ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

Product specification Supersedes data of 1996 Mar 05 IC23 Data Handbook

1998 Feb 13

Philips Semiconductors

2.5V/3.3V 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245

FEATURES

- 16-bit bidirectional bus interface
- 3-State buffers
- 5V I/O compatibile
- Output capability: +12mA/-12mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Outputs include series resistance of 30Ω making external termination resistors unnecessary
- Power-up 3-State
- No bus current loading when output is tied to 5V bus
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model

QUICK REFERENCE DATA

DESCRIPTION

The 74ALVT162245 is a high-performance BiCMOS product designed for $\rm V_{CC}$ operation at 2.5V or 3.3V with I/O compatibility up to 5V.

This device is a 16-bit transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. The control function implementation minimizes external timing requirements. The device features an Output Enable ($n\overline{OE}$) input for easy cascading and a Direction (DIR) input for direction control.

The 74ALVT162245 is designed with 30Ω series resistance in both the High and Low states of the output. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers/transmitters.

SYMBOL	PARAMETER	CONDITIONS	TYPI	UNIT	
STINDOL		T _{amb} = 25°C	2.5V	3.3V	UNIT
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	C _L = 50pF	2.9 2.4	2.3 2.0	ns
C _{IN}	Input capacitance DIR, OE	$V_{I} = 0V \text{ or } V_{CC}$	3	3	pF
C _{I/O}	I/O pin capacitance	$V_{I/O} = 0V \text{ or } V_{CC}$	9	9	pF
I _{CCZ}	Total supply current	Outputs disabled	40	70	μΑ

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ALVT162245 DL	AV162245 DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ALVT162245 DGG	AV162245 DGG	SOT362-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 24	nDIR	Direction control input
47, 46, 44, 43, 41, 40, 38, 37, 36, 35, 33, 32, 30, 29, 27, 26	nA0 – nA7	Data inputs/outputs (A side)
2, 3, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23	nB0 – nB7	Data inputs/outputs (B side)
25, 48	n <mark>OE</mark>	Output enable input (active-Low)
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage

LOGIC SYMBOL

2.5V/3.3V 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245

PIN CONFIGURATION

1 DIR 1 48 10E 1 B0 2 47 1A0 1 B1 3 46 1A1 GND 4 45 GND 1 B2 5 44 1A2 1 B3 6 43 1A3 Vcc 7 42 Vcc 1 B4 8 41 1A4 1 B5 9 40 1A5 GND 10 39 GND 1 B6 11 38 1A6 1 B7 12 37 1A7 2 B0 13 36 2A0 2 B1 14 35 2A1 GND 15 34 GND 2 B2 16 33 2A2 2 B3 17 32 2A3 Vcc 18 31 Vcc 2 B4 19 30 2A4 2 B5 20 29 2A5 GND 21 28 GND 2 B5 20 29 <td< th=""><th></th><th></th><th></th></td<>			
1B1 3 46 1A1 GND 4 45 GND 1B2 5 44 1A2 1B3 6 43 1A3 VCC 7 42 VCC 1B4 8 41 1A4 1B5 9 40 1A5 GND 10 39 GND 1B6 11 38 1A6 1B7 12 37 1A7 2B0 13 36 2A0 2B1 14 35 2A1 GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 Vcc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	1DIR 1	48	1 0E
GND 4 45 GND 1B2 5 44 1A2 1B3 6 43 1A3 VCC 7 42 VCC 1B4 8 41 1A4 1B5 9 40 1A5 GND 10 39 GND 1B6 11 38 1A6 1B7 12 37 1A7 2B0 13 36 2A0 2B1 14 35 2A1 GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 VCc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	1B0 2	47	1A0
1B2 5 44 1A2 1B3 6 43 1A3 VCC 7 42 VCC 1B4 8 41 1A4 1B5 9 40 1A5 GND 10 39 GND 1B6 11 38 1A6 1B7 12 37 1A7 2B0 13 36 2A0 2B1 14 35 2A1 GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 VCC 18 31 VCC 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	1B1 3	46	1A1
1B3 6 43 1A3 VCC 7 42 VCC 1B4 8 41 1A4 1B5 9 40 1A5 GND 10 39 GND 1B6 11 38 1A6 1B7 12 37 1A7 2B0 13 36 2A0 2B1 14 35 2A1 GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 VCc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	GND 4	45	GND
Vcc 7 42 Vcc 1B4 8 41 1A4 1B5 9 40 1A5 GND 10 39 GND 1B6 11 38 1A6 1B7 12 37 1A7 2B0 13 36 2A0 2B1 14 35 2A1 GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 Vcc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	1B2 5	44	1A2
1B4 8 41 1A4 1B5 9 40 1A5 GND 10 39 GND 1B6 11 38 1A6 1B7 12 37 1A7 2B0 13 36 2A0 2B1 14 35 2A1 GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 Vcc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	1B3 6	43	1A3
1B5 9 40 1A5 GND 10 39 GND 1B6 11 38 1A6 1B7 12 37 1A7 2B0 13 36 2A0 2B1 14 35 2A1 GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 Vcc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	V _{CC} 7	42	V _{CC}
GND 10 39 GND 1B6 11 38 1A6 1B7 12 37 1A7 2B0 13 36 2A0 2B1 14 35 2A1 GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 Vcc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	1B4 8	41	1A4
1B6 11 38 1A6 1B7 12 37 1A7 2B0 13 36 2A0 2B1 14 35 2A1 GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 Vcc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	1B5 9	40	1A5
1B7 12 37 1A7 2B0 13 36 2A0 2B1 14 35 2A1 GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 Vcc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	GND 10	39	GND
2B0 13 36 2A0 2B1 14 35 2A1 GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 Vcc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 286 GND 2B6 22 27 2A6	1B6 11	38	1A6
2B1 14 35 2A1 GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 Vcc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	1B7 12	37	1A7
GND 15 34 GND 2B2 16 33 2A2 2B3 17 32 2A3 Vcc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 286 GND 2B6 22 27 2A6	2B0 13	36	2A0
2B2 16 33 2A2 2B3 17 32 2A3 V _{CC} 18 31 V _{CC} 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	2B1 14	35	2A1
2B3 17 32 2A3 Vcc 18 31 Vcc 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	GND 15	34	GND
V _{CC} 18 31 V _{CC} 2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	2B2 16	33	2A2
2B4 19 30 2A4 2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	2B3 17	32	2A3
2B5 20 29 2A5 GND 21 28 GND 2B6 22 27 2A6	V _{CC} 18	31	V _{CC}
GND 21 28 GND 2B6 22 27 2A6	2B4 19	30	2A4
2B6 22 27 2A6	2B5 20	29	2A5
	GND 21	28	GND
2B7 23 26 2A7	2B6 22	27	2A6
	2B7 23	26	2A7
2DIR 24 25 20E	2DIR 24	25	2 0E
		SW00061	

SCHEMATIC OF EACH OUTPUT

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INP	UTS	INPUTS/OUTPUTS		
nOE	nDIR	nAx	nBx	
L	L	nAx = nBx	Inputs	
L	Н	Inputs	nBx = nAx	
Н	Х	Z	Z	

H = High voltage level

L = Low voltage level

X = Don't care Z = High Impedance "off" state

2.5V/3.3V 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245

ABSOLUTE MAXIMUM RATINGS^{1,2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
VI	DC input voltage ³		-0.5 to +7.0	V
I _{ОК}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or High state	-0.5 to +7.0	V
		Output in Low state	128	
IOUT	DC output current	Output in High state	-64	- mA
T _{stg}	Storage temperature range		-65 to +150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	2.5V RANGE LIMITS		3.3V RAN	UNIT	
STMBOL		MIN	MAX	MIN	MAX	ONT
V _{CC}	DC supply voltage	2.3	2.7	3.0	3.6	V
VI	Input voltage	0	5.5	0	5.5	V
V _{IH}	High-level input voltage	1.7		2.0		V
V _{IL}	Input voltage		0.7		0.8	V
I _{OH}	High-level output current		-8		-12	mA
I _{OL}	Low-level output current		12		12	mA
Δt/Δv	Input transition rise or fall rate; Outputs enabled		10		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	-40	+85	°C

2.5V/3.3V 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245

DC ELECTRICAL CHARACTERISTICS (3.3V ± 0.3V RANGE)

					LIMITS		
SYMBOL	MBOL PARAMETER TEST CONDITIONS		TEST CONDITIONS		-40°C to	+85°C	UNIT
				MIN	TYP ¹	MAX	
V _{IK}	Input clamp voltage	$V_{CC} = 3.0V; I_{IK} = -18mA$			-0.85	-1.2	V
V _{OH}	High-level output voltage	V _{CC} = 3.0V; I _{OH} = -12mA		2.0	2.3		V
V _{OL}	Low-level output voltage	V _{CC} = 3.0V; I _{OL} = 12mA			0.6	0.8	V
		$V_{CC} = 3.6V; V_I = V_{CC} \text{ or } GND$	Control pins		0.1	±1	
ι.	Input leakage current	V _{CC} = 0 or 3.6V; V _I = 5.5V			01.	10	μA
1	input leakage current	$V_{CC} = 3.6V; V_{I} = V_{CC}$	Data pins4		0.5	1	μΑ
		$V_{CC} = 3.6V; V_{I} = 0V$	Data pins		0.1	-5	
I _{OFF}	Off current	$V_{CC} = 0V$; V_I or $V_O = 0$ to 4.5V	$V_{CC} = 0V; V_1 \text{ or } V_0 = 0 \text{ to } 4.5V$		0.1	±100	μΑ
	Bus Hold current	$V_{CC} = 3V; V_I = 0.8V$		75	130		
I _{HOLD}	Data inputs ⁶	$V_{CC} = 3V; V_I = 2.0V$		-75	-140		μΑ
	Data inputs	$V_{CC} = 0V \text{ to } 3.6V; V_{CC} = 3.6V$		±500			
I _{EX}	Current into an output in the High state when $V_O > V_{CC}$	V _O = 5.5V; V _{CC} = 3.0V			50	125	μΑ
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \le 1.2V$; $V_O = 0.5V$ to V_{CC} ; $V_I = GND$ or V_{CC} OE/OE = Don't care			40	±100	μΑ
I _{ССН}		V_{CC} = 3.6V; Outputs High, V_I = GND or V_{CC} , I_O = 0			0.07	0.1	
I _{CCL}	Quiescent supply current	V_{CC} = 3.6V; Outputs Low, V_I = GND or V_{CC} , I_O = 0			3.5	5	mA
I _{CCZ}	1	V_{CC} = 3.6V; Outputs Disabled; V_{I} = GND or $V_{CC,}$ I_{O} = 0^{5}			0.07	0.1	
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 3V to 3.6V; One input at V_{CC} -0.6' Other inputs at V_{CC} or GND	V,		0.04	0.4	mA

NOTES:

1. All typical values are at $V_{CC} = 3.3V$ and $T_{amb} = 25^{\circ}C$. 2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND

3. This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10msec. From V_{CC} = 1.2V to V_{CC} = $3.3V \pm 0.3V$ a transition time of 100µsec is permitted. This parameter is valid for T_{amb} = 25°C only. 4. Unused pins at V_{CC} or GND.

I_{CCZ} is measured with outputs pulled up to V_{CC} or pulled down to ground.
This is the bus hold overdrive current required to force the input to the opposite logic state.

AC CHARACTERISTICS (3.3V ± 0.3V RANGE)

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$; $R_L = 500\Omega$; $T_{amb} = -40^{\circ}C$ to +85°C.

				LIMITS		
SYMBOL	PARAMETER	WAVEFORM	V _{C0}	.3V	UNIT	
			MIN	TYP ¹	MAX	
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	1	0.5 0.5	2.3 2.0	3.6 3.1	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.0 1.0	3.0 2.6	5.0 3.9	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low Level	2	1.0 1.0	3.6 3.0	5.2 4.6	ns

NOTE:

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25° C.

2.5V/3.3V 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245

DC ELECTRICAL CHARACTERISTICS (2.5V ± 0.2V RANGE)

					LIMITS		UNIT	
SYMBOL	BOL PARAMETER TEST CONDITIONS		TEST CONDITIONS		TIONS Temp			-40°C to
				MIN	TYP ¹	MAX	1	
V _{IK}	Input clamp voltage	$V_{CC} = 2.3V; I_{IK} = -18mA$			-0.85	-1.2	V	
V _{OH}	High-level output voltage	V _{CC} = 2.3V; I _{OH} = -8mA		1.7			V	
V _{OL}	Low-level output voltage	V _{CC} = 2.3V; I _{OL} = 12mA			0.6	0.7	ľ	
		$V_{CC} = 2.7V; V_I = V_{CC}$ or GND	Control pins		0.1	±1		
łı	Input leakage current	$V_{CC} = 0 \text{ or } 2.7 \text{V}; \text{ V}_{I} = 5.5 \text{V}$			0.1	10	μA	
1	input leakage current	$V_{CC} = 2.7V; V_{I} = V_{CC}$	Data pins4		0.1	1] "~	
		$V_{CC} = 2.7V; V_{I} = 0$	Data pins		0.1	-5		
I _{OFF}	Off current	$V_{CC} = 0V$; V_{I} or $V_{O} = 0$ to 4.5V			0.1	±100	μΑ	
luci e	Bus Hold current	$V_{CC} = 2.3V; V_1 = 0.7V$			90		μA	
HOLD	Data inputs ⁶	V _{CC} = 2.3V; V _I = 1.7V			-75		μΛ	
I _{EX}	Current into an output in the High state when $V_O > V_{CC}$	V _O = 5.5V; V _{CC} = 2.3V			20	125	μΑ	
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \le 1.2$ V; $V_{O} = 0.5$ V to V_{CC} ; $V_{I} = GNE$ OE/OE = Don't care	D or V _{CC}		40	100	μΑ	
I _{ССН}		V_{CC} = 2.7V; Outputs High, V_{I} = GND or V	V_{CC} , $I_O = 0$		0.04	0.1		
I _{CCL}	Quiescent supply current	$V_{CC} = 2.7V$; Outputs Low, $V_I = GND$ or V_{CC} , $I_O = 0$			2.5	4.5	mA	
I _{CCZ}	1	V_{CC} = 2.7V; Outputs Disabled; V_I = GND or V_{CC} , I_O = 0 ⁵			0.04	0.1	1	
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 2.3V to 2.7V; One input at V_{CC} -0. Other inputs at V_{CC} or GND	.6V,		0.05	0.4	mA	

NOTES:

1. All typical values are at $V_{CC} = 2.5V$ and $T_{amb} = 25^{\circ}$ C. 2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND 3. This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10msec. From $V_{CC} = 1.2V$ to $V_{CC} = 2.5V \pm 0.2V$ a transition time of 100 μ sec is permitted. This parameter is valid for T_{amb} = 25°C only.

4. Unused pins at V_{CC} or GND.

5. I_{CCZ} is measured with outputs pulled up to V_{CC} or pulled down to ground.

6. Not guaranteed.

AC CHARACTERISTICS (2.5V ± 0.2V RANGE)

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$; $R_L = 500\Omega$; $T_{amb} = -40^{\circ}C$ to +85°C.

		LIN		LIMITS			
SYMBOL	PARAMETER WAVEFORM		V _C	UNIT			
			MIN	TYP ¹	MAX		
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	1	1.5 1.5	2.9 2.4	5.3 4.7	ns	
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.5 1.5	4.3 3.1	6.3 4.6	ns	
t _{PHZ} t _{PLZ}	Output disable time from High and Low Level	2	1.5 1.5	4.2 3.3	6.2 5.1	ns	

NOTE:

1. All typical values are at V_{CC} = 2.5V and T_{amb} = 25°C.

SW00162

2.5V/3.3V 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245

AC WAVEFORMS

NOTES:

- $\begin{array}{l} 1. \ V_M = 1.5V \ \text{at} \ V_{CC} \geq 3.0V, \ V_M = V_{CC}/2 \ \text{at} \ V_{CC} \leq 2.7V \\ 2. \ V_X = V_{OL} + 0.3V \ \text{at} \ V_{CC} \geq 3.0V, \ V_X = V_{OL} + 0.1 \cdot V_{CC} \ \text{at} \ V_{CC} \leq 2.7V \\ 3. \ V_Y = V_{OH} 0.3V \ \text{at} \ V_{CC} \geq 3.0V, \ V_Y = V_{OH} 0.1 \cdot V_{CC} \ \text{at} \ V_{CC} \leq 2.7V \\ \end{array}$

Waveform 2. 3-State Output Enable and Disable Times

6V or VCC V_{CC} x 2 tW AMP (V) 90% 90% • OPEN NEGATIVE Vм Vм PULSE GND 10% 10% VIN VOUT 0 Rı 0V PULSE D.U.T. tTHL (tF) tTLH (tR) GENERATOR 2 RT tTLH (tR) ^{t}THL (^{t}F) Rլ AMP (V) 90% 90% _ POSITIVE ٧M ٧M PULSE **Test Circuit for 3-State Outputs** 10% 10% 0V tW SWITCH POSITION $V_{M} = 1.5V$ or $V_{CC} / 2$, whichever is less SWITCH TEST Input Pulse Definition t_{PHZ}/t_{PZH} GND t_{PLZ}/t_{PZL} $6V \text{ or } V_{CC} \ge 2$ t_{PLH}/t_{PHL} open INPUT PULSE REQUIREMENTS DEFINITIONS FAMILY R_L = Load resistor; see AC CHARACTERISTICS for value. Amplitude Rep. Rate tw t_R t_F C_L = Load capacitance includes jig and probe capacitance; 3.0V or V_{CC} see AC CHARACTERISTICS for value. 74ALVT16 whichever 500ns ≤10MHz ≤2.5ns ≤2.5ns is less R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

TEST CIRCUIT AND WAVEFORMS

2.5V/3.3V ALVT 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT370-1		MO-118AA		$\bigcirc \bigcirc$	93-11-02 95-02-04

2.5V/3.3V ALVT 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245

2.5V/3.3V ALVT 16-bit transceiver with 30Ω termination resistors (3-State)

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-03648

Let's make things better.

