

Adafruit Si4713 FM Radio Transmitter with

RDS/RDBS Support

Created by lady ada

https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-rds-rdbs-support

Last updated on 2023-05-15 05:34:31 PM EDT

©Adafruit Industries Page 1 of 26

3

4

6

10

18

25

25

Table of Contents

Overview

Pinouts

• Audio Inputs

• Power Pins

• Interface Pins

• Extra GPIO Pins

Assembly

• Prepare the header strip:

• Add the breakout board:

• And Solder!

Arduino Code

• Arduino Wiring

• Download Adafruit_Si4713

• Load Demo

• Using the RPS Scanning function

• Library Reference

• Radio Transmitter control

• RPS (Radio Power Sensing)

• RDS/RBDS (Radio Data Broadcast)

• GPIO Control

• Advanced!

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• CircuitPython Installation of SI4713 Library

• Python Installation of SI4713 Library

• CircuitPython & Python Usage

• Frequency Strength Scan

• Transmitting

• RDS - Radio Data System

• Full Example Code

Python Docs

Downloads

• Datasheets & Files

• Layout Print

• Schematic

©Adafruit Industries Page 2 of 26

Overview

Yaaar! Become your very own pirate radio station with this FM radio transmitter. This

breakout board, based on the best-of-class Si4713, is an all-in-one stereo audio FM

transmitter that can also transmit RDS/RBDS data!

Wire up to your favorite microcontroller (we suggest an Arduino) to the I2C data lines

to set the transmit frequency and play line-level audio into the stereo headphone

jack. Boom! Now you are the media. Listen using any FM receiver such as your car or

pocket radio receiver - this is an easy way to transmit audio up to about 10 meters /

30 feet away.

©Adafruit Industries Page 3 of 26

This transmitter even has RDS/RBDS support - that's text/data transmissions that many

modern FM receivers support. (It's how some car radios can display the FM station

and current song playing). You can transmit just about any text you want, set the

station identifier as well as the 'freeform' buffer.

Best of all, you'll be up and running in minutes with our awesome Arduino library,

example code and tutorial!

Pinouts

There's a couple pins on this here breakout, lets cover them all in groupings by 'type'

©Adafruit Industries Page 4 of 26

Audio Inputs

LIN - this is the line level LEFT input. Its connected to the headphone jack as

well but in case you want to wire directly without a chunky cable, pipe line level

(~0.7 Vpp) audio into here. There's an AC blocking capacitor on board so it can

be DC biased

RIN - same as LIN but the RIGHT input.

Power Pins

Vin - this is the power input pin. You can power the chip from 3-5VDC. Ideally

you should use the same voltage you use for logic levels. For an Arduino, that's

usually 5V

GND - this is power and logic ground, connect to your microcontroller's ground

pin

3Vo - this is the output from the onboard regulator, 3.3V nominal. You can use

this if you need up to 100mA of 3V regulated voltage

Interface Pins

The FM transmitter chip requires a microcontroller for setting it up unlike pure-analog

solutions that have a tuning potentiometer. The trade off is some code is needed, but

the output is digitally tuned so its much more precise.

Our codebase uses I2C to communicate. The chip supports SPI as well but it was

annoying enough to support just I2C so we don't have code examples for SPI!

•

•

•

•

•

©Adafruit Industries Page 5 of 26

All the interface input pins are 5V friendly, and can be used with 3-5V logic

RST - This is the Reset pin. You must have this pin toggle before starting to

communicate with the chip. When at logic 0, the chip is in reset.

CS - This is the Chip select pin, used in SPI mode. It also determines the I2C

address. When pulled high (it is by default) the I2C address is 0x63. If this pin is

shorted to ground, the I2C address is 0x11

SCL - this is the I2C clock pin, connect to SCL on your microcontroller.

SDA - this is the I2C data pin, connect to SDA on your microcontroller.

Extra GPIO Pins

There's also two "GPIO" pins, you can use these to blink LEDs. The initial state of

these pin sets up the chip for Analog Mode so don't short them to ground or VCC

during reset. They are 3V output only!

GP1 - this is GPIO #1

GP2 - this is GPIO #2

GPIO #3 is used for the 32Khz clock generator onboard.

Assembly

•

•

•

•

•

•

©Adafruit Industries Page 6 of 26

Prepare the header strip:
Cut the strip to length if necessary. It will

be easier to solder if you insert it into a

breadboard - long pins down

Add the breakout board:
Place the breakout board over the pins so

that the short pins poke through the

breakout pads

©Adafruit Industries Page 7 of 26

https://learn.adafruit.com//assets/17639
https://learn.adafruit.com//assets/17639
https://learn.adafruit.com//assets/17640
https://learn.adafruit.com//assets/17640

And Solder!
Be sure to solder all pins for reliable

electrical contact.

(For tips on soldering, be sure to check out

our Guide to Excellent Soldering ()).

©Adafruit Industries Page 8 of 26

https://learn.adafruit.com//assets/17641
https://learn.adafruit.com//assets/17641
https://learn.adafruit.com//assets/17642
https://learn.adafruit.com//assets/17642
https://learn.adafruit.com//assets/17643
https://learn.adafruit.com//assets/17643
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints

visually and continue onto the antenna

An antenna is required! We provide a

1meter long wire but you can also use a

shorter or longer piece as desired.

Strip a few mm from the end

Hook the exposed wire end into the ANT

hole

©Adafruit Industries Page 9 of 26

https://learn.adafruit.com//assets/17644
https://learn.adafruit.com//assets/17644
https://learn.adafruit.com//assets/17645
https://learn.adafruit.com//assets/17645
https://learn.adafruit.com//assets/17646
https://learn.adafruit.com//assets/17646

Solder it in!

Done!

Arduino Code

Arduino Wiring

You can easily wire this breakout to any microcontroller, we'll be using an Arduino. For

another kind of microcontroller, just make sure it has I2C, then port the code - once

the low level i2c functions are adapted the rest should 'fall into place'

 ()

adafruit_products_wiring.jpg ()

Connect Vin to the power supply, 3-5V is fine. Use the same voltage that the

microcontroller logic is based off of. For most Arduinos, that is 5V

Connect GND to common power/data ground

Connect the SCL pin to the I2C clock SCL pin on your Arduino. On an UNO &

'328 based Arduino, this is also known as A5, on a Mega it is also known as digit

al 21 and on a Leonardo/Micro, digital 3

•

•

•

©Adafruit Industries Page 10 of 26

https://learn.adafruit.com//assets/17647
https://learn.adafruit.com//assets/17647
https://learn.adafruit.com//assets/17648
https://learn.adafruit.com//assets/17648
https://learn.adafruit.com/assets/17127
file:///assets/17652
file:///assets/17652

Connect the SDA pin to the I2C data SDA pin on your Arduino. On an UNO &

'328 based Arduino, this is also known as A4, on a Mega it is also known as digit

al 20 and on a Leonardo/Micro, digital 2

Connect the RST pin to digital 12 - you can change this later but we want to

match the tutorial for now

The Si4713 has a default I2C address of 0x63 - you can change it to 0x11 by

connecting CS to ground but don't do that yet! Get the demo working first before

making changes

Download Adafruit_Si4713

To begin reading sensor data, you will need to download the Adafruit si4713 library

from the Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit Si4713 library and install it

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

Load Demo

Open up File->Examples->Adafruit_Si4713->adaradio and upload to your Arduino

wired up to the sensor

•

•

©Adafruit Industries Page 11 of 26

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

You may want to update the FM station transmission. By default the library transmits

on 102.3MHz FM, but that might be 'taken' in your area.

Find this line

#define FMSTATION 10230 // 10230 == 102.30 MHz

And change it to an unused frequency. This number is in 10KHz so for example

88.1MHz is written as 8810

Upload it to your Arduino and open up the Serial console at 9600 baud

©Adafruit Industries Page 12 of 26

As long as you get to the RDS On! message that means everything works, pipe some

audio into the 3.5mm jack and make sure you see the InLevel audio volume range

from 0 to about -10 (dB)

The fastest way to test the RDS message sending is using an RTL-SDR (that's how we

debugged the breakout!) () or a phone/radio that can do RDS decoding

©Adafruit Industries Page 13 of 26

https://learn.adafruit.com/getting-started-with-rtl-sdr-and-sdr-sharp/sdr-number-fm-radio
https://learn.adafruit.com/getting-started-with-rtl-sdr-and-sdr-sharp/sdr-number-fm-radio

Using the RPS Scanning function

The Si4713 has the ability 'scan' the FM band and measure the input power. You can

use the RPS functionality to locate a good unused station. Find this section in the

adaradio demo and uncomment the for loop:

 // Uncomment below to scan power of entire range from 87.5 to 108.0 MHz
/*
 for (uint16_t f = 8750; f<10800; f+=10) {
 radio.readTuneMeasure(f);
 Serial.print("Measuring "); Serial.print(f); Serial.print("...");
 radio.readTuneStatus();
 Serial.println(radio.currNoiseLevel);
 }
*/

Reupload and look at the serial console:

©Adafruit Industries Page 14 of 26

The larger the number the higher the transmission power. For example, 96.3MHz is a

higher number than the others (FYI, its Univision 96.3 FM ()!) whereas 95.1 MHz is nice

as low, that's not used for any transmission. Try to find a number that's also not

surrounded by high numbers, since it can get 'drowned out' by the nearby

frequencies.

©Adafruit Industries Page 15 of 26

http://en.wikipedia.org/wiki/WXNY-FM

Library Reference

Radio Transmitter control

Start out by initializing the Si4713 chipset with

begin()

This will return true if the radio initialized, and false if the radio was not found. Check

your wiring if its not 'showing up'

Then you can turn on the radio transmitter with

setTXpower(txpwr)

the txpwr number is the dBμV transmission power. You can set this to 88-115dBμV or

0 (for off)

Of course, you'll want to tune the transmitter! Do that with

tuneFM(freq)

That will set the output frequency, in 10's of KHz. So if you want to tune to 101.9 the

frequency value is 10190

You can check in on the radio with

readTuneStatus()

Whcih will set the currFreq currdBuV adnd currAntCap variables in the radio object.

The first two are the frequency and power output, the third variable is the tuning

antenna capacitor it set for the best output. This number will vary with antenna size

and frequency.

RPS (Radio Power Sensing)

This function is used with two procedures.

readTuneMeasure(freq)

begins the measurement, freq is in units of 10KHz so 88.1MHz is written in as 8810

Then you have to call

readTuneStatus()

©Adafruit Industries Page 16 of 26

which will wait until the chip has measured the data and stick it into the currNoiseLev

el variable

RDS/RBDS (Radio Data Broadcast)

The Si4713 has great support for sending RDS data and we made it real easy too.

Initialize the subsystem with

beginRDS()

Then you can set the "station name" with

setRDSstation("AdaRadio")

The radio station name is up to 8 characters

You can also send the main buffer which usually contains the song name/artist.

setRDSbuffer("Adafruit g0th Radio!")

You can send up to 32 characters, but you can continuously send new data, just wait

a few seconds before each data rewrite so the listener's radio has received all the

data

GPIO Control

There's two GPIO pins you can use to blink LEDs. They are GPIO1 and GPIO2 - GPIO3

is used for the oscillator. To set them to be outputs call

setGPIOctrl(bitmask)

where the bitmask has a 1 bit for each of the two pins. For example to set GPIO2 to be

an output use setGPIOctrl((1<<2)) to set both outputs, use setGPIOctrl((1<<2) || (1<<1))

Then you can set the output with

setGPIO(bitmask)

same idea with the bitmask, to turn both on, use setGPIOctrl((1<<2) || (1<<1)). To turn

GPIO2 on and GPIO1 off, setGPIOctrl(1<<2)

Advanced!

We, by default, use the built-in AGC (auto-gain control) system so the audio level is

maxed out. This may be annoying to you if have a good quality line level and the

volume is fluctuating (it should be quiet, but isnt)

©Adafruit Industries Page 17 of 26

in the Adafruit_Si4713.cpp file find these lines

//setProperty(SI4713_PROP_TX_ACOMP_ENABLE, 0x02); // turn on limiter,

but no dynamic ranging

setProperty(SI4713_PROP_TX_ACOMP_ENABLE, 0x0); // turn on limiter

and AGC

and uncomment the first one, and comment the second. This will turn off the AGC

Python & CircuitPython

It's easy to use the Si4713 FM transmitter with Python or CircuitPython, and the Adafru

it CircuitPython SI4713 () module. This module allows you to easily write Python code

that controls the transmitter and sends RDS data.

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

CircuitPython Microcontroller Wiring

First wire up a Si4713 to your board exactly as shown on the previous pages for

Arduino using an I2C connection. Here's an example of wiring a Feather M0 to the

sensor with I2C:

Board 3V to sensor VIN

Board GND to sensor GND

Board SCL to sensor SCL

Board SDA to sensor SDA

Board D5 to sensor RST

©Adafruit Industries Page 18 of 26

https://github.com/adafruit/Adafruit_CircuitPython_SI4713
https://github.com/adafruit/Adafruit_CircuitPython_SI4713
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/104548
https://learn.adafruit.com//assets/104548

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Here's the Raspberry Pi wired with I2C:

Pi 3V3 to sensor VIN

Pi GND to sensor GND

Pi SCL to sensor SCL

Pi SDA to sensor SDA

Pi GPIO5 to sensor RST

CircuitPython Installation of SI4713 Library

Next you'll need to install the Adafruit CircuitPython SI4713 () library on your

CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our introduction guide has a great page on how to install the library bundle () for

both express and non-express boards.

Remember for non-express boards like the, you'll need to manually install the

necessary libraries from the bundle:

adafruit_si4713.mpy

adafruit_bus_device

•

•

©Adafruit Industries Page 19 of 26

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/59372
https://learn.adafruit.com//assets/59372
https://github.com/adafruit/Adafruit_CircuitPython_SI4713
file:///home/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/welcome-to-circuitpython/circuitpython-libraries

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_si4713.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL () so you are at the CircuitPython >>> prompt.

Python Installation of SI4713 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-si4713

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

To demonstrate the usage of the sensor we'll initialize it and control the transmitter

from the board's Python REPL. Run the following code to import the necessary

modules and initialize the I2C connection with the sensor:

import board
import busio
import digitalio
import adafruit_si4713
i2c = busio.I2C(board.SCL, board.SDA)
si_reset = digitalio.DigitalInOut(board.D5)
si4713 = adafruit_si4713.SI4713(i2c, reset=si_reset, timeout_s=0.5)

Frequency Strength Scan

One interesting thing you can do with the Si4713 is measure the quality of an FM radio

band. This is handy for example to 'scan' the entire range of FM frequencies looking

for possible radio station broadcasts (i.e. frequencies with a good quality signal). This

can help you find an unused frequency band to use for your transmitting.

•

©Adafruit Industries Page 20 of 26

https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

The received_noise_level function can be called with a frequency (specified in

kilohertz and only at 50khz steps) and will return the noise level, or signal quality, in

dBuV units. The radio supports a range of frequencies from 87.5mhz to 108mhz and

you can scan them all with this code:

for f_khz in range(87500, 108000, 50):
 noise = si4713.received_noise_level(f_khz)
 print('{0:0.3f} mhz = {1} dBuV'.format(f_khz/1000.0, noise))

The higher the dBuV noise value the stronger the signal and better chance there's a

real station broadcasting there. The exact values will differ based on your area and

the nearby stations but in general a small value under 32 is probably unused, and a

large value above 40 is a strong radio signal. Notice in the screen shot above

107.7mhz has a strong signal with noise value of 45 dBuV, this makes sense because a

nearby FM station, Seattle's 107.7mhz FM The End (), is broadcasting at that

frequency. However at 107.35mhz the signal has a much smaller noise value of 29

and likely indicates an unused frequency.

Transmitting

Once you find a frequency that's unused you can configure the transmitter to

broadcast its audio input on it with the tx_frequency_khz property. Set this to a value

in kilohertz, again only within the range 87.5mhz - 108mhz and at 50khz steps, to

change the transmitter frequency. For example to use 107.35mhz:

si4713.tx_frequency_khz = 107350

You can also set the transmitter power with the tx_power property. Set this to a dBuV

value from 88 - 115, or set 0 to turn off the transmitter entirely. You typically want the

©Adafruit Industries Page 21 of 26

http://www.1077theend.com/

maximum power because these low power FM transmitters don't have much range by

design. For example to set the maximum 115 dBuV transmit power:

si4713.tx_power = 115

At this point the Si4713 should be transmitting anything sent to the audio jack or LIN &

RIN inputs over the configured FM frequency. Plug in an audio source and try tuning

an FM radio nearby to hear the signal! Remember the range of these low power FM

transmitters is limited and you might need the radio in the very same room or close by

to pick up the signal.

You might need to increase or decrease the volume of your audio source to ensure

it's at a high enough level for the transmitter to pick up and send (or you might need

to turn it down if it's too high and 'overmodulating' the FM signal). You can actually

check with the chip to see if it's getting a good audio signal and potentially

overmodulating or running into other transmission issues. Simply read the input_level

property to see the audio level (in dB) and the audio_signal_status property to check

if there are problems with the signal:

print('Audio level: {0} dB'.format(si4713.input_level))
print('Audio signal status: 0x{0:02x}'.format(si4713.audio_signal_status))

Notice the input level is around -16 dB which is a typical value for audio (lower values

mean less volume / input level and higher values up to 0 or more mean very loud

input). The audio signal status is a byte that has a few bits to indicate status, in

particular the 3rd bit will be turned on to indicate overmodulation (an easy way to

check is if the value of the signal status is 4 or greater, that indicates bit 3 is on).

Try cranking up the audio source volume and notice the audio level value increases

and the overmodulation bit turns on to indicate the volume is too high (remember a

value 4 or greater means the input is overmodulating):

You should aim to keep the input level around -20 to -10 dB and ensure the

overmodulation bit isn't set (if it is then the volume is too high).

©Adafruit Industries Page 22 of 26

RDS - Radio Data System

Finally the RDS features of the Si4713 allow you to transmit data along with the FM

audio signal. This is transferred in special side channels to the main FM broadcast

and include data like the name of the station and the currently playing song. If you've

ever seen a car radio that prints the name of a song being played it's probably

reading it over an RDS transmission from the radio station.

You can easily configure and set the RDS transmission of the Si4713 with the configur

e_rds function. For example:

si4713.configure_rds(0xADAF, b'AdaFruit Radio', b'AdaFruit g0th Radio!')

This call takes the following parameters:

The station ID - This is a 16-bit value that the tuner can use to identify a station.

In this case we're sending the value 0xADAF.

The station name - This is an optional keyword argument that can specify a byte

string with the station name to broadcast. You can only send up to 96

characters with this value.

The buffer value - This is another optional keyword argument that can specify a

byte string to broadcast as the current RDS buffer (typically shown as the song

or now playing string on a radio). You're limited to 106 characters with this

value.

Once you call configure_rds it will enable the RDS broadcast and configure itself to

do so at typical North American RDS radio broadcast values (i.e. a specific frequency

deviation, repeat interval, etc.). After RDS is configured you can update the station

and buffer values by writing to the rds_station and rds_buffer properties respectively.

Remember each is limited to a length of 96 characters and 106 characters

respectively:

si4713.rds_station = b'Mosfet Jams'
si4713.rds_buffer = b'Purrfect tunes!'

That's all there is to the basic Si4713 usage with CircuitPython!

Below is a complete demo that will configure the board for FM transmission at a

specified frequency (see the FREQUENCY_KHZ variable at the top). It will broadcast

RDS data and periodically print audio input level and signal quality status. In addition

it also shows basic usage of the GPIO outputs of the Si4713 with the gpio_control and

•

•

•

©Adafruit Industries Page 23 of 26

gpio_set functions--these aren't commonly used but are available if you need a

couple small outputs from the board. Save this as code.py on your board.

Full Example Code

SPDX-FileCopyrightText: 2018 Tony DiCola for Adafruit Industries
SPDX-License-Identifier: MIT

Simple demo of using the SI4743 RDS FM transmitter.

import time
import board
import digitalio
import adafruit_si4713

Specify the FM frequency to transmit on in kilohertz. As the datasheet
mentions you can only specify 50khz steps!
FREQUENCY_KHZ = 102300 # 102.300mhz

Initialize I2C bus.
i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller

Initialize SI4713.
si4713 = adafruit_si4713.SI4713(i2c)

Alternatively you can specify the I2C address of the device if it changed:
si4713 = adafruit_si4713.SI4713(i2c, address=0x11)

If you hooked up the reset line you should specify that too. Make sure
to pass in a DigitalInOut instance. You will need the reset pin with the
Raspberry Pi, and probably other devices:
si_reset = digitalio.DigitalInOut(board.D5)

print("initializing si4713 instance")
si4713 = adafruit_si4713.SI4713(i2c, reset=si_reset, timeout_s=0.5)
print("done")

Measure the noise level for the transmit frequency (this assumes automatic
antenna capacitance setting, but see below to adjust to a specific value).
noise = si4713.received_noise_level(FREQUENCY_KHZ)
Alternatively measure with a specific frequency and antenna capacitance.
This is not common but you can specify antenna capacitance as a value in pF
from 0.25 to 47.75 (will use 0.25 steps internally). If you aren't sure
about this value, stick with the default automatic capacitance above!
noise = si4713.received_noise_level(FREQUENCY_KHZ, 0.25)
print("Noise at {0:0.3f} mhz: {1} dBuV".format(FREQUENCY_KHZ / 1000.0, noise))

Tune to transmit with 115 dBuV power (max) and automatic antenna tuning
capacitance (default, what you probably want).
si4713.tx_frequency_khz = FREQUENCY_KHZ
si4713.tx_power = 115

Configure RDS broadcast with program ID 0xADAF (a 16-bit value you specify).
You can also set the broadcast station name (up to 96 bytes long) and
broadcast buffer/song information (up to 106 bytes long). Setting these is
optional and you can later update them by setting the rds_station and
rds_buffer property respectively. Be sure to explicitly specify station
and buffer as byte strings so the character encoding is clear.
si4713.configure_rds(0xADAF, station=b"AdaRadio", rds_buffer=b"Adafruit g0th
Radio!")

Print out some transmitter state:

©Adafruit Industries Page 24 of 26

print("Transmitting at {0:0.3f} mhz".format(si4713.tx_frequency_khz / 1000.0))
print("Transmitter power: {0} dBuV".format(si4713.tx_power))
print(
 "Transmitter antenna capacitance: {0:0.2}
pF".format(si4713.tx_antenna_capacitance)
)

Set GPIO1 and GPIO2 to actively driven outputs.
si4713.gpio_control(gpio1=True, gpio2=True)

Main loop will print input audio level and state and blink the GPIOs.
print("Broadcasting...")
while True:
 # Print input audio level and state.
 print("Input level: {0} dBfs".format(si4713.input_level))
 print("ASQ status: 0x{0:02x}".format(si4713.audio_signal_status))
 # 'Blink' GPIO1 and GPIO2 alternatively on and off.
 si4713.gpio_set(gpio1=True, gpio2=False) # GPIO1 high, GPIO2 low
 time.sleep(0.5)
 si4713.gpio_set(gpio1=False, gpio2=True) # GPIO1 low, GPIO2 high
 time.sleep(0.5)

Python Docs

Python Docs ()

Downloads

Datasheets & Files

Si4713 Datasheet ()(this does not include any software interfacing details)

Si47xx Programming guide () - contains all the nitty-gritty details on command

data packets etc.

Fritzing object in Adafruit Fritzing library ()

EagleCAD PCB files in GitHub ()

Layout Print

Dimensions in Inches

•

•

•

•

©Adafruit Industries Page 25 of 26

https://circuitpython.readthedocs.io/projects/si4713/en/latest/
http://www.adafruit.com/datasheets/Si4712-13-B30.pdf
http://www.adafruit.com/datasheets/SiLabs%20Programming%20guide%20AN332.pdf
https://github.com/adafruit/Fritzing-Library/
https://github.com/adafruit/Adafruit-Si4713-PCB

Schematic

©Adafruit Industries Page 26 of 26

	Adafruit Si4713 FM Radio Transmitter with RDS/RDBS Support
	Table of Contents
	Overview
	Pinouts
	Assembly
	Arduino Code
	Python & CircuitPython
	Python Docs
	Downloads

	Overview
	Pinouts
	Audio Inputs
	Power Pins
	Interface Pins
	Extra GPIO Pins

	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Arduino Code
	Arduino Wiring
	Download Adafruit_Si4713
	Load Demo
	Using the RPS Scanning function
	Library Reference
	Radio Transmitter control
	RPS (Radio Power Sensing)
	RDS/RBDS (Radio Data Broadcast)
	GPIO Control
	Advanced!

	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of SI4713 Library
	Python Installation of SI4713 Library
	CircuitPython & Python Usage
	Frequency Strength Scan
	Transmitting
	RDS - Radio Data System

	Full Example Code
	Python Docs
	Downloads
	Datasheets & Files
	Layout Print
	Schematic

