
 

Distance Measurement with Ultrasound

Created by Kevin Walters

 

https://learn.adafruit.com/distance-measurement-ultrasound-hcsr04

Last updated on 2022-12-01 03:21:14 PM EST

©Adafruit Industries Page 1 of 20



3

4

6

8

8

10

12

14

17

19

Table of Contents

Overview

• Parts

Connect the Sensor

Simple MakeCode

• Description and Discussion

More Advanced MakeCode

Speed of Sound

• Description and Discussion

Range Selection

• Description and Discussion

New Graph v1

New Graph v2

• Description and Discussion

The Ultrasound Pulses

Going Further

• Ideas for areas to explore

• Further Reading

©Adafruit Industries Page 2 of 20



Overview 

The HC-SR04 is an inexpensive distance sensor based on a pair of ultrasonic

transducers () with a straightforward TTL () level interface and a claimed range of 2cm

to 4m. Similar sensors are now commonplace with the widespread use of car parking

assistance sensors.

This project demonstrates distance measurement in Microsoft MakeCode () inspired

by the BBC micro:bit example () starting with a very simple program and then showing

more features of MakeCode and the Circuit Playground Express (CPX) board.

If you are new to using MakeCode, check out the guide to getting started () first.

Thank-you to George and Edward for the loan of their CPX board.

 

The sensor's 5V Echo output cannot be directly connected to the inputs of a 

board like the Circuit Playground Express (CPX) but some trivial electronics can 

remedy this incompatibility. 

©Adafruit Industries Page 3 of 20

https://en.wikipedia.org/wiki/Ultrasonic_transducer
https://en.wikipedia.org/wiki/Ultrasonic_transducer
https://en.wikipedia.org/wiki/Transistor%E2%80%93transistor_logic
https://www.microsoft.com/en-us/makecode
https://makecode.microbit.org/reference/pins/pulse-in
https://learn.adafruit.com/makecode


1 x Circuit Playground Express 

A great sensor-packed development board supporting

many languages.

https://www.adafruit.com/product/3333 

1 x HC-SR04 Ultrasound sensor 

HC-SR04 Ultrasound sensor with TTL 5V interface and 2x

10K Resistors for 3.3V use.

https://www.adafruit.com/product/3942 

1 x Half-size Breadboard 

A breadboard to place the sensor and resistors on.

https://www.adafruit.com/product/64 

1 x Premium Male/Male Jumper Wires - 40 x 6"

(150mm) 

Four jumper wires for breadboard connections.

https://www.adafruit.com/product/758 

1 x Small Alligator Clip to Male Jumper Wire Bundle

- 6 Pieces 

Four alligator (crocodile) clips to connect to pads on CPX.

https://www.adafruit.com/product/3448 

1 x US-100 Ultrasound Sensor 

US-100 Ultrasonic Distance Sensor - 3V or 5V Logic.

Easier to use alternative, since it does not require output

level conversion.

https://www.adafruit.com/product/4019 

Parts

Connect the Sensor 

The common HC-SR04 boards are designed for 5V TTL voltage levels. Since the

advent of CMOS () many circuits started using 3.3V levels including the CPX board,

this can create compatibility problems. The guide to CPX Pinouts () states:

All of the GPIO pads are 3.3V output level, and should not be used with 5V

inputs. In general, most 5V devices are OK with 3.3V output though.

This creates a requirement to reduce the voltage from the Echo output of the HC-

SR04 rather than simply directly connecting all of the sensor's pins to the CPX board.

The easiest way to reduce a single voltage is to use two resistors as a potential

Adafruit now sell the US-100 Ultrasonic Distance Sensor which is directly 

compatible with 3.3V levels. 

©Adafruit Industries Page 4 of 20

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3942
https://www.adafruit.com/product/3942
https://www.adafruit.com/product/64
https://www.adafruit.com/product/64
https://www.adafruit.com/product/758
https://www.adafruit.com/product/758
https://www.adafruit.com/product/758
https://www.adafruit.com/product/3448
https://www.adafruit.com/product/3448
https://www.adafruit.com/product/3448
https://www.adafruit.com/product/4019
https://www.adafruit.com/product/4019
https://en.wikipedia.org/wiki/CMOS
https://learn.adafruit.com/adafruit-circuit-playground-express/pinouts
https://en.wikipedia.org/wiki/Voltage_divider


divider (). The example shown uses two equal resistors (10 K ohms, they come with

the HC-SR04 that Adafruit sells) to halve the voltage. 2.5V is clearly lower than 3.3V

but this is high enough to work. The sum of the two resistors should be above 1

kiloohm to keep the current within the limits of the sensor's output.

The slightly more complicated alternative to converting the voltages is to use a

semiconductor solution like the unidirectional 74LVC245 () or 74AHCT125 () or the

bidirectional TXB0104 ().

The diagram below shows how to connect the components together. The HC-SR04

can be plugged directly into the breadboard without the four wires shown in the

diagram.

The picture below shows how it looks implemented on a breadboard. The only differe

nces are: the sensor is plugged into the breadboard; the use of double-ended

alligator (crocodile) clip leads with header pins aiding connection to the breadboard.

The alligator clip to male jumper wire () is an easier alternative.

 

 

©Adafruit Industries Page 5 of 20

https://en.wikipedia.org/wiki/Voltage_divider
https://www.adafruit.com/product/735
https://www.adafruit.com/product/1787
https://www.adafruit.com/product/1875
https://www.adafruit.com/product/3448


 

 

The connections are:

 

Black: Gnd to GND via bus strip. Row 1 is

also connected to ground.

Red: Vcc to VOUT via bus strip. 

Green: Echo to potential divider (a pair of

10k resistors across).

White: divided voltage (row 6) to A1.

Yellow: Trig to A2. 

 

Note: Pictures show two 2.2K resistors,

Adafruit supplies two 10K resistors, both

configurations function the same).

The A0 input can be used as an output for the sensor's Trig pin if you want the

surprise of hearing the trigger pulses. The CPX board has A0 hard wired up to its

small speaker.

For comparison: the Raspberry Pi has the same 3.3V limitation on GPIO inputs; many

of the Arduino boards like the Uno are 5V tolerant for inputs, allowing direct

connection () of this sensor.

The standard HC-SR04 will appear to work at 3.3V but apparently is far less accurate (

). There's a detailed discussion on some of the variations of this sensor on David

Pilling's HC-SR04 page (). Adafruit now sell the US-100 Ultrasonic Distance Sensor ()

which is 3.3V compatible.

Simple MakeCode 

This example calculates the distance from the response from the sensor, graphs it on

the NeoPixels, beeps with a pitch based on distance and logs the value.

©Adafruit Industries Page 6 of 20

https://learn.adafruit.com//assets/61935
https://learn.adafruit.com//assets/61935
https://learn.adafruit.com//assets/61936
https://learn.adafruit.com//assets/61936
https://www.instructables.com/id/Simple-Arduino-and-HC-SR04-Example/
https://www.instructables.com/id/Simple-Arduino-and-HC-SR04-Example/
https://www.raspberrypi.org/forums/viewtopic.php?p=183386#p183386
https://www.davidpilling.com/wiki/index.php/HCSR04
https://www.davidpilling.com/wiki/index.php/HCSR04
https://www.adafruit.com/product/4019


Open this example in MakeCode

The video (animated gif) below shows the sensor measuring the distance to a moving

piece of paper and indicating this via the number of NeoPixels illuminated. The paper

doesn't move far enough away to light up the tenth NeoPixel. There is a brief reading

over the expected value, this could be due to the first reflection being missed and the

sensor picking up sound from the the third reflection.

 

 

©Adafruit Industries Page 7 of 20

https://makecode.com/_6VCY9AgCdi4j


Description and Discussion

The code is a simple loop sending a pulse to A1 output pin and then measuring the

pulse on A2 input pin with the MakeCode pulse in pin block. The division by 58

converts the timed value into centimetres and this value is then shown on the

NeoPixels up to a value of 30cm (12"). The distance is also represented by a short

beep with frequency (pitch) between 50Hz (for 0.25cm) and 10kHz (for 50cm). The

distance is also logged but this is only visible if you are using the Windows 10 app

version of MakeCode ().

It's not clear if this sensor has a maximum measuring rate or a required pause after

the Echo pulse before the next measurement. If it does then the code has a minor

flaw as it's relying on the console log as a delay if the distance is out of range for the

beep to occur.

The value of 58 or 58.2 is often seen in example code. It's worth exploring where this

"magic" number comes from. The Echo high pulse duration represents the time for the

first detected reflection. The speed of sound () varies mainly with temperature and to

a far lesser degree by humidity. The chirp travels to the target and is reflected back,

its journey is twice as long as the distance. 58 represents an assumption that the

speed of sound is 1000000 / 58 * 2 / 100 = 344.8 metres per second. 344.8m/s would

equate to a 21.6 degrees Celsius (70.8 Fahrenheit), 40% relative humidity () day.

The graph block () logs the distance value to the console as an unnamed value

making the use of console log value () block a little superfluous.

More Advanced MakeCode 

These are some more advanced examples showing how to use the temperature from

the on-board thermistor, how to use the buttons to add extra functionality and how to

implement your own graph on the NeoPixels.

Speed of Sound 

This example is the same as the first simple example but with added code to calculate

the speed of sound based on the temperature from the CPX's thermistor (). That

temperature is then used to calculate the divisor for distance calculations.

©Adafruit Industries Page 8 of 20

https://learn.adafruit.com/make-it-graph-plot/plotting-with-makecode
https://learn.adafruit.com/make-it-graph-plot/plotting-with-makecode
https://en.wikipedia.org/wiki/Speed_of_sound
https://en.wikipedia.org/wiki/Relative_humidity
https://makecode.adafruit.com/reference/light/graph
https://makecode.adafruit.com/reference/console/log-value
https://en.wikipedia.org/wiki/Thermistor


Open this example in MakeCode

Description and Discussion

This code introduces a new variable to store the temperature read from the

thermistor in degrees Celsius. The speed of sound is then calculated using a formula.

The number 273.15 may be familiar - it's being used to convert the temperature to Kel

vin ().

The potential flaw from the original code is fixed with the addition of a 62 millisecond

delay when the distance is out of range for a beep. At 120bpm, a demisemiquaver

(1/32 note) () is 4 * 60 / 120 / 32 * 1000 = 62.5ms.

The temperature is also logged to allow it to inspected to ensure the value is

reasonable and accurate.

A good question is whether the temperature needs to be calculated every time a new

distance is measured. As temperature does not typically change much this could be

performed once. A single calculation would be problematic if the code was expected

to run for a long time or the temperature was expected to change rapidly. At the cost

 

©Adafruit Industries Page 9 of 20

https://makecode.com/_EVEfP1RMP4Df
https://en.wikipedia.org/wiki/Kelvin
https://en.wikipedia.org/wiki/Kelvin
https://en.wikipedia.org/wiki/Thirty-second_note
https://en.wikipedia.org/wiki/Thirty-second_note


of increased complexity of code, one compromise solution would be to calculate it

periodically with the period based on the likely rate of change. Sample rate decisions

like this become more relevant when the calculation is more intensive and there are

limited resources.

Range Selection 

This example is the same as the first simple example but with added code to allow the

left button to mute the beeping and the right button to change the maximum range.

The on start () block is introduced to initialise some variables include two arrays ().

 

©Adafruit Industries Page 10 of 20

https://makecode.adafruit.com/blocks/on-start
https://makecode.adafruit.com/types/array


Open this example in MakeCode

Description and Discussion

The three maximum range distances are stored in the rangelist  array with some

associated colours in huelist  (0 is red, 85 is green, 170 is blue in this HSV model ()).

rangeindex  is used to select the current range from rangelist . The first element

in an array in MakeCode is 0, in other languages this may be 1.

The loop is similar to the first example but with the addition of two if  blocks to deal

with buttons A  (left) and B  (right) and a more sophisticated condition for beeping

which now uses the same range as graphing and constrains the frequency between

100Hz and 8kHz.

The check for button A  uses a common subtraction technique to toggle between

the two volume values, 0 and 128. button B  looks more complicated but is only

adding 1 (incrementing) the rangeindex  and then returning to the first element if it

 

©Adafruit Industries Page 11 of 20

https://makecode.com/_aLE2sXCH1UfY
https://en.wikipedia.org/wiki/HSL_and_HSV


has gone past the end of the array. The code flashes all the NeoPixels the pixelhue

colour for 1 second to indicate to the user which range has been selected, e.g. green

for 100cm.

There is a subtle but important difference between the code for the two buttons. The

first uses was pressed () and the second uses is pressed (). was pressed  checks for

any press since the last check but is pressed  only checks as the block is executed.

In this case the code before the if  blocks executes quickly hence everything loops

frequently allowing the use of the instantaneous is pressed . Holding down either

button for a few seconds will reveal a difference in behaviour relating to this.

MakeCode also has an on () block which is an alternative method for coding for

buttons. The volume mute could also have been implemented using a boolean ()

value and controlled using set volume () although the CPX default level sounds like 20

rather than 128. It is common in computer languages for there to be more than one

way to achieve the same goal.

New Graph v1 

This example is the same as the first simple example but with the native graph () block

replaced by a new one with a higher precision representation on the NeoPixels.

The set volume block does not work on all browsers in the simulator. 

 

©Adafruit Industries Page 12 of 20

https://makecode.adafruit.com/reference/input/button/was-pressed
https://makecode.adafruit.com/reference/input/button/is-pressed
https://makecode.adafruit.com/reference/input/button/on-event
https://makecode.adafruit.com/blocks/logic/boolean
https://makecode.adafruit.com/reference/music/set-volume
https://makecode.adafruit.com/reference/light/graph


Open this example in MakeCode

The new graphing code calculates the value in terms of number of pixels but keeps

the remainder from the calculation and varies the brightness of the final pixel based

on that remainder to show values "between" the NeoPixels. The video below

demonstrates the sensor being moved (just visible on the left) to indicate how the

NeoPixels represent the distance values.

 

©Adafruit Industries Page 13 of 20

https://makecode.com/_1sXiEihi4Lvd


The code has an if  block with a true  value. This looks a little odd but allows the

programmer to switch between the two versions of the graphing for comparison. This

could be removed if the programmer has made a decision to only use one type of

graphing.

The NeoPixels visibly flicker when many of them are lit. The code sets them all to

black and then sets each one that needs to be on or partially on. There are more

efficient approaches to this. A key change is to use the set buffered  and show

blocks to apply the changes in one go when they are all done.

New Graph v2 

This example is the same as the first graphing version () but places the graphing code

in a function () called newgraph .

 

©Adafruit Industries Page 14 of 20

https://learn.adafruit.com/distance-measurement-ultrasound-hcsr04/new-graph-v1
https://makecode.adafruit.com/types/function


 

 

©Adafruit Industries Page 15 of 20



Open this example in MakeCode

Description and Discussion

In this particular case the use of a function  does not make a huge amount of

difference. It makes the forever  loop more compact and a little easier to read. If all

of the code from the previous examples were combined then the forever  loop

would become unwieldy. If the code is difficult to understand and review then bugs ()

are more likely to creep in.

Functions become more useful in a program when they are used (called) multiple

times as they reduce code duplication. They can also be the first step towards sharing

code between different programs.

 

©Adafruit Industries Page 16 of 20

https://makecode.com/_2qYgo0Yq9Ahc
https://en.wikipedia.org/wiki/Software_bug


The Ultrasound Pulses 

A logic analyser can be used to look at the communication between the CPX board

and sensor. It can also be connected to the ultrasonic transmitter to see the high

frequency chirp but won't work on the unamplified receiver output. A basic logic

analyser cannot show the full detail of the analogue voltages as it makes everything

appear rectangular. There are some examples of what the signal really looks like on D

avid Pilling's HC-SR04 page ().

 

©Adafruit Industries Page 17 of 20

https://www.davidpilling.com/wiki/index.php/HCSR04
https://www.davidpilling.com/wiki/index.php/HCSR04


The screenshot at the top of the page shows three distance measurements. The

screenshot just above is one of the measurements zoomed in showing:

Trig (yellow): the pulse requesting the sensor to make a measurement,

Tx Pulses (blue): the actual burst of eight pulses which constitute the ultrasonic

chirp,

Echo (green): the sensor's output measured by the logic analyser as 858

microseconds.

The 858 microseconds divided by 58 gives 14.8cm. The target was placed at 15.0cm

which suggests this can be very accurate. The voltage thresholds for low and high on

the logic analyser may differ by a tiny amount compared to the CPX board.

The TX Pulses can be used to determine the audio frequency. Using a higher

resolution trace made at 25MHz, measuring seven pulses from the leading edge for

best accuracy gives 173.24 microseconds, 7 / 173.24 * 1000 = 40.41kHz, clearly in the

ultrasound range.

 

• 

• 

• 

©Adafruit Industries Page 18 of 20



Going Further 

Ideas for areas to explore

Finding something fun to measure!

Seeing if your pet can hear the sensor, some animals can hear ultrasound.

Checking the maximum range for different objects and the behaviour of the

sensor for no reflection ("infinity").

Checking and explaining the behaviour for very close objects.

Adding calibration offsets and coefficients to the program based on testing with

one or more sensors.

Determining if sensors can be confused by other sensors operating in the same

space.

Measuring the cone angle for the sensor and exploring physical techniques for

reducing this.

Testing if fast movement affects sensor's ability to measure distance.

Exploring techniques for enhancing accuracy for stationary objects.

Checking the behaviour of the standard HC-SR04 at 3.3V.

Testing the 3.3V tolerant HC-SR04 variants. These may be red and labelled as

"1652".

Explore other similar sensors like the (single transducer) Maxbotix range and

ones that use different techniques: 

SHARP sensors with infrared arrays,

STMicroelectronics Time of Flight (ToF) sensors.

Further Reading

Element 14: The Learning Circuit 85: How Do Ultrasonic Distance Sensors

Work? () (video)

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

◦ 

◦ 

• 

©Adafruit Industries Page 19 of 20

https://www.element14.com/community/docs/DOC-96017/l/the-learning-circuit-85-how-do-ultrasonic-distance-sensors-work?CMP=SOM-TWITTER-PRG-E14PRESENTS-LCIRCUIT-EP85
https://www.element14.com/community/docs/DOC-96017/l/the-learning-circuit-85-how-do-ultrasonic-distance-sensors-work?CMP=SOM-TWITTER-PRG-E14PRESENTS-LCIRCUIT-EP85


Maxbotix Ultrasonic Rangefinder - LV-EZ1 

LV-EZ1 Maxbotix Ultrasonic Rangefinder

provides very short to long-range

detection and ranging, in an incredibly

small package. It can detect objects from

0-inches to 254-inches...

https://www.adafruit.com/product/172 

IR distance sensor includes cable

(20cm-150cm) 

This SHARP distance sensor bounces IR

off objects to determine how far away

they are. It returns an analog voltage that

can be used to determine how close the

nearest object is. Comes...

https://www.adafruit.com/product/1031 

Adafruit VL53L0X Time of Flight Distance

Sensor - ~30 to 1000mm 

The VL53L0X is a Time of Flight distance

sensor like no other you've used! The

sensor contains a very tiny invisible laser

source, and a...

https://www.adafruit.com/product/3317 

©Adafruit Industries Page 20 of 20

https://www.adafruit.com/product/172
https://www.adafruit.com/product/172
https://www.adafruit.com/product/1031
https://www.adafruit.com/product/1031
https://www.adafruit.com/product/1031
https://www.adafruit.com/product/3317
https://www.adafruit.com/product/3317
https://www.adafruit.com/product/3317

	Distance Measurement with Ultrasound
	Table of Contents
	Overview
	Connect the Sensor
	Simple MakeCode
	More Advanced MakeCode
	Speed of Sound
	Range Selection
	New Graph v1
	New Graph v2
	The Ultrasound Pulses
	Going Further


	Overview
	Parts

	Connect the Sensor
	Simple MakeCode
	Description and Discussion

	More Advanced MakeCode
	Speed of Sound
	Description and Discussion

	Range Selection
	Description and Discussion

	New Graph v1
	New Graph v2
	Description and Discussion

	The Ultrasound Pulses
	Going Further
	Ideas for areas to explore
	Further Reading


