http://www.sanken-ele.co.jp

SanKen SANKEN ELECTRIC F L D 4 7 0

Nov. 2010

Features

N channel 40V MOSFET for automotive application TO220F: wide pin package (for high current)

Applications

Automotive: EPS motor driver application Automotive: Other motor driver and solenoid driver application

Internal Equivalent Circuit

Package

FM20 (TO220 Full Mold)

Key Specifications

Absolute	maximum	ratings

			(Ta=25°C)
Characteristic	Symbol	Rating	Unit
Drain to Source Voltage	$V_{\rm DSS}$	40	V
Gate to Source Voltage	V_{GSS}	±20	V
Continuous Drain Current	ID	±70	А
Pulsed Drain Current	${ m I}_{ m D(pulse)}$ $^{st 1}$	±140	А
Maximum Power Dissipation	PD	35 (Tc=25°C)	W
Single Pulse Avalanche Energy	E_{AS} *2	400	mJ
Avalanche Current	IAS	25	А
Maximum Drain to Source dv/dt 1	dv/dt 1^{*_2}	0.3	V/ns
Peak diode recovery dv/dt 2	dv/dt 2^{st_3}	1.0	V/ns
Peak diode recovery di/dt	di/dt ^{%3}	100	A/μs
Channel Temperature	Tch	150	°C
Storage Temperature	Tstg	-55~150	°C

 $1 \text{PW} \le 100 \,\mu \text{ sec. duty cycle} \le 1\%$

 $2 V_{DD}$ =20V, L=1mH, IL=20A, unclamped, Rg=50 Ω , See Fig.1 3 Isp=25A, See Fig.2

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use ; nor for any infringements of patents or other rights of third parties that may result from its use.

Nov. 2010

Electrical characteristics							
Characteristic	Symbol	Test Conditions	(T Limits			a=25°C)	
			MIN	ТҮР	MAX	Unit	
Drain to Source breakdown Voltage	V _{(BR)DSS}	$I_D=100\mu A, V_{GS}=0V$	40			V	
Gate to Source Leakage Current	Igss	V _{GS} =±15V			±2	μΑ	
Drain to Source Leakage Current	I _{DSS}	V_{DS} =40V, V_{GS} =0V			100	μΑ	
Gate Threshold Voltage	VTH	V _{DS} =10V, I _D =1mA	2.0	3.0	4.0	V	
Forward Transconductance	Re(yfs)	V _{DS} =10V, I _D =35A	30	50		S	
Static Drain to Source On-Resistance	Rds(on)	ID=35A, VGS=10V		5.0	6.0	mΩ	
Input Capacitance	Ciss	V _{DS} =10V V _{GS} =0V f=1MHz		5100		pF	
Output Capacitance	Coss			1200			
Reverse Transfer Capacitance	Crss			860			
Turn-On Delay Time	td(on)	ID=35A, $V_{DD} \approx 20V$ RG=22 Ω , RGS=50 Ω RL=0.57 Ω , VGS=10V See Fig.3		100		- ns	
Rise Time	tr			100			
Turn-Off Delay Time	td(off)			300			
Fall Time	tf			130			
Source-Drain Diode Forward Voltage	V _{SD}	Isd=50A,VGs=0V		0.9	1.2	V	
Source-Drain Diode Reverse Recovery Time	trr	I _{SD} =25A di/dt=50A/us		100		ns	
Thermal Resistance Junction to Case	Rth(ch-c)				3.57	°C/W	
Thermal Resistance Junction to Ambient	Rth(ch-a)				62.5	°C/W	

Nov. 2010

Characteristic Curves (Tc=25°C)

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

Nov. 2010

Characteristic Curves (Tc=25°C)

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use ; nor for any infringements of patents or other rights of third parties that may result from its use.

Nov. 2010

Characteristic Curves (Tc=25°C)

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

Nov. 2010

Characteristic Curves (Tc=25°C)

Page 6

Sanken SANKEN ELECTRIC FLD470

Fig.1 Unclamped Inductive Test Method

Nov. 2010

(a) Test Circuit

Diode Reverse Recovery Time Test Method Fig.2

(a) Test Circuit

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

Nov. 2010

<u>Outline</u>

FM20 (TO220 Full Mold)

Weight Approx. 2g

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.