
Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 1

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

General: info@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com

Stamp PLC (#30064)
BASIC Stamp Programmable Logic Controller Package

Introduction

The Stamp PLC is a Program Logic Controller that is perfectly sized for automating small machines.
Specified by Parallax, Inc., the Stamp PLC was designed by Lawicel Soft-&Hard of Sweden. Parallax and
Lawicel have combined their expertise to deliver a PLC that represents the next stage of evolution in the
small-scale PLC market.

PLCs are microcontrollers that are "pre-packaged" to withstand the hazards of an industrial environment.
Specifically, their inputs and outputs are optically isolated, the outputs are fully protected, and their
internal components are electrically tough and rather immune to noise typically present in industrial
environments. Furthermore, the Stamp PLC is housed by a strong and sleek enclosure that offers an
integral DIN rail mount.

Packing List

Verify that your Stamp PLC kit is complete in accordance with the list below:

• Stamp PLC hardware
• Serial Cable
• Documentation
• Small bag with four shunts inside

Optionally, you can purchase the MAX1270 A/D Converter 12-bit, 8 channel 4-20 mA A/D converter. This
is available from Parallax web site http://www.parallax.com/detail.asp?product_id=604-00026. You will
also need to provide a power supply (see below in the Power Supply and Connection section).

Demonstration and example software files used in this documentation may be downloaded from
http://www.parallax.com/detail.asp?product_id=30064.

Features

• 10 Digital Inputs. Eight of these inputs are grouped together courtesy of an on-board shift
register. BASIC Stamps have built-in commands to read these with ease. The remaining two
inputs are read directly by the BASIC Stamp. All inputs are optically isolated.

• 8 Digital Outputs are optically isolated, electrically and thermally protected.
• 4 Analog Inputs (optional). Installing an optional A/D converter into its socket adds four analog

input channels. Each channel can be independently configured as 4-20mA, 0-5 VDC, -5 to +5
VDC, -10 to +10 VDC, and has 12-bits of resolution.

• Front Panel LEDs indicate the status of all ten inputs and all eight outputs via a light-pipe array.
• Heavy-duty power supply has built-in noise protection.

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 2

• RS-232 Serial Port Once programming is completed, the on-board serial port can be used to send
and receive serial data1.

• BASIC Stamp socket accommodates any 24-pin BASIC Stamp. This means that this PLC can do
virtually anything that a BASIC Stamp can perform. Logic functions, numerical computation,
conditional branching, even non-volatile memory for data-logging.

Additional Features

• No proprietary software to buy; you may always download the latest BASIC Stamp editor
software free of charge from www.parallax.com

• PBASIC Language: this language was designed to be straightforward and easy to use without a
compiler. The PBASIC language can be learned by anyone, and can be mastered within a few of
hours.

• Free Tech-Support: Call or email us with your questions.
• Resources: The BASIC Stamp has thrived for more than 13 years, and as a result, there are

many, many resource websites and books dedicated to Stamps and the application thereof.
• Built-In Debugger: Connect the serial cable to a PC running the software and you can use the

debugger to help you debug your program and/or report data.

Getting Started

To begin using your Stamp PLC, simply follow the instructions in the next few sections. Be sure that the
Stamp PLC is de-energized while the unit is apart and for all steps requiring you to connect or disconnect
wires, etc. After the connections are made, the following sections walk you through basic programming
techniques used to access the Stamp PLC's inputs and outputs.

Opening the Enclosure

At first, this enclosure may seem to be a bit of an enigma. A closer examination of the bottom of the
enclosure will reveal three small slots near the corners. By inserting a small, flat-bladed screwdriver into
these slots, each catch in turn can be positioned to allow the two halves of the enclosure to be
separated. As the third catch is released, watch for the small spring and the red latch as they will be
loose and can easily become lost.

Figure 1: Opening the Stamp PLC Enclosure

Figure 2: BASIC Stamp Plugged into the Stamp PLC

1 The Javelin Stamp's programming port currently has limited run-time functionality. For a work-around solution, please contact Parallax Tech
Support (916) 624-8333.

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 3

Installing the BASIC Stamp

Once the cover is removed, install the BASIC Stamp Module (sold separately) into the 24-pin IC socket
provided observing the proper orientation. Be sure to get each pin into its respective socket and to not
bend pins over. Please refer to Figure 2 ensure you have installed the BASIC Stamp correctly.

Installing the MAX1270 A/D Converter Chip

If you have purchased the optional MAX1270 A/D Converter, now is the best time to install it. Locate the
28-pin IC socket provide and install the MAX1270 observing the proper orientation. Please refer to the
photo on the right to ensure you have installed the MAX1270 correctly.

Figure 3: Installing the Max1270 A/D

Once the BASIC Stamp IC and the optional A/D converter are properly installed re-assemble the
enclosure. Be sure that the spring, red latch, and the front cover are properly aligned prior to snapping
the two halves of the enclosure together.

Installing the 4-20mA Shunts

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 4

For each analog signal you wish to read that is a 4-20mA current loop you will need to install a shunt at
this time. The shunt locations correspond to the analog channels they are adjacent to. Figure 4 shows
the locations of the shunts relative to the MAX1270 A/D converter IC. It also shows the shunt for analog
input channel 1 installed properly.

Figure 4: Oblique view of the 4-20mA Shunt Locations

Programming Port Connection

Connections Sout, Sin, ATN, and GND are for the serial port. This diagram depicts exactly how to wire
these connections to a standard DB9 PC serial port. Please note the jumper wire connecting pin-6 to pin-
7 on the DB9 is not necessary providing that you use BASIC Stamp Editor software version 1.2 (or later).

Figure 5: Stamp PLC with Serial Port and Power Connected

1

2

3

4

6

5

7

9

8

DB9 Male

Vss

+

24VDC D 10IN
D GNDIN

GND
+24 VDC

D 9IN
D 8IN
D 7IN
D 6IN
D 5IN
D 4IN
D 3IN
D 2IN
D 1IN
GND

SIN
ATN

SOUT

D 8OUT
D GNDOUT

D 7OUT
D 6OUT
D 5OUT
D 4OUT

D V+OUT
D 1OUT
D 2OUT
D 3OUT

A GNDIN
A GNDIN

A 4IN

A 2IN
A 3IN

A 1IN
OUT 5VDC

#30064

www.parallax.com

Figure 6: Serial Port Cable Detail

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 5

 Brown
 Red
 Orange

Yellow

Electrical tape

Female DB9

Power Supply and Connection

The Stamp PLC was designed to be powered by a 24 VDC supply. If you are simply running the Stamp
PLC on the bench-top, you can use any 24VDC @ >=300mA supply. Parallax offers a small 24VDC @
600mA supply, (Order #750-00004), suitable for bench-top experimentation with the Stamp PLC. If
you are installing the Stamp PLC for use in the field, be sure to properly size your 24VDC supply to match
the entire load, including digital outputs. The small 24 VDC supply offered by Parallax is not suitable for
most field installations as it does not supply sufficient current to power most output devices.

Do not use an AC supply, doing so will damage the Stamp PLC and void the warranty.

To install the power supply issued by Parallax, remove it from its packaging and cut off the 2.1mm power
connector. Be sure that the cut is very close to the power connector, and is not close to the power
supply. The striped wire is the positive lead. Connect the positive lead of your power supply to the +24
VDC pin. Connect the negative lead to the adjacent terminal labeled GND. When completed, your power
supply connection should resemble the image in Figure 7.

Figure 7: Power Supply, connected to Stamp PLC.

POWER

24VDC
+-

POWER SUPPLY

D 10IN
D GNDIN

GND
+24 VDC

D 9IN
D 8IN
D 7IN
D 6IN
D 5IN
D 4IN
D 3IN
D 2IN
D 1IN
GND

SIN
ATN

SOUT

D 8OUT
D GNDOUT

D 7OUT
D 6OUT
D 5OUT
D 4OUT

D V+OUT
D 1OUT
D 2OUT
D 3OUT

A GNDIN
A GNDIN

A 4IN

A 2IN
A 3IN

A 1IN
OUT 5VDC

#30064

www.parallax.com

If you are using a different supply, follow these instructions: ensure the power supply is off, connect the
positive lead of your power supply to the +24 VDC pin, connect the negative lead to the adjacent
terminal labeled GND.

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 6

Test Program

Once the Editor has been installed, and you have the power and serial connections made, apply power
and launch the Editor. Hit Ctrl-I to identify the BASIC Stamp. If all is well, the software will be able to
locate which port the Stamp PLC is connected to and identify which type of BASIC Stamp is inside. If you
have trouble getting the Editor to "find" the Stamp PLC, either email or call our technical support for help.
The email address is: support@parallax.com. Our phone number is: (916) 624-8333.

Program the BASIC Stamp2 within the Stamp PLC. Enter the following code in the Editor:

'{$STAMP BS2} ' Stamp type directive
Main: ' Marks the start of the main program
 DEBUG "Hello World!" ' Send "Hello World!" to the debug window

Once the code above is entered, simply click on the run button, or hit Ctrl-R, or click on Run->Run, any
of these will cause the software to compile, download, and run the program. Upon completing the
download, a debug window will open automatically and the words "Hello World!" will appear. If you like,
close the debug window, change the text within the quotes in the debug command, and run the new
program. Doing this a few times can really help you get the hang of it.

Writing to Digital Outputs

Safety Notice! The digital outputs are (essentially) tied directly to the BASIC Stamp I/O pins P8 through
P15. This is necessary for safety reasons. If anything "goes wrong" i.e. power interruptions, spurious
resets, program errors, etc., the BASIC Stamp automatically reverts the outputs to inputs for a period of
18mS before the BASIC Stamp program can restart and take control of the outputs again. This causes
the outputs to cease driving, and thereby stops motors and other output devices. When designing your
system and programming it, you MUST design it to fail to a safe condition.

Figure 8: Typical Output Connection

+24VDC

+ 24VDC
solenoid

Vss

D 10IN
D GNDIN

GND
+24 VDC

D 9IN
D 8IN
D 7IN
D 6IN
D 5IN
D 4IN
D 3IN
D 2IN
D 1IN
GND

SIN
ATN

SOUT

D 8OUT
D GNDOUT

D 7OUT
D 6OUT
D 5OUT
D 4OUT

D V+OUT
D 1OUT
D 2OUT
D 3OUT

A GNDIN
A GNDIN

A 4IN

A 2IN
A 3IN

A 1IN
OUT 5VDC

#30064

www.parallax.com

The digital outputs are tied to the BASIC Stamp I/O pins P8 through P15 via electrically protected, high-
side drivers3. This makes it very easy to write to the digital outputs. The following mini-program
configures P14 as an output and drives it low (turns it on).

2 This document assumes that you are using the BASIC Stamp 2, although you may use any of the 24-pin BASIC Stamps offered by Parallax, Inc. Be

aware that other types of stamps may run at different speeds. In these cases, time-critical operations will be affected and will need to have their
parameters adjusted.

3 Note: The Stamp PLC uses the IPs512G for its high current driver. To find out more about the IPs512G r please see 1st two pages of the data sheet
we attached to this manual.

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 7

'{$STAMP BS2} ' Stamp type directive
Main:
LOW 14 ' Make P14 and output and drive it low (turn on)

Please carefully observe the behavior of the LED on the front of the Stamp PLC. You should see it pulse
off for a fraction of a second (18mS), then remain on steadily for ~2.3 seconds. This behavior is normal,
considering the fact that our program is incomplete.

Every BASIC Stamp has a built-in watchdog timer. A watchdog timer monitors the program's behavior
and always counts down. If the watchdog timer ever expires, it automatically resets the Stamp and the
user program (your basic program) starts over from the beginning. Each time a valid Stamp instruction is
completed, the watchdog timer is reset, thereby staving off a watchdog reset. Why is the reset occurring
in the example above? The reason is that we have not specified what the Stamp is to do after completing
the "LOW 14" command. Essentially, the imaginary pointer that points to "the next instruction to do" has
been allowed to "fall off into the weeds". To make this program complete and to keep our program
pointer on the path, it is necessary to contain Stamp programs within a loop.

'{$STAMP BS2} ' Stamp type directive
'{$PBASIC 2.5} ' Stamp expanded syntax directive
Main:
LOW 14 ' Make P14 and output and drive it low (turn on)
DO : LOOP ' Wait here until hard reset

Amending your program to reflect the changes made above should rectify the watchdog reset problem.
In other words, the LED representing P14 will remain on steadily. It is important to understand the
nature of a watchdog reset. Depending on your program, a logical error in your program could cause a
watchdog reset and you may not notice it if you don't know what to look for. Please be certain that your
program is functioning exactly as designed, (i.e. no resets), before placing it in service.

The PBASIC syntax offers many features that, if used, can greatly enhance the readability of your Stamp
code. It is desirable to make your program as readable as possible. Doing so will make bugs easier to
find, and perhaps three years from now, when a customer requests a function added to your program
and you've forgotten how it works, a brief read through your program and it's comments reveal just how
everything works. One way to enhance the readability of your program is to use descriptive aliases and
comments where possible.

'{$STAMP BS2} ' Stamp type directive
'{$PBASIC 2.5} ' Stamp expanded syntax directive

Pump PIN 14 ' P14 is connected to the pump output

Main:
DO
LOW Pump ' Turn on the Pump
PAUSE 1000 ' let it run for 1 second
HIGH Pump ' Turn off the Pump
PAUSE 10000 ' Wait for 10 seconds

LOOP ' then repeat

As you can see, the program has been modified to switch on the pump every ten seconds for duration of
one second.

The output drivers used by the Stamp PLC are fully protected high-side drivers. This means that if too
much current is drawn, or if they get too hot, they shutdown automatically. Additionally, once they cool

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 8

down they will automatically start up. The BASIC Stamp does not know if this happens, so again, devote
a significant amount of time to think about how to make your program and how the Stamp PLC is
connected absolutely fail-safe. The diagram to the right depicts how to connect an output device, and
the output power supply, to the Stamp PLC.

Reading Digital Inputs

Digital inputs 1-8 are multiplexed (or grouped) into three I/O lines courtesy of a 74HC165 parallel in -
serial out shift register. All Stamps have a built-in command (SHIFTIN) to assist in reading this type of
device. When the 74HC165 is read, the status of the inputs will be loaded into the corresponding bits of
the variable InBits. The following program will retrieve and display digital inputs 1-8.

'{$STAMP BS2} ' Stamp type directive
'{$PBASIC 2.5} ' Stamp expanded syntax directive

inBits VAR Byte ' inBits contains inputs 1-8
Clk PIN 0
Load PIN 1
Dat PIN 2

Main:
DO
HIGH Load ' Get 8 inputs from shift-register
SHIFTIN Dat,Clk, MSBPRE, [inBits]
LOW Load ' Display 8 inputs in a binary fashion
DEBUG "Digital Inputs:", IBIN8 inBits, CR
PAUSE 1000 ' Wait for 1 second

LOOP ' then repeat

Figure 8: Typical Input Connection

Vss

+24VDC

D 10IN
D GNDIN

GND
+24 VDC

D 9IN
D 8IN
D 7IN
D 6IN
D 5IN
D 4IN
D 3IN
D 2IN
D 1IN
GND

SIN
ATN

SOUT

D 8OUT
D GNDOUT

D 7OUT
D 6OUT
D 5OUT
D 4OUT

D V+OUT
D 1OUT
D 2OUT
D 3OUT

A GNDIN
A GNDIN

A 4IN

A 2IN
A 3IN

A 1IN
OUT 5VDC

#30064

www.parallax.com

Inputs 9-10 are accessed directly. They are not part of the shift register, and as a result, have their own
addresses. Input 9's I/O address is 6, and input 10's I/O address is 7. The following program listing
shows how to access Inputs 9 and 10, and does so using conditional branching statements.

'{$STAMP BS2} ' Stamp type directive
'{$PBASIC 2.5} ' Stamp expanded syntax directive

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 9

Main:
DO
IF IN6 = 0 THEN DEBUG "Input 9 Pressed!",CR
IF IN7 = 0 THEN DEBUG "Input 10 Pressed!",CR
PAUSE 250 ' Wait for 1/4 second

LOOP ' then repeat

Please note the conditional expression within the IF statement; it is true when the value of the inputs is
0. This is because the idle state of the optically isolated inputs is high. Therefore, when NO voltage is
present at the input terminal, 5 VDC will be present on the Stamp input pin. The converse is also true: if
the signal voltage (typically 12-36 VDC) is present on the input terminal, 0 VDC will be preset on the
Stamp input. All digital inputs reference the ground at the terminal Din GND. The diagram to the right
shows how a typical input could be connected.

Analog Inputs

Analog inputs aren't needed for every PLC application. When they are required, the necessity for a high-
quality, low-noise, full-featured Analog to Digital Converter becomes paramount. Since good ADCs aren't
cheap, we designed it to be optional. That way, the core cost of the Stamp PLC is as low as possible.

Maxim's 12-bit, multi-range, 8-channel MAX1270 A/D Converter is the ADC of choice. This ADC can
accept the following inputs: 0-5, 0-10, ±5, ±10 volts DC. The range of the input is selected by writing a
configuration byte to the ADC. BASIC Stamps have built-in commands that configure and read ADCs with
ease. In addition to the aforementioned ranges, the user may install a shunt (jumper) within the Stamp
PLC, thereby configuring that channel to receive 4-20mA current loop signal.

Reading Analog Inputs

Configuring and reading the analog inputs is straightforward. The Stamp's built-in commands, SHIFTIN
and SHIFTOUT, make the whole process quite easy and shrinks the code down to a manageable size.

Figure 9: Stamp PLC to Potentiometer

24 kΩ Pot

D 10IN
D GNDIN

GND
+24 VDC

D 9IN
D 8IN
D 7IN
D 6IN
D 5IN
D 4IN
D 3IN
D 2IN
D 1IN
GND

SIN
ATN

SOUT

D 8OUT
D GNDOUT

D 7OUT
D 6OUT
D 5OUT
D 4OUT

D V+OUT
D 1OUT
D 2OUT
D 3OUT

A GNDIN
A GNDIN

A 4IN

A 2IN
A 3IN

A 1IN
OUT 5VDC

#30064

www.parallax.com

The first step is to connect the necessary circuitry while the Stamp PLC and your sensor (in our example
a potentiometer) are de-energized. The connection diagram to the right demonstrates one way you can
connect a potentiometer to an analog input. Note that the "Out 5VDC" terminal is supplying 5 Vdc to the
circuit. This output comes from the Stamp's regulator. Do not draw more than 40mA from this terminal.
This 5VDC output is referenced to the Stamp's ground.

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 10

The A/D Converter is configured by sending it a control byte. The control byte is made up of
configuration bits4. The meaning of each configuration bit is defined by the chart in Figure 10.

Figure 10: A/D Converter control byte legend
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Start SEL2 SEL1 SEL0 RNG BIP PD1 PD0

1 1 W X Y Z 0 0

Figure 11: A/D Converter
bit table

Figure 12: A/D Converter bit table

Analog
Channel W X Y Z Range

4 0 0 0 0 0 VDC to +5 VDC

3 0 1 0 1 -5 VDC to +5 VDC

2 1 0

1 0 0 VDC to +10VDC

1 1 1 1 1 -10 VDC to +10 VDC

The entire process of configuring the ADC and retrieving the conversion results can be accomplished with
just a few PBASIC commands. The following program has been written to configure the ADC for 0-5 VDC
and read the analog voltage present at Ain 2.

'{$STAMP BS2}
'{$PBASIC 2.5}
'
ClkAdc PIN 0 ' A/D clock
CsAdc PIN 3 ' Chip Select for ADC
AoutAdc PIN 4 ' A/D Data out
AinAdc PIN 5 ' A/D Data in
adResult VAR Word

Main:
DO
LOW CsAdc
SHIFTOUT AoutAdc, ClkAdc, MSBFIRST, [%11100000] 'Ch2 0-5 VDC
HIGH CsAdc
LOW CsAdc
SHIFTIN AinAdc, ClkAdc, MSBPRE, [adResult\12]
HIGH CsAdc
DEBUG " ADC2:", SDEC adResult, CR

LOOP

The LOW CsAdc command sets the Chip Select input of the ADC low, thereby enabling communications
on the ADC. The SHIFTOUT command sends the configuration to the ADC. The "HIGH CSadc" signals
the completion of the configuration and the start of the data conversion. The data conversion process
requires at least 9.09 uSec to complete. Since the inter-instruction time for all Stamps is higher than this,
no additional delay is required. The next "LOW CDadc" command enables communication for the reply.
The SHIFTIN command retrieves the converted data. The following "HIGH CSadc" command ends the
communications. The DEBUG command formats and displays the data for our viewing ease.

4 You may have noticed that the MAX1270 is an 8 channel A/D converter, (yet only 4 channels are employed). The fact that there are three channel
select bits is a subtle hint. Analog input channels 1:4 are mapped to A/D converter channels 7:4. It was decided to limit the number of analog input
channels to accommodate the number of connections available in this small enclosure.

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 11

This is a 12-bit ADC. As a result, the two least significant bit seem to jump around quite a bit. Here are
a couple of suggestions on how to deal with this.

1) If you do not need 12-bits of resolution, simply divide the number down to the desired resolution.
Ex: if you require 8-bits of resolution, just: "adresult = adresult>>4". This will eliminate the
lower four bits are provide a nice stable number.

2) If your application requires 12-bits of resolution, you may average or filter the result. Averaging

is just that - simply take a number of samples, each time adding the sample to an accumulator,
then divide the accumulator by the number of samples taken. This approach will provide a stable
number and is a satisfactory approach for a control system whose numbers change relatively
slowly. Filtering is similar to averaging in that several samples are taken and averaged, the
difference is the way that the numbers are sampled and averaged.

The first difference is that the samples taken are the latest four samples. Each time a new sample is
taken the oldest is forsaken, replaced with its next newer sample. Essentially, this is a moving average.
After each new sample is taken, the average is calculated based on the new sample and the previous
three. This approach works well for control systems with fast moving variables. Contact Parallax if you
are interested in implementing a PID control algorithm, which is beyond the scope of this document.

Due to the protective input circuitry present on each analog input channel, the value given for each
channel is attenuated by approximately 4%. For example, if you were to read an input of exactly 5 VDC,
the number given would be about 3932 instead of 4095. The easiest way to account for this difference is
to multiply the number read by 1.042. This is easily done within the BASIC Stamp’s program. Please
review the Stamp PLC Core program listed within this document.

Stamp PLC Demo Program

' ===
'
' File....... StampPLC.BS2
' Purpose.... Stamp PLC Core Routines and Framework for Apps
' Author..... Parallax, Inc. (Copyright 2003 - All Rights Reserved)
' E-mail..... support@parallax.com
' Started....
' Updated.... 21 DEC 2003
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' This program provides a set of core routines that can be used to create
' operational programs for the Stamp PLC. Conditional compilation is used
' so that the code can run on any 24-pin BASIC Stamp 2 module.
'
' Notes on reading ADC channels:
'
' The inputs are protected and reduce the voltage felt on the MAX1270 input
' pins. This accounts for code to get a full-scale count of 4095.
'
' The raw value (counts) from the ADC will be returned in "adcRaw", converted

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 12

' to millivolts, and returned in "mVolts." Be aware that in bipolar mode the
' value of "mVolts" is signed. A "1" in BIT15 of "mVolts" indicates a negative
' value. The BASIC Stamp does not support division or multiplication of
' negative values.

' -----[Revision History]--
'
' 21 DEC 2003 : Updated to correctly bit-align output aliases with OUTH

' -----[I/O Definitions]---

Clock PIN 0 ' shared clock
Ld165 PIN 1 ' 74HC165 load
Di165 PIN 2 ' 74HC165 data in (from)
AdcCS PIN 3 ' ADC chip select
AdcDo PIN 4 ' ADC data out (to)
AdcDi PIN 5 ' ADC data in (from)

Di9 PIN 6 ' direct digital inputs
Di10 PIN 7

DOuts VAR OUTH ' direct digital outputs
DOutsLo VAR OUTC ' -- Do5 - Do8
DoutsHi VAR OUTD ' -- Do1 - Do4
Do1 PIN 14 ' updated 21-DEC-03
Do2 PIN 15
Do3 PIN 12
Do4 PIN 13
Do5 PIN 10
Do6 PIN 11
Do7 PIN 8
Do8 PIN 9

Sio CON 16 ' serial IO (prog port)

' -----[Constants]---

IsOn CON 1 ' for shadow regs
IsOff CON 0

DirectOn CON 0 ' for direct IO pins only
DirectOff CON 1

#SELECT $STAMP
#CASE BS2, BS2E, BS2PE
T1200 CON 813 ' for programming port
T2400 CON 396
T9600 CON 84
T19200 CON 32

#CASE BS2SX, BS2P
T1200 CON 2063
T2400 CON 1021
T9600 CON 240
T19200 CON 110

#ENDSELECT

Baud CON T9600 ' default (matches DEBUG)

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 13

Ain1 CON 0 ' analog channels
Ain2 CON 1
Ain3 CON 2
Ain4 CON 3

AdcUP5 CON 0 ' unipolar, 0 - 5 v
AdcBP5 CON 1 ' bipolar, +/- 5 v
AdcUP10 CON 2 ' unipolar, 0 - 10 v
AdcBP10 CON 3 ' bipolar, +/- 10 v
Adc420 CON 4 ' 4-20 mA input

' -----[Variables]---

digIns VAR Word ' shadow digital inputs
dInLo VAR digIns.LOWBYTE ' Din1 - Din8
dInHi VAR digIns.HIGHBYTE ' Din9 - Din10
dIn1 VAR digIns.BIT0
dIn2 VAR digIns.BIT1
dIn3 VAR digIns.BIT2
dIn4 VAR digIns.BIT3
dIn5 VAR digIns.BIT4
dIn6 VAR digIns.BIT5
dIn7 VAR digIns.BIT6
dIn8 VAR digIns.BIT7
dIn9 VAR digIns.BIT8
dIn10 VAR digIns.BIT9

digOuts VAR Byte ' shadow digital outputs
dOut1 VAR digOuts.BIT0 ' use Read_DigOuts to set
dOut2 VAR digOuts.BIT1
dOut3 VAR digOuts.BIT2
dOut4 VAR digOuts.BIT3
dOut5 VAR digOuts.BIT4
dOut6 VAR digOuts.BIT5
dOut7 VAR digOuts.BIT6
dOut8 VAR digOuts.BIT7

chan VAR Nib ' ADC channel (0 - 3)
mode VAR Nib ' ADC mode (0 - 4)
config VAR Byte ' configuration byte
adcRes VAR Nib ' ADC bits (1 - 12)
adcRaw VAR Word ' ADC result (raw)
mVolts VAR Word ' ADC in millivolts

bitMap VAR Byte ' for re-mapping IO bits

' -----[EEPROM Data]---

Project DATA "Stamp PLC Template", 0

AdcCfg DATA %11110000, %11100000, %11010000, %11000000 ' 0-5
DATA %11110100, %11100100, %11010100, %11000100 ' +/-5
DATA %11111000, %11101000, %11011000, %11001000 ' 0-10
DATA %11111100, %11101100, %11011100, %11001100 ' +/-10
DATA %11110000, %11100000, %11010000, %11000000 ' 4-20

' -----[Initialization]--

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 14

Setup:
LOW Clock ' preset control lines
HIGH Ld165
HIGH AdcCS

DOuts = %11111111 ' all outputs off
DIRH = %11111111 ' enable output drivers

adcRes = 12 ' use all ADC bits

' -----[Program Code]--

Main:

' demo - replace with your code
'
GOSUB Read_DigIns
DEBUG HOME, "Inputs = ", BIN10 digIns, CR, CR

' copy inputs to outputs
' -- Din9 --> Dout1
' -- Din10 --> Dout2
'
digOuts = digIns
GOSUB Update_DigOuts
IF (dIn9 = IsOn) THEN Do1 = DirectOn
IF (dIn10 = IsOn) THEN Do2 = DirectOn

' read single-ended analog inputs
' -- display input as millivolts
'
mode = AdcUP5
FOR chan = Ain1 TO Ain4
GOSUB Read_ADC
DEBUG "Ain", ("1" + chan), ".... ",

DEC (mVolts / 1000), ".", DEC3 mVolts, CR
NEXT

GOTO Main
'
' end of demo code

END

' -----[Subroutines]---

' Scans and saves digital inputs, DIn1 - DIn10
' -- returns inputs in "digIns" (1 = input active)

Read_DigIns:
PULSOUT Ld165, 15 ' load inputs
SHIFTIN Di165, Clock, MSBPRE, [dinLo] ' shift in
dinHi = 0 ' clear upper bits
dinHi.BIT0 = ~Di9 ' grab DIN9
dinHi.BIT1 = ~Di10 ' grab DIN10
RETURN

' Refreshes digital outputs, DOut1 - DOut8

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 15

' -- uses shadow register "digOuts" (1 = output on)
'
' 21-DEC-03 Update
' ----------------
' map bits in digOuts to physical connector

Update_DigOuts:
DOuts.BIT0 = ~digOuts.BIT6
DOuts.BIT1 = ~digOuts.BIT7
DOuts.BIT2 = ~digOuts.BIT4
DOuts.BIT3 = ~digOuts.BIT5
DOuts.BIT4 = ~digOuts.BIT2
DOuts.BIT5 = ~digOuts.BIT3
DOuts.BIT6 = ~digOuts.BIT0
DOuts.BIT7 = ~digOuts.BIT1
RETURN

' This routine can be used to refresh shadow register "digOuts" after
' direct manipulation of individual output bits.

Read_DigOuts:
dOut1 = ~DOuts.BIT6 ' map bits from Stamp port
dOut2 = ~DOuts.BIT7
dOut3 = ~DOuts.BIT4
dOut4 = ~DOuts.BIT5
dOut5 = ~DOuts.BIT2
dOut6 = ~DOuts.BIT3
dOut7 = ~DOuts.BIT0
dOut8 = ~DOuts.BIT1
RETURN

' Reads analog input channel (0 - 5 vdc)
' -- put channel (0 - 3) in "chan"
' -- pass mode (0 - 4) in "mode")
' -- raw value returned in "adcRaw"
' -- "adcRaw" converted to signed "mVolts"

Read_ADC:
READ AdcCfg + (mode * 4 + chan), config ' get config
LOW AdcCS ' select MAX1270
SHIFTOUT AdcDo, Clock, MSBFIRST, [config] ' send config byte
HIGH AdcCS ' deselect MAX1270
adcRaw = 0
LOW AdcCS
SHIFTIN AdcDi, Clock, MSBPRE, [adcRaw\12] ' read channel value
HIGH AdcCS

' adjust ADC count for input voltage divider
'
adcRaw = adcRaw + (adcRaw ** $D6C) MAX 4095 ' x ~1.05243

' millivolts conversion
' -- returns signed value in bipolar modes
' -- uses raw (12-bit) value
'
SELECT mode
CASE AdcUP5
mVolts = adcRaw + (adcRaw ** $3880) ' x 1.2207

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 16

CASE AdcBP5
IF (adcRaw < 2048) THEN
mVolts = 2 * adcRaw + (adcRaw ** $7100) ' x 2.4414

ELSE
adcRaw = 4095 - adcRaw
mVolts = -(2 * adcRaw + (adcRaw ** $7100))

ENDIF

CASE AdcUP10
mVolts = 2 * adcRaw + (adcRaw ** $7100) ' x 2.4414

CASE AdcBP10
IF (adcRaw < 2048) THEN
mVolts = 4 * adcRaw + (adcRaw ** $E1FF)

ELSE
adcRaw = 4095 - adcRaw
mVolts = -(4 * adcRaw + (adcRaw ** $E1FF))

ENDIF

CASE Adc420 ' -- 4000 to 20000
mVolts = 5 * adcRaw + (adcRaw ** $1666) ' x 5.0875

ENDSELECT

' adjust adcRaw for selected resolution
'
IF (adcRes < 12) THEN
adcRaw = adcRaw >> (12 - adcRes) ' reduce resolution

ENDIF

RETURN

Serial Communications

Once your program is loaded and running, you are free to use the serial port for "run-time"
communications. Each Stamp has built-in functions, (serin and serout), that allow you to talk to your
Stamp via a PC serial port, or allow the Stamp PLC to talk to other devices with RS-232 style serial ports.
In fact, this port can be used for a variety of useful functions. Here are a few sample programs that show
some of the possibilities.

Status Reporting

' ===
'
' File....... Stamp PLC_Report.BS2
' Purpose.... Typical PLC application whereby this unit listens for
' serial commands from a host controller.
' Author..... Parallax, Inc.
' E-mail..... support@parallax.com
' Started.... 26 JUN 2003
' Updated.... 26 JUN 2003
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 17

' -----[Program Description]---
' This program demonstrates how to periodically "listen" for a serial
' command while performing another task. When a serial command is
' received, it is parsed and acted upon. If no command is received
' within 5 seconds, the serial routine times out and returns to the
' user task.

' -----[Revision History]--

' -----[I/O Definitions]---

' -----[Constants]---

T1200 CON 813
T2400 CON 396
T9600 CON 84
T19200 CON 32

Baud CON T9600

DegSym CON $B0 ' degrees symbol

' -----[Variables]---

waxTemp VAR Byte
keyIn VAR Byte ' terminal input

' -----[EEPROM Data]---
' -----[Initialization]--

Startup:
waxTemp = 105
GOSUB Initialize

' -----[Program Code]--
Main:
DO
SERIN 16, Baud, 50, Run_Task, [keyIn] ' Run_Task if no input

LOOP UNTIL (keyIn = "W") ' wait for "W"

Ready_Prompt:
SEROUT 16, Baud, [CR, LF, "Ready!", CR]

Do_Command:
DO
SERIN 16, Baud, 5000, Back_To_Work, [keyIn] ' wait for command

SELECT keyIn ' process command
CASE "?"
SEROUT 16, Baud,

[CR, LF, "Wax Temperature = ",
DEC WaxTemp, DegSym, "F", CR]

CASE ELSE
IF (keyIn <> "X") THEN
SEROUT 16, Baud, [BELL] ' bell for invalid input

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 18

ENDIF
ENDSELECT

LOOP UNTIL (keyIn = "X")

Back_To_Work:
SEROUT 16, Baud, [CR, LF, "Returning to work"]
GOSUB Initialize

Run_Task: ' User task code goes here
SEROUT 16, Baud, ["."] ' -- progress indicator
GOTO Main

' -----[Subroutines]---

Initialize: ' setup for user task goes
SEROUT 16, Baud, [CR, LF, "Working"] ' goes here
RETURN

Sometimes it is necessary to query a PLC for a particular piece of information. The example above shows
how to create two modes within one program. The default mode is the working mode, and it splits its
time into two functions: running the user program (which has been omitted for clarity), and checks the
serial port to see if there is an input from the master, (you). The second mode is invoked if the proper
wake up character is received from the master. Once in this mode, data will be reported if the master
sends a "?" command. If no command is received for a period of 5 seconds or more, the program will
automatically revert to the first mode (running the user program and monitoring the serial line).

Password Protection

PLCs typically control machinery. Quite often, these machines and/or the products that they make are
worth quite a bit of money. Given this, security is an issue. To safeguard the program, and any
variables that should not be changed, it is sometimes necessary to control access to the PLC. A common
way to do this is to utilize a password.

' ===
'
' File....... Stamp PLC_Password.BS2
' Purpose.... Typical PLC application whereby this unit listens for a
' password on the serial port before allowing commands to be
' parsed.
' Author..... Parallax, Inc.
' E-mail..... support@parallax.com
' Started.... 25 JUN 2003
' Updated.... 25 JUN 2003
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
' This program demonstrates how to periodically "listen" for a password
' message on the serial port while performing another task. Once the
' correct password is given, the password may be altered or cleared.
' The password is stored in eeprom so it is non-volatile.

' -----[Revision History]--

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 19

' -----[I/O Definitions]---

' -----[Constants]---

T1200 CON 813
T2400 CON 396
T9600 CON 84
T19200 CON 32

Baud CON T9600

' -----[Variables]---

keyIn VAR Byte ' terminal input
serString VAR Byte(4)

' -----[EEPROM Data]---

' -----[Initialization]--

Startup:
GOSUB Read_Password ' Read password
IF keyIn = $FF THEN GOSUB Set_Password ' If not set, set it

' else, start main code

' -----[Program Code]--

Main:
SERIN 16, Baud, 500, Run_Program, [WAITSTR serString\4]
DEBUG CR, "Password accepted!"
DO ' Once password received
DEBUG CR, "C:> "
SERIN 16, Baud, [keyIn] ' get a command
SELECT keyIn ' process command
CASE "X"
GOTO Resume_Program

CASE "N"
GOSUB Set_Password

CASE "C"
GOSUB Clear_Password

CASE ELSE
DEBUG " : Invalid command",BELL

ENDSELECT
LOOP

Resume_Program:
DEBUG CR ' otherwise, run the

Run_Program: ' user's program
DEBUG "*" ' user program goes here
GOTO Main

' -----[Subroutines]---

Read_Password: ' Read password from eeprom

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 20

FOR keyIn = 0 TO 3
READ keyIn, serString(keyIn)

NEXT
keyIn = serString(0)
RETURN

Set_Password: ' User interface to enter
DEBUG CR, "Enter a 4-character password", CR ' password
SERIN 16, Baud, [STR serString\4]
DEBUG CR, "Confirm password: "
SERIN 16, Baud, [WAITSTR serString\4]
FOR keyIn = 0 TO 3 ' Write password to eeprom
WRITE keyIn,serString(keyIn)

NEXT
DEBUG CR, "Password set", CR, "Working!", CR
keyIn = "N"
RETURN

Clear_Password: ' Clear password in RAM
FOR keyIn = 0 TO 3 ' to $FF's and in eeprom
WRITE keyIn, $FF ' to "0"'s
serString(keyIn) = $30

NEXT
DEBUG CR, "Password cleared", CR
keyIn = "C"
RETURN

Remote Telemetry Unit

Data loggers are devices that record data to be retrieved at some later point in time. Another name for a
similar device is a Remote Telemetry Unit, or RTU. An RTU differs from a Data Logger in that it has a
limited amount of control ability. A good example of this type of RTU is a Dual Pump Controller. The
Dual Pump Controller is responsible for maintaining a parameter, like fluid level within a tank, by
controlling and monitoring two pumps.

• Before the advent of small microcontrollers, a simple float switch would have performed this task.
The Dual Pump Controller can do this as well as several other useful features:

• Rotate duty between two pumps – evening the wear.
• Use only one pump if the other is out of commission.
• Use both pumps if the level is very low.
• Record periodic tank levels and other parameters at periodic intervals.
• Record the amount of run-time of each pump.
• Send a notification if there is a fault with a pump.
• Transmit the data recorded when called for.

Our Dual Pump Controller sample program is not as full-featured as it could be, but is complete enough
to get you pointed in the right direction. Since it is a comparatively long listing, we will break it into
sequential segments and discuss each block as it comes. There's not a lot to discuss with the first block,
but reading the program description and the note are good first steps.

' ===
'
' File....... Stamp PLC_PumpController.BS2
' Purpose.... Dual Pump Controller. Example program.
'' Author..... Parallax, Inc.
' E-mail..... support@parallax.com
' Started.... 27 JUN 2003

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 21

' Updated.... 27 JUN 2003
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===
'
' -----[Program Description]---
' This program controls two pumps to maintain tank level. When the level
' falls below setpoint #1, the pump with the fewest number of hours is
' started. If the level should continue falling to setpoint#2, the other
' pump is started as well. During pump startup, the pump's aux contact
' and flow sensor are monitored TO determine whether or not the pump
' actually started. If a failure does occur, that pump is immediately
' shutdown and flagged as out-of-commission, and the other pump starts.
' While all of this is going on, data is logged on pump runtimes, tank
' level AND the serial port is monitored for commands and queries.
'
' Note: To more easily see this program work, you can change the constant
' in "Timer_Logic" from 3600 to 3 or so. This will effectively
' speed time up so you can watch all aspects of this program work.
' Also, you may wish to enable the DEBUG statements too.
'
' -----[Revision History]--

This next section defines the Stamp I/O pin connections, the variable sizes and names, and the size of
the record array used to store data collected. Note that some variables as declared are actually parts of
other variables.

' -----[I/O Definitions]---
AdcClk PIN 0 ' A/D clock input
SrClk PIN 0 ' HC165 clock input
Load PIN 1 ' Latch input for HC165
SrDin PIN 2 ' HC165 data input
AdcCs PIN 3 ' A/D chip select input
AdcDout PIN 4 ' A/D Data out
AdcDin PIN 5 ' A/D Data in
PumpA PIN 8 ' 1 turns on Pump A
PumpB PIN 9 ' 1 turnd on Pump B

' -----[Constants]---
T1200 CON 813
T2400 CON 396
T9600 CON 84
T19200 CON 32
Baud CON T9600

' -----[Variables]---
tankLevel VAR Word ' Actual level of the tank
timer VAR Word ' Sets the periodicity
runTimeA VAR Byte ' # hours that Motor A has run
runTimeB VAR Byte ' # hours that Motor B has run
inputs VAR Byte ' Inputs 1 - 8 from the HC165
tmp VAR Byte ' Temporary work variable
ptr VAR Byte ' Points to the current record
keyIn VAR Byte ' Variable for keyboard input
pumpStatus VAR Byte ' Status of both pumps
setPoint1 VAR Byte ' If level <, start 1 pump
setPoint2 VAR Byte ' If level <, start 2 pumps
startCode VAR Nib ' Desired pump configuration

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 22

' Inputs via HC165
flowA VAR Inputs.BIT0 '1 = Flow OK, 0 = No Flow
flowB VAR Inputs.BIT1
auxContactA VAR Inputs.BIT2 '1 = Motor ON, 0 = Motor off
auxContactB VAR Inputs.BIT3

' Bit variables
pumpAStatus VAR pumpStatus.LOWNIB
pumpBStatus VAR pumpStatus.HIGHNIB

' -----[EEPROM Data]---
Records DATA 0(256) ' Data table for records. Note! when

' the pointer > 64, the old data will
' be overwritten by new data because
' each record = 4 bytes.

' -----[Notes]---
' Pump Status Definition
' 0 OK Off 8 FAILED no flow
' 1 OK On 9 FAILED no aux contact
' 2-7 undefined A-F undefined
'
' Start Codes defined
' 1 PumpA desired
' 2 PumpB desired
' 3 Both pumps desired

The first section of code handles the initialization. The first line, in this case, is not necessary because the
Stamp clears all variables to zero automatically. The program consists of a large loop that is executed
over, and over again. Within the main loop, the serial port is examined. If the host has sent a character,
that character is received, parsed and executed. If no characters are received within one second, or once
the received character has been parsed the monitor and control section of code is executed.

' -----[Initialization]--

ptr = 0 ' Set record pointer to the start
setPoint1 = 100 ' First low level setpoint
setPoint2 = 50 ' Second low level setpoint

' -----[Main Program]--

Main:
SERIN 16, Baud, 1000, Control_Level, [keyIn]
SELECT keyIn
CASE "A"
SEROUT 16, Baud, [CR, "Runtime A:", DEC runTimeA, CR]

CASE "B"
SEROUT 16, Baud, [CR, "Runtime B:", DEC runTimeB, CR]

CASE "a"
runTimeA = 0
SEROUT 16, Baud, [CR, "Runtime A cleared", CR]

CASE "b"
runTimeB = 0
SEROUT 16, Baud, [CR, "Runtime B cleared", CR]

CASE "D"
IF ptr > 0 THEN
SEROUT 16, Baud, [CR, "Tank Level Report", CR, CR]
FOR tmp = 0 TO (ptr-4 MIN 1) STEP 4
READ tmp+3,keyIn
SEROUT 16, Baud, ["Hour: ", DEC3 tmp/4,

" Tank Level: ", DEC3 keyIn, CR]
NEXT
READ tmp-3,keyIn

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 23

READ tmp-2,tmp
SEROUT 16, Baud, ["Pump A Runtime: ", DEC3 keyIn,

" Pump B Runtime: ", DEC3 tmp, CR, CR]
ELSE
SEROUT 16, Baud, [CR, "No data yet!", CR, CR]

ENDIF
CASE ELSE
SEROUT 16, Baud, [" : Invalid command", BELL, CR, CR]

ENDSELECT

Control_Level:
GOSUB Read_Tank_Level
GOSUB Control_Pumps

' GOSUB Debug_Data
GOSUB Error_Handler
GOSUB Timer_Logic
GOTO Main

As described by the names of the subroutines, the tank level is read, pumps are controlled, errors are
handled, and the timer is maintained before returning to the top of the program where this sequence of
events proceeds forever.

Each main loop iteration takes one second. The Timer_Logic subroutine increments a register called
"Timer" each time through. After 3600 interations, (one hours time), data is recorded and the runtime of
each pump is updated. The Debug_Data subroutine is normally commented out, but can be enabled at
any time to "see" what's going on.

' -----[Subroutines]---

Timer_Logic:
timer = timer + 1
DEBUG ?timer
IF (timer > 3600) THEN

' DEBUG CR, "Data Recorded! Pointer = ",HEX2 ptr, CR
GOSUB Record_Data
timer = 0
IF (pumpAStatus = 1) THEN runTimeA = runTimeA + 1
IF (pumpBStatus = 1) THEN runTimeB = runTimeB + 1

ENDIF
RETURN

Debug_Data:
DEBUG "Status: ", HEX2 pumpStatus, CR
RETURN

Record_Data:
WRITE ptr+0,pumpStatus
WRITE ptr+1,runTimeA
WRITE ptr+2,runTimeB
WRITE ptr+3,tankLevel.LOWBYTE
ptr = ptr + 4
RETURN

Stop_Pumps:
HIGH PumpA: pumpAStatus = 0
HIGH PumpB: pumpBStatus = 0
RETURN

Error_Handler:

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 24

SELECT startCode
CASE 1
IF (PumpAStatus > 7) THEN GOSUB StartB

CASE 2
IF (PumpBStatus > 7) THEN GOSUB StartA

ENDSELECT
RETURN

Since the output drivers for the Stamp PLC are "high-side" drivers, you must issue a LOW command to
energize an output, and likewise, you must issue a HIGH command to de-energize an output. The
Error_Handler subroutine checks the start code of each pump before starting it. If the pump is out of
commission, the other pump is started instead.

Each start routine functions the same way. If the pump is OFF, it attempts to start it. If the aux-contact
responds and, within 2 seconds, the flow responds, then the pump is considered to be running properly.
If either the flow indication or aux-contactor input fails, then the pump is flagged as out-of-commission
and de-energized.

StartA:
IF (pumpAStatus = 0) THEN
LOW PumpA
GOSUB GetDigitalInputs
IF auxContactA = 0 THEN
PAUSE 2000
GOSUB GetDigitalInputs
IF FlowA = 0 THEN
pumpAStatus = 1

ELSE
pumpAStatus = 8
HIGH PumpA

ENDIF
ELSE
pumpAStatus = 9
HIGH PumpA

ENDIF
ENDIF
GOSUB Error_Handler
RETURN

StartB:
IF (pumpBStatus = 0) THEN
LOW PumpB
GOSUB GetDigitalInputs
IF auxContactB = 0 THEN
PAUSE 2000
GOSUB GetDigitalInputs
IF (FlowB = 0) THEN
pumpBStatus = 1

ELSE
pumpBStatus = 8
HIGH PumpB

ENDIF
ELSE
pumpBStatus = 9
HIGH PumpB

ENDIF
ENDIF
GOSUB Error_Handler
RETURN

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 25

The subroutine "Control_Pumps" decides which pump to start based on how much run-time is on each
pump. The idea here is to even the wear.

Control_Pumps:
SELECT tankLevel
CASE < setPoint2
startCode = 3
GOSUB StartA
GOSUB StartB

CASE < setPoint1
IF (pumpAStatus <> 1 AND pumpBStatus <>1) THEN
IF RunTimeA < RunTimeB THEN
startCode = 1
GOSUB StartA

ELSE
startCode = 2
GOSUB StartB

ENDIF
ENDIF

CASE ELSE
GOSUB Stop_Pumps

ENDSELECT
RETURN

GetDigitalInputs:
LOW load
PAUSE 1
HIGH load
PAUSE 1
SHIFTIN SrDin,SrClk, LSBPRE, [tmp]
RETURN

Read_Tank_Level: 'Reads tank level
LOW AdcCs
PAUSE 1
SHIFTOUT AdcDout, AdcClk, MSBFIRST, [240] 'Tank Level
HIGH AdcCs
PAUSE 1
LOW AdcCs
PAUSE 1
SHIFTIN AdcDin, AdcClk, MSBPRE, [tankLevel\12]
PAUSE 1
HIGH AdcCs
tankLevel = tankLevel>>4 'Divide it by 8

' DEBUG "Tank Level:", DEC3 tankLevel, " inches "
RETURN

The other two subroutines on this section of code are straight forward, but for the trick we play with the
"tankLevel" variable. The A/D converter is a 12-bit device. Our example program is only concerned with
the upper 8 bits of data, so we shift the data four positions to the right. This is a fast way to divide by 16
within a binary digital system. If you wanted more precision for you’re application simply forego this step,
but beware that you need to ensure the memory you use must accommodate the extra bits.

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 26

Figure 11: Connection Diagram

 DUAL ROW INPUTS DUAL ROW OUTPUTS
 10 ea GREEN LEDS 8 ea RED LEDS

This diagram identifies each connection on the Stamp PLC by name and by number. Please note that this
is a top view. Throughout this manual, the Stamp PLC connections may be referred to by either their
names or their numbers. Please refer to this diagram when making or changing connections. Each
connection can accept 18 to 12 gauge wire.

Figure 12: Front Panel LEDs

(A-K5) (P6) (Din 9) (Din 10) (P7) (A-K4)
(A-K7) (SR) (Din 7) (Din 8) (SR) (A-K6)
(A-K9) (SR) (Din 5) (Din 6) (SR) (A-K8)
(A-K11) (SR) (Din 3) (Din 4) (SR) (A-K10)
(A-K13) (SR) (Din 1) (Din 2) (SR) (A-K12)
(B-K2) (P9) (Dout 8) (Dout 7) (P8) (B-K3)
(B-K4) (P11) (Dout 6) (Dout 5) (P10) (B-K5)
(B-K6) (P13) (Dout 4) (Dout 3) (P12) (B-K7)
(B-K8) (P15) (Dout 2) (Dout 1) (P14) (B-K9)

Note: SR = connected to 74HC165 parallel in - serial out shift register

Safety Notes and Liability Disclaimer

Please bear in mind that these sample programs are just that - samples. They have been written to
show how certain functions could be implemented. Depending on you’re application, the implementation
shown may not be the way it should be implemented. When designing, implementing, and programming
PLCs that control equipment, use extreme care to ensure that your design always: starts in a predictable
fashion, performs within limits, is mechanically and electrically interlocked where applicable, and fails
safe.

Neither Parallax, Inc. nor Lawicel are responsible for special, incidental, or consequential damages
resulting from any breach of warranty, or under any legal theory, including lost profits, downtime,
goodwill, damage to or replacement of equipment or property, and any costs of recovering,
reprogramming, or reproducing any data stored in or used with Parallax products.

D 10IN
D GNDIN

GND
+24 VDC

D 9IN
D 8IN
D 7IN
D 6IN
D 5IN
D 4IN
D 3IN
D 2IN
D 1IN
GND

SIN
ATN

SOUT

D 8OUT
D GNDOUT

D 7OUT
D 6OUT
D 5OUT
D 4OUT

D V+OUT
D 1OUT
D 2OUT
D 3OUT

A GNDIN
A GNDIN

A 4IN

A 2IN
A 3IN

A 1IN
OUT 5VDC

#30064

www.parallax.com

UART SOUT
UART SIN
UART ATN
UART GND
DIG IN 1
DIG IN 2
DIG IN 3
DIG IN 4
DIG IN 5
DIG IN 6
DIG IN 7
DIG IN 8
DIG IN 9
DIG IN 10
DIG IN GND
IN 18-36VDC
IN 0VDC

OUT 5VDC
ANA IN 1

DIG OUT 1

ANA IN 2
ANA IN 3
ANA IN 4
ANA IN GND
ANA IN GND
DIG OUT V+

DIG OUT 2
DIG OUT 3
DIG OUT 4
DIG OUT 5
DIG OUT 6
DIG OUT 7
DIG OUT 8
DIG OUT GND

B-K17
B-K16
B-K15
B-K14
B-K13
B-K12
B-K11
B-K10
B-K9
B-K8
B-K7
B-K6
B-K5
B-K4
B-K3
B-K2
B-K1

A-K17
A-K16
A-K15
A-K14
A-K13
A-K12
A-K11
A-K10
A-K9
A-K8
A-K7
A-K6
A-K5
A-K4
A-K3
A-K2
A-K1

UART

DIGITAL IN

POWER IN

DIGITAL OUT

ANALOG IN

Parallax, Inc. • Stamp PLC (#30064) • Version 1.8 • 12/29/2003 Page 27

