D N¢ Z Rowin Calforia ss7es, Usa General: info@paralax.com
R /\ [Office: (916) 624-8333 Technical: support@parallax.com

Fax: (916) 624-8003 Web Site: www.parallax.com

Stamp PLC (#30064)
BASIC Stamp Programmable Logic Controller Package

Introduction

The Stamp PLC is a Program Logic Controller that is perfectly sized for automating small machines.
Specified by Parallax, Inc., the Stamp PLC was designed by Lawicel Soft-&Hard of Sweden. Parallax and
Lawicel have combined their expertise to deliver a PLC that represents the next stage of evolution in the
small-scale PLC market.

PLCs are microcontrollers that are "pre-packaged” to withstand the hazards of an industrial environment.
Specifically, their inputs and outputs are optically isolated, the outputs are fully protected, and their
internal components are electrically tough and rather immune to noise typically present in industrial
environments. Furthermore, the Stamp PLC is housed by a strong and sleek enclosure that offers an
integral DIN rail mount.

Packing List
Verify that your Stamp PLC kit is complete in accordance with the list below:

e Stamp PLC hardware

* Serial Cable

e Documentation

e Small bag with four shunts inside

Optionally, you can purchase the MAX1270 A/D Converter 12-bit, 8 channel 4-20 mA A/D converter. This
is available from Parallax web site http://www.parallax.com/detail.asp?product_id=604-00026. You will
also need to provide a power supply (see below in the Power Supply and Connection section).

Demonstration and example software files used in this documentation may be downloaded from
http://www.parallax.com/detail.asp?product_id=30064.

Features

« 10 Digital Inputs. Eight of these inputs are grouped together courtesy of an on-board shift
register. BASIC Stamps have built-in commands to read these with ease. The remaining two
inputs are read directly by the BASIC Stamp. All inputs are optically isolated.

» 8 Digital Outputs are optically isolated, electrically and thermally protected.

* 4 Analog Inputs (optional). Installing an optional A/D converter into its socket adds four analog
input channels. Each channel can be independently configured as 4-20mA, 0-5 VDC, -5 to +5
VDC, -10 to +10 VDC, and has 12-bits of resolution.

» Front Panel LEDs indicate the status of all ten inputs and all eight outputs via a light-pipe array.

* Heavy-duty power supply has built-in noise protection.

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003 Page 1

e RS-232 Serial Port Once programming is completed, the on-board serial port can be used to send
and receive serial data’.

« BASIC Stamp socket accommodates any 24-pin BASIC Stamp. This means that this PLC can do
virtually anything that a BASIC Stamp can perform. Logic functions, numerical computation,
conditional branching, even non-volatile memory for data-logging.

Additional Features

e« No proprietary software to buy; you may always download the latest BASIC Stamp editor
software free of charge from www.parallax.com

e PBASIC Language: this language was designed to be straightforward and easy to use without a
compiler. The PBASIC language can be learned by anyone, and can be mastered within a few of
hours.

» Free Tech-Support: Call or email us with your questions.

e Resources: The BASIC Stamp has thrived for more than 13 years, and as a result, there are
many, many resource websites and books dedicated to Stamps and the application thereof.

e Built-In Debugger: Connect the serial cable to a PC running the software and you can use the
debugger to help you debug your program and/or report data.

Getting Started

To begin using your Stamp PLC, simply follow the instructions in the next few sections. Be sure that the
Stamp PLC is de-energized while the unit is apart and for all steps requiring you to connect or disconnect
wires, etc. After the connections are made, the following sections walk you through basic programming
techniques used to access the Stamp PLC's inputs and outputs.

Opening the Enclosure

At first, this enclosure may seem to be a bit of an enigma. A closer examination of the bottom of the
enclosure will reveal three small slots near the corners. By inserting a small, flat-bladed screwdriver into
these slots, each catch in turn can be positioned to allow the two halves of the enclosure to be
separated. As the third catch is released, watch for the small spring and the red latch as they will be
loose and can easily become lost.

Figure 1: Opening the Stamp PLC Enclosure

Figure 2: BASIC Stamp Plugged into the Stamp PLC

1 The Javelin Stamp's programming port currently has limited run-time functionality. For a work-around solution, please contact Parallax Tech
Support (916) 624-8333.

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003 Page 2

- — e T
B o §5 -

—— 13 T3l

LS

el : . =

LI Ll Ll

[ttt} |
-
=

Gl

) EE =T 5

Installing the BASIC Stamp
Once the cover is removed, install the BASIC Stamp Module (sold separately) into the 24-pin IC socket

provided observing the proper orientation. Be sure to get each pin into its respective socket and to not
bend pins over. Please refer to Figure 2 ensure you have installed the BASIC Stamp correctly.

Installing the MAX1270 A/D Converter Chip
If you have purchased the optional MAX1270 A/D Converter, now is the best time to install it. Locate the

28-pin IC socket provide and install the MAX1270 observing the proper orientation. Please refer to the
photo on the right to ensure you have installed the MAX1270 correctly.

Figure 3: Installing the Max1270 A/D

Once the BASIC Stamp IC and the optional A/D converter are properly installed re-assemble the
enclosure. Be sure that the spring, red latch, and the front cover are properly aligned prior to snapping
the two halves of the enclosure together.

Installing the 4-20mA Shunts

Parallax, Inc. « Stamp PLC (#30064) = Version 1.8 = 12/29/2003 Page 3

For each analog signal you wish to read that is a 4-20mA current loop you will need to install a shunt at
this time. The shunt locations correspond to the analog channels they are adjacent to. Figure 4 shows
the locations of the shunts relative to the MAX1270 A/D converter IC. It also shows the shunt for analog
input channel 1 installed properly.

Figure 4: Oblique view of the 4-20mA Shunt Locations

Programming Port Connection

Connections Sout, Sin, ATN, and GND are for the serial port. This diagram depicts exactly how to wire
these connections to a standard DB9 PC serial port. Please note the jumper wire connecting pin-6 to pin-
7 on the DB9 is not necessary providing that you use BASIC Stamp Editor software version 1.2 (or later).

Figure 5: Stamp PLC with Serial Port and Power Connected

DB9 Male
Stamp PLC
OUT 5VDC—
AIN1—
AIN2—
AIN3—
AIN4—
AIN GND—
AIN GND—
DouT V+—
Dout1—
Dout2—
Dout3—
Dout4—
#30064 DOUT 5_
24VDC PARALLAX 7 DouT6—
www.parallax.com DOUT7—
= DoUT8—
3 DouT GND—
E
Vss

Figure 6: Serial Port Cable Detail

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003 Page 4

Female DB9

Electrical tape

Power Supply and Connection

The Stamp PLC was designed to be powered by a 24 VDC supply. If you are simply running the Stamp
PLC on the bench-top, you can use any 24VDC @ >=300mA supply. Parallax offers a small 24VDC @
600mA supply, (Order #750-00004), suitable for bench-top experimentation with the Stamp PLC. If
you are installing the Stamp PLC for use in the field, be sure to properly size your 24VDC supply to match
the entire load, including digital outputs. The small 24 VDC supply offered by Parallax is not suitable for
most field installations as it does not supply sufficient current to power most output devices.

Do not use an AC supply, doing so will damage the Stamp PLC and void the warranty.

To install the power supply issued by Parallax, remove it from its packaging and cut off the 2.1mm power
connector. Be sure that the cut is very close to the power connector, and is not close to the power
supply. The striped wire is the positive lead. Connect the positive lead of your power supply to the +24
VDC pin. Connect the negative lead to the adjacent terminal labeled GND. When completed, your power
supply connection should resemble the image in Figure 7.

Figure 7: Power Supply, connected to Stamp PLC.

(Stamg PI.C§

POWER SUPPLY

24VDC
18| |—Sout ouT5vDC—| | @i
I [—SIN AN1— [|@I
I [—ATN AN2— [@I
18| |—GND AN3— [@I
IO |—DINI AN4— [@1
IO |—DIN2 AINGND— | |@I
IO |—DIN3 AINGND— | |@I
IO |—DiN4 DoutV+—| | @I
IO |—DIN5 Dout1—| [@I
IO |—DING Dout2—| [@I
IO |[—DINT Dout3—| [@I
IO |—DIN8 Dout4—| [@I
IS |—DINY #0064 Dout5—| |@I
I®| [—DIN10 PAALAX E Dout6—| |@I
I®| [—DINGND vwwparalaxcom Dout7—| |@1
10| [—+24VDC Dout8—| |@I
10 7 —GND C€ Dout GND— k @l
f-— 1] C——,

If you are using a different supply, follow these instructions: ensure the power supply is off, connect the
positive lead of your power supply to the +24 VDC pin, connect the negative lead to the adjacent
terminal labeled GND.

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003 Page 5

Test Program

Once the Editor has been installed, and you have the power and serial connections made, apply power
and launch the Editor. Hit Ctrl-I to identify the BASIC Stamp. If all is well, the software will be able to
locate which port the Stamp PLC is connected to and identify which type of BASIC Stamp is inside. If you
have trouble getting the Editor to "find" the Stamp PLC, either email or call our technical support for help.
The email address is: support@parallax.com. Our phone number is: (916) 624-8333.

Program the BASIC Stamp? within the Stamp PLC. Enter the following code in the Editor:

'{$STAMP BS2}
Main:
DEBUG "Hello World!"

' Stamp type directive
' Marks the start of the main program
' Send "Hello World!" to the debug window

Once the code above is entered, simply click on the run button, or hit Ctrl-R, or click on Run->Run, any
of these will cause the software to compile, download, and run the program. Upon completing the
download, a debug window will open automatically and the words "Hello World!" will appear. If you like,
close the debug window, change the text within the quotes in the debug command, and run the new
program. Doing this a few times can really help you get the hang of it.

Writing to Digital Outputs

Safety Notice! The digital outputs are (essentially) tied directly to the BASIC Stamp 1/0 pins P8 through

/A\ P15. This is necessary for safety reasons. If anything "goes wrong" i.e. power interruptions, spurious
(L] I resets, program errors, etc., the BASIC Stamp automatically reverts the outputs to inputs for a period of
W 18mS before the BASIC Stamp program can restart and take control of the outputs again. This causes

the outputs to cease driving, and thereby stops motors and other output devices. When designing your
system and programming it, you MUST design it to fail to a safe condition.

Figure 8: Typical Output Connection

__('Stamp PLC >_

10| |— Sout ouT5vDC—| |1
19| |—SIN AN1—] |l
I9]| |—ATN AN2— | |21
I8| |—GND AN3—| @1
10| |[—DIN1 AN4—| @I
19| [—oiv2 ANGND— | |21 +24VDC
IQ| | —DIN3 AINGND— | | @I
10| |—DIN4 DouTV+— | | @1
19| |—DINS DouT 1— I I
10| | —DING Dout2—| |@I
I9| [—oiN7 pout 3— | @I + 24VDC
I9| |—DIN8 Dout 4— | | @I solenoid
IO| |—DIN9 #0064 Dout5— | QI
19| |—DIN10 PRALAX 2 Dout6—| |1
IQ| |—DINGND vwwparaliac.com Dout 7— | | @I
19| |—+24VDC Dout8—| |@1
I®7—GND I3 DOUT GND— kG.

e —

Vés

The digital outputs are tied to the BASIC Stamp 1/0 pins P8 through P15 via electrically protected, high-
side drivers®>. This makes it very easy to write to the digital outputs. The following mini-program
configures P14 as an output and drives it low (turns it on).

2 This document assumes that you are using the BASIC Stamp 2, although you may use any of the 24-pin BASIC Stamps offered by Parallax, Inc. Be

aware that other types of stamps may run at different speeds. In these cases, time-critical operations will be affected and will need to have their
parameters adjusted.
3 Note: The Stamp PLC uses the IPs512G for its high current driver. To find out more about the IPs512G r please see 1% two pages of the data sheet
we attached to this manual.

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003 Page 6

' {$STAMP BS2} ' Stanp type directive
Mai n:
LOW 14 ' Make P14 and output and drive it |low (turn on)

Please carefully observe the behavior of the LED on the front of the Stamp PLC. You should see it pulse
off for a fraction of a second (18mS), then remain on steadily for ~2.3 seconds. This behavior is normal,
considering the fact that our program is incomplete.

Every BASIC Stamp has a built-in watchdog timer. A watchdog timer monitors the program's behavior
and always counts down. If the watchdog timer ever expires, it automatically resets the Stamp and the
user program (your basic program) starts over from the beginning. Each time a valid Stamp instruction is
completed, the watchdog timer is reset, thereby staving off a watchdog reset. Why is the reset occurring
in the example above? The reason is that we have not specified what the Stamp is to do after completing
the "LOW 14" command. Essentially, the imaginary pointer that points to "“the next instruction to do" has
been allowed to "fall off into the weeds". To make this program complete and to keep our program
pointer on the path, it is necessary to contain Stamp programs within a loop.

' {$STAMP BS2} ' Stanp type directive

' {$PBASI C 2. 5} ' Stanp expanded syntax directive

Mai n:
LOW 14 ' Make P14 and output and drive it |low (turn on)
DO : LOOP " Wit here until hard reset

Amending your program to reflect the changes made above should rectify the watchdog reset problem.
In other words, the LED representing P14 will remain on steadily. It is important to understand the
nature of a watchdog reset. Depending on your program, a logical error in your program could cause a
watchdog reset and you may not notice it if you don't know what to look for. Please be certain that your
program is functioning exactly as designed, (i.e. no resets), before placing it in service.

The PBASIC syntax offers many features that, if used, can greatly enhance the readability of your Stamp
code. It is desirable to make your program as readable as possible. Doing so will make bugs easier to
find, and perhaps three years from now, when a customer requests a function added to your program
and you've forgotten how it works, a brief read through your program and it's comments reveal just how
everything works. One way to enhance the readability of your program is to use descriptive aliases and
comments where possible.

' { $STAMP BS2} ' Stanp type directive
' {$PBASI C 2. 5} ' Stanp expanded syntax directive
Pump PIN 14 ' P14 is connected to the punp out put
Mai n:
DO
LOW Punp ' Turn on the Punp
PAUSE 1000 " let it run for 1 second
H GH Punp ' Turn off the Punp
PAUSE 10000 " Wit for 10 seconds
LOCP ' then repeat

As you can see, the program has been modified to switch on the pump every ten seconds for duration of
one second.

The output drivers used by the Stamp PLC are fully protected high-side drivers. This means that if too
much current is drawn, or if they get too hot, they shutdown automatically. Additionally, once they cool

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003 Page 7

down they will automatically start up. The BASIC Stamp does not know if this happens, so again, devote
a significant amount of time to think about how to make your program and how the Stamp PLC is
connected absolutely fail-safe. The diagram to the right depicts how to connect an output device, and

the output power supply, to the Stamp PLC.

Reading Digital Inputs

Digital inputs 1-8 are multiplexed (or grouped) into three 1/0 lines courtesy of a 74HC165 parallel in -

serial out shift register. All Stamps have a built-in command (SHIFTIN) to assist in reading this type of
device. When the 74HC165 is read, the status of the inputs will be loaded into the corresponding bits of
the variable InBits. The following program will retrieve and display digital inputs 1-8.

' {$STAMP BS2} " Stanp type directive
' {$PBASI C 2. 5} ' Stanp expanded syntax directive
inBits VAR Byt e inBits contains inputs 1-8
ak PI N 0
Load PI' N 1
Dat PI N 2
Mai n:
DO
H CGH Load Get 8 inputs fromshift-register
SHI FTIN Dat, O k, MSBPRE, [inBits]
LOW Load Display 8 inputs in a binary fashion
DEBUG "Digital Inputs:", IBIN8 inBits, CR
PAUSE 1000 " Wit for 1 second
LOCP ' then repeat

Figure 8: Typical Input Connection

{ stameprc P

IS| |— Sout ouTs5vDC—| |@I
I0] |—SIN AN1—] |@I
I0] |—ATN AN2—] |@I
18] |—GND AN3—] @I
IS] |—DIN1 AN4—] |@I
18] |—DIN2 ANGND—| |@I
IS[|—DiN3 ANGND— | |@I
IS |—DiNg DouT V+— | | @I
IO| |—DIN5 DouTl—| |@1
+24VDC ISO| |—DING DouT2—| |@1
P e IS| |—DINT Dout3—| |@I
O———IS| |—DIN8 Dout4—| |@l
IS |—DIN9 #0064 Douts5— | [@I
IS| |—DIN10 PAALAX A Dout6—| |@I
IQ| | —DINGND vwwparaliax.com Dout7—| |@)
19| |—+24VvDC Dout8—| |@I
10 7 —GND 3 DOUTGND—| @1
—— —

<
»
7]

Inputs 9-10 are accessed directly. They are not part of the shift register, and as a result, have their own
addresses. Input 9's I/0 address is 6, and input 10's I/O address is 7. The following program listing

shows how to access Inputs 9 and 10, and does so using conditional branching statements.

' {$STAWVP BS2}
' {$PBASI C 2. 5}

Stanp type directive
St anp expanded syntax directive

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003

Page

8

Mai n:

DO
IF IN6 = 0 THEN DEBUG "I nput 9 Pressed!", CR
IF IN7 = 0 THEN DEBUG "I nput 10 Pressed!", CR
PAUSE 250 ' Wait for 1/4 second
LOCP ' then repeat

Please note the conditional expression within the IF statement; it is true when the value of the inputs is
0. This is because the idle state of the optically isolated inputs is high. Therefore, when NO voltage is
present at the input terminal, 5 VDC will be present on the Stamp input pin. The converse is also true: if
the signal voltage (typically 12-36 VDC) is present on the input terminal, 0 VDC will be preset on the
Stamp input. All digital inputs reference the ground at the terminal Din GND. The diagram to the right
shows how a typical input could be connected.

Analog Inputs

Analog inputs aren't needed for every PLC application. When they are required, the necessity for a high-
quality, low-noise, full-featured Analog to Digital Converter becomes paramount. Since good ADCs aren't
cheap, we designed it to be optional. That way, the core cost of the Stamp PLC is as low as possible.

Maxim's 12-bit, multi-range, 8-channel MAX1270 A/D Converter is the ADC of choice. This ADC can
accept the following inputs: 0-5, 0-10, 5, +10 volts DC. The range of the input is selected by writing a
configuration byte to the ADC. BASIC Stamps have built-in commands that configure and read ADCs with

ease. In addition to the aforementioned ranges, the user may install a shunt (jumper) within the Stamp
PLC, thereby configuring that channel to receive 4-20mA current loop signal.

Reading Analog Inputs

Configuring and reading the analog inputs is straightforward. The Stamp's built-in commands, SHIFTIN
and SHIFTOUT, make the whole process quite easy and shrinks the code down to a manageable size.

Figure 9: Stamp PLC to Potentiometer

(Stalng PLC 7

IS |—Sout ouT5vDC—| |@k
IO| |—SIN AN1—| @I <
10| | —ATN AN2—| |@I >
IS| |—GND AN3—| (@1 24kQ Pot S
I0| |—DIN1 AN4—] |QI r
I0| |—DIN2 AINGND— | |@I
IS| | —DIN3 AINGND— | |@1
IS| | —DINd DoutV+—| |@I
10| | —DIN5 Doutl—| |@I
IO| | —DING Dout2—| |@I
IS| | —DIN7 Dout3—| |@I
IS| | —DIN8 DouT4—| |@I
IO| |—DINO #0064 Dout5—| |@I
I0| | —DIN10 PAALAX 7 Dout6—| |@I
IS |—DIN GND wwwparliax.com Dout7—| |@I
10| |—+24VDC Dout8—| |@I
I®7—GND C€ DouT GND— | |@I
[A— S —

The first step is to connect the necessary circuitry while the Stamp PLC and your sensor (in our example
a potentiometer) are de-energized. The connection diagram to the right demonstrates one way you can
connect a potentiometer to an analog input. Note that the "Out 5VDC" terminal is supplying 5 Vdc to the
circuit. This output comes from the Stamp's regulator. Do not draw more than 40mA from this terminal.
This 5VDC output is referenced to the Stamp's ground.

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003 Page 9

The A/D Converter is configured by sending it a control byte. The control byte is made up of
configuration bits*. The meaning of each configuration bit is defined by the chart in Figure 10.

Figure 10: A/D Converter control byte legend
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0O
Start SEL2 SEL1 SELO RNG BIP PD1 PDO

1 1 w X Y Z 0 0
Figure 11: A/D Converter Figure 12: A/D Converter bit table
bit table

Analog

Channel w X Y Z Range
4 0 0 0 0 0 VDC to +5 VDC
3 0 1 0 1 -5 VDC to +5 VDC
2 1 0 1 0 0 vVDC to +10VDC
1 1 1 1 1 -10 vDC to +10 VDC

The entire process of configuring the ADC and retrieving the conversion results can be accomplished with
just a few PBASIC commands. The following program has been written to configure the ADC for 0-5 VDC
and read the analog voltage present at Ain 2.

' {$STAVP BS2}
' {$PBASI C 2. 5}

d kAdc PI N 0 ' A/D clock
CsAdc PI'N 3 ' Chip Select for ADC
Aout Adc PI N 4 ' A/ D Data out
Al nAdc PI N 5 ' AAD Data in
adResul t VAR Wor d
Mai n:
DO
LOW CsAdc
SHI FTOUT Aout Adc, d kAdc, MSBFI RST, [%41100000] ' Ch2 0-5 VDC
H GH CsAdc
LOW CsAdc
SHI FTI N Ai nAdc, O kAdc, MSBPRE, [adResult\12]
H GH CsAdc
DEBUG " ADC2:", SDEC adResult, CR
LOCP

The LOW CsAdc command sets the Chip Select input of the ADC low, thereby enabling communications
on the ADC. The SHIFTOUT command sends the configuration to the ADC. The "HIGH CSadc" signals
the completion of the configuration and the start of the data conversion. The data conversion process
requires at least 9.09 uSec to complete. Since the inter-instruction time for all Stamps is higher than this,
no additional delay is required. The next "LOW CDadc" command enables communication for the reply.
The SHIFTIN command retrieves the converted data. The following "HIGH CSadc" command ends the
communications. The DEBUG command formats and displays the data for our viewing ease.

4 You may have noticed that the MAX1270 is an 8 channel A/D converter, (yet only 4 channels are employed). The fact that there are three channel
select bits is a subtle hint. Analog input channels 1:4 are mapped to A/D converter channels 7:4. It was decided to limit the number of analog input
channels to accommodate the number of connections available in this small enclosure.

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 = 12/29/2003 Page 10

This is a 12-bit ADC. As a result, the two least significant bit seem to jump around quite a bit. Here are
a couple of suggestions on how to deal with this.

1) |If you do not need 12-bits of resolution, simply divide the number down to the desired resolution.
Ex: if you require 8-bits of resolution, just: "adresult = adresult>>4". This will eliminate the
lower four bits are provide a nice stable number.

2) If your application requires 12-bits of resolution, you may average or filter the result. Averaging
is just that - simply take a number of samples, each time adding the sample to an accumulator,
then divide the accumulator by the number of samples taken. This approach will provide a stable
number and is a satisfactory approach for a control system whose numbers change relatively
slowly. Filtering is similar to averaging in that several samples are taken and averaged, the
difference is the way that the numbers are sampled and averaged.

The first difference is that the samples taken are the latest four samples. Each time a new sample is
taken the oldest is forsaken, replaced with its next newer sample. Essentially, this is a moving average.
After each new sample is taken, the average is calculated based on the new sample and the previous
three. This approach works well for control systems with fast moving variables. Contact Parallax if you
are interested in implementing a PID control algorithm, which is beyond the scope of this document.

Due to the protective input circuitry present on each analog input channel, the value given for each
channel is attenuated by approximately 4%. For example, if you were to read an input of exactly 5 VDC,
the number given would be about 3932 instead of 4095. The easiest way to account for this difference is
to multiply the number read by 1.042. This is easily done within the BASIC Stamp’s program. Please
review the Stamp PLC Core program listed within this document.

Stamp PLC Demo Program

File....... St ampPLC. BS2
' Purpose.... Stanp PLC Core Routines and Framework for Apps
' Aut hor Paral | ax, Inc. (Copyright 2003 - All Rights Reserved)
' E-mail..... support @ar al | ax. com
' Started....
' Updat ed. ... 21 DEC 2003

' {$STAWP BS2}
' {$PBASI C 2.5}

Thi s program provides a set of core routines that can be used to create
operational programs for the Stanp PLC. Conditional conpilation is used
so that the code can run on any 24-pin BASIC Stanp 2 nodul e.

Not es on readi ng ADC channel s:

The inputs are protected and reduce the voltage felt on the MAX1270 i nput
pins. This accounts for code to get a full-scale count of 4095.

The raw val ue (counts) fromthe ADC will be returned in "adcRaw', converted

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 = 12/29/2003 Page 11

val ue of "nmvolts"

negati ve val ues.

to mllivolts, and returned in "nVolts."

is signed. A "1" in BIT15 of

Be aware that

i n bi pol ar nbde the

"mvol ts" indicates a negative
val ue. The BASIC Stanp does not support division or nmultiplication of

21 DEC 2003 : Updated to correctly bit-align output aliases with OUTH

" ccoss [1/O Definitions]

d ock PI N
Ld165 PI N
D 165 PI N
AdcCS PI N
AdcDo PI N
AdcDi PI N
D9 PI N
D 10 PI N
DQut s VAR
DQut sLo VAR
Dout sHi VAR
Dol PI N
Do2 PI N
Do3 PI N
Do4 PI N
Do5 PI N
Do6 PI N
Do7 PI N
Do8 PI N
Sio CON

| sOn CON
| sOF f CON
Direct On CON
Direct O f CON

#SELECT $STAWP

abhwWNEFEO

#CASE BS2, BS2E, BS2PE

T1200 CON
T2400 CON
T9600 CON
T19200 CON
#CASE BS2SX, BS2P
T1200 CON
T2400 CON
T9600 CON
T19200 CON
#ENDSELECT
Baud CON

813
396
84
32

2063
1021
240
110

T9600

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003

shared cl ock

74HC165 | oad

74HC165 data in (from
ADC chi p sel ect

ADC data out (to)

ADC data in (from

direct digital inputs

direct digital outputs

-- Do5 - Do8

-- Dol - Do4

updat ed 21- DEC- 03

serial 10O (prog port)

for shadow regs

for direct 10 pins only

for programm ng port

def aul t (mat ches DEBUG)

Page

12

Ai nl
Ai n2
Al n3
Al n4

Adc UP5
AdcBP5
AdcUP10
AdcBP10
Adc420

di gl ns
dl nLo
dl nH
dl n1
dl n2
dl n3
dl n4
dl n5
dl n6
dl n7
dl n8
dl n9
dl n10

di gQut s
dQut 1
dQut 2
dQut 3
dQut 4
dQut 5
dQut 6
dQut 7
dQut 8

chan
node
config
adcRes
adcRaw
mVol t s

bi t Map

Pr oj ect

AdcCf g

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003

VAR

DATA

DATA
DATA
DATA
DATA
DATA

Initialization]

0

1

2

3

0

1

2

3

4

Wor d

di gl ns. LOABYTE
di gl ns. H GHBYTE
di gl ns. BI TO
diglns.BIT1
di gl ns. BI T2
di gl ns. BI T3
di gl ns. BI T4
di gl ns. BI TS
di gl ns. BI T6
di gl ns. BI T7
di gl ns. BI T8
di gl ns. BI T9
Byt e

di gQut s. BI TO
di gQuts. BI T1
di gQut s. BI T2
di gQuts. BI T3
di gQuts. BI T4
di gQuts. BI TS5
di gQut s. BI T6
di gQuts. BI T7
N b

N b

Byt e

N b

Wrd

Word

Byt e

anal og channel s

unipolar, 0 - 5 v
bi polar, +/- 5 v
uni polar, 0 - 10 v
bi polar, +/- 10 v
4-20 mA i nput

[Variables J----------------------

shadow digital inputs
Dinl - D n8
Din9 - D nl0

shadow di gi tal outputs
use Read _DigQuts to set

ADC channel (0 - 3)
ADC node (0 - 4)
configuration byte
ADC bits (1 - 12)
ADC result (raw)
ADC in mllivolts

for re-mapping 1O bits

"Stanp PLC Tenpl ate",

941110000, 941100000,
941110100, 941100100,
941111000, 941101000,
941111100, 941101100,
941110000, %41100000,

941010000, 941000000 ' O-5
941010100, %41000100 ' +/-5
941011000, 941001000 ' 0-10
941011100, 941001100 ' +/-10
941010000, 941000000 ' 4-20

Page

13

Set up:

LOW d ock ' preset control |ines
Hl GH Ld165

Hl GH AdcCS

DQuts = 941111111 " all outputs off

DIRH = 941111111 ' enabl e output drivers
adcRes = 12 ' use all ADC bits

deno - replace with your code

GOSUB Read_Di gl ns

DEBUG HOVE, "Inputs = ", BINLO diglns, CR CR
' copy inputs to outputs
-- Dn9 --> Dout1l

-- Dinl0 --> Dout?2

digQuts = diglns

GOSUB Updat e_Di gQut s

IF (din9 = IsOn) THEN Dol = DirectOn
IF (dinl0 = IsOn) THEN Do2 = DirectOn

read singl e-ended anal og i nputs
-- display input as mllivolts

node = AdcUP5
FOR chan = Ainl TO Ai n4
GOSUB Read_ADC
DEBUG "Ain", ("1" + chan), ".... ",
DEC (nmVolts / 1000), ".", DEC3 nmVolts, CR
NEXT

GOTO Mai n
end of denop code

END

Scans and saves digital inputs, Dinl - DI nl0

' -- returns inputs in "diglns" (1 = input active)

Read_Di gl ns:
PULSQOUT Ld165, 15 " load inputs
SHI FTIN Di 165, C ock, MSBPRE, [dinLo] " shift in
dinH =0 ' clear upper bits
dinH .BITO = ~Di 9 ' grab DI N9
dinH .BIT1 = ~Di 10 ' grab DI N10
RETURN

Refreshes digital outputs, DQutl - DQut8
Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 = 12/29/2003 Page 14

-- uses shadow register "digQuts" (1 = output on)

21- DEC- 03 Updat e

map bits in digQuts to physical connector

Updat e_Di gQut s:

DQut s. BI TO = ~di gQuts. BI T6
DQut s. BIT1 = ~di gQuts. BI T7
DQuts. BI T2 = ~di gQuts. BI T4
DQuts. BI T3 = ~di gQuts. BI TS
DQut s. BI T4 = ~di gQuts. Bl T2
DQuts. BIT5 = ~di gQuts. BI T3
DQut s. BI T6 = ~di gQuts. BI TO
DQut s. BI T7 = ~di gQuts. BI T1
RETURN

This routine can be used to refresh shadow register "digQuts" after
di rect mani pul ati on of individual output bits.

Read_Di gQut s:

dQut1 = ~DQuts. BI T6
dQut2 = ~DQuts. BI T7
dQut3 = ~DQuts. Bl T4
dQut4 = ~DQuts. Bl TS
dQut5 = ~DQuts. Bl T2
dQut6 = ~DQuts. Bl T3
dQut 7 = ~DQut s. Bl TO
dQut8 = ~DQuts. BI T1
RETURN

Reads anal og i nput channel (0 - 5 vdc)
-- put channel (0 - 3) in "chan"

-- pass node (0 - 4) in "node")

-- raw value returned in "adcRaw'

-- "adcRaw' converted to signed "nVolts"

Read_ADC:

READ AdcCfg + (node * 4 + chan), config
LOW AdcCS

SHI FTOUT AdcDo, d ock, MSBFI RST, [config]
H GH AdcCS

adcRaw = 0

LOW AdcCS

SHI FTIN AdcDi, C ock, MSBPRE, [adcRaw\ 12]
H GH AdcCS

adj ust ADC count for input voltage divider

adcRaw = adcRaw + (adcRaw ** $D6C) MAX 4095

mllivolts conversion
-- returns signed val ue in bipol ar nodes
-- uses raw (12-bit) val ue

SELECT node
CASE AdcUP5
mVol ts = adcRaw + (adcRaw ** $3880)

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003

map bits from Stanp port

get config

sel ect MAX1270
send config byte
desel ect MAX1270

read channel

x ~1.05243

x 1.2207

val ue

Page

15

CASE AdcBP5
| F (adcRaw < 2048) THEN

molts = 2 * adcRaw + (adcRaw ** $7100)

ELSE
adcRaw = 4095 - adcRaw

molts = -(2 * adcRaw + (adcRaw ** $7100))

ENDI F

CASE AdcUP10
molts = 2 * adcRaw + (adcRaw ** $7100)

CASE AdcBP10
| F (adcRaw < 2048) THEN

molts = 4 * adcRaw + (adcRaw ** $E1FF)

ELSE
adcRaw = 4095 - adcRaw

molts = -(4 * adcRaw + (adcRaw ** $ELFF))

ENDI F

CASE Adc420
molts = 5 * adcRaw + (adcRaw ** $1666)

ENDSELECT

adj ust adcRaw for sel ected resol ution

| F (adcRes < 12) THEN
adcRaw = adcRaw >> (12 - adcRes)
ENDI F

RETURN

Serial Communications

X 2.4414

X 2.4414

-- 4000 to 20000

x 5.0875

reduce resol ution

Once your program is loaded and running, you are free to use the serial port for "run-time"
communications. Each Stamp has built-in functions, (serin and serout), that allow you to talk to your
Stamp via a PC serial port, or allow the Stamp PLC to talk to other devices with RS-232 style serial ports.
In fact, this port can be used for a variety of useful functions. Here are a few sample programs that show

some of the possibilities.

Status Reporting

File....... Stanp PLC Report. BS2
' Purpose.... Typical PLC application whereby this unit listens for
' serial commands from a host controller.
' Aut hor. Paral | ax, Inc.
' E-mail..... support @ar al | ax. com
Started.... 26 JUN 2003
Updated. ... 26 JUN 2003

' {$STAWP BS2}
' {$PBASI C 2.5}

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003

Page 16

----- [ProgramDescription J-------------oommmmm oo

' Thi s program denonstrates how to periodically "listen" for a serial
command whil e perform ng another task. Wen a serial command is
received, it is parsed and acted upon. If no command is received
within 5 seconds, the serial routine tines out and returns to the

' user task.

B [Constants J----------mmmmmmm oo

T1200 CON 813

T2400 CON 396

T9600 CON 84

T19200 CON 32

Baud CON T9600

DegSym CON $BO ' degrees synbol

wax Tenp VAR Byt e
keyl n VAR Byt e ' termnal input

BT [EEPROMData J--------------mmmmmmmmm oo oo
B [Initialization J-------------mmmmmmm oo

St art up:
waxTenp = 105
GOSUB Initialize

Mai n:
DO
SERIN 16, Baud, 50, Run_Task, [keyln] " Run_Task if no input
LOOP UNTIL (keyln = "W) "'wait for "W
Ready_Pronpt :
SERQUT 16, Baud, [CR LF, "Ready!", CR
Do_Conmmand:
DO
SERIN 16, Baud, 5000, Back_To_Work, [keyln] ' wait for command
SELECT keyln ' process command
CASE " 2"

SEROUT 16, Baud,
[CR LF, "Wax Tenperature =",
DEC WaxTenp, DegSym "F", CR|

CASE ELSE
IF (keyln <> "X") THEN
SERQUT 16, Baud, [BELL] " bell for invalid input

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003 Page

17

ENDI F
ENDSELECT

LOOP UNTIL (keyln = "X")
Back To Wor k:

SERQUT 16, Baud, [CR, LF, "Returning to work"]
GOSUB Initialize

Run_Task: ' User task code goes here
SERQUT 16, Baud, ["."] ' -- progress indicator
GOTO Mai n

Initialize: ' setup for user task goes
SERQUT 16, Baud, [CR, LF, "Working"] ! goes here
RETURN

Sometimes it is necessary to query a PLC for a particular piece of information. The example above shows
how to create two modes within one program. The default mode is the working mode, and it splits its
time into two functions: running the user program (which has been omitted for clarity), and checks the
serial port to see if there is an input from the master, (you). The second mode is invoked if the proper
wake up character is received from the master. Once in this mode, data will be reported if the master
sends a "?" command. If no command is received for a period of 5 seconds or more, the program will
automatically revert to the first mode (running the user program and monitoring the serial line).

Password Protection

PLCs typically control machinery. Quite often, these machines and/or the products that they make are
worth quite a bit of money. Given this, security is an issue. To safeguard the program, and any
variables that should not be changed, it is sometimes necessary to control access to the PLC. A common
way to do this is to utilize a password.

File....... St anp PLC Password. BS2
Purpose.... Typical PLC application whereby this unit listens for a
password on the serial port before allowi ng commands to be

' par sed.
' Aut hor. Paral | ax, Inc.
' E-mail..... support @ar al | ax. com

Started.... 25 JUN 2003

Updated.... 25 JUN 2003

' {$STAWP BS2}
' {$PBASI C 2.5}

----- [ProgramDescription J-----------mmmmm e
Thi s program denonstrates how to periodically "listen" for a password
nessage on the serial port while perform ng another task. Once the
correct password is given, the password may be altered or cleared.

The password is stored in eepromso it is non-volatile.

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 = 12/29/2003 Page 18

T1200 CON 813
T2400 CON 396
T9600 CON 84
T19200 CON 32
Baud CON T9600

keyl n VAR Byt e ' termnal input
serString VAR Byt e(4)

B [Initialization J-------------mmmmmmm oo

Start up:
GOSUB Read_Password ' Read password
| F keyln = $FF THEN GOSUB Set Passwor d " If not set, set it

el se, start mmin code

Mai n:
SERI N 16, Baud, 500, Run_Program [WAI TSTR ser Stri ng\ 4]
DEBUG CR, "Password accepted!”
DO ' Once password received
DEBUG CR, "C. > "
SERI N 16, Baud, [keyln] ' get a conmand
SELECT keyln ' process command
CASE " X"
GOTO Resune_Program
CASE "N
GOSUB Set Passwor d
CASE "C
G0sUB d ear Password
CASE ELSE
DEBUG " : Invalid command", BELL
ENDSEL ECT
LOOP

Resune_Pr ogram
DEBUG CR ' otherwi se, run the

Run_Pr ogr am ' user's program
DEBUG " *" ' user program goes here
GOTO Mai n

Read_Passwor d: ' Read password from eeprom

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003 Page

19

FOR keyln = 0 TO 3
READ keyl n, serString(keyln)
NEXT
keyln = serString(0)
RETURN

Set Passwor d: ' User interface to enter
DEBUG CR, "Enter a 4-character password", CR ' password
SERIN 16, Baud, [STR serString\4]
DEBUG CR, "Confirm passwor d:
SERI N 16, Baud, [WAI TSTR ser Stri ng\ 4]

FOR keyln = 0 TO 3 ' Wite password to eeprom
VWRI TE keyl n, ser String(keyl n)

NEXT

DEBUG CR, "Password set", CR, "Wrking!", CR

keyln = "N'

RETURN

Cl ear _Passwor d: ' Cear password in RAM

FOR keyln = 0 TO 3 ' to $FF' s and in eeprom
WRI TE keyln, $FF ' to "0"'s
serString(keyln) = $30

NEXT

DEBUG CR, "Password cl eared", CR

keyln = "C'

RETURN

Remote Telemetry Unit

Data loggers are devices that record data to be retrieved at some later point in time. Another name for a
similar device is a Remote Telemetry Unit, or RTU. An RTU differs from a Data Logger in that it has a
limited amount of control ability. A good example of this type of RTU is a Dual Pump Controller. The
Dual Pump Controller is responsible for maintaining a parameter, like fluid level within a tank, by
controlling and monitoring two pumps.

« Before the advent of small microcontrollers, a simple float switch would have performed this task.
The Dual Pump Controller can do this as well as several other useful features:

e Rotate duty between two pumps — evening the wear.

* Use only one pump if the other is out of commission.

e Use both pumps if the level is very low.

* Record periodic tank levels and other parameters at periodic intervals.

* Record the amount of run-time of each pump.

» Send a notification if there is a fault with a pump.

+ Transmit the data recorded when called for.

Our Dual Pump Controller sample program is not as full-featured as it could be, but is complete enough
to get you pointed in the right direction. Since it is a comparatively long listing, we will break it into
sequential segments and discuss each block as it comes. There's not a lot to discuss with the first block,
but reading the program description and the note are good first steps.

' File....... Stanp PLC PunpControl | er. BS2
' Purpose.... Dual Punp Controller. Exanple program
Aut hor Paral | ax, |nc.
E-mail..... support @ar al | ax. com
' Started.... 27 JUN 2003

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 = 12/29/2003 Page 20

' Updated. ... 27 JUN 2003

{ $STAVP BS2}
{$PBASI C 2. 5}

----- [ProgramDescription J----------mmmmmm oo
This programcontrols two punps to maintain tank |level. Wen the |evel
falls bel ow setpoint #1, the punp with the fewest nunber of hours is
started. |If the |level should continue falling to setpoint#2, the other
punp is started as well. During punp startup, the punp's aux contact
and fl ow sensor are nonitored TO determnm ne whet her or not the punp
actually started. |If a failure does occur, that punp is imediately
shut down and fl agged as out - of - conmi ssion, and the other punp starts.
Wiile all of this is going on, data is | ogged on punp runtines, tank
| evel AND the serial port is nonitored for conmands and queri es.

' Note: To nore easily see this programwork, you can change the constant
in "Timer_Logic" from3600 to 3 or so. This will effectively
speed tinme up so you can watch all aspects of this program work.
Al so, you may wi sh to enabl e the DEBUG statenents too.

This next section defines the Stamp 1/0 pin connections, the variable sizes and names, and the size of
the record array used to store data collected. Note that some variables as declared are actually parts of
other variables.

----- [1/0Definitions J-------mmmmm e

Adcd k PIN 0 ' A/D cl ock input
Srd k PI'N 0 ' HC165 cl ock i nput
Load PI'N 1 ' Latch input for HCl165
SrDi n PI N 2 ' HC165 data i nput
AdcCs PI N 3 A/ D chip sel ect input
AdcDout PI' N 4 A/ D Data out
AdcDi n PI' N 5 A/D Data in
PunpA Pl N 8 ‘1 turns on Punp A
PunpB PI'N 9 " 1 turnd on Punp B

----- [Constants J-------mmmmmm i m e o oo
T1200 CON 813
T2400 CON 396
T9600 CON 84
T19200 CON 32
Baud CON T9600

----- [Variables J---------mmmmmm e e e
t ankLevel VAR Word ' Actual level of the tank
timer VAR Wor d ' Sets the periodicity
runTi meA VAR Byt e ' # hours that Mdtor A has run
runTi meB VAR Byt e ' # hours that Mdtor B has run
i nput s VAR Byt e " Inputs 1 - 8 fromthe HCL65
tnp VAR Byt e ' Tenporary work vari abl e
ptr VAR Byt e ' Points to the current record
keyl n VAR Byt e ' Variable for keyboard i nput
punpSt at us VAR Byt e ' Status of both punps
set Poi nt 1 VAR Byt e " If level <, start 1 punp
set Poi nt 2 VAR Byt e " If level <, start 2 punps
st art Code VAR Ni b ' Desired punp configuration

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 = 12/29/2003 Page 21

" Inputs via HCl165

f1 owA VAR Inputs.BITO '1 = Flow OK 0O = No Fl ow
fl owB VAR I nputs. BI T1
auxCont act A VAR Inputs.BIT2 '1 = Motor ON, O = Motor off
auxCont act B VAR I nputs. BI T3

' Bit variables
punpASt at us VAR punpSt at us. LOANI B
punpBSt at us VAR punpSt at us. H GHNI B

----- [EEPROM Data] ------------------ - - -
Recor ds DATA 0(256) ' Data table for records. Note! when
' the pointer > 64, the old data will
' be overwitten by new data because

' each record = 4 bytes.

B [Notes J------mmmmmmm oo
' Punp Status Definition

0 K O f 8 FAI LED no fl ow

1 K On 9 FAI LED no aux contact
' 2-7 undefi ned A-F undefi ned

' Start Codes defi ned
' 1 PunpA desired

2 PunpB desi red

3 Bot h punps desired
The first section of code handles the initialization. The first line, in this case, is not necessary because the
Stamp clears all variables to zero automatically. The program consists of a large loop that is executed
over, and over again. Within the main loop, the serial port is examined. If the host has sent a character,
that character is received, parsed and executed. If no characters are received within one second, or once
the received character has been parsed the monitor and control section of code is executed.

B [Initialization J-------------mmmmmmm oo

ptr =0 ' Set record pointer to the start
setPointl = 100 " First low |level setpoint
setPoint2 = 50 ' Second | ow | evel setpoint

B [Main Program]-------------mmmm oo oo

Mai n:
SERIN 16, Baud, 1000, Control _Level, [keyln]
SELECT keyln
CASE "A"
SERQUT 16, Baud, [CR, "Runtine A", DEC runTi neA CR|
CASE "B"
SERQUT 16, Baud, [CR, "Runtine B:", DEC runTi neB, CR|
CASE "a"
runTi mreA = 0
SERQUT 16, Baud, [CR, "Runtine A cleared", CR
CASE "b"
runTi mneB = 0
SERQUT 16, Baud, [CR, "Runtine B cleared", CR]|
CASE "D'
IF ptr > 0 THEN
SERQUT 16, Baud, [CR, "Tank Level Report", CR CR]
FOR tnmp = 0 TO (ptr-4 MN 1) STEP 4
READ t np+3, keyl n
SERQUT 16, Baud, ["Hour: ", DEC3 tnp/4,
Tank Level: ", DEC3 keyln, CR]
NEXT
READ t np- 3, keyl n

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 = 12/29/2003 Page 22

READ t np- 2, t np

SERQUT 16, Baud, ["Punp A Runtine: ", DEC3 keyln,
" Punp B Runtine: ", DEC3 tnmp, CR CR
ELSE
SERQUT 16, Baud, [CR, "No data yet!", CR CR|
ENDI F
CASE ELSE
SERQUT 16, Baud, [" : Invalid command", BELL, CR CR]
ENDSELECT

Control _Level:
GOSUB Read_Tank_ Level
GOSUB Cont rol _Punps

' GOsUB Debug_Dat a
GOSUB Error _Handl er
GOSUB Ti mer _Logi ¢
GOTO Mai n

As described by the names of the subroutines, the tank level is read, pumps are controlled, errors are
handled, and the timer is maintained before returning to the top of the program where this sequence of
events proceeds forever.

Each main loop iteration takes one second. The Timer_Logic subroutine increments a register called
"Timer" each time through. After 3600 interations, (one hours time), data is recorded and the runtime of
each pump is updated. The Debug_Data subroutine is normally commented out, but can be enabled at
any time to "see" what's going on.

Ti mer _Logi c:
timer = timer + 1
DEBUG ?t i mer
IF (tinmer > 3600) THEN
' DEBUG CR, "Data Recorded! Pointer =", HEX2 ptr, CR
GO0SUB Record_Dat a
timer = 0
| F (punpASt at us
| F (punpBSt at us
ENDI F
RETURN

runTi nreA + 1
runTi nreB + 1

1) THEN runTi nreA
1) THEN runTi meB

Debug_Dat a:
DEBUG "Status: ", HEX2 punpStatus, CR
RETURN

Record_Dat a:
VWRI TE ptr +0, punpSt at us
VWRI TE ptr+1, runTi meA
VWRI TE ptr+2, runTi neB
WRI TE ptr+3,tankLevel . LOABYTE
ptr = ptr + 4

RETURN

St op_Punps:
H GH PunpA: punpAStatus = 0
H GH PunpB: punpBStatus = 0

RETURN

Error _Handl er:

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 = 12/29/2003 Page 23

SELECT start Code
CASE 1
I F (PunpAStatus > 7) THEN GOSUB StartB
CASE 2
| F (PunpBStatus > 7) THEN GOSUB StartA
ENDSELECT
RETURN

Since the output drivers for the Stamp PLC are "high-side" drivers, you must issue a LOW command to
energize an output, and likewise, you must issue a HIGH command to de-energize an output. The

Error_Handler subroutine checks the start code of each pump before starting it.

commission, the other pump is started instead.

If the pump is out of

Each start routine functions the same way. If the pump is OFF, it attempts to start it. If the aux-contact
responds and, within 2 seconds, the flow responds, then the pump is considered to be running properly.
If either the flow indication or aux-contactor input fails, then the pump is flagged as out-of-commission

and de-energized.

Start A
| F (punpASt atus = 0) THEN
LOW PunpA
GOSUB CetDigital | nputs
| F auxContact A = 0 THEN
PAUSE 2000
GOSUB GetDigital I nputs
|F FlowA = 0 THEN
punpAStatus = 1
ELSE
punpASt atus = 8
H GH PunpA
ENDI F
ELSE
punpAStatus = 9
H GH PunpA
ENDI F
ENDI F
GOSUB Error _Handl er
RETURN

StartB:
| F (punpBSt atus = 0) THEN
LOW PunpB
GOSUB GetDigital I nputs
| F auxContactB = 0 THEN
PAUSE 2000
GOSUB CetDigital |l nputs
IF (FlowB = 0) THEN
punpBStatus = 1
ELSE
punpBSt at us
H GH PunpB
ENDI F
ELSE
punpBStatus = 9
H GH PunpB
ENDI F
ENDI F
GOSUB Error _Handl er
RETURN

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 « 12/29/2003

8

Page 24

The subroutine "Control_Pumps" decides which pump to start based on how much run-time is on each
pump. The idea here is to even the wear.

Cont r ol _Punps:
SELECT t ankLevel
CASE < set Poi nt 2
start Code = 3
GOSUB Start A
GOSUB StartB
CASE < set Point1l
| F (punpAStatus <> 1 AND punpBSt at us <>1) THEN
| F RunTi nreA < RunTi neB THEN
start Code = 1
GOSUB Start A
ELSE
start Code = 2
GOSUB StartB
ENDI F
ENDI F
CASE ELSE
GOSUB St op_Punps
ENDSELECT
RETURN

GetDigital I nputs:
LOW | oad
PAUSE 1
H GH | oad
PAUSE 1
SH FTIN SrDin, SrC k, LSBPRE, [tnp]
RETURN

Read_Tank_Level : ' Reads tank |evel

LOW AdcCs

PAUSE 1

SHI FTOQUT AdcDout, AdcC k, MSBFI RST, [240] ' Tank Level

Hl GH AdcCs

PAUSE 1

LOW AdcCs

PAUSE 1

SHI FTI N AdcDi n, Adcd k, MSBPRE, [tankLevel\12]

PAUSE 1

Hl GH AdcCs

tankLevel = tankLevel >>4 "Divide it by 8
DEBUG "Tank Level :", DEC3 tankLevel, " inches

RETURN

The other two subroutines on this section of code are straight forward, but for the trick we play with the
"tankLevel" variable. The A/D converter is a 12-bit device. Our example program is only concerned with
the upper 8 bits of data, so we shift the data four positions to the right. This is a fast way to divide by 16
within a binary digital system. If you wanted more precision for you're application simply forego this step,
but beware that you need to ensure the memory you use must accommodate the extra bits.

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 = 12/29/2003 Page 25

Figure 11: Connection Diagram
DUAL ROW INPUTS DUAL ROW OUTPUTS
10 ea GREEN LEDS AN " 8eaRED LEDS

Stamp PLC

UART SOUT ___ A-K17 _ _ OUT 5VDC
UARTSIN k16 JySil | — 30U outsbe— ANAIN 1
UART UARTATN __ AKIS gl AN AIN 2 — ANA IN 2
UARTGND AL S[| —onD AIN3— T ANALOG IN
= ——=={JQ| |—DIN1 AIN4—
DGINz __ AKIZ kGl pjy o AINGND— ANAIN GND
DGINS AKLL LG py3 AINGND— ANAIN GND
DIGIN4 AK10 ¢ DIG OUT V+
I0] | —DIN4 DOUT V+—
DIGING AK9 |i DIG OUT 1
DIGIN 6 ake Q| [D5 Dour1— DIG OUT 2
DIGITAL IN DIGIN7 A'K7 IO| |—DING DouT 2— DIG OUT 3
2L US| [—Din7 DOUT 3—
DIGINS A6 fSI— DN DOUT 4— DIG OUT 4
DIG IN 9 AK5 | _ TR0 _ DIG OUT 5 DIGITAL OUT
DIG IN 10 Aka_ 1S DN Douts DIG OUT 6
- IQ| |—DIN10 PRALAXE DOUT 6—
DIGINGND __ AK3 DIG OUT 7
I9| [—DINGND wnwmaacom pouT7—
IN18-36vDC A2 WS ™) Vo DOUT 8 — DIG OUT 8
POWER IN —{ INOvDC A-K1 =®7 —GND ce DOUT GND — DIG OUT GND
;’I %

This diagram identifies each connection on the Stamp PLC by name and by number. Please note that this
is a top view. Throughout this manual, the Stamp PLC connections may be referred to by either their
names or their numbers. Please refer to this diagram when making or changing connections. Each
connection can accept 18 to 12 gauge wire.

Figure 12: Front Panel LEDs

(AKS) (P6) (Din 9) —| (Din 10) (P7) (A-K4)
(A-K7) (SR) (Din7) — (Din 8) (SR) (A-K6)
(A-K9) (SR) (Din5) — oo (Din 6) (SR) (A-K8)
(A-K11) (SR) (Din 3) ——°997] (Din 4) (SR) (A-K10)
(A-K13) (SR) (Din 1) 00 (Din 2) (SR) (A-K12)

(B-K2) (P9) (Dout 8)— Lo o]
(B-K4) (P11) (Dout 6) — }-S 3~
(B-K6) (P13) (Dout 4)—
(B-K8) (P15) (Dout 2)

(Dout 7) (P8) (B-K3)
(Dout 5) (P10) (B-K5)
(Dout 3) (P12) (B-K7)
(Dout 1) (P14) (B-K9)

i

Note: SR = connected to 74HC165 parallel in - serial out shift register

Safety Notes and Liability Disclaimer

Please bear in mind that these sample programs are just that - samples. They have been written to
show how certain functions could be implemented. Depending on you're application, the implementation
shown may not be the way it should be implemented. When designing, implementing, and programming
PLCs that control equipment, use extreme care to ensure that your design always: starts in a predictable
fashion, performs within limits, is mechanically and electrically interlocked where applicable, and fails
safe.

Neither Parallax, Inc. nor Lawicel are responsible for special, incidental, or consequential damages
resulting from any breach of warranty, or under any legal theory, including lost profits, downtime,
goodwill, damage to or replacement of equipment or property, and any costs of recovering,
reprogramming, or reproducing any data stored in or used with Parallax products.

Parallax, Inc. « Stamp PLC (#30064) « Version 1.8 = 12/29/2003 Page 26

IPS511G/IPS512G/IPS514G

Absolute Maximum Ratings

International
TR Rectifier

Absolute manmmum ratings ndicate sustansd Imits beyond which damage 1o the device may ocour. All voltage parametars
are raferenced to G Dlead. (Tj=25°C unless othersise speciiad).
Symbeol | Parameter Min. | Max. | Units Test Conditions
Wour Plaximum cutput voltage Vipr B0 | Vel
Vplisgt | Maximum logie ground 1o oad ground offset | Vee50 |Veetl 3| ¥
¥in Mlaximum Input volags 0.3 55
lin, max | Maximum IM csrent L 10 ik
Wig Maximum diagnostic autput wolags 4.3 55 W
ldg, max | Maxinum diagnostic suipul cumernt -1 10 A
lod cont | Diode max. continuous cumend 11
(PSEIIGY — 14
{per legiboth legs ON - IPSE12G] — 0.4 A
ipar lagrall lags ON - [PS5145G) — 07
Isd puised| Dode max. pubksed curment (1) — 10
ESON Electrostale decharge wollage (Human Body) — 4 ” C=100pF, B=15000,
EsSDZ Elecirostatic decharge voltage (Madhine Modell — 05 Ce200pF, R=001, L=10pH
Fd Maxinun power desipabion
[rth=1255CW) IPSET11G - 1
[rEh=8EACAW, both legs on) IPS5120G - 15 W
[Fh=50PCAW, all legs on) IPSG14G - 25
T; max. | Max storage & operaling junction temp A0 +150 L
Wiee man. | Masimum Vee voltage — 50 V
Thermal Characteristics
Symbel | Parameter Min. | Typ.| Max. |Units| Test Conditions
R 1 Thermal resistance with standard footpnm — 100 —
ﬂi Therral resistance with 1” squars footprin — BD — B Laad S0IC
Riik1 Thermal resistance wath standard footprnt
(2 s o (2 mosfets on) — 85 —
RihZ (1) |Therral resistance wilth slandand foolpnr 16 Lead S08C
(1 mos onp (1 mngafiet anj — 100 —
Rih2 Thermal resistance with 1° square footprint
(2 mos on) (2 mosfels on) — 50 —_—
R Thermal resistance with standand footpont — 40 —— T
Rih2 Thermal resistance with standand footprin
(2 e o) (2 moslels on) — 35 —
Rth3 Thermal resistance with standand foctprint
(4 mos on) [4 mosfels on) —_ 50 —_
Hith1 Thermal resistance with 1° square foolprin — 45 — 28 Lead SOIC
[Fith2 Thermal resistance with 17 square footprin
(2 e o) [2 eroafels on) — 40 —
Rth3 Thermal resistance with 1° square footprin
4 mas an) {4 mosfels on) - 13 -
{1} Limnited bry junction temperature (pulsed cument bmited alkso by indemal wiring)
2 wwwirt.oom

Parallax, Inc. « Stamp PLC (#30064) Version 1.8 » 12/29/2003

Page 27

