HALOGEN

FREE

Vishay Siliconix

Low Capacitance, +12 V / +5 V / +3 V, Triple SPDT (Triple 2:1) **Analog Switch / Multiplexer**

DESCRIPTION

The DG9454E is a high precision triple SPDT (triple 2:1) analog switch / multiplexer with enhanced performance on low power consumption. The part features low parasitic capacitance, low leakage, and low charge injection over the full signal range which make it an ideal switch for healthcare, data acquisition, and instrument products. Its compact size, light weight, low power consumption, and low voltage control capability are of advantages in portable consumer applications such as goggles.

The DG9454E is designed to operate from a 3 V to 16 V supply at V+, and 2.5 V to 5.5 V at VL, while guarantees 1.8 V logic compatible over the full operation voltage range.

Processed with advanced CMOS technology, the DG9454E conducts equally well in both directions, offers rail to rail analog signal handling and can be used both as a multiplexer as well as a de-multiplexer.

The DG9454E operating temperature is specified from -40 °C to +125 °C. It is available in ultra-compact 1.8 mm x 2.6 mm miniQFN16 package of lead (Pb)-free nickel-palladium-gold device termination. It is represented by the lead (Pb)-free "-E4" suffix. The nickel-palladium-gold device terminations meet all JEDEC® standards for reflow and MSL ratings.

FEATURES

- Operates with V+ = 3 V to 16 V, $V_1 = 2.5 \text{ V to } 5.5 \text{ V}$
- Guaranteed 1.8 V logic control at full V+ range
- Low power consumption, both I+ and $I_1 < 1 \mu A$
- Low parasitic capacitance:

 $C_{D(ON)}$: 8.8 pF C_{D(OFF)}: 4 pF C_{S(OFF)}: 3.1 pF

- High bandwidth: 356 MHz
- · Low charge injection over the full signal range
- Compact miniQFN16 package (1.8 mm x 2.6 mm x 0.55 mm)
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- · Medical and healthcare systems
- Data acquisition systems
- · Meters and instruments
- · Games and Goggles
- Automatic test equipment
- Process control and automation
- · Communication systems
- · Battery powered systems

BENEFITS

- Low power consumption
- Precision switching
- Low voltage logic interface
- · Bi-directional rail to rail signal switching
- Compact package option
- Extended operation temperature range

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Device Marking: Jxx for DG9454E (miniQFN16)

xx = Date/Lot Traceability Code

Vishay Siliconix

TRUTH TABLE									
ENABLE		SELECT INPUTS		ON SWITCHES					
INPUT	С	В	Α	DG9454E					
Н	X	X	X	All Switches Open					
L	L	L	L	X to X0, Y to Y0, Z to Z0					
L	L	L	Н	X to X1, Y to Y0, Z to Z0					
L	L	Н	L	X to X0, Y to Y1, Z to Z0					
L	L	Н	Н	X to X1, Y to Y1, Z to Z0					
L	Н	L	L	X to X0, Y to Y0, Z to Z1					
L	Н	L	Н	X to X1, Y to Y0, Z to Z1					
L	Н	Н	L	X to X0, Y to Y1, Z to Z1					
L	Н	Н	Н	X to X1, Y to Y1, Z to Z1					

ORDERING INFORMATION								
TEMP. RANGE	PACKAGE	PART NUMBER	MIN. ORDER / PACK. QUANTITY					
-40 °C to +85 °C lead (Pb)-free	16-Pin miniQFN	DG9454EEN-T1-GE4	Tape and reel, 3000 units					

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)							
PARAMETER	LIMIT	UNIT					
Digital Inputs ^a , V _S , V _D , V _L	GND - 0.3 to (V+) + 0.3 or 30 mA, whichever occurs first	V					
V+ to GND	-0.3 to +18						
Continuous Current (any terminal)	30	0					
Peak Current, S or D (pulsed 1 ms, 10 % duty	100	mA					
Storage Temperature		-65 to +150	°C				
Power Dissipation ^b	16-Pin miniQFN ^{c, d}	525	mW				
Thermal Resistance b	16-Pin miniQFN ^d	152	°C/W				
Latch-Up (per JESD78)	100	mA					
ESD Human Body Model (HBM); per ANSI / ES	2500	V					

Notes

- a. Signals on SX, DX, V_L or INX exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 6.6 mW/°C above 70 °C.
- d. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

		TEST CONDITIONS UNLESS OTHERWISE SPECIFIED V+ = 12 V, V _L = 2.7 V				-40 °C to +125 °C		-40 °C to +85 °C		
PARAMETER	SYMBOL			TEMP.b	TYP.c	name d	naav d	sans d	naav d	UNIT
		$V_{IN(A, B, C \text{ and enable})} = 1.8$				MIN. d	MAX. d	MIN. d	MAX. d	
Analog Switch	l	I with the state of the state o						l		<u> </u>
Analog Signal Range e	V _{ANALOG}			Full	_	0	12	0	12	V
				Room	85	-	103	-	103	
On-Resistance	R _{ON}	$I_S = 1 \text{ mA}, V_D = 0.7 \text{ V}, 6 \text{ V}, 11.3 \text{ V}$		Full	-	-	133	-	125	
				Room	1.24	-	8	-	8	_
On-Resistance Match	ΔR_{ON}	$I_S = 1 \text{ mA}, V_D = 0.7 \text{ V}, 11.3 \text{ V}$		Full	-	-	8	-	8	Ω
On Desistance Flatures	_	1 1 1 1 0 7 1 0	· \/ 44.0 \/	Room	27	ı	37	-	37	
On-Resistance Flatness	R _{FLATNESS}	$I_S = 1 \text{ mA}, V_D = 0.7 \text{ V}, 6$	V, 11.3 V	Full	-	-	44	-	43	
				Room	± 0.05	-1	1	-1	1	
Switch Off	I _{S(off)}	V+ = 13.2 V, V _L = 2	2.7 V	Full	-	-50	50	-5	5	
Leakage Current		$V_D = 1 \text{ V} / 12.2 \text{ V}, V_S = 1$	2.2 V / 1 V	Room	± 0.07	-1	1	-1	1	^
	I _{D(off)}			Full	-	-50	50	-5	5	nA
Channel On		V+ = 13.2 V, V _L = 2	2.7 V	Room	± 0.07	-1	1	-1	1	
Leakage Current	I _{D(on)}	$V_D = V_S = 1 \text{ V } / 12.2 \text{ V}$		Full	-	-50	50	-5	5	
Digital Control										
Logic Low Input Voltage	V _{INL}	V _L = 2.7 V		Full	-	-	0.5	-	0.5	V
Logic High Input Voltage	V _{INH}			Full	-	1.8	-	1.8	-	V
Logic Low Input Current	ΙL	V _{IN(A0, A1, A2} and enable) under test = 0.5 V		Full	0.02	-1	1	-1	1	
Logic High Input current	I _H	V _{IN(A0, A1, A2} and enable) under test = 1.8 V		Full	0.02	-1	1	-1	1	μΑ
Dynamic Characteristic	s									
To control Time				Room	79	-	119	_	119	
Transition Time	t _{TRANS}			Full	-	-	134	-	126	1
Fachla Tour On Time				Room	70	-	110	-	110	
Enable Turn-On Time	t _{ON(EN)}	$R_L = 300 \Omega, C_L = 3$	85 pF	Full	-	1	130	-	116	
English Turn Off Time	_	see Fig. 1, 2, 3		Room	51	-	91	-	91	ns
Enable Turn-Off Time	t _{OFF(EN)}			Full	-	-	95	-	94	
Break-Before-Make				Room	17	-	-	-	-	
Time Delay	t _D			Full	-	1	-	1	-	
Charge Injection e	Q	$C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega, V$	$V_{GEN} = 0 \text{ V}$	Full	5.84	-	=-	=.	-	рС
			100 kHz	Room	-95	-	=.	=.	-	
Off Isolation e	OIRR		1 MHz	Room	-85	-	-	-	-	
		f = 1 MHz,	10 MHz	Room	-65	-	-	-	-	
		$R_L = 50 \Omega$, $C_L = 5 pF$	100 kHz	Room	-92	-	-	-	-	dB
Crosstalk e	X _{TALK}		1 MHz	Room	-73	1	-	-	-	
		10 MHz		Room	-53	1	-	-	-	
Bandwidth, -3 dB e	BW	$R_L = 50 \Omega$		Room	356	-	-	-	-	MHz
Source Off Capacitance e	C _{S(off)}			Room	3.1	-	-	-	-	
Drain Off Capacitance e	C _{D(off)}	f = 1 MHz		Room	4	-	-	-	-	рF
Channel On Capacitance e	C _{D(on)}			Room	8.8	-	-	-	-	-
Total Harmonic Distortion e	THD	Signal = 1 V _{RMS} 20 Hz to 20 kHz, R _L =		Room	0.075	-	-	-	-	%
	1	· / · · L		1			1	1	L	ı

www.vishay.com

Vishay Siliconix

SPECIFICATIONS FOR UNIPOLAR SUPPLIES									
		TEST CONDITIONS		TYP. c	-40 °C to +125 °C		-40 °C to +85 °C		
PARAMETER	SYMBOL	UNLESS OTHERWISE SPECIFIED $V+=12~V,~V_L=2.7~V$ $V_{IN(A,~B,~C~and~enable)}=1.8~V,~0.5~V$ a	TEMP.b		MIN. d	MAX. d	MIN. d	MAX. d	UNIT
Power Supply									
Davies Consults Davies	I+	- 0 V or 12 V	Room	0.05	1	1	-	1	
Power Supply Range			Full	-	-	10	-	10	
Ground Current	1	V _{IN(A, B, C and enable)} = 0 V or 12 V		0.05	-1	-	-1	-	
Ground Current	I _{GND}		Full	-	-10	-	-10	-	μA
Logic Supply Current	1.	V _I = 2.7 V	Room	0.05	-	1	-	1	
	IL.	V	Full	-	-	10	-	10	

Notes

- a. V_{IN} = input voltage to perform proper function.
- b. Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test.

SPECIFICATIONS F	ON UNIF			ı			I		
		TEST CONDITIONS UNLESS OTHERWISE SPECIFIED			-40 °C to	+125 °C	-40 °C to +85 °C		1
PARAMETER	SYMBOL	$V + = 5 \text{ V}, V_1 = 2.7 \text{ V}$	TEMP.b	TYP. c	MIN. d	MAX. d	MIN. d	MAX. d	UNI.
		$V_{IN(A, B, C \text{ and enable})} = 1.8 \text{ V}, 0.5 \text{ V}^{\text{ a}}$				100 041		1012 0 41	
Analog Switch									
Analog Signal Range e	V _{ANALOG}		Full	-	0	5	0	5	٧
On-Resistance	R _{ON}	$I_S = 1 \text{ mA}, V_D = 0 \text{ V}, 3.5 \text{ V}$	Room	125	ı	147	-	147	
On-nesistance	HON	$I_S = I IIIA, V_D = 0 V, 3.3 V$	Full	-	1	176	-	168	
On-Resistance Match	ΔR_{ON}	$I_S = 1 \text{ mA}, V_D = 3.5 \text{ V}$	Room	1.33	ı	8	-	8	Ω
On-Hesistance Materi	ΔιιΟΝ	ig = 1 iiiA, VD = 0.0 V	Full	-	ı	8	-	8	52
On-Resistance Flatness	R _{FLATNESS}	$I_S = 1 \text{ mA}, V_D = 0 \text{ V}, 3 \text{ V}$	Room	21	-	31	-	31	
On-nesistance matness	TIFLATNESS	18 - 1 111A, VD - 0 V, 3 V	Full	-	-	25	-	29	
	I _{S(off)}		Room	± 0.03	-1	1	-1	1	
Switch Off	15(011)	V+ = 5.5 V, V- = 0 V	Full	-	-50	50	-5	5	
Leakage Current	ln(-40	$V_D = 1 \text{ V} / 4.5 \text{ V}, V_S = 4.5 \text{ V} / 1 \text{ V}$	Room	± 0.03	-1	1	-1	1	nA
	I _{D(off)}		Full	-	-50	50	-5	5	11/1
Channel On	I _{D(on)}	V+ = 5.5 V, V- = 0 V	Room	± 0.03	-1	1	-1	1	
Leakage Current	iD(on)	$V_D = V_S = 1 \text{ V} / 4.5 \text{ V}$	Full	-	-50	50	-5	5	
Digital Control									•
V _{IN(A, B, C and enable)} Low	V_{IL}	$V_{L} = 2.7 \text{ V}$	Full	-	-	0.6	-	0.6	V
V _{IN(A, B, C and enable)} High	V_{IH}	$V_{L} = 2.7 \text{ V}$	Full	-	1.8	-	1.8	-	•
Input Current, V _{IN} Low	IL	$V_{IN(A, B, C \text{ and enable})}$ under test = 0.6 V	Full	0.02	-1	1	-1	1	μA
Input Current, V _{IN} High	I _H	$V_{IN(A, B, C \text{ and enable})}$ under test = 1.8 V	Full	0.02	-1	1	-1	1	μ, ι
Dynamic Characteristics									
Transition Time	t _{TRANS} t _{ON} t _{OFF}		Room	95	-	135	-	135	- - - ns
Transition Time			Full	-	-	164	-	152	
Enable Turn-On Time			Room	80	-	120	-	120	
Enable fairi on fine		$R_L = 300 \Omega$, $C_L = 35 pF$	Full	-	-	138	-	129	
Enable Turn-Off Time		see Fig. 1, 2, 3	Room	58	-	98	-	98	110
Enable fairi on fine			Full	-	-	106	-	103]
Break-Before-Make			Room	45	-	=	-	-	
Time Delay	טי		Full	-	24	=	15	-	
Charge Injection e	Q	$V_g = 0 \text{ V}, R_g = 0 \Omega, C_L = 1 \text{ nF}$	Full	1.44	-	=	-	-	рC
Off Isolation e	OIRR	$R_L = 50 \Omega, C_L = 5 pF$	Room	-95	-	-	-	-	
Channel-to-Channel Crosstalk ^e	X _{TALK}	f = 100 kHz	Room	-92	-	-	-	-	dB
Source Off Capacitance e	C _{S(off)}		Room	3.5	-	-	-	-	
Drain Off Capacitance e	C _{D(off)}	f = 1 MHz	Room	4.5	-	-	-	-	рF
Channel On Capacitance e	C _{D(on)}		Room	10.2	-	-	-	-	
Power Supply									
Dower Cumply Comment	1.		Room	0.05	-	1	-	1	
Power Supply Current	I+	V 0V5V	Full	-	-	10	-	10	- - μΑ
Craying Course-+		$V_{IN(A, B, C \text{ and enable})} = 0 V \text{ or } 5 V$	Room	-0.05	-1	-	-1	-	
Ground Current	I _{GND}		Full	-	-10	-	-10	-	
Lania Ormail O		V 0.7V	Room	0.05	-	1	-	1	
Logic Supply Current	IL	$V_{L} = 2.7 \text{ V}$	Full	-	-	10	-	10	

Notes

- a. V_{IN} = input voltage to perform proper function.
- b. Room = 25 °C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test.

Vishay Siliconix

SPECIFICATIONS F	OK UNII	1			1					
		TEST CONDITIONS UNLESS OTHERWISE SPECIFIED V+ = 3 V, V _L = 2.7 V				-40 °C to +125 °C		-40 °C to +85 °C]
PARAMETER	SYMBOL			TEMP.b	TYP. c	MIN. d	MAX. d	MINI d	MAX. d	UNIT
		V _{IN(A, B, C AND ENABLE)} = 1.				IVIIIV.	WAA.	IVIIIA.	WAX.	
Analog Switch										
Analog Signal Range e	V _{ANALOG}			Full	-	0	3	0	3	V
On Besistance		1 1 4 4 1/ 1	<i></i>	Room	221	-	-	-	-	0
On-Resistance	R _{ON}	$I_S = 1 \text{ mA}, V_D = 1.$	o v	Full	-	-	-	-	-	Ω
				Room	± 0.02	-1	1	-1	1	
Switch Off	I _{S(off)}	$V+ = 3.3 V, V_L = 2$.7 V	Full	-	-50	50	-5	5	
Leakage Current	_	$V_D = 0.3 \text{ V} / 3 \text{ V}, V_S = 3$	V / 0.3 V	Room	± 0.02	-1	1	-1	1	- A
	I _{D(off)}			Full	-	-50	50	-5	5	nA
Channel On		$V+ = 3.3 \text{ V}, V_L = 2$.7 V	Room	± 0.02	-1	1	-1	1	
Leakage Current	I _{D(on)}	$V_S = V_D = 0.3 \text{ V} /$		Full	-	-50	50	-5	5	
Digital Control					•			•		
Logic Low Input Voltage	V _{INL}			Full	_	-	0.6	-	0.6	.,
Logic High Input Voltage	V _{INH}	$V_L = 2.7 V$		Full	-	1.8	-	1.8	-	V
Logic Low Input Current	ΙL	V _{IN(A0, A1, A2} and enduring under test = 0.6	Full	0.02	-1	1	-1	1		
Logic High Input Current	I _H	V _{IN(A0, A1, A2} and end under test = 1.8 ^V	Full	0.02	-1	1	-1	1	μA	
Dynamic Characteristics										
To solve a Trace		$R_L = 300 Ω, C_L = 35 pF$ see Fig. 1, 2, 3		Room	161	-	-	-	-	
Transition Time	t _{TRANS}			Full	-	-	-	-	-	- ns
Fachla Time On Time				Room	120	-	-	-	-	
Enable Turn-On Time	t _{ON(EN)}			Full	-	-	-	-	-	
Fachla Time Off Time	t _{OFF(EN)}			Room	79	-	-	-	-	
Enable Turn-Off Time			Full	-	-	-	-	-		
Break-Before-Make			Room	98	-	-	-	-		
Time Delay	t _D			Full	-	-	-	-		-
Charge Injection e	Q	$C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega, V$	/ _{GEN} = 0 V	Full	0.58	-	-	-	-	рС
Off Isolation e	OIRR	$f = 1 \text{ MHz}, R_L = 50 \Omega,$	100 kHz	Room	-95	-	-	-	-	
Crosstalk e	X _{TALK}	$C_L = 5 pF$	100 kHz	Room	-92	-	-	-	-	dB
Source Off Capacitance e	C _{S(off)}		I	Room	3.7	-	-	-	-	
Drain Off Capacitance e	C _{D(off)}	f = 1 MHz		Room	4.7	-	-	-	-	рF
Channel On Capacitance e	C _{D(on)}		Room	10.4	-	-	-	-		
Power Supply	5(01.)				ı		l	l		
	_			Room	0.05	-	1	_	1	
Power Supply Range	l+			Full	-	-	10	_	10	
		$V_{IN (A, B, C \text{ and enable})} = 0$	V or 3 V	Room	0.05	-1	-	-1	-	
Ground Current	I_{GND}			Full	-	-10	-	-10	-	μA
				·						
Logic Supply Current	ΙL	$V_{L} = 2.7 \text{ V}$		Room	0.05	-	1	-	1	

Notes

- a. V_{IN} = input voltage to perform proper function.
- b. Room = 25 °C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

On-Resistance vs. VD and Signal Supply Voltage

On-Resistance vs. Analog Voltage and Temperature

Leakage Current vs. Temperature

On-Resistance vs. Analog Voltage and Temperature

Switching Time vs. Temperature

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Switching Threshold vs. Logic Supply Voltage

Charge Injection vs. Analog Voltage

SCHEMATIC DIAGRAM (typical channel)

90 %

TRANS

TEST CIRCUITS

Fig. 1 - Transition Time

Fig. 2 - Enable Switching Time

Fig. 3 - Break-Before-Make

TEST CIRCUITS

Fig. 4 - Charge Injection

Fig. 5 - Insertion Loss

Fig. 7 - Off Isolation

Fig. 6 - Crosstalk

Fig. 8 - Source, Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67172.

Thin miniQFN16 Case Outline

DIMENSIONS		MILLIMETERS (1)			INCHES		
DIMENSIONS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.50	0.55	0.60	0.020	0.022	0.024	
A1	0	-	0.05	0	-	0.002	
A3		0.15 ref.			0.006 ref.		
b	0.15	0.20	0.25	0.006	0.008	0.010	
D	2.50	2.60	2.70	0.098	0.102	0.106	
е		0.40 BSC		0.016 BSC			
Е	1.70	1.80	1.90	0.067	0.071	0.075	
L	0.35	0.40	0.45	0.014	0.016	0.018	
L1	0.45	0.50	0.55	0.018	0.020	0.022	
N (3)		16		16			
Nd ⁽³⁾		4		4			
Ne ⁽³⁾	4 4						

Notes

- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

ECN: T16-0226-Rev. B, 09-May-16

DWG: 6023

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR MINI QFN 16L

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.