

Vishay Siliconix

Quad SPST CMOS Analog Switch with Latches

DESCRIPTION

The DG221B is a monolithic quad single-pole, single-throw analog switch designed for precision switching applications in communication, instrumentation and process control systems.

Featuring independent onboard latches and a common \overline{WR} pin, each DG221B can be memory mapped, and addressed as a single data byte for simultaneous switching.

The DG221B combines low power and low on-resistance (60 typical) while handling continuous currents up to 20 mA. An epitaxial layer prevents latchup.

The device features true bidirectional performance in the on condition.

FEATURES

- Accepts 150 ns write pulse width
- 5 V on-chip regulator
- · Latches are transparent with WR low
- Low on-resistance: 60 W

BENEFITS

- Compatible with most μP buses
- Allows wide power supply tolerance without affecting TTL compatibility
- Reduced power consumption
- Allows flexibility of design

APPLICATIONS

- µP based systems
- Automatic test equipment
- Communication systems
- · Data acquisition systems
- Medical instrumentation
- Factory automation

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Four latchable SPST switches per package

TRUTH TABLE					
IN _X	WR	Switch			
0	0	ON			
1	0	OFF			
x		Control data latched-in, switches on or off as selected by last IN_{X}			
х	1	Maintains previous state			

Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V

* Pb containing terminations are not RoHS compliant, exemptions may apply.

DG221B

Vishay Siliconix

ORDERING INFORMATION						
Temp. Range	Package	Standard Part Number	Lead (Pb)-free Part Number			
- 40 °C to 85 °C	16-Pin Plastic DIP	DG221BDJ	DG221BDJ-E3			
	16-Pin Narrow SOIC	DG221BDY DG221BDY-T1	DG221BDY-E3 DG221BDY-T1-E3			

ABSOLUTE MAXIMUM RATINGS					
Parameter		Limit	Unit		
Voltages Referenced V+ to V-		34			
GND		25			
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 or 20 mA, whichever occurs first	V		
Continuous Current (Any Termina	al)	30			
Continuous Current, S or D		20	mA		
Peak Current, S or D (Pulsed at 1 ms, 10 % duty cycle max.)		70			
Storage Temperature (DJ and DY Suffix)		- 65 to 125	°C		
Power Dissipation (Paskage) ^b	16-Pin Plastic DIP ^c	470	mW		
Power Dissipation (Package) ^b 16-Pin SOIC ^d		600	11100		

Notes:

a. Signals on S_X , D_X , or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC board.

c. Derate 6.5 mW/°C above 25 °C.

d. Derate 7.7 mW/°C above 75 °C.

SCHEMATIC DIAGRAM Typical Channel

Figure 1.

Vishay Siliconix

SPECIFICATIONS ^a									
		Test Conditions Unless Otherwise Specified V+ = 15 V, V- = - 15 V		Limits - 40 °C to 85 °C					
Parameter	Symbol	$V_{\rm IN} = 2.4 \text{ V}, 0.8 \text{ V}^{\rm f}, \overline{\rm WR} = 0$	Temp. ^b	Min. ^d	Typ. ^c	Max. ^d	Unit		
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full	- 15		15	V		
Drain-Source On-Resistance	r _{DS(on)}	$I_{S} = -10 \text{ mA}, V_{D} = \pm 10 \text{ V}$	Room Full		60	90 135	Ω		
Source Off Leakage Current	I _{S(off)}	$V_{S} = \pm 14 \text{ V}, V_{D} = \pm 14 \text{ V}$	Room Full	- 5 - 100	± 0.01	5 100			
Drain Off Leakage Current	I _{D(off)}	vg = ± ++ v, vD = ± ++ v	Room Full	- 5 - 100	± 0.02	5 100	nA		
Drain On Leakage Current	I _{D(on)}	$V_{S} = V_{D} = \pm 14 V$	Room Full	- 5 - 200	± 0.01	5 200			
Digital Control	Digital Control								
Input Current	I _{INL} , I _{INH}	$V_{IN} = 0 V \text{ or} = 2.4 V$	Room Full	- 1 - 10	- 0.0004	1 10	μA		
Dynamic Characteristics									
Turn-On Time	t _{ON}	See Figure 2	Room			550			
Turn-Off Time	t _{OFF}		Room			340			
Turn-On Time Write	t _{ON} , WR	See Figure 3	Room			550			
Turn-Off Time Write	t _{OFF} , WR	See Figure 5	Room			340	ns		
Write Pulse Width	t _W		Room	150	120				
Input Setup Time	t _S	See Figure 4	Room	180	130				
Input Hold Time	t _H		Room	20	18				
Charge Injection	Q	$\rm C_L$ = 1000 pF, $\rm V_{gen}$ = 0 V, $\rm R_{gen}$ = 0 Ω	Room		20		рС		
Source-Off Capacitance	C _{S(off)}		Room		8				
Drain-Off Capacitance	C _{D(off)}	$f = 1 MHz, V_S, V_D = 0 V$	Room		9		pF		
Channel On Capacitance	C _{D(on)}		Room		29				
Off-Isolation	OIRR	V _S = 1 V _{p-p} , f = 100 kHz	Room		70		dB		
Interchannel Crosstalk	X _{TALK}	$C_L = 15 \text{ pF}, \text{ R}_L = 1 \text{ k}\Omega$	Room		90		UD		
Power Supplies									
Positive Supply Current	l+	All Channels On or Off	Full		0.8	1.5	mA		
Negative Supply Current	I–	V _{IN} = 0 V or 2.4 V	Room	- 1	- 0.4				

Notes:

a. Refer to PROCESS OPTION FLOWCHART.

b. Room = 25 °C, Full = as determined by the operating temperature suffix.

c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

e. Guaranteed by design, not subject to production test.

f. V_{IN} = input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DG221B

Vishay Siliconix

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

$$V_{O} = V_{S}$$
 $\frac{R_{L}}{R_{L} + r_{DS(on)}}$

Figure 2. Switching Time

C_L (includes fixture and stray capacitance)

$$V_{O} = V_{S}$$
 $\frac{R_{L}}{R_{L} + r_{DS(on)}}$

Figure 4. WR Setup Conditions

→ t_{on} ← → t_{off} ←

VISHAY

DG221B Vishay Siliconix

TEST CIRCUITS

 ΔV_O = measured voltage error due to charge injection The charge injection in coulombs is Q = C_L x ΔV_O

Figure 6. Off Isolation

Figure 7. Channel-to-Channel Crosstalk

APPLICATION HINTS ^a						
V+ Positive Supply Voltage (V)	V- Negative Supply Voltage (V)	GND (V)	WR (V)	V _{IN} Logic Input Voltage VINH(min)/VINL(max) (V)	V _S or V _D Analog Voltage Range (V)	
15	- 15	0	2.4/0.8	2.4/0.8	- 15 to 15	
10	- 10	0	2.4/0.8	2.4/0.8	- 10 to 10	
10	- 5	0	2.4/0.8	2.4/0.8	- 5 to 10	

Notes:

a. Application hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing.

DG221B

Vishay Siliconix

APPLICATIONS

TRUTH TABLE							
IN ₁	IN ₂	IN ₃	IN ₄	WR ^a	ON SWITCH		
0	0	0	0	0	All		
1	1	1	1	0	None		
0	1	1	1	0	1		
1	0	1	1	0	2		
1	1	0	1	0	3		
1	1	1	0	0	4		

OUTPUT ATTENUATION FOR FIGURE 7							
WR	IN ₁	IN ₂	IN ₃	IN ₄	Gain		
0	0	1	1	1	0.1		
0	1	0	1	1	0.01		
0	1	1	0	1	0.001		
0	1	1	1	0	0.0001		

Notes:

a. WR may be held at "0" for temporary operation similar to DG201A/DG201B. With WR at "0" SW₁ will remain on as long as IN₁ is held at "0" V.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71616.

SOIC (NARROW): 16-LEAD

JEDEC Part Number: MS-012

PDIP: 16-LEAD

	MILLIN	IETERS	INC	HES	
Dim	Min	Max	Min	Max	
Α	3.81	5.08	0.150	0.200	
A ₁	0.38	1.27	0.015	0.050	
В	0.38	0.51	0.015	0.020	
B ₁	0.89	1.65	0.035	0.065	
С	0.20	0.30	0.008	0.012	
D	18.93	21.33	0.745	0.840	
E	7.62	8.26	0.300	0.325	
E ₁	5.59	7.11	0.220	0.280	
e ₁	2.29	2.79	0.090	0.110	
e _A	7.37	7.87	0.290	0.310	
L	2.79	3.81	0.110	0.150	
Q ₁	1.27	2.03	0.050	0.080	
S	0.38	1.52	.015	0.060	
ECN: S-03946—Rev. D, 09-Jul-01 DWG: 5482					

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.