SS}	-0.3			V	
Analog Operating Voltage	AV_{DD}	0		V _{DD}	V	
Analog Reference Voltage	Vref	0		AV _{DD}	V	
	I _{DD1}		24.8		mA	V _{DD} = 5.5V, Enable all IP.
Operating Current Normal Run Mode	I _{DD2}		19.7		mA	V _{DD} =5.5V, disable all IP
@ 49.152 MHz	I _{DD3}		23.6		mA	V _{DD} = 3V, enable all IP
	I _{DD4}		18.3		mA	$V_{DD} = 3V,$ disable all IP
	I _{DD5}		18.8		mA	V _{DD} = 5.5V enable all IP
Operating Current Normal Run Mode	I _{DD6}		15.0		mA	$V_{DD} = 5.5V,$ disable all IP
@ 32.768MHz	I _{DD7}		17.6		mA	V _{DD} = 3V enable all IP
	I _{DD8}		13.8		mA	V _{DD} = 3V, disable all

nuvoTon

ISD9160 Technical Reference Manual

	I _{DD13}	12.5	mA	V _{DD} = 5.5V, Enable all IP.
Operating Current	I _{DD14}	10.3	mA	V _{DD} = 5.5V, Disable all IP.
Normal Run Mode @ 12.288Mhz	I _{DD15}	11.4	mA	V _{DD} = 3V, Enable all IP.
	I _{DD16}	9	mA	V _{DD} = 3V, Disable all IP.
	I _{DD9}	9.7	mA	$V_{DD} = 5.5V$, Enable all IP.
Operating Current Normal Run Mode	I _{DD10}	8.1	mA	V _{DD} = 5.5V, Disable all IP.
@ 4.9152Mhz	I _{DD11}	8.7	mA	V _{DD} = 3V, Enable all IP.
	I _{DD12}	7.0	mA	V _{DD} = 3V, Disable all IP.
Operating Current Sleep Mode	I _{IDLE1}	10	mA	V _{DD} = 5.5V
Sleep wode	I _{IDLE1}	9	mA	V _{DD} = 3.3V
Operating Current	I _{IDLE1}	10	mA	V _{DD} =5.5V
Deep Sleep Mode	I _{IDLE1}	8	mA	V _{DD} = 3.3V
Standby Power down	I _{IDLE1}	3	3 uA V _{DD} =3.3V 32K runn	
mode(SPD)	I _{IDLE1}	1	uA	V _{DD} = 3.3V 16K running
Operating Current	I _{IDLE1}	500	nA	V _{DD} =3.3V Wakeup with16K
Deep Power down mode(DPD)	I _{IDLE1}		nA	$V_{\text{DD}}\text{=}3.3V$ wakeup with wakeup pin

Input Current PA, PB (Quasi-bidirectional mode)	I _{IN1}	-60	-	+15	μΑ	$V_{DD} = 5.5V, V_{IN} = 0V \text{ or } V_{IN} = V_{DD}$
Input Current at /RESET [1]	I _{IN2}	-55	-45	-30	μΑ	$V_{DD} = 3.3V, V_{IN} = 0.45V$
Input Leakage Current PA, PB	I _{LK}	-2	-	+2	μΑ	$V_{DD} = 5.5V, 0 < V_{IN} < V_{DD}$
Logic 1 to 0 Transition Current PA~PB (Quasi-bidirectional mode)	I _{TL} ^[3]	-650	-	-200	μΑ	$V_{DD} = 5.5 V, V_{IN} < 2.0 V$
Input Low Voltage PA, PB (TTL	V _{IL1}	-0.3	-	0.8	V	V _{DD} = 4.5V
input)	VILI	-0.3	-	0.6	v	$V_{DD} = 2.5 V$
Input High Voltage PA, PB (TTL	V _{IH1}	2.0	-	V _{DD} +0.2	V	V _{DD} = 5.5V
input)	V IH1	1.5	-	V _{DD} +0.2	v	V _{DD} =3.0V
Input Low Voltage XT1 ^[*2]	V _{IL3}	0	-	0.8	V	$V_{DD} = 4.5V$
	V IL3	0	-	0.4	v	$V_{DD} = 3.0V$
Input High Voltage XT1 ^[*2]	V _{IH3}	3.5	-	V _{DD} +0.2	V	V _{DD} = 5.5V
	V IH3	2.4	-	V _{DD} +0.2		V _{DD} = 3.0V
Input Low Voltage X32I ^[*2]	V _{IL4}	0	-	0.4	V	
Input High Voltage X32I ^[*2]	V_{IH4}	1.7		2.5	V	
Negative going threshold (Schmitt input), /REST	V _{ILS}	-0.5	-	$0.3V_{DD}$	V	
Positive going threshold (Schmitt input), /REST	V _{IHS}	$0.7V_{DD}$	-	V _{DD} +0. 5	V	
Hysteresis voltage of PA~PB(Schmitt input)	V _{HY}		$0.2V_{DD}$		V	

						1
Source Current PA, PB	I _{SR11}	-300	-370	-450	μΑ	$V_{DD} = 4.5V, V_S = 2.4V$
Quasi-bidirectional Mode)	I _{SR12}	-50	-70	-90	μA	$V_{DD} = 2.7V, V_S = 2.2V$
	I _{SR12}	-40	-60	-80	μΑ	$V_{DD} = 2.5V, V_S = 2.0V$
	I _{SR21}	-20	-24	-28	mA	$V_{DD} = 4.5V, V_S = 2.4V$
Source Current PA, PB (Push- pull Mode)	I _{SR22}	-4	-6	-8	mA	$V_{DD} = 2.7V, V_S = 2.2V$
	I _{SR22}	-3	-5	-7	mA	$V_{DD} = 2.5V, V_S = 2.0V$
Sink Current PA, PB	I _{SK1}	10	16	20	mA	$V_{DD} = 4.5V, V_S = 0.45V$
(Quasi-bidirectional and Push-	I _{SK1}	7	10	13	mA	$V_{DD} = 2.7V, V_S = 0.45V$
pull Mode)	I _{SK1}	6	9	12	mA	$V_{DD} = 2.5V, V_S = 0.45V$
Brownout voltage with BOV_VL [2:0] =000b	V _{BO2.1}		2.15		V	
Brownout voltage with BOV_VL [2:0] =001b	V _{BO2.2}		2.25		V	
Brownout voltage with BOV_VL [2:0] =010b	V _{BO2.4}		2.45		V	
Brownout voltage with BOV_VL [2:0] =011b	V _{BO2.5}		2.55		V	
Brownout voltage with BOV_VL [2:0] =100b	V _{BO2.7}		2.7		V	
Brownout voltage with BOV_VL [2:0] =101b	V _{BO2.8}		2.8		V	
Brownout voltage with BOV_VL [2:0] =110b	V _{BO3.0}		3.0		V	
Brownout voltage with BOV_VL [2:0] =111b	V _{BO4.5}		4.55		V	

Notes:

1. /REST pin is a Schmitt trigger input. For power on, needs to keep low before all power stable. For MCU IO control, programmer needs to consider the reset circuit and IO sink capability. These will impact the low timing of Reset pin

2. Crystal Input is a CMOS input.

3. Pins of P0, P1, P2, P3 and P4 can source a transition current when they are being externally driven from 1 to 0. In the condition of V_{DD} =5.5V, 5he transition current reaches its maximum value when Vin approximates to 2V.

9.3 AC Electrical Characteristics

NUVOTON

9.3.1 External 32kHz XTAL Oscillator

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Input clock frequency	External crystal	-	32.768	-	kHz
Temperature	-	-40	-	85	°C
V _{DD}	-	2.4	-	5.5	V

9.3.2 Internal 49.152MHz Oscillator

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply voltage ^[1]	-	2.4	-	5.5	V
Center Frequency	-	-	49.152		MHz
Calibrated Internal Oscillator	+25°C; V _{DD} =5V	-1	-	1	%
Frequency	-40°C~+85°C; V _{DD} =2.5V~5.5V	-4	-	4	%

9.3.3 Internal 16 kHz Oscillator

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply voltage	-	2.4	-	5.5	V
Center Frequency	-	-	16	-	kHz
Calibrated Internal Oscillator	+25°C; V _{DD} =5V	-10	-	10	%
Frequency	-40°C~+85°C; V _{DD} =2.5V~5.5V	-20	-	20	%

9.4 Analog Characteristics

9.4.1 Specification of ADC and Speaker Driver

Conditions: VCCD = 3.3V, VCCA = 3.3V, T_A = +25°C, 1kHz signal, fs = 16kHz, 16-bit audio data, unless otherwise stated.

Parameter	Symbol	Comments/Condition s	Min	Тур	Max	Units
Analog to Digital Converter (AD)C)					
Full scale input signal ¹	VINFS	PGABST = 0dB		1.0		Vrms
		PGAGAIN = 0dB		0		dBV
Signal-to-noise ratio	SNR	Gain = 0dB, A-weighted		92		dB
Total harmonic distortion ²	THD+N	Input = -3dB FS input		-80		dB
PWM Speaker Output (8Ω bridg	e-tied-load)					
Full scale output ⁴		SPKBST = 1	,	VCCSPK / 3	3.3	V _{rms}
Total harmonic distortion ²	THD+N	$P_{o} = 200 \text{mW},$ VDDSPK=3.3V		*63		dB
		$P_{o} = 320 \text{mW},$ VDDSPK = 3.3V		-64		dB
		$P_{\circ} = 860 \text{mW},$ VDDSPK = 5V		-60		dB
		$P_{\circ} = 1000 \text{mW},$ VDDSPK = 5V		-36		dB
Signal-to-noise ratio	SNR	VDDSPK = 3.3V		91		dB
		VDDSPK=5V		90		dB

9.4.2 Specification of PGA and BOOST

nuvoTon

Conditions: VCCD = 3.3V, VCCA = 3.3V, T_A = +25°C, 1kHz signal, fs = 16kHz, 16-bit audio data, unless otherwise stated.

Parameter	Symbol	Comments/Condition s	Min	Тур	Max	Units
Microphone Inputs (MICP, MICN) and Progra	ammable Gain Amplifier (PO	SA)			
Full scale input signal ¹		PGABST = 0dB		1.0		Vrms
		PGAGAIN = 0dB		0		dBV
Programmable gain			-12		35.25	dB
Programmable gain step size		Guaranteed Monotonic		0.75		dB
Mute Attenuation				120		dB
Input resistance		Inverting Input				
		PGA Gain = 35.25dB		1.6		kΩ
		PGA Gain = 0dB		47		kΩ
		PGA Gain = -12dB		75		kΩ
		Non-inverting Input		94		kΩ
Input capacitance				10		pF
PGA equivalent input noise		0 to 20kHz, Gain set to 35.25dB		120		μV
Input Boost						
Gain boost		Boost disabled		0		dB
		Boost enabled		26		dB

9.4.3 Specification of ALC an MICBIAS

nuvoton

Conditions: VCCD = 3.3V, VCCA = 3.3V, T_A = +25°C, 1kHz signal, fs = 16kHz, 16-bit audio data, unless otherwise stated.

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units
Automatic Level Control (ALC)	& Limiter:					
Target record level			-22.5		-1.5	dBFS
Programmable gain			-12		35.25	dB
Gain hold time ³	t _{HOLD}	Doubles every gain step, with 16 steps total	0 / 2.6	7 / 5.33 /	. / 43691	ms
Gain ramp-up (decay) ³	t _{DCY}	ALC Mode	4 /	8 / 16 / /	4096	ms
		ALC = 0				
		Limiter Mode	1 /	2/4//	1024	ms
		ALC = 1				
Gain ramp-down (attack) ³	t _{ATK}	ALC Mode	1 /	2/4//	1024	ms
		ALC = 0				
		Limiter Mode	0.25	/0.5/1/.	/ 128	ms
		ALC = 1				
Mute Attenuation				120		dB
Microphone Bias						
Bias voltage	V _{MICBIAS}		0.90	, 0.65 ,0.75	5, 0.50,	VDDA
			2.4,	1.7,2.0		V
Bias current source	IMICBIAS			3		mA
Output noise voltage	Vn	1kHz to 20kHz		14		nV/√Hz

Notes

1. Full Scale is relative to the magnitude of VCCA and can be calculated as FS = VDDA/3.3.

2. Distortion is measured in the standard way as the combined quantity of distortion products plus noise. The signal level for distortion measurements is at 3dB below full scale, unless otherwise noted.

3. Time values scale proportionally with HCLK. Complete descriptions and definitions for these values are contained in the detailed descriptions of the ALC functionality.

9.4.4	Specification	of LDO &	Power management
-------	---------------	----------	------------------

PARAMETER	MIN	TYP	MAX	UNIT	NOTE
Input Voltage	2.4	5	5.5	V	V _{DD} input voltage
Output Voltage	-10%	1.8	+10%	V	V _{DD} > 1.8V

Note:

nuvoton

1. It is recommended that a 10uF or higher capacitor and a 100nF bypass capacitor are connected between VCCD and the VSSD pin of the device.

2. For ensuring power stability, a 1.0uF or higher capacitor must be connected between LDO pin and the VSSD pin of the device. Also a 100nF bypass capacitor between LDO and VSSD will help suppress output noise.

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Operation voltage	-	2.2	-	5.5	V
Quiescent current	AVDD=5.5V	-	-	125	μA
Temperature	-	-40	25	85	°C
	BOV_VL[1:0]=11		2.15		V
	BOV_VL [1:0]=10		2.25		V
	BOV_VL [1:0]=01		2.45		V
	BOV_VL [1:0]=00		2.55		V
Brown-out voltage	BOV_VL [2:0]=011		2.7		V
	BOV_VL[2:0]=010		2.8		V
	BOV_VL [2:0]=001		3.0		V
	BOV_VL [2:0]=000		4.55		V
Hysteresis	-				V

9.4.5 Specification of Brownout Detector

nuvoTon

9.4.6 Specification of Power-On Reset (VCCD)

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Temperature	-	-40	25	85	°C
Reset voltage	VCC ramping down	-	1.0	-	V
Reset Release voltage	VCC ramping up		1.5		V
Quiescent current	Vin>reset voltage	-	60	-	nA

9.4.7	Specification of Temperature Sensor
-------	-------------------------------------

PARAMETER	MIN	ТҮР	MAX	UNIT	CONDITIONS
Supply voltage ^[1]	2.4	-	5.5	V	
Temperature	-40	-	125	°C	
Current consumption				uA	
Gain				mV/°C	
Offset				mV	Temp=0 °C

Notes:

nuvoton

1. Internal operation voltage comes from LDO.

PARAMETER	MIN.	TYP.	MAX.	CONDITION
Temperature	-40°C	25 °C	85°C	-
VCCA	2.4	3	5.5	-
VCCA current	-	20uA	40uA	20uA@VDD=3V
Input offset voltage	-	5mV	15mV	-
Input common mode range	0.1	-	VDD-1.2	-
DC gain	-	70dB	-	-
Propagation delay	-	200ns	-	@VCM=1.2V & VDIFF=0.1V
Comparison voltage	10mV	20mV	-	20mV@VCM=1V 50mV@VCM=0.1V 50mV@VCM=VDD-1.2 @10mV for non-hysteresis
Hysteresis	-	±10mV	-	One bit control W/O & W. hysteresis @VCM=0.4V ~ VDD-1.2V
Wake up time	-	-	2us	@CINP=1.3V CINN=1.2V

9.4.8 Specification of Comparator

9.5 Reset Characteristics

(VDD-VSS=5V, TA = 25°C, Fosc = 49.152 MHz unless otherwise specified.)

Parameter No.	Parameter	Parameter Name	Min	Тур	Max	Unit
R1	Vтн	Reset threshold		1.7	2	V

nuvoTon

ISD9160 Technical Reference Manual

R2	Tvddrise	Supply voltage (VDD) rise time (0V-5V), power on reset	-	-	100	ms
R3	Tpor	Power-On Reset timeout	-	-	12	μs
R4	TIRPOR	Internal reset timeout after POR	-	-	45	μs
R5	TMIN	Minimum RESETN pulse width	100	-	-	ns
R6	Tirhwr	Internal reset timeout after hardware reset (RESETN pin)	-	-	20	μs
R7	Tirswr	Internal reset timeout after software-initiated system reset	-	-	2	μs
R8	TIRWDR	Internal reset timeout after watchdog reset	-	-	3 * ¹	μs

*Notes:

1. It will be 6500us when use OSC_10K as the WDG clock.

9.5.1.1 Power-On Reset Timing

9.5.1.2 External Reset Timing (RESETN)

9.5.1.3 Software Reset Timing

9.5.1.4 Watchdog Reset Timing

10 PACKAGE DIMENSIONS

10.1.1 48L LQFP (7x7x1.4mm footprint 2.0mm)

10.1.2 33-pin QFN

NUVOTON

5x5 mm², Thickness 0.8mm (MAX), Pitch 0.5 mm (SAW Type), EP SIZE 3.5X3.5 mm

11 ORDERING INFORMATION

nuvoton

12 REVISION HISTORY

nuvoTon

VERSION	DATE	PAGE/ CHAP.	DESCRIPTION
V1.01	Sep 01, 2014	-	First Release.
V1.41	Mar 30, 2016	-	Add QFN33 pin package. Add ordering info.

Important Notice

Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Furthermore, Nuvoton products are not intended for applications wherein failure of Nuvoton products could result or lead to a situation where personal injury, death or severe property or environmental damage could occur.

Nuvoton customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.