製品仕様書

Specification of Crystal Unit

決定年月日 Issue Date : December 22, 2017

1. 品番 Part Number

当 社 品 番 Murata Part Number

XRCED38M400FXQ50R0

(Frequency: 38.4000MHz / Size: 1.2x 1.0mm)

2. 適 用 Scope

当製品仕様書は、通信機器及び民生機器に使用する水晶振動子について規定します。この用途以外にご使用の場合には事前に当社へご連絡ください。

This product specification is applied to the crystal unit used for the mobile and consumer equipments. Please contact us when using this product for any other applications than described in the above.

3. 外観 及び 寸法 Appearance and Dimensions

3-1 外観: 目視によって表示識別可能であり、汚れ等がありません。

Appearance : No illegible marking. No visible dirt.

3-2 外形寸法図 : 製品単体の形状を項目6に示します。

Dimensions of component : Please refer to item 6 for component dimensions.

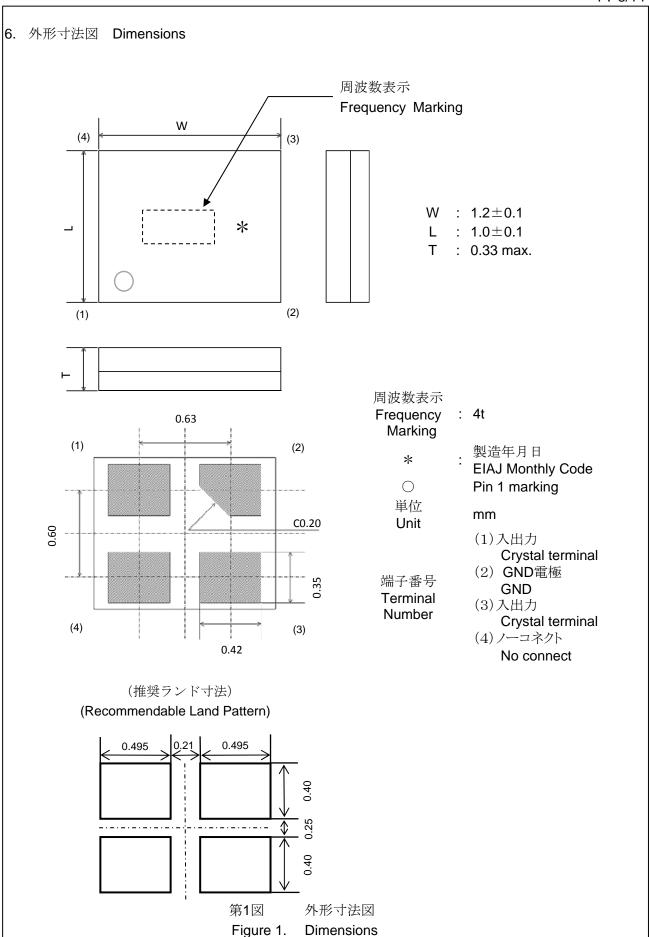
3-3 構造 : アルミナ基板に、水晶素子を接着し、金属キャップで

蓋をしております。

Construction : Crystal element is mounted onto alumina substrate,

then metal cap covers over the element.

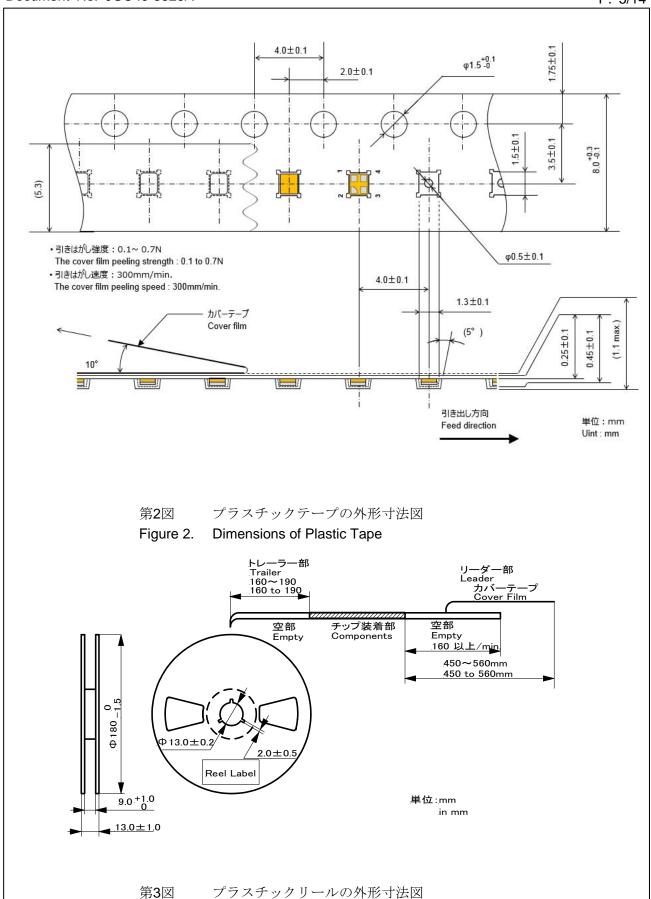
4. 定格 Rating


	項 目 Item	規格 Specification		
4-1	動作温度範囲	-40 to +105°C		
	Operating Temperature Range	-40 to +105 C		
4-2	保存温度範囲	-40 to +105°C		
	Storage Temperature Range	-40 to +105 C		
4-3	励振レベル	30 W (100 W may)		
	Drive Level	$30\mu\mathrm{W}$ (100 $\mu\mathrm{W}$ max.)		
4-4	オーバートーン次数	基本波		
	Overtone Order	Fundamental		

5. 電気的性能 Electrical Characteristics

	項 目 Item	規格 Specification		
5-1	公称周波数	38.4000MHz		
	Nominal Frequency	36.4000WH IZ		
5-2	総合周波数偏差 (以下の項目を含む)			
	Total Frequency Tolerance (including the following items)			
	·周波数許容偏差(+25°C) *1			
	Frequency Tolerance(+25°C) *1	±20ppm以内/max.		
	·周波数温度依存性(-30 to +85°C) *1			
	(+25°C の値に対して)			
	Frequency Shift by Temperature(-30 to +85°C) *1			
	(from initial value at +25°C)			
5-3	周波数温度依存性(-30 to +85°C) *1			
	(+25°C の値に対して)	±20ppm以内/max.		
	Frequency Shift by Temperature(-30 to +85°C) *1	- Zuppini以下がmax.		
	(from initial value at +25°C)			
5-4	周波数温度依存性(-30 to +105°C) *1			
	(+25°C の値に対して)	±35ppm以内/max.		
	Frequency Shift by Temperature(-30 to +105°C) *1	_55ppm&r 1/max.		
	(from initial value at +25°C)			
5-5	周波数エージング(+25°C, 1year(s)) *1			
	(初期値に対して)	±1ppm以内/max.		
	Frequency aging(+25° C, 1year(s)) *1	1 P P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	(from initial value)			
5-6	等価直列抵抗(ESR) *1	80Ω 以下/max.		
	Equivalent Series Resistance(ESR) *1			
5-7	絶縁抵抗 *2	500MΩ 以上/min.		
	Insulation Resistance *2	(D.C.100±15V 印加時)		
5 0		(Applied D.C. 100±15V)		
5-8	負荷容量 (Cs)	10.0pF		
	Load Capacitance	. 5.56.		

- *1 周波数および等価直列抵抗の測定方法は8項を参照ください。 Please refer to item 8 for measuring method of frequency and Equivalent Series Resistance.
- *2 端子相互間での抵抗を示します。


This characteristic shows the resistance between terminals.

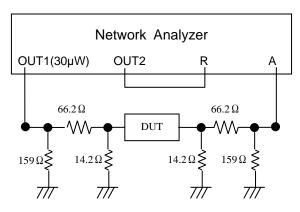
月 年 Year	Month	1	2	3	4	5	6	7	8	9	10	11	12
2011, 2015, 2019, 202	23	a	b	$\overline{\mathbf{c}}$	d	е	f	æ	h	j	k	l	m
2012, 2016, 2020, 202	24	n	þ	B	r	s	t	u	u	w	x	y	3
2013, 2017, 2021, 202	25	A	В	С	D	E	F	G	Н	J	K	L	M
2014, 2018, 2022, 202	26	N	P	Q	R	S	Т	U	V	W	X	Y	Z

製造年月度 / EIAJ Monthly Code

- (注) 4年で1サイクルとなります。 / (note) The number is cycled by 4years.
- 7. テーピング品包装規格 Packaging Standard (Taping)
 - 7-1 テープは右巻き(テープの端を手前に取り出した時、送り穴が右側になる向き)とします。 The tape for components shall be wound clockwise. The feeding holes shall be to the right side as the tape is pulled toward the user.
 - 7-2 チップは、1リール 3,000個収納します。 A reel shall contain 3,000pcs of components.
 - **7-3** プラスチックテープの外形寸法図を第2図に示します。 Dimensions of plastic tape are shown in Figure 2.
 - **7-4** プラスチックリールの外形寸法図を第**3**図に示します。 Dimensions of plastic reel are shown in Figure 3.

Dimensions of Plastic Reel

Figure 3.


8. 測定方法 Measuring Method

8-1 周波数測定方法:

5、9、10項で示す周波数は、第4-1図で示す回路とネットワークアナライザ(KEYSIGHT E5100Aもしくは相当品)にて測定した負荷時共振周波数(共振点近傍において、電気的インピーダンスが抵抗性となる2つの周波数のうち、低い方の周波数)を示します。DUTは第4-2図に示します。負荷容量値(Cs)は5項を参照ください。負荷時共振周波数の規格値は、励振レベル: $30\,\mu$ Wで測定した値です。測定機器の違いにより、周波数ズレが発生する可能性があります。

Frequency measuring method:

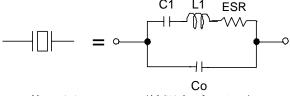
Frequency mentioned the items of 5, 9, 10 means the load resonance frequency (Lower frequency of the two given when the electrical impedance of the component becomes resistant near its resonance point) measured by network analyzer (KEYSIGHT E5100A or the equivalent) and the circuit in Figure. 4-1. DUT is shown in Figure 4-2, and the value of a load capacitor (Cs) is referred to the item of 5. The load resonance frequency is measured at drive level of 30 μ W. Measured frequency may be changed by using different measurement equipment.

Cs

第4-1図 周波数測定回路

Figure 4-1 Frequency measuring circuit

第4-2図 DUT(被測定デバイス) Figure 4-2 DUT (Device Under Test)


8-2 等価直列抵抗 : 5項に示す等価直列抵抗(ESR)は、第4-1図で示す回路と

ネットワークアナライザ(KEYSIGHT E5100Aもしくは相当品)にて測定します。DUTは第4-3図に示します。

Equivalent series resistance : The equivalent series resistance (ESR) which mentioned

in item 5 is measured by network analyzer (KEYSIGHT E5100A or equivalent) and the circuit in Figure.4-1. DUT

is shown in Figure 4-3.

第4-3図 DUT (被測定デバイス) Figure 4-3 DUT (Device Under Test)

8-3 測定条件 : 温度+25±2°C、湿度25~75%R.H.を標準測定状態とし

ます。

Measuring Condition : Standard conditions for the measurement shall be

+25±2°C and 25 to 75%R.H.

9. 機械的性能 Physical Characteris

9. 🤊	機械的	」性能 Physical C		
		項 目 Item	試験条件 Test Condition	試験後の規格 Specification
				After Test
	9-1	落下	製品を模擬治具(荷重負荷150g)に取り付けた 状態で、1.5mの高さからコンクリートに6方向各	
			10回自然落下させた後、測定します。	
		Drop	Component with 150g dummy housing shall be	The measured values
			measured after drops in 6 perpendicular	shall meet Table 1.
			directions, total 60 times, onto a concrete floor	
			from a height of 1.5m.	
	9-2	正弦波振動	製品を試験用基板に実装した状態で、振動周波	表1を満足します。
			数10~2000Hz、全振幅1.5mmの振動をX,Y,Zの3	
			方向に各2時間加えた後、測定します。	
		Vibration	Component shall be soldered on the test board.	The measured values
		(sinusoidal)	Then it shall be measured after being applied	shall meet Table 1.
			vibration of amplitude 1.5mm and vibration	
			frequency 10 to 2000Hz to each of 3	
			perpendicular directions for 2 hours.	
	9-3	基板たわみ	下図に示すたわみ試験用基板に実装し、矢印の	表1を満足します。
			方向に1回たわませた後、測定します。	
			たわみ量:4mm 保持時間:20秒	
			基板厚み :1.6mm	
		Board Flex	Component shall be soldered on the test board.	The measured values
			Then it shall be measured after being applied	shall meet Table 1.
			pressure in vertical direction shown in the figure	
			below for 1 time until the bent width reaches 4mm	
			and hold for 20 seconds. (PCB thickness:	
			1.6mm)	
			,	
			加圧棒 Stick 加圧	
			Stick Jul± 20 Load	
			РСВ	
			たわみ Deflection	
			0.5 = 14.0	
			が 5 Supporter Part 1センターズレ Part 1センターズレー 1 Off-Center	
			45 45	
			100	
			! ↑	
			素子実装部	
			単位/Unit: mm	
Ĺ				

9-4	はんだ耐熱	製品単品状態でリフロー炉(ピーク温度	表1を満足します。
	(リフロー方式)	+260°C、10秒、その他条件は12-6-2項を参照)	
		に6回通した後、室温に取り出し、24時間放置し	
		た後、測定します。	
	Resistance to	Component shall be measured after 6 times	The measured values
	Soldering Heat	reflow soldering and leaving at room temperature	shall meet Table 1.
	(Re-flow	for 24 hours. For soldering profile, refer to item	
	Soldering)	12-6-2 (Peak temperature is +260°C for 10s).	
9-5	はんだ付け性	無鉛はんだ (Sn-3.0Ag-0.5Cu)	端子の90%以上には
		PCT装置にて温度+105℃、湿度100%R.H.の条	んだが付着します。
		件で、4時間のエージングをした後、端子部分を	
		ロジンメタノール液に5秒浸した後、+245±3°C	
		の溶融はんだ中に3.0±0.3秒間浸します。	
	Solderability	Lead free solder (Sn-3.0Ag-0.5Cu)	Ninety (90) % or more
		After being kept in pressure cocker at +105°C	of terminal surface
		and 100%R.H. for 4 hours, and being placed in a	shall be coated with
		rosin-methanol for 5s, the terminals of	solder.
		component shall be immersed in a soldering bath	
		at +245±3°C for 3.0±0.3s.	

10. 耐候性能 Environmental Characteristics

J. 明] 5	大庄祀 LIIVIIO	nmental Characteristics	
	項目	試 験 条 件	試験後の規格 Specification
	Item	Test Condition	·
			After Test
10-1	高温放置	製品を試験用基板に実装した状態で、温度+105±	
		2°Cの恒温槽中に1000時間保持した後、室温に取出	
		し、24時間放置した後、測定します。	
	High	Component shall be soldered on the test board. Then	The measured values
	Temperature	it shall be kept in a chamber at +105±2°C for 1000	shall meet Table 1.
	Exposure	hours. And then it shall be measured after leaving at	
	(Storage)	room temperature for 24 hours.	
10-2	低温放置	製品を試験用基板に実装した状態で、温度-40±3°C	表1を満足します。
		の恒温槽中に1000時間保持した後、室温に取出し、	
		24時間放置した後、測定します。	
	Cold	Component shall be soldered on the test board. Then	The measured values
	(Storage)	it shall be kept in a chamber at -40±3°C for 1000	shall meet Table 1.
		hours. And then it shall be measured after leaving at	
		room temperature for 24 hours.	
10-3	高温高湿放置	製品を試験用基板に実装した状態で、温度+85±2°C	表1を満足します。
		湿度85±5%R.H.の恒温恒湿槽中にて1000時間保持	
		した後、室温に取り出し、24時間放置した後、測定	
		します。	
	Humidity	Component shall be soldered on the test board. Then	The measured values
		it shall be kept in a chamber at +85±2°C, 85 \pm	
		5%R.H. for 1000 hours. And then it shall be	
		measured after leaving at room temperature for 24	
		hours.	
10-4	熱衝撃	製品を試験用基板に実装した状態で、温度-40°Cの恒	表 1 を満足します。
		温槽中に30分間保持後、温度+105°Cの恒温槽中に直	
		ちに移し、30分間保持する。これを1サイクルと	
		し、1000サイクル行った後、室温に取り出し、24時	
		間放置した後、測定します。	
	Temperature	Component shall be soldered on the test board. After	The measured values
	Cycling	performing 1000 cycles of thermal test (-40°C for 30	
	- ,	minutes to +105°C for 30 minutes), it shall be	
		measured after leaving at room temperature for 24	
		hours.	
	1	nouro.	

表1 Table 1.

周波数変動量	±4ppm 以内/max.		
Frequency deviation	(初期値に対して/from initial value)		
ESR変動量	±5Ω 以内/max. or ±30% 以内/max.		
ESR deviation	(初期値に対して/from initial value)		

11. 🇘 注意 Cautions

11-1 用途の限定 Limitation of Applications

当製品について、その故障や誤動作が人命または財産に危害を及ぼす恐れがある等の理由により、高信頼性が要求される以下の用途でのご使用をご検討の場合は、必ず事前に当社までご連絡下さい。ただし、⑥の輸送機器は、機器の動作に直接かかわる用途でのご使用は避けてください。(具体例:エンジン制御、ブレーキ制御、ステアリング制御、ボディ制御)

- ①航空機器 ②宇宙機器 ③海底機器 ④発電所制御機器 ⑤医療機器
- ⑥輸送機器(自動車、列車、船舶等) ⑦交通用信号機器 ⑧防災/防犯機器
- ⑨情報処理機器 ⑩その他上記機器と同等の機器

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

Notice, please do not use this products in following applications in transportation equipment. (example: engine control, brake control, steering control, body control)

- ①Aircraft equipment
- ②Aerospace equipment
- ③Undersea equipment
- 4 Power plant control equipment
- **5**Medical equipment
- ⑥Transportation equipment(vehicles, trains, ships, etc.)
- Traffic signal equipment
- ® Disaster prevention / crime prevention equipment
- Data-processing equipment

11-2 フェールセーフ機能の付加 Fail-safe

当製品に万が一異常や不具合が生じた場合でも、二次災害防止のために完成品に適切なフェールセーフ機能を必ず付加して下さい。

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

12. 使用上の注意 Caution for Use

12-1

過大な機械衝撃が印加された場合、不具合を生じることがありますので取り扱いには充分ご 注意下さい。

The component may be damaged if excess mechanical stress is applied.

12-2

ご使用条件により、発振不具合(異常発振あるいは発振停止)が発生する場合がありますので、回路条件を充分ご確認の上ご使用下さい。

Please confirm the circuit conditions on your set, because irregular or stop oscillation may occur under unmatched circuit conditions.

12-3

当製品は、画像認識タイプの位置決め機構実装機に対応しています。但し、実装条件によっては過大な衝撃が加わり製品本体を破損する場合がありますので事前に使用される実装機で必ず評価確認をして下さい。なお、メカチャック機構タイプの実装機での実装は避けて下さい。詳細については事前に当社までお問い合わせ下さい。

The component is recommended with placement machines employing optical placement capabilities. The component might be damaged by mechanical force depending on placement machine and condition. Make sure that you have evaluated by using placement machines before going into mass production. Do not use placement machines employing mechanical positioning. Please contact Murata for details beforehand.

12-4

実装後に基板から取り外した製品は再使用しないで下さい。

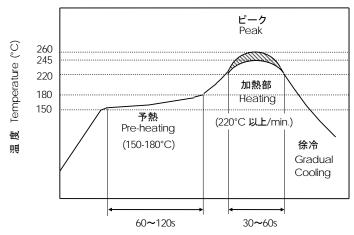
Do not reuse components once mounted onto a circuit board.

12-5

調査または分析が必要な場合は、基板から製品を取り外すときに過剰な熱が加わらないよう 注意して下さい。

In case of investigation or analysis is needed, please take care when removing the crystals from circuit board. (Please do not over heat)

12-6 はんだ付けに関する注意事項 Caution for Soldering


この製品はリフロー方式で実装をお願いします。

Please mount components on a circuit board by the re-flow soldering

12-6-1 推奨するフラックスおよびはんだ Recommendable Flux and Solder

フラックス Flux	ロジン系フラックスをお使いください。水溶性フラックスは使用しないでください。 Please use rosin based flux, but do not use water soluble flux.
はんだ	Sn-3.0Ag-0.5Cu組成のはんだをご使用ください。 クリームはんだ塗布厚は、0.10~0.15mmの範囲でお願いします。
Solder	アリームはんだ整相学は、0.10~0.15mmの範囲でお願いします。 Please use solder (Sn-3.0Ag-0.5Cu) under the following condition.
Oolder	Standard thickness of soldering paste: 0.10 to 0.15mm

12-6-2 推奨はんだ条件 Recommendable Soldering Profile

	標準プロファイル
	Standard soldering profile
予熱	150°C to 180°C
Pre-heating	120s 以下/max.
加熱部	220°C 以上/min.
Heating	60s 以下/max.
ピーク温度	260°C以下/max.
Peak temperature	10s 以内/max.
注意事項	明記したリフロー温度を保って下さい。
Caution	(260°Cを超える温度を加えないで下さい)
	Please keep the temperature of the re-flow
	soldering as specified. (Please do not add
	temperature of more than 260°C)

^{*}温度は部品表面付近で測定します。

^{*}Temperature shall be measured on the surface of component.

13. 製品保管上の注意 Notice on product storage

13-1

温度-10~+40°C、相対湿度15~85%で、急激な温湿度変化のない室内で保管下さい。

Please store the products in room where the temperature / humidity is stable. And avoid such places where there are large temperature changes. Please store the products under the following conditions: Temperature: -10 to +40 °C

Humidity: 15 to 85% R.H.

13-2

製品保管期限は未開梱、未開封状態にて、納入後6ヶ月間です。納入後6ヶ月以内でご使用下さい。6ヶ月を越える場合ははんだ付け性等をご確認の上、ご使用下さい。

Expire date (Shelf life) of the products is 6 months after delivery under the conditions of an unopened package. Please use the products within 6 months after delivery.

If you store the products for a long time (more than 6months), use carefully because the products may be degraded in the solder-ability and/or rusty. Please confirm solder-ability and characteristics for the products regularly.

13-3

酸、アルカリ、塩、有機ガス、硫黄等の化学的雰囲気中で保管されますとはんだ付け性の劣 化不良等の原因となりますので、化学的雰囲気中での保管は避けて下さい。

Please do not store the products in a chemical atmosphere (Acids, Alkali, Bases, Organic gas, Sulfides and so on), because the characteristics may be reduced in quality, and/or be degraded in the solder-ability due to the storage in a chemical atmosphere.

13-4

湿気、塵等の影響を避けるため、床への直置きは避けて保管下さい。

Please do not put the products directly on the floor without anything under them to avoid damp places and/or dusty places.

13-5

直射日光、熱、振動等が加わる場所での保管は避けて下さい。

Please do not store the products in the places under direct sunlight, heat and vibration.

13-6

開梱、開封後、長期保管された場合、保管状況によっては、はんだ付け性等が劣化する可能性があります。開梱、開封後は速やかにご使用下さい。

Please use the products immediately after the package is opened, because the characteristics may be reduced in quality, and/or be degraded in the solder-ability due to storage under the poor condition.

13-7

製品落下により、製品内部の水晶素子の割れ等の原因となりますので、容易に落下しない状態での保管とお取扱いをお願い致します。

Please do not drop the products to avoid cracking of crystal element.

Document No. JGC49-3326A	P. 14/14
14. <i>⚠</i> お願い Note:	
14-1 ご使用に際しましては、貴社製品に実装された状態で必ず評価して下さい。 Please make sure that your product has been evaluated in view of your specifications product being mounted to your product.	with our
14-2 当製品を当製品仕様書の記載内容を逸脱して使用しないで下さい。 You are requested not to use our product deviating from this product specification.	