NEVO+600S INDUSTRIAL DATA SHEFT

AC/DC Modular Configurable PSU

600W Powerful 5" x 3" x 1.61" Small 600g Light

600 Watts in the palm of your hand

Our innovative NEVO+600S modular configurable power supply is the smallest in its class and the ultimate power solution for demanding industrial applications where size, power density and weight are vital factors. Weighing only 600 grams, the compact package of 5" x 3" x 1.61" delivers up to 600 Watts - equating to a power density of 25 Watts per cubic inch. Standard features include intelligent fan control providing optimised airflow for various load and temperature conditions, wide output voltage adjust, parallel and series connection of modules and an isolated 5V 1A bias supply. A low noise fan option is available that allows you to use this innovative power supply in even the quietest of environments.

MAIN FEATURES

- 600 Watts output power
- Power density of (25W/in³)
- Smallest modular footprint
- 5" x 3" x 1.61"
- Wide output voltage adjust range

Constant current or voltage operation

- Parallel & series connection of modules Series Tracker and I2C options
- Intelligent fan control
- IEC60950 Ed. 2 & IEC62368-1 Ed. 2

Laboratory & Analysis equipment

- User and field configurable
- Low noise option (SL version)
- 3 Year warranty

• LED lighting

Lasers

APPLICATIONS

- Test & Measurement equipment
- Robotics
- Oil & Gas
- Telecommunications

JSTOMER BENEFITS

- Fast time to market
- 24 hrs samples from distribution
- Proven technology Eliminates custom design costs

 Display Avionics

- Field replaceable
- Technology consolidation

- Safety & EMC certified
- World class engineering support
- Supplier consolidation

Retrofit of legacy PSUs

Vox Power Limited | Unit 2, Red Cow Interchange Estate, Ballymount, Dublin 22, D22 Y8H2, Ireland | T +353 1 4591161 | www.vox-power.com Page 1 of 5

SPECIFICATIONS

INPUT MODULE SPECIFICATIONS								
Parameter	Details	Min	Typical	Max	Units			
AC Input Voltage	Nominal range is 100V _{RMS} to 240V _{RMS}	85		264	V _{RMS}			
AC Input Frequency	Contact factory for 400Hz operation.	47	50/60	63	Hz			
DC Input Voltage	Not covered by safety approvals. Contact Vox Power.	120		370	V _{DC}			
Output Power Rating	De-rate linearly from 600Watts at 120V _{RMS} to 450Watts at 85V _{RMS}			600	Watts			
Input Current	600Watts output at 120 V _{RMS} input			6	Amps			
Input Current Limit	Maintains power factor		8		Amps			
Inrush Current	265V _{RMS} , 25℃ (cold start)			20	Amps			
Fusing	Live line fused (5x20 Fast acting)			8	Amps			
Efficiency	See graphs		86	89	%			
No load Power consumption	All outputs fitted and disabled/enabled		21/28		Watts			
Power Factor	Typical value for 300 Watts output at 240Vrms input		0.96	0.99				
Holdup	600Watts output at 120V _{RMS} input	17	20	21	mS			
UVP	Turn on under voltage protection	78		84	V _{RMS}			
Over temperature	Internally monitored.	115		125	°C			
Reliability (1)	Input module			1.207	FPMH			
	Fan			2.7	FPMH			
Warranty	Standard terms and conditions apply			3	Years			
Size	133.7 (L) x 77.7 (W) x 41.0 (H). See diagram for tolerance details mm							
Weight	360 + 60 per output module Grams							
Note 1.	30°C base & ambient, 100% load, SR332 Issue 2 Method I, Case 3, Ground, Fixed, Con	trolled						

GLOBAL SIGNALS SPECIFICATIONS							
Parameter	Details	Min	Typical	Max	Units		
Bias Voltage	Two isolated Bias Outputs available	4.8	5	5.2	Volts		
Bias Current	Hiccup type current limit	0		1	Amps		
AC OK Voltage	Low output level	0	0.2	1	Volts		
_ 5	High output level	3.5	4.5	5.2	VOIUS		
AC_OK Current		-10		20	mA		
Power Good Voltage	Low output level. internal 10kΩ pull down.	0	0	0	Volts		
rower dood voltage	High output level. PNP open collector.	8	10	15	VOILS		
Power Good Current	Open collector output. Current source only. All Slots.			20	mA		
Global Inhibit Voltage	Low input level	0		1	Volts		
5	High input level	3		15	VOICS		
Global Inhibit Current	5k input impedance.	0.6		3	mA		
Inhibit Voltage	Low input level. All slots.	0		1	Volts		
inition vonage	High input level. All slots.	2.5		15	VOILS		
Inhibit Current	10k input impedance. All slots.	0.25		1.5	mA		

	OUTPUT MODULE SPECIFICATION SUMMARY											
MODEL	Out	put Volta	age	Output	Rated	Peak	Load	Line	Cross	Ripple &	FPMH ⁽¹⁾	Feature
MODEL	Min.	Nom.	Max.	Current	Power	Power	Reg.	Reg.	Reg.	Noise	1110111	Set ⁽²⁾
OP1	1.5V	5V	7.5V	25A	125W	187.5W	±50mV	±5mV	±10mV	50mV _{PP}	0.5	ABCDEFG
OP2	4.5V	12V	15V	15A	150W	225W	±100mV	±12mV	±24mV	120mV _{PP}	0.5	ABCDEFG
OP3	9V	24V	30V	7.5A	150W	225W	±150mV	±24mV	±48mV	$240 mV_{PP}$	0.5	ABCDEFG
OP4	18V	48V	58V	3.75A	150W	217.5W	±300mV	±48mV	±96mV	480mV _{PP}	0.5	ABCDEFG
OP5	3.3V	12V	15V	5A	2x 75W	2x 75W	±50mV	±12mV	±24mV	$240 mV_{PP}$	0.75	AFG
OP8	23.2V	24V	24.7V	3.125A	2x 75W	2x 75W	±100mV	±24mV	±48mV	480mV _{PP}	0.75	AFG
OPA2 ⁽³⁾	4.5V	12V	15V	25A	300W	375W	±100mV	±12mV	±24mV	120mV _{PP}	0.5	ABCDEFGH
OPA3 ⁽³⁾	9V	24V	30V	15A	300W	450W	±150mV	±24mV	±48mV	240mV _{PP}	0.5	ABCDEFGH
Note 1.	Note 1. Output module, 30°C base, 100% load, SR332 issue 2 Method I, Case 3, Ground, Fixed, Controlled											
Note 2.	Note 2. A = Remote Sense, B = External Voltage control, C = External constant current control, D = Current output signal, E = Current share, F = Over Voltage protection,											
	G = Over temperature protection, H = Dual Slot module											

 G = Over temperature protection, H = Dual Slot module

 Note 3.
 Can only be used with NEVO+600 chassis with date codes from 2048 onwards. eg. 2048C080000 can use A2 or A3 module, 2047C089999 cannot use A2 or A3 module.

SAFETY SPECIFICATIONS							
Parameter	Details	Max	Units				
	Input to Output (2 MOPP). Do not perform test on assembled unit ⁽¹⁾	4000	V _{AC}				
Isolation Voltages	Input to Chassis (1 MOPP)	1500	V _{AC}				
	Global signals (J2) to Output/Chassis	250	V _{DC}				
	Output to Output/Chassis (Standard modules)	250	V _{DC}				
Earth Leakage Current	Normal condition, 264Vac, 63Hz, 25°C	1500	uA				
Touch Leakage Current	Standard modules NC/SFC	20/200	uA				
Patient Leakage Current	Standard modules 264Vac, 63Hz, 25°C NC/SFC ⁽²⁾		uA				
Note 1. Testing an assembled ur	nit to 4000V _{AC} may cause damage. Please refer to application note (APN-002) on Vox Power website or c	ontact Vox Power repres	sentative.				
Note 2. Not Applicable							

INSTALLATION SPECIFICATIONS							
Parameter	Details	Parameter	Details				
Equipment class	I	Flammability Rating	94V-2				
Overvoltage category	II	Ingress protection rating	IP10				
Material Group	IIIb (indoor use only)	ROHS compliance	2011/65/EU & 2015/863/EU				
Pollution degree	2	Intended usage environment	Industrial Equipment				

Page 2 of 5 Vox Power Limited | Unit 2, Red Cow Interchange Estate, Ballymount, Dublin 22, D22 Y8H2, Ireland | T +353 1 4591161 | www.vox-power.com

Instruction Details Non-Operational Operational Operational Operational Operational Non-Operational Non-Operatin Non-Oper			ENVIRONMENT	AL SP <u>ECIFICA</u>	TIO <u>NS</u>				
Drameter Decision Min Max <						perational	Oper	ational	
Temperature Tempe	Parameter	Details							- Units
Initial of the second and the secon	Air Temperature	Operational limits subject to a	appropriate de-ratings			-		_	°C
Pressure to be level 3000 kamps at 106 (Toms Instance wave) 3000 kamps at 1000 kamps at 1000 kamps at 2000 kam	lumidity	Relative, non-condensing							
bie Level Vidiable. Measured in fram familable. 1 30 0 102 000mps 21 001 000mps 21 000 000mps 21 001 000mps 21 000 000mps 21 001 000mps 21 000 000mps 21 000mps	ltitude								
Intel 1.5 10 to 2004: site wave, 200 GP 13min in 3 axis random vibration I Addition power detailing may be necessary at the component component resperatures remain within gascification. I Addition power detailing may be necessary at the CS 13min data or an interview component resperatures remain within gascification. I Call Distance Market	loise Level	Variable. Measured 1m from t	fan intake.		-				
1. Additional power dirating may be necessary at high attructs to ensure component remperatures remain writin geoffication. ELECTROMACKETIC COMPLIANCE – EMISSIONS ELECTROMACKETIC COMPLIANCE – IMMONITY Compliant	hock	3000 bumps at 10G (16ms) ha	If sine wave		1			1	
ELECTROMAGNETIC COMPLIANCE – EMISSIONS Test Details Compliant detailed ministing, electric field Test Details Compliant Details of the state of the stat	bration								
Inspection Fasic EMC Standard Test Details diverse missions ENSIDINGS (CC part 15, CORP 32/11) Class 8 complexit complexit Complexit Complexit complexit EECTCROMACNETIC COMPLIANCE- UNMUNITY reconstant change Test thered 31:00% most NM00 SMH22:021 a 100% H142:041 complexit Test thered 31:00% most NM00 SMH22:021 a 100% H142:041 complexit Test thered 31:00% most NM00 SMH22:021 a 100% H142:041 complexit Test thered 31:00% most NM00 SMH22:021 a 100% H142:041 complexit Test thered 31:00% M12:026 A 111 a 00% H142:041 tase former A N0 degradation of performance in the SMH F47 000% Test thered 31:00% M12:026 A M11 a 00% H142:041 tase former A N0 degradation of performance in the Information Technology Fujiment - 540 H2 in 00% H142:00%	otes: 1.	Additional power derating may	, 5				specificatio	n.	_
duced emissions, electric field duced emissions, electric field duced emissions, electric field duced emissions, electric field tics 0000-13 EEC0000-13 EEC0000-13 EEC0000-14 EEC000-14									
ENSIDING: ENSIDING: Class B compliant complexit Complexit	henomenon		Basic EMC Standa	rd	Te	est Details			
rmaine Disturbine technology equipment - Part 1: General Requirements UL E316480 remained and contract and c									
Base & Brucuntion IEC61000-33 Compilant Elementerion Basic EMC Standard Test Details Test Reviet 13 Way Biol Scott Public Communications IEC61000-4-2 Test Evel 41 3W (W contact Test Reviet 14 Biol Scott Public Communications IEC61000-4-3 Test Evel 41 3W (W contact Test Reviet 14 Biol Scott Public Communications IEC61000-4-1 Test Evel 41 3W (W contact Test Reviet 14 Biol Scott Public Communications IEC61000-4-1 Test Evel 41 3W (W contact Test Reviet 14 Stott Public Communications IEC61000-4-1 Test Evel 31 3W (W contact Test Reviet 3 Stott Visit Scott Public Scott Pub				5, CISPR 22/11					
ELECTROMAGNETIC COMPLIANCE – IMMUNITY Test Details Test Details <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Personnerson Beside EAC Standard Test Details Criticatari discharge promoting fields from 6F wireless communications promoting fields from 6F wireless communication of performance or loss of function is allowed, provided the function is self-secoverable. Criterion 8 – Temporary degradation of performance or loss of function is allowed provided the function is self-secoverable. Criterion 8 – Temporary degradation of performance or loss of function is applied where appropriate. The field from 6F wireless communication technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition (Inform				OMPLIANCE -					
<pre>ctrostatic discharge diacted FEM feeds communications discrete feed feed feed feed feed feed feed f</pre>	nonomener								
diaded BF Mields upment diamed BF Mields upment upment trace livels 2: (100/mi 80MH;2:27413 size wave AM 80%; 1kHz trace livels 2: (100/mi 80MH;2:27414 trace livels 2: (100/mi 80MH;2:27414 size livels 2: (100/mi 80MH;2: (100/mi 80MH;2: (100/mi 80MH;2: (100/mi 80MH;2: (100/mi 80H;2: (100/mi 80H;2									
Setting Piles from FF wireless communications in EC61000-4-3 Test Level 3: EXP Tower; TWUD State(add) 3: 1000Hz(add) 1: 2:2014 Table 9 Test Level 3: EXP Tower; TWUD State(add) 3: 1000Hz(add) 1: 2:2014 Table 9 Test Level 3: EXP Tower; TWUD State(add) 3: 1000Hz(add) 1: 2:2014 Table 9 Test Level 3: EVEL VAL 2: U =		0					z) sine way	e AM 80% 1kH	7
Lippment Lippment ECK 1000-4-3 Test weeks as per the Loose 1-14 2016 yee Test weeks as per the Loose 1-1								2.7 m 0070 TKH	_
rges multiced distutances induced by RF fields there Frequency Magnetic Fields tage Dips & Sag Insmuty tics (1000 - 4.3) EC (1000 - 4.1) & EENHE-F47-0700 EC (1000 - 4.1) & EENHE-F47-0700 To Contract a noninal ange (1000 - 200) EC (1000 - 4.1) & EENHE-F47-0700 To Contract a noninal ange (1000 - 200) EC (1000 - 4.1) & EENHE-F47-0700 To Contract a noninal ange (1000 - 200) EC (1000 - 4.1) & EENHE-F47-0700 To Contract a noninal ange (1000 - 200) EC (1000 - 4.1) & EENHE-F47-0700 To Contract a noninal ange (1000 - 200) EC (1000 - 4.1) & EENHE-F47-0700 To Contract a noninal ange (1000 - 200) EC (1000 - 4.1) & EENHE-F47-0700 To Contract a noninal ange (1000 - 200) EC (1000 - 200 - 200) EC (1000 - 200 - 200) EC (1000 - 200 - 200) EC (100 - 200 - 200 - 200) EC (100 - 200 - 200) EC (100 - 200 - 200) EC (100 - 200 - 200 - 200) EC (100 - 200 - 200 - 200) EC (100 - 200 - 200 - 200 - 200 - 200) EC (100 - 200									
Torong Status S		sients/bursts					kHz(ed3) &	100kHz(ed4)	
Interpretation IEC61000-43 IEC61000-4118 SBMEPERVOID Test level 4:30Am 50Hz For UNPS, 80Ps 15, 80Ps 105, 90Ps continuous (Criterion A) 70Ps 053, 40Ps 025 (0	ances induced by PE fields						80% 1247	
tage interruptions test i. Certificate A = Xou degradation of performance or loss of function. Criterion A = No degradation of performance or loss of function is allowed, provided the function is self-recoverable. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation of performance or loss of function. Criterion B = Temporary degradation degradetion degradation degradetion degradation of technology equipment = Temporary degradation degradetion. Criterion B = Temporary degradation degradetio							ie wave Aivi	0070 TKHZ	
Typical Line Efficiency (Maximum power) Cale Line Line Line Line Line Line Line Lin		5		47-0706 ⁽²⁾ 0% 10	ms, 0% 20m	ns, 80% 1s, 80% 1			
 L. Citterion A. = No degradation of performance or loss of function. Citterion B. = Temporary loss of function is allowed, provided the function is self-recoverable. Citterion B. = Temporary loss of function is allowed, provided the function is self-recoverable. Citterion B. = Temporary loss of function is allowed, provided the function is self-recoverable. Citterion B. = Temporary loss of function is allowed, provided the function is self-recoverable. Citterion B. = Temporary loss of function is allowed, provided the function is self-recoverable. Citterion B. = Temporary loss of function is allowed but requires operator intervention to recover. 2. Tested at nominal range (100V to 240V). Line deartings applied where apporate. AGENCY APPROVALS Details 2nd Edition. Information Technology Equipment: Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment: Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment: Safety - Part 1: General Requirements 2nd Edition. Audiovideo, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audiovideo, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Natiovideo, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audiovideo, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Natiovideo, information and communication technology equipment - Part 1: 2nd Edition. Natiovideo, information and communication technology equipment - Part 1: 2nd Edition. Natiovideo, information and communication technology equipment - Part 1: 2nd Edition. Natiovideo, information and communication technology equipment - Part 1: 2nd Edition. Natiovideo, information and communication technology equipment - Part 1: 2nd Edition. Information - Part 1: 2nd Edition. Information - Part 1: 2nd Edition. Information - Part 1: 2nd Edition. Natiovideo, info				70% 0	,	•			V)
	5			0% 25	0/300 cycle	as per IEC60601-	1-2:2014 (C	riterion B)	
Criterion C = Temporary loss of function is allowed but requires operator intervention to recover. Tested at nominal range (100 V to 240V). Line devantgos applied where appropriate. Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Audiovides, information and communication technology equipment - Part 1: 2safety requirements 2safety requirements 2sa				ction is allowed pro	wided the f	unction is self-rec	overable		
Active determined range (100V to 240V). Line derating: applied where appropriate.									
and add Details File 60995-12007 And Edition. Information Technology Equipment - Safety - Part 1: General Requirements UL E316486 102/2007 AMD12:001+AMD2:2014 and Edition. Information Technology Equipment - Safety - Part 1: General Requirements UL E316486 102/2007 AMD12:011+AMD2:2014 and Edition. Information and communication technology equipment - Safety - Part 1: General Requirements UL E316486 102/2007 AMD2:2014 and Edition. Information and communication technology equipment - Part 1: Safety - Part 1: General Requirements UL E316486 102/2007 AMD2:2014 and Edition. Audio/video, information and communication technology equipment - Part 1: Safety - Part 1: General Requirements UL E316486 102/2017 AMD2:2014 and Edition. Audio/video, information and communication technology equipment - Part 1: Safety - Part 1: General Requirements UL E316486 102/2017 AMD2:2014 and Edition. Audio/video, information and communication technology equipment - Part 1: Safety - Part 1: General Requirements UL E316486 102/2014 30:FU and Edition. Audio/video, information and communication technology equipment - Part 1: Safety - Part 1: General Requirements UL E316486 102/2014 30:FU Edition. Formation and communication technology equipment - Part 1: Safety - Part 1: General Requirements UL E316486 102/2014 30:FU Editor. Audio/video, information and communication technology equipment - Part 1: Safety - Part 1: General Requirements UL E316486 <td< td=""><td>2. T</td><td>ested at nominal range (100V to</td><td>240V). Line deratings applied wh</td><td>ere appropriate.</td><td></td><td></td><td></td><td></td><td></td></td<>	2. T	ested at nominal range (100V to	240V). Line deratings applied wh	ere appropriate.					
 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part			AGENCY	APPROVALS					
 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Information Technology Equipment - Safety - Part 1: General Requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety - Part 1: General Requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety - Part 1	andard		Details					File	
60950-12007 NVCSA- C22 No. 60950-1-07 1012)2007+AMD1-2011+AMD2-2014 Znd Edition. Information Technology Equipment - Safety - Part 1: General Requirements UL: E316486 2368-1:2014 Znd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements UL: E316486 2012/2007+AMD1-2011+AMD2-2014 Znd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements UL: E316486 2012/2007+AMD1-2011+AMD2-2014 Znd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements UL: E316486 VCSA - C22.2 No. 62368-1-14 Znd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements UD: E316486 VD 2014/33/EU, EMC 2014/30/EU UL: E316486 UL: E316486 Typical Line Efficiency (Maximum power) Input Voltage (Vrms) Typical Line Efficiency (Maximum power) Input Voltage (Vrms) OP3 OP4 OP3 OP4 OP4 OP4 OP4 OP2 OP4 OP4 OP4 OP4 OP4 OP4 OP4 OP4 OP4 OP4 OP4 OP4 OP4 OP4 OP4 OP4 OP4 OP4		AMD1:2009+AMD2:2013		ology Equipment - S	afety - Part	1: General Require	ements		
2012;2007:AMD1:2011+AMD2:2014 2016;2010A, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements 2nd Edition. Audio/video, information and communication technology equipment - Part 1: 2nd Edition. Audio/video, information and communication technology equipment - Part 1: 2nd Edition. Audio/video, information and communication technology equipment - Part 1: 2nd Edition. Audio/video, information and communication technology equipment - Part 1: 2nd Edition. Audio/video, information and communication technology equipment - Part 1: 2nd Edition. Audio/video, information and communication technol								UL: E31	6486
2012/2007+AMD12/011+AMD2/2014 202368-1:2014 202368-1:2014 Arc Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements Arc Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements Arc Edition. Audio/video, information and communication technology equipment - Part 1: Safety requirements LVD 2014/35/EU, EMC 2014/30/EU certificate and report available on request Typical Line Efficiency (Maximum power) 0.00			2nd Edition. Information Techno	ology Equipment - S	afety - Part	1: General Require	ements		
 action action	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	D1:2011+AMD2:2014		<i></i>	•	•			
62364-1:2014 N/CSA - C22.2 No. 62368-1:14 MARK CUD 2014/35/EU, EMC 2014/30/EU Typical Line Efficiency (Maximum power) 0.00 0.0	62368-1:2014			indicination and commun	incution tech	mology equipine	int rait i.		
NCSA - C22.2 No. 62368-1-14 MAR Cretificate and report available on request Typical Line Efficiency (Maximum power) 0.80 0.90	62368-1.2014		2nd Édition. Audio/video, inform	nation and commun	ication tech	nnology equipme	nt - Part 1:	UI · F31	6486
MRK LUD 2014/35/EU, EMC 2014/30/EU Typical Line Efficiency (Maximum power) 0.00 0			· · ·	nation and commun	ication tool	nologyogying	nt - Part 1	52.251	
MAR LVD 2014/35/EU, EMC 2014/30/EU certificate and report available on request Typical Line Efficiency (Maximum power) 0.00	AN/CSA - C22.2 N	lo. 62368-1-14		nation and commun	incation tech	inology equipme	ant - Part I:		
Typical Line Efficiency (Maximum power) 0.80 0.80 0.80 0.80 0.80 0.81 0.80 0.82 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92	E MARK			EU					
0.90 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.76	certificate and r	report available on request							
A second seco		cal Line Efficiency (Ma	ximum power)		Турі	ical Load Ef	ficiency	(220Vrms)
$ \frac{0.88}{0.60} + \frac{0.92}{0.60} + \frac{0.92}{0.6$	0.90								
0.86 0.87 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.75	0.88								+
b a b a b b b b b b c b b c b c b c b c b c b c b c b c c c c c c c c c c				0.84					+
0.80 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70	0.86								
0.80 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70	S 0.84								
0.80 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70	u			5 0.76					+
0.80 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70 0.70 0.68 0.70	<u>5</u> 0.82			0.74			-		
0.78 0 100 120 140 160 180 200 220 240 260 Input Voltage (Vrms)				0.72	- // - -				
0.78 80 100 120 140 160 180 200 220 240 260 Input Voltage (Vrms) Line Derating 0.66 0 50 100 150 200 250 300 350 400 450 500 550 600 Output Power (Watts) Temperature Derating 0.66 0 50 100 150 200 250 300 350 400 450 500 550 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U 0.80								
80 100 120 140 160 180 200 220 240 260 Input Voltage (Vrms) Line Derating 600 500 500 500 500 500 500 500	0.78						-		UPA3
$\mathbf{Line Derating}$ $\mathbf{Line Derating$ $\mathbf{Line Derating}$ $\mathbf{Line Derating}$ $\mathbf{Line Derating}$ $\mathbf{Line Derating}$ $\mathbf{Line Derating}$ $\mathbf{Line Derating$ $\mathbf{Line Derating}$ $\mathbf{Line Derating$ $\mathbf{Line Derating}$ $\mathbf{Line Derating$ $\mathbf{Line Derating}$ $Line Derating$ $\mathbf{Line Derating$ $\mathbf{L$					50 100				550 600
b b c c c c c c c c		Input Voltage (V	/rms)			Output Po	ower (Wa	atts)	
b b c c c c c c c c			l						
b b c c c c c c c c	650	Line Derating		050		Temperate	ure Dera	ating	
550 500 450 450 400 350 300 250 80 100 120 140 160 180 200 220 240 260									
T T T T T T T T									
	500 J			1 500					
	9 450			0 150					
	9 400			450 -					
	ر 350			8 350					
250 40 100 120 140 160 180 200 220 240 260 -20 0 20 40 60				_					
80 100 120 140 160 180 200 220 240 260 -20 0 20 40 60									
Vinrms		00 120 140 160 180 2	00 220 240 260		0	0 20		40 6	0
		Vinrms				T			

Page 3 of 5 Vox Power Limited | Unit 2, Red Cow Interchange Estate, Ballymount, Dublin 22, D22 Y8H2, Ireland | T +353 1 4591161 | www.vox-power.com

MECHANICAL DIMENSIONS AND MOUNTING SCREWS

CONNECTORS

REF.	DETAILS	MANUFACTURER	HOUSING	TERMINAL
J1	MAINS INPUT: 3 Pin, 5.08mm, with Friction Lock, 18-24 AWG	MOLEX	10013036	0008701031
J2	GLOBAL SIGNALS: 12 Pin, 2mm, without Friction Lock, 24-30 AWG	MOLEX	511101251	0503948051
J3/4 ⁽¹⁾	OUTPUT POWER TERMINAL: TAB SIZE 6.35mmx0.8mm	VARIOUS		VARIOUS
J5	OUTPUT SIGNALS: 6 Pin, 1.25mm, with Friction lock, 28-32 AWG	MOLEX	0510210600	0500588000
Notes				

1. Terminal and wire current rating must exceed maximum short circuit output current. Eg. Output 1 = 25A*1.25 = 31.25Amps

2. Direct equivalents may be used for any connector parts

3. All cables must be rated 105°C min, equivalent to UL1015

4. Pinout is for single output types only

	PART NL	JMBERING SY	/STEM	
NEVO+ Power Series	NEVO+600 S	- 1 1 2	3 - 0 0 0	Factory Use
Leakage Current]			Use 0 for unused slots. Blanking plates will be
S – Standard/Industrial]			inserted at factory
Slot A Output No]•			Slot D Output No
Slot B Output No]		> [Slot C Output No
Our design team will assist with value-a Once approved, the factory will is configuratio		ur specific config	guration which can be used f	for all future orders of the same

All specifications are believed to be correct at time of publishing. Vox Power Ltd reserves the right to make changes to any of its products and to change or improve any part of the specification, electrical or mechanical design or manufacturing process without notice. Vox Power Ltd does not assume any liability arising out of the use or application of any of its products and of any information to the maximum extent permitted by law. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any products of Vox Power Ltd. VOX POWER LtD DISCLAIMS ALL WARRANTIES AND REPRESENTATIONS OF ANY KIND WHETHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF SUITABILITY, FITNESS FOR PURPOSE, MERCHANTABILITY AND NONINFRINGEMENT.

Please consult your local distributor or Vox Power directly to ensure that you have the latest revision before using the product and refer to the latest relevant user manual for further information relating to the use of the product. Vox Power Ltd products are not intended for use in connection with life support systems, human implantations, nuclear facilities or systems, aircraft, spacecraft, military or naval missile, ground support or control equipment used for the purpose of guidance navigation or direction of any aircraft, spacecraft or military or naval missile or any other application where product failure could lead to loss of life or catastrophic property damage. The user will hold Vox Power Ltd harmless from any loss, cost or damage resulting from its breach of these provisions.